Relative Continnum Mechanics in General Relativity (¥) (*+).

II. - The Lagrangian Viewpoint.

Enrico MAssA (Genova)

Summary. - An awiomatic approach to the study of relative continuum mechanics in curved
space-time is proposed. The explicit assumptions are: a) exvistence of the energy-momentum
tensor T, satisfying the equations of motion T, = 0, and b) existence of the congruence
of stream-lines of the given continuum. The argument relies on a relativistic extension of the
Lagrangian viewpoint, and involves the analysis of the relative dynamical behaviour of an
arbitrary infinitesimal globule A of continuum in a given frame of reference [I']. The plan
is fulfilled in two steps: 1) geometrical theory of the Lagrangion viewpoint, valid for any
type of continua satisfying the stated requirements; 2) physical applications, illustrating the
general theory im the case of an energy-momenium tensor of the form T = p,ViVi— §%4.

Intreduction.

In a previous paper [1] (benceforth denoted by I) we have discussed the kine-
matical foundations of relative continuum mechanics in General Relativity. We
shall now examine the dynamical aspeets of the theory.

In the space-time manifold °U,, we consider an ideal physical system, completely
characterized by a symmefric energy-momentum fensor 7%, and by a corresponding

congruence = of stream-lines. Our plan is to develop & mathematfical scheme for
the study of the dynamical implications of the equations of motion

(0.1) T”/ﬁ:

in any given frame of reference [I'].

The line of approach is based on a relativistic extension of the so called Lagran-
gian viewpoint, commonly used in Clasgical Continuum Mechanies [2, 3].

In other words, we shall consider an arbitrary infinitesimal globule A4 of con-
tinuum, and shall analyse its evolution relative to [I'}, within the framework of
point parficle dynamies [5-=8].

The mathematical preliminaries are dealt with in Section 1. These include a
short review of the concept of spatial volume (see e.g. 1), and a subsequent applica-
tion to the study of an arbitrary equation of the form W = 0.

(*) Entrata in Redazione il 22 novembre 1977.
(**) Lavoro eseguito nell’ambito dell’attivitd del Gruppo Nazionale per la Fisica Mate-
matica del C.N.R.
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The relativistic formulation of the Lagrangian viewpoint is outlined in Section 2.
We prove that, as a consequence of eq. (0.1), the dymamical behaviour of every
infinitesimal globule A of continuum in the frame of reference [I'] is determined
by a set of equations which are formally identical to the standard relative equations
of motion for a point particle in General Relativity, i.e.

0*ps_ 0*H,

(0'2) 6T 4 611

= W,

the quantities p, (standard momentum), B, (standard energy), F, (standard force),
W, (standard power) being determined by a corresponding set of densities (momentum
density 7, energy density e, force density f and power density w), each multiplied
by the spatial volume of A relative to [I'].

The theory is completed by a suitable set of identifications, providing definite
expressions for the densities m, &, f and w in terms of the energy-momentum tensor 7',
of the standard velocity », and of the geometry of U,. In particular, the description
of f and w is seen to involve a further dynamical object, called the effective siress
of the continuum relative to [I'], and described by a generally non-symmetric space-
tengor f=6.

We next come to the physical implications of the theory. As pointed out in I,
these depend on the choice of an explicit relation between the four-velocity field V¢
and T%. The case discussed here is based on the ansaiz

(0.3) (Tt p0g:) Vi=0

u° denoting the invariant mass density of the system [9].

As a consequence of eq. (0.3) we have now a linear relation between momentum
density x and standard velocity ». This allows a precise description of the inertial
properties of the continuum in the frame of reference [I'], and leads quite naturally
to the introduction of a relalivistic mass density tensor §>6 (). A remarkable conse-
quence of this fact is that, in the Lagrangian scheme, an arbitrary infinitesimal
globule A of continuum is not regarded as a point particle in the usual sense, but
as an « anomalous » particle, whose inertial properties are described by a relativistic
mass tensor W2 = g7-vol A.

A detailed discussion of this point shows that the previous conclusion is una-
voidable, and that it is in complete agreement with Binstein’s equivalence principle.

