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Summary. — The aim of the present paper is to study a random equation of the general form
2(t, ) = (Ux)(t, o), te Ry and its spectal case a nonlinear random functional integral equa-
tion given by

g1(8) gmit}
(t, w) = F(t, ffl(t, s, (s, w), @) ds, .., ffm(t, 8, %(s, w), w)ds, B(hy(t), ), ..., 2(hy(1), w}, w) .
0 0

The existence and uniqueness of « random solution, a second-order stochastic process, of the
equuations is considered.

1. — Introduetion.

Random equations of various types have been considered recently by many
scientists, for example [1], [10] and [11]. One of the most common types of random
equations arising naturally in the study of physical, biological and chemical phe-
nomena are the random or stochastic integral equations, [1-2], [5-9], [11-12].

In this paper, we shall first study-a random equation of the general form

1.1 o(t, w) = (Ux)(t, o) .

The particular cases of equation (1.1) are the Volterra and Fredholm random integral
equations, the random functional integral equations and others. Algo the random
differential equations the random functional differential equations and in particular
the random differential equations with a deviated argument of the neutral type
can be reduced to the random equation of the form (1.1).

The general method of proof of the existence theorems of the solution of equa-
tion (1.1) will be to appeal to the comparison method. This method based on the
convergence of successive approximations produced by a comparison operator A
associated with the operator U. The abstract form of comparison method was
introduced by WAZEWSKI {13] in the case of deterministic equation.

(*) Entrata in Redazione il 10 gennaio 1978.
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The purpose of this paper is to analyse the class of linear comparison operators A
associated with the operator U and having the sufficient properties to ensure the
existence, uniqueness and convergence of successive approximations for the special
case of equation (1.1). Specifically, we shall study a nonlinear random funetional
integral equation given by

0, (1)
(1.2) 2ty ) = F(t, f 11(t, 8, (2, @), ) ds, ...

0
ImlE)

vers f ful(t, 8, 201, @), ) ds, 2((1), ), ..., 3(:(t), ®), co) s
0

where

() te Ry £ 10, 4 o0), and o€ 2, the supporting set of a complete probabil-
ity measure space (£, F, P);

(ii) 2(t, w) is the unknown random function defined on R, with values in R;
({1} F(& Uy, vvy Uy Byy .oy Tpy @) 18 map from Ry X Reirx Q into R;
’ ? ’ b

(iv}) f,(¢, 8, 2, w}, j =1, ..., m, the stochastic kernels, are a map from B, X E.X
X B x £ into R;

v) git), b,(t), =1, ..., m, i =1, ..., p, are non-negative scalar functions defin-
ed on R..

Further assumptions concerning the functions in equation (1.2) will be stated
in section 2.

The equation (1.2) is generalization of equations studied by Turo [11] (if
m=p=1 and the interval of integration is compact) and MirToN and TsoK0S [3]
(i B thyy veey UYnny Bry oeny By @) = Bl 0) oo U,y F5E, 8, 2, 0) = ks (T — 8, 0) @ ()
and g,(f)==1).

The particular case of equation (1.2) (if F(t, Uy, ..oy Uy B1y ooy Tpy 0) = h(t, 21) -+ %y
and g¢i(t) = %, ky(¢) = t) is equation considered by Tsoxos and PApgrrr [11], MILTON
and Tsoxos [6-7], HARDIMAN and Tsoxos [2], and also (if moreover F = h(t, w) -+ u,)
LeE and PADGETT [5].

Equation (1.2) is the stochastic analog of the deterministic equation studied
recently by Kwarisz and TUro [3-4].

The random neutral-differential equation

y'(t, w)= F(ty ?}’(gl(t): 60), cers ?/(gm(t}v w)s y,(hl(t): (x)),
ey ' (Bu(t), @), w)

can be reduced to the particular case (if f,(f,s, », w)= ») of equation (1.2).
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2. — Preliminaries.

Let I,(Q) = Ly, ¥, P) denote the space of all functions #(w) from £2 into R
such that

flz(w)‘zP(dw) < oo,

That is, L,(Q) is the space all second-order real valued variables. For convenience,
we write

¥
@) I, = { [lstw) 2 P@o)},  s() e L) .

We require for the formulation of the random equation (1.2) the following as-
sumptions:

() F(t, wyt, ), ..., Un(ly @), 2(t, ), ..., 2,(t, 0), ) must for each i e R, belong
to Ly(02) and F(&, Uy, ..., Uy By, ...y Ly @) 18 a0 Ly(2)-continuous in e Ry for each
u, :€R, j=1,...,m, i=1, ..., p;

(ii) fi(t, s, #(s, @), ®), j=1,...,m, are the continuous maps from A= {(¢,s):
0<s<t< oo} into Ly(Q);

(ili) the non-negative scalar functions ¢,{f) and k,(f) are continuous on E.
and g <t, bi(t)<t, te Ry, j=1,...,m, i=1,...,p.