A conclusive evidence in this sense comes from the physical interpretation of
the equations of motion (0.2). The relevant results are listed below:

a) splitting of F, into a part entirely due to the infernal stresses, and a grav-

(1) The need for a mass density tensor g*f is due to the lack of parallelism between T
and v. This property is not peculiar of the Lagrangian scheme developed here, but is already
present in Special Relativity (see e.g. [11]).
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itational term. The analysis elarifies the physical meaning of the effective stress
tengor 7+f, and points out the role of the mass tensor mgﬁ in the determination of
the gravitational effects acting upon A in the given frame of reference (equivalence
principle);

b) splitting of the power W, into a mechanical part W _.,, and a dissipative
one. A difficulty here arises from the fact that W, is not simply given by F,-v,
but includes an extra term, which depends on the énternal structure of the globule A.
Again, the use of the mass tensor %% plays a fundamental role in the interpreta-
tion of the results.

1. — Mathematical preliminaries.

In this Section we set up the necessary mathematical tools for the relativistic
extension of the Lagrangian viewpoint. For the notation, terminology, ete. the
reader is referred to I.

(i) In the space-time manifold U,, let E denote a sufficiently smooth con-
gruence of world-lines, defined on a open world-tube 6. As in I, we regard 5 as a
Linematical object, rather than as a purely geometrical one. Mathematically, this
is obtained by representing = as a differentiable map 0 of the domain G onto an
abstract three-space 3, subject to the condition

O(z) = 0(y) if and only if both events w»,y belong to the same curve ack.

This allows to interpret 3 as the set of points of an ideal physical system, and F
as the congruence of stream-lines deseribing the ewvolution of B in U,.

The infroduction of a physical frame of reference [I'] specializes the situation
as follows:

fod
=

1) The congruence Z admits a distinguished fangent vector field 9, related
to the temporal 1-form w? of [I'] by the duality relation

(1.1a) {87, w*> =1,
Equation (1.1a) is mathematically equivalent to
(1.1b) dr=v-+ 3,

v = $,(0;) e D* denoting the standard velocity of 5 relative to [I'].

2) The standard affine connection V* associated with [I'] determines a differ-
ential operator Vgi,, called the standard time derivative along the curves of 5. The
restriction of V“E;T to an arbitrary curve a€X is denoted by &*/67, and is called

5 — dnnali di Malematica
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the standard time derivative along o (I, 2.1). If we indicate by D/DT the absolute
derivative on ¢ determined by the Riemannian connection V¥ of AU, we have the
explicit relations [5]

(1.2a) ED—% :[ (R, — 0w, 'u"+(7] 0, 22 5o B,

and

DX 6 X
(1.20) e LT N
for all spatial vector fields X = X+ 3, defined on a (2).
3) The local kinematical behaviour of = in the frame of reference [I'] is

described by the spatial tensor field
1.3) §=35,0 Qu= Viw,+ 0.8+ 8, vvﬁ+1K Yw?* ® wf

called the welocity gradieni of & velative to [I']l. The latter is further decomposed
into relative angular velocity tensor Sapw*\wh, relative dilatation §', and relative shear
(Sap— % § iyag)wﬂ‘@wﬁ (I, 2.3).

4) The frame of reference [I'] induces a time-dependent Riemannian structure
over the manifold &, completely described by the fime-dependent fundamental form

(1.4a) @ = @— 20(d) © @+ (B, g(B8r)> w® @ w°

and by the associated Ricei tensor

(1.4d) n=20r_I7

& and v denoting respectively the fundamental form and the Ricei tensor of U,
(I 3.2).

(2) Throughout the subsequent discussion, a tilde placed over the components of an ar-
bitrary tensor field will indicate that these components are referred to a natural bcms {8,, '}

of the tensor algebra over (U, I') [4]. The same convention apphes to the symbols V and V*
(covariant derivatives induced respectively by the Riemannian connection V and by the
standard affine connection V* associated with [I']). For later use, we recall the following

relation between the connection coefficients 1:“70 of V and the spatial connection coefficients
I'jg* of V* in natural bases:

%“ﬂl=~:ﬁl5 ;11'0=0' }ooa‘zi'jmfo;_o:ﬁa

Togh = Tpp = 32— 2%) 5 T = 3 + Qp2)
the meaning of the symbols being as in [4, 5].
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The differential forms (1.4a, b) defermine a 7-dependent euclidean struciure on
each tangent space T(B), £€ B, i.e. a T-dependent fundamental form Q)E(T) and a
T-dependent Ricei tensor ﬁ T) on T(B), the time T being evaluated on the world-
line 6-}(§) e &.

Neglecting higher order infinitesimals, this gives rise to a local T-dependent
measure for distances, volumes, etc. in 3B, based on the fact that, within first order
approximation, every sufficiently small neighbourhood A4 of a point £ B may be
identified with a corresponding neighbourhood A of the origin in T.(3).

In particular, under the stated assumption, the velume of A at the instant T
in the frame of reference [I'] is given explicitly by

(1.5) (vol A)p= f 2:(T)
J

the right-hand side being the ordinary integral of the 3-form v ') over the domain
AcT(®).

{(ii) As pointed out in I, the Lie derivative £aﬂ‘;) of the field (1.4b) satisfies
the identity

(1.6) ﬁamﬁ = (8T)§//5ﬁ = [%‘Kzz + (vj“[“ 61)5A]ﬁ = 511;1

&, being the relative dilatation of £ in the frame of reference [I7].
Now, let ye F denote an arbifrary solution of the equation (3)

(1.7“[) aT(x) = (aT)j//,- = vg‘(az‘j) = glz f
Then, by eq. (1.6), we have the identity

(1.70) £a.(exp[— xIn) = — exp[— 15 m + exp[— y]1¥ =0

showing that the field exp[— x]ﬁ is an ordinary (time independent) geometrical
object over 3.

More generally, given any point £ B, let us indicate by y(T) the restriction
of an arbitrary solution of eq. (1.7a) to the curve 6-1(£) € B, parametrized by means
of standard time 7. Then, recalling the definition of the Ricei tensor ?] (T) induced
by ﬁ on the tangent space T, (B) (I, 3.2), the previous arguments imply that the
product exp[— x(T)]-}} «T) is an ordinary (T-independent) field over T'(%). From
this, keeping the same notation as above, we coneclude that, if Ac B is any suffi-

(8) Eq. (1.7a) determines y up to an arbitrary solution of the homogeneous equation
8,(f) = 0. In particular, the restriction of y to an arbitrary curve a € £ is determined up
to an additive constant.
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ciently small neighbourhood of the point &, the volume (1.5) factorizes into

(1.8) (vol 4); = exp [4(D)] | exp [~ 7(1)]7: 2 exp [(L)] 87(4)
4

with dyx(A4) ?:effexp [— X(T)]ﬁézz constant along the curve §-1(£).
i

REMARK 1.1. — From a geometrical viewpoint, the quantity dy¢(4) may be inter-
preted as a statical measure of A, induced by the given solution y of eq. (1.7a).
The freedom in the choice of y (see footnote {3)) is then reflected in the fact
that the function exp[y(T)] and the measure dy(4) in the factorization (1.8)
are defined up to arbitrary transformations of the form exp [4(T)] — aexp [x(1)],
Sy(dy > ady(d), «ck.

(iii) To complete our mathematical scheme, we shall now set np a general
technique for handling any equation of the form ¥,/ = 0 in the world-tube B.
This will provide the formal basis for the relativistic formulation of the Lagrangian
viewpoint, to be discussed in Section 2.

The method relies on the use of the projection operator §: D1 Dt introduced
in I. In natural bases, recalling eq. (1.10), we have the explicit relation

F(X) & X — (X, w) 8y = (Xo— Xo5%) Ba
for all X= X+3,e DL
By means of @‘, every tengor field We Dt (r=0,1,...) defined on G may be
factorized into
(1.9@) W='—t+ ar_n ®TC

with te D+t and ne D given respectively by the equations

1.95) t%—§ ®id®.. QIAW=(— WL 5@WnN§®d ®.. . ®F,
(1.9¢) & Wi (F,, 03 Q... 8= W3 @..®37,

Let us now define the field z € D by
(1.10) G, P ®.. © 9, -

Then, setting for simplicity Div W, W3, ®... ® 9, we have the following

LemMA 1.1. - If ye J is any solution of eq. (1.7a), the equation Div W= 0 is
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mathematically equivalent to the transport law
D
(111) 57 (P (D7) =z exp[x(T)]

along each curve a5 (where, by abuse of language, we are using the same
symbols =, z to indicate the restrictions of the fields (1.9¢), (1.10) to the curve a).

The proof is almost obvious: in view of egs. (1.7a), (1.9a), (1.10), the equation
Div W= 0 may be written in the form

0=— 5+ V(8 %" ") 8,®... ® 8, = — 5+ duly) ™+ Vg, =
= — 5+ exp[— 4]V, (exp [4]m)

which is equivalent to the transport law (1.11) along each curve a e Z(D/DT being,
by definition, the absolute derivative along a determined by the Riemannian connec-
tion of U, see footnote (2)). Q.E.D.