DerFINITION 2.1. —~ We call x(f, w) a random solution of the random equations
(1.1) or (1.2) if for each fe Ry, 2(f, w) is an element of L,(£2) and satisfies the equa-
tions (1.1) or (1.2) P-a.e.

DEFINITION 2.2. — We shall denote by C(R, Ly()) space of all continuous maps
(t, w) from R, into L,(2) with the topology of uniform convergence on compacta.

Note that it can be shown [14] that the space C(Ry, L,(2)) is a locally convex
space whose topology is defined by countable family of semi-norms given by

@t ®) | = sup |2, o), n=1,2,..
0<I€n

DEFINITION 2.3. — A sequence {x,(t, w)} of elements of space O(R,, L,(Q)) will
be ecalled a Cauchy sequence if for every &> 0 and n there exists an N such that
for k> N and !> N we have

l#:(ty ) — o(t, W) <& .
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It is clear that the space (R, L,(£2)) is complete, that is, every Cauchy sequence
of its elements has a limit in C(R., I,(2))..

By C,(B:, B;) we denote the class of all R+-valued functions upper semicon-
tinuous on R..

3. — Existence theorem for random equation (1.1).

We introduce

ASSUMPTION A. ~ Suppose that

1) there exists an operator A: Cy(R., Ry) — Co{R;, Ri), which has the follow-
ing properties:

a) if we C(RB4, R;) and v= Au, then ve O(Ry, R,), (C(Rs+, Ry) denote the class
of all non-negative continuous functions on R.),

by if u,ve C(R+, By) and w<w, then Au< Ay,
¢) if u,€ C(Ry, Ry)y thnyy <thy, n=0,1,..., tty—u, then Au,—Au;

2) the operator U: O(R., L,(Q)) — O(R; L,(£2)) fulfils the condition
(8.1) WU2)(t, 0) —(UBL, o), < A(|#(t, 0)— 3¢, 0)],,)

for w(t, w), B, ) € (R, Ly(2)).

AsgvMpTION B(r). — Suppose that

1) for a given function re C(R., R,) there exists a solution u,e O(R., By} of

the inequality
Au-r<u;
2) the function #= 0 iz the unique solution of the inequality
u<< Au
in the class Co(Ry, By, te) L {u: ue Cy(Ru, By, |u|*< oo}, where
Tul* £ inf{c: u<cu,, c€ R} .

We construet a sequence as follows:

(3.2) Upga= Aup,  m=0,1,...,

where u, is ag infroduced in Assumption B{r).
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Similarly as in [3], by induetion and Dini’s theorem we can prove the following

Lrmma 3.1. — If Assumption B(r) and the condition 1) of Assumption A are
satisfied, then

0 < Uy < Uy n==0,1,.., and %,=0,

where the sign —% denotes uniform convergence in any compact subset of R..
Now, we define the sequence of successive approximations {z,({, w)} by

(3.3) Tuialt, 0) = (Uz,)(t, ) , n=20,1,.., te Ry,
where (t, ) is an arbitrarily fixed element of O(R,, L,(2)).
TueorEM 3.1. — If Assumptions A and B(r) are satisfied for
r(t) & [(Umo) (8, ) — o2, W)”L2 )

then there exists a random solution Z(f, w) € O(R.., L,(2)) of equation (1.1), and the
following estimations

(3.4) [@(t, ) — @ally )], <walt), m=0,1,.., teRy,

hold true.
The solution Z(¢, w) of (1.1) is unique in the class

O(RB+, Ly(Q), o) &£ {2(t, 0): 2t ) € O(Ry, Ly(Q)), [#(t, w) — a4(t, )| 1,€ Co( By, Rey o)}
where Cy(R,, B;, u,) is defined in Assumption B(r).
Proor. — The following estimation
(3.5) 10,2ty 0} — @a(t, w)ﬂngun(t) ’ mk=10,1,.., te B,
is easily obtained by induction. Hence and from u,—X 0, n — oo (see Lemma 3.1)
it follows that {z.(f, w)} is the Cauchy sequence (see Definition 2.3) in C(R., Ly(£)).
Since O(R,, Ly(£2)) is complete space, there exists an #(t, w) e O(R;, Ly(2)) such

that ».({, w) - Z(t, w). If k— co, then (3.5) yields estimation (3.4). By the esti-
mation

1Z(t, ©) = (U}, o), <[Z(t, 0) = 2.(t, 0)| 5,4 (T2, 0) — (), o)y,
LUt} Athyy = 2u,(t) , n=10,1,.., te Ry,

it follows that the random function Z(t, ) satisfies equation (1.1).
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To prove uniqueness, suppose Z{f, w) and &(, w) are two solutions belonging to
O(R:, Ly(R2), w,). It is easy to prove that |Z({, o) — &(t, )], € Oo(B, Ry uy) and

Hi(ty w)— (1, w)hﬁfl(ﬂi(t’ w)— &, w)“La) .