The importance of Lemma 1.1 lies in the following observation: suppose we
concentrate our attention on a single world-line ¢ € 5. Then, if 4 is any sufficiently
small neighbourhood of the point 0(a) € B, eq. (1.8) implies exp [{T)]= vol A4/dy(4),
with dy(4) = const. on & (). We may therefore express eq. (1.11) in the equivalent
form

‘ D
(1.12) T (mvolA) = zvolAd.

This formulation of the original equation Div W == 0 is especially relevant when-
ever the quantities w and z correspond to fields of densities associated with the
physical system in study (momentum densiby, energy density, force density, power
density, charge density, current density, ete.). In this cage, eq. (1.12) determines
the behaviour of the corresponding « integrated » guantities ms & t-vol 4, ete. asso-

ciated with any infinitesimal globule A of the system, thus leading to a precise
description of what is usually called the Lagrangien viewpoint.

II. - The Lagrangian Viewpoint.

2.1. General theory.

(i) Liet us now assign to the physical system in study a symmetric energy-
momentum fensor Tif5i®5j, satisfying the equations of motion

(2.1) V. T¥=0.

(*) From here on, for simplicity, we shall drop the subscript T in (vol 4),.
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Our plan is then to apply Lemma 1.1 in order to derive the dynamical implications
of eqs. (2.1) in the frame of reference [I']. At the present stage, we shall not impose
any a-priori assumption concerning the relation between T and the congruence 5
of stream-lines of the given physical system.

As pointed ount in I, this will not give rise to a complete dynamical scheme, but
rather to a geometrical theory of the Lagrangian viewpoint, valid for any type of
continua. Dynamical completeness is then restored in any specific physical situa-
tion, by adding to the present scheme the correct relationship between = and 7',
An example of this procedure, covering a large class of material continua, will be
illustrated in Subsection 2.2.

To starb our analysis, we observe that the factorization (1.9a, b, ¢} for the energy-
momentum tensor 7' reads

(2.2a) T498:®0,=—t+u@n=—1t+(8+v)®n
with

(2.20) m= T g, = T0§, 20503,

(2.20) t =— Qi7" 8,83, = (— o1+ 7)8. 3, .

The previous relations may be written more synthetically by introducing the spatial
fields

(2.3a) ;L‘g_—“gizﬂ.': FO Q== [0 5tx= T"‘oézx
(2.3b) e % (g1, WO = 0= o
(2.3¢) TP, QT =108 8= (— T+ 52 8.® 85 -

We have then easily

(2.40) n=nted
(2.4D) t=F— (To— 3@ 3HQRf=F— (r—ev) @

Moreover, eq. (2.3¢) implies the identity
(2.5) (Fo8— 52638) B\ D= (284 72 89)Ba\ Op= 0

due to the assumed symmetry of the components 7.

In view of eq. (2.2b), the field 7 coincides with the density of four-momentum
of the given continuum in the frame of reference [I']. This property is implicit in
the definition of the energy-momentum tensor, and may be proved directly on the
basis of the statistical model proposed by Syne [9,10]. In particular, the fields
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(2.3a, b) describe respectively the momentum and energy density of the continuum
relative to [I'].

An equally simple interpretation for the field (2.3¢) is not possible at this stage,
and must be postponed until we have discussed the dynamical equations (2.1). For
reasons that will be clear soon, we call £ the effective stress of the continuum relative
to [I"]. Notice that, in general, the components ¢ are not symmetric, the only
exception arising in the case m|v (see eq. (2.5)).

To sum up, taking eqs. (2.24), (2.4a, b) into account, we conclude that momentum
density 7, energy density e and effective stress Z, together with standard veloeity v,
are the natural relative quantities involved in the description of the evolution of
the given continuum in the frame of reference [I']. These quantities, however, are
not independent, but satisfy the inner identity (2.5).

(ii) The next step in our analysis involves the evaluation of the field (1.10),
which, in the present ecase, reads

5= V,(0") 8,= [8,(F") + [,/ 4 871 3 .

Setting for simplicity = F,5= 529a, P= (%, w*>, and recalling eq. (2.4b) and foot-
note (2), a straightforward calculation yields the explicit expressions

(2.6a) & = [(V;+ O #*— J(B*,— 0*)(& — &")]18,
(2.6b) #=— (Vi+ 0@ — &)+ LK, + 3, )1 .

In view of Lemma 1.1, the dynamical equations (2.1} may now be written in the
equivalent form

D . . -
S7exP (U D) (F + & 8)} = exp [1(T)](E + 28

with the usual meaning of the symbols. From this, taking eqs. (1.2¢, b) into aecount,
we get the final result

&% ~ 7 5 5

(2.7a) 5T (exp [x(T)I®) = exp [x(T)] (é’“— gbx - % Q%ﬁﬂ) ox ¥ exp [4(D)1f
d Z 4 deg

(2.70) dT(QXP [2(T)]e) = exp [3(T)] (&°— #Pbs) = exp [x(T)]w

providing the transport law for the fields exp [y(T)]# and exp[y(T)]e along each
world-line 4 € Z. In particular, by egs. (1.2a), (2.6a,b), (2.74,b), one can easily
derive the following expressions for the fields f and w:

(2.8a) f=78,= VP (@3, — L R*)#— (e§>>— 1) 0,13,

(2.80) w=(V;+ O) (e — #) + } R, ¥ — #(3°KR,, - 0 .
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Given any curve 4 ¢ .5, let us now indicate by 4c $ an arbitrary infinitesimal glob-
ule of continuum surrounding the point 6(a) € $. Then, proceeding as in Section 1,
we may replace the factor exp[y(Z)] on both sides of eqs. {2.74,b) by the ratio
vol A/dx(A). Again, for fixed A, all terms Jy(A4) cancel out, and we are left with
the equivalent system

(2.9a) %(ﬁ vol 4) = f-vol A
(2.9b) ZZ%’ (evold) = w-vol A

(compare with eq. (1.12)). In view of the stated interpretation for the fields 7 and ¢,
the quantities z-vol 4 and e-vol 4 coincide respectively with the total momentum p,
and the total energy Ea of the globule A in the frame of reference [I7]. This suggests a
natural interpretation of the terms f-volA and w-vold respectively as the total
force Fs and total power W4 acting on A in the given frame of reference (i.e. of fand w
respectively as the relative force demsity and relative power denmsity associated with
the given continuum). In this sense, egs. (2.94, b) may be identified with the standard
relative equations of motion for an arbitrary infinitesimal globule 4 of continuum
in the frame of reference [I'], thus fulfilling the requirements of the Lagrangian
viewpoint.

2.2. Physicel applications.

(i) In order to complete our dynamical scheme, we have now to assume the
existence of a functional relationship between the energy momentum tensor and
the congruence of stream-lines of the physical system in study. As an example of
this procedure, we- ghall consider an arbitrary maferial continuum, whose energy-
momentum tensor 7T%9,® 3, admits a canonical decomposition of the form [9]

(2.10) Tii= o Vi Vi 8o

with ViV,= —1, and §%7,= 0 (5). The fields p°, V= V9, and § = 88,9, are
called respectively the invariant mass density, the four velocity and the stress tensor
of the eontinuum.

Reecalling eq. (1.15) and the identity

(2.11) Or= (1— o2V

() The use of natural units (¢ = 1) is implicitly understood. Notice also that the ansatz
(2.10) excludes explicitly the presence of electromagnetic inferactions, at least on a macro-
scopic scale.



ENrico MASsA: Relative continuum mechanics in general relativity - 1T 69

(I, 2.1), we have the explicit relations

Vo= (1 —ot) 2, To=— Vo= (1— o2}
0 = 8 V,=— S| Sisg,

whence also

(2.12) Soo— Sasp;  Soo = Soog; = Seedi, s, .
From these, setfing for simplicity

(2.13) po= (1 — )0 p= (1— o)1y

and making use of eqs. (2.3a, b, ¢}, (2.10), we derive the following expressions for
the fields 7, & and ¢:

(2.14a)  dr= (p* VeTo— 800 = (ui*— §+*5,)
(2.14b) g =p Voo~ Jo— y— o5,
(2140) & = (—p VeTot 5o 4 527260)8: ® 85 = (Sop— 75, 8) 80 @ B -

Egs. (2.14q, b, ¢) are mathematically equivalent to the system

(2.15a) W= (1 — ) =& — 7D,
(2.15b) St == o8 |- (1 — 02)=1 525, 5°
(2.150) A = e*— [Py, Lf gediy,
with

(2.16) gk el gpad__ fat

Thus we see that, under the assumption (2.10), the basic dynamical objects asso-
ciated with the eontinuum in study are reduced to two: effective stress & and energy
density e. These, together with the standard velocity », provide a complete spatial
resolution of the energy-momentum tensor 7% in the frame of reference [, and
determine all the relevant quantities involved in the equations of motion (2.94, b) (%).