Hence and from Assumption B(r) it follows that [Z(?, w) — &(¢, w)|,, = 0. Thus the
proof of theorem is complete.

4. — Lemma and some remarks.

It follows from the above general considerations that the fundamental idea in
proving of the existence and uniqueness of a solution of random equation (1.1) or
its special cases is associate the operator U to an operator A satisfying the ine-
quality (3.1).and such that the Assumption B(r) is fulfilled.

Now we congider the comparison operator A defined by

(4.1) Aw= Ku-+ Lu,

where

g;(8)
kit) | ul(s)ds,
]

(Eu)(t) £

s

(Lu)(f) 2 é:lli(t)u(hi(t)) ,

and k;, 1;, g, hi€ O(Ry, Ry), i) <ty hi() <ty teRy, j=1,...,m,i=1, ..., p.

REMARK 4.1. — By using Banach fixed point theorem it is to prove that Assump-
tion B(r) for any re O(R,, R;) is fulfilled for A defined by (4.1) provided

»

(4.2) S0+ Sun<1, ieRr.
i=1

i=1

It is the aim to give conditions weaker than this one.

Define Ir & LI~ n=1,2,..., [° £ I, where I denotes the identity operator
in O(E., B).

From the definition of the operator L it follows that

Tray= 3 B u(iin),

Fiseenstn=1
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where
Bt L hy(1) Bhapyinn(g) £ Byt (hy, (),
IHOESXOP Paw oty L (1) Leewin(hy (8) Gyin=1,...,p, n=20,1,....

bty

Put

Su LY Ly
n=0

with the point weise convergence of the series in R..
Liemma 4.1. — Assume that
(i) %y, 1, g5y by r€ C(Ry, By) and 9;(t), bt [0, €],
teR,, j=1,...,m, i==1,...,p (the case m, p = -+ oo is possible};
(i) §=8r<< oo, §= 8k < oo,
where k(t) £ glké(t) gi{t) (if m = 0o we assume that this sum is finite);
i
(iii) s, € O(Ry, Ry) and sup §(t)/t < oo .
Then
(a) there exists w,e O(R,, B.) which is a unique solution of equation
(4.3) u= SKu-+ Sr

in the class L

loc

(IPy, By) locally integrable functions on R.;
{b) the function wu, is the unique solution of the equation

U= Ku-t+TLu+t+r

in the elass Ly (R, By, uo) & {u: we Ly (R, Ry), |u]* < oo}, where the norm |-|*

is defined in Assumption B(r);

(¢) the function # = 0 is the unique solution of the inequality
uL Ku- Lu

in the class Ly (Ry, Ry, ).

Proor. ~ We prove (a). We note that if ue L, (R, R;) and is the solution of
equation (4.3) then we (R, B;). Thus we shall prove that equation (4.3) has a
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unique solution in C(R;, R.). We shall obtain a solution first on an arbitrary closed,
bounded interval [0,n]. Let C([0,n], R) be the space of all continuous functions
on [0, n], where we introduce a norm |-}, in the following way:

Julo £ sUD e~*ju()],

where 1> 1% sup3(t)/t.
Now we prove that operator SK is a contraction in C([0, n], B} i.e. |[SK| <1.
Indeed, from the inequality e**— 1< e’ for «e[0,1], te€ R,, we have

ISEufo<sup e S S 3 Uein(t) by (izein(t)) -

tef0,nl i=1 =0 ij,...,in~1

) i

A
[ omsm empuiolas <2 fulo< 7 b
i

Hence it follows that |SK| < 1. Now from Banach fixed point theorem it follows
that equation (4.3) has a unique solution u,e C([0, n], R,). Since n is arbitrary, u,
is a unique solution of equation (4.3) on E..

The remainder of the proof is gimilar to that of Liemma 6 [3] and is omitted.

REMARK 4.2. — If m=1, p=1, k(t) Z &), 1) £ 1,(1), g(t) £ g:(2), and h(t) £ ky(2),
tc Ry, then assumption (ii) of Lemma 4.1 is of the form [12]

$(0) = 3 L{t)r(ba(t)) < oo,

where
B 2Lty o) L0{h.()), n=0,1,..., teR,,

LyE1, Il.@0X I__[l(hk(t}) n=0,1,.., teR,.