(°) Notice that, in view of eq. (2.15b), the components % and #* are not independent,
but satisfy the inner identity (1 — v2)(fas — f62) — §,(J85x — Pwgf). From this (or also di-
rectly from eq. (2.14¢)), it follows easily that, for [of < 1, the antisymmetric part of ¥ is
negligible compared with the symmetric part.
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In this sense, the present scheme is the natural generalization of the one adopted
in Olassical Continuum Mechanics, the only (substantial!) differences being a) the
presence of a non-zero antiSsymmetric part in the effective sfress t, and b) the
anisotropy of inertial mass, i.e. the lack of parallelism between momentum density 7
and standard velocity ». The last property is of fundamental imporfance. As we
ghall see, it will lead to a natural interpretation of the field (2.16) as the relativistic
mass density tensor of the continuum in the frame of reference [I'].

(ii} By eqgs. (2.8a), {2.16), we obtain the following expression for the force
density f:

(2.17) f=V;P 4 (@ — 1R #— @018, .
Let us now concentrate our attention on an arbitrary infinitesimal globule A
of continuum. Then, setting for simplicity 7t-vol 4= p, ¢-vol A = B, §#-vol A = #=#,

Vit.vol A = &%, egs. (2.9a), (2.150), (2.17) yield

(2.18a) p = M*5,9

o

(2.180) *p_ §o O —L1Re, #— ey | 8a .
o7 T2
In particular, when t=0 (ie. S= 0, corresponding to the case of an incoherent
dust), eq. (2.16) implies

Mob= g Job-vol A = B o6 &y jos |
and eqs. (2.18a, b) take the more familiar form

(2.194) p=mv

*p ~ 1 5 ~ 1=

P . —Z A — )
(2.195) 3T m [(Q“}. 3 K"‘;,)’U 0"‘] Ox
Eq. {2.19b) is identical to the equation of motion—already discussed in [5]—for a
freely-falling test particle of relativistic mass m, subject only to the action of the
external gravitational fields in the frame of reference [I']. Returning to the general
case, it seems therefore quite natural to identify the quantity

(2.20) (2, — 3B p*— 2= C 18, = P [(Q% — K% 5, — 930,08,

with the total gravitational force acting upon the globule 4 of continuum in the given
frame of reference. The remaining term &“5(»: (?f{ fx.vol 4 )5m in eq. (2.18b) is then
a description of the mechanical effects on A, due to the internal structure of the
continuum.
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The previous identification has a twofold advantage: on one side, it points out
the physical relevance of the tensor £, thus providing a complete justification for
the term « effective stress » introduced before. On the other side, it clarifies the role
of the tensor §** defined in eq. (2.18) (or, equivalently, of the tensor M= §*-vol A).
The latter, in fact, is not merely a formal object, relating momentum density 7 (or
momentum p) to the standard velocity » (as implicit in eqs. (2.15¢), (2.18a)), but
is indeed a physical quantity, which determines the coupling of every infinitesimal
globule A of continuum with the external gravitational fields, in complete agreement
with Rinstein’s equivalence principle.

Accordingly, we call §** the relativistic mass density tensor (and #* the mass
tensor of the globule A) in the frame of reference [I'].

By eq. (2.20), one can easily derive the expression for the density of gravitational
force. Exactly as in [5], the latter is seen to consist of three different contributions,
namely

1) a static effect — 51“0150‘, depending only on the acceleration of [I];

2} a Coriolis-type field !?"‘l ﬁféa, depending on the angular velocity of [I'];

3) a deformation field (or Born field) — %—K“ﬁlé“, depending on the non-rig-

idity of the spatial geometry.
The discussion of these effects is analogous to the one presented in [5], and will

not be repeatad here.

(ii) A similar analysis may be performed for the energy equation (2.90). To
this end, we observe that eq. (2.15¢) implies the obvious identity
(2.21) D P ) By = QP (e 3" Bp=0 .

Taking eqgs. (1.3), (2.8b), (2.15¢), (2.17), (2.21) into account, we may now express
the power density w in the form

(2.22)  w=(V;+ 05, + K, — 5, K?, 7+ 6 0)) = 8, 1P + 13,

5 = Sxpw* ® wf denoting the velocity gradient associated with the congruence of stream
lines of the given continuum in the frame of reference [I'] (I, 