REMARK 4.3. — Now we give some effective conditions under which assumption (ii)
of Lemma 4.1 is fulfilled.

o) If we assume that

ki(t)<k;=const, L{t)<l,=const,  g(t)<iit,
(4.4) - . :
hi(ty<hit, Jiy hi€[0,1], j=1, ., m, i=1,..,p, te Ry,
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and r(f) <7, te R,., for some 7 R, then assumption (ii) of Lemma 4.1 is satisfied
k4

provided z

b) IE Ry(t)<hs, Lt) <Lit, g;(0) <Fst, hilt) <hit, (8) <Ft, ky, I;, 7€ By and §,e[0,1],
Tzie[O, 1), te R,, then assumption (ii) of Lemma 4.1 is satisfied.

¢) Finally, if we suppose (4.4) and #(¥) <¥t%, t € Ry, for some 7, g€ R,, then (ii)

p -
of Lemma 4.1 is satisfied provided > {,2f<1.
i=1

5. — Existence theorem of a random solution to equation (1.2).

We introduce the following

Assumprion C. - We assume, in relation to equation (1.2), that there exist func-
tions k¥, Z;, I,€ O(R., B,), such that

”F(t7 Uy (ty )y vy Un(ly @), #1(t, ), ..., 2,(E, W), w)
— F(t, Uty )y -oey Uty @)y Tully @), ..., Tu(ly @), w)ﬂzﬁ

< 2 K (O)]us(t, w) —wi(t, o) +Zl ety w) — Eilt, )]z,

AYE
i

3

I1: (t 8, #(t, w), ) f(t 8, Z(t, w) )”L Eﬁ(t)ﬂm(tr w) — Z(t, OJ)HLa;

for wu,(t, w), Uty w), 2ty w), Zi(t, 0), x(t, ), i, w) € Ly(9), teRt, j=1,..,m, 1=
=1,..,p.
From Theorem 3.1 and Lemma 4.1 follows

THEOREM 5.1. — Consider the random integral equation (1.2) subjeet to the follow-
ing conditions:

(i) Assumption C is satisfied;

(ii) assumptions (ii) and (iii) of Lemma 4.1 are satisfied with k; and r defined by
(5.1) ki{t) = k:‘(t) ];j(t) ’ 7(8) = [(Um,)(t, @) — w2, w)“L2 ’ te B,

where the operator U is defined by the right-hand side of equation (1.2).

Then there exists a random solution Z(f, w) € O(R4, Ly(£2)) of equation (1.2) such
that

1Z(2, ) — walt, w)”Li<un(t) s n=0,1,.., te€Ry,
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where {u,(f)} is defined by (8.2) with A defined by (4.1). The solution Z(t, w) is
unique in the class Ly (B, Lo(9), %) £ {a(t, 0): #(t, ®) € Ly (B, L(Q)), |#(t, ») —
— @o(ty ©)] 1,€ Lnoo B By, )}, Where Ly (By, L,(2)) is the class of all locally in-
tegrable functions defined on R, with range IL,(£), and L, (R, Ry, u,) is defined
in Lemma 4.1.

Proor. — The existence of the solution is implied by Lemmas 4.1 and 3.1 (see
the proof of Theorem 3.1).

To prove the uniqueness we suppose that &(t, w) € Ly ( Ry, Ly(£), 4,) is a random
solution of (1.2) different from Z({, ). Then we easily infer that %(?) = [#(f, 0) —
— &(t, w)| € (By, By, uy) and w<Ku-+ Lu. Hence and from (c) of Lemma 4.1 we
conclude that [Z({, w)— &({, w)];, = 0. Thus the theorem is proved.

Combining the Assumption C with one of conditions a), &) and ¢) of Remark 4.3
we find another existence theorem for equation (1.2) in which the assumption (ii)
from Theorem 5.1 is replaced by a more effective one. For example the following
theorem, which follows from part ¢) of Remark 4.3 and Theorem 5.1, show also that
condition (4.2) is more restrictive than assumptions of Theorem 5.1.

THEOREM 5.2. — If Assumption C and condition (4.4) with k; and r defined by
(5.1) are satisfied and if r(f)<7t%, te Ry, for some ¢, 7€ R;, then the assertion of
Theorem 5.1 holds provided

D -
(5.2) SLhi<1.
REMARK 5.1. — The following example of the random functional equation
(5.3) a(t, w) :'le(ét—i,w), teR,, 02,
<

shows that condition (5.2) is essential. For this equation condition (5.2) has the

form > (1/2;)¢<<1 and is hold provided ¢>1. In view of Theorem 5.2 there exists
i=1

unique solution «(f, w) = 0 of equation (5.3) in the class of functions satisfying the

condition [#(t, w)|,, <const ¢, t€ Ry, but for g=1 condition (5.2) is not fulfilled

i

and for this case each function (¢, w) == a{w)t is a solution of equation (5.3.).
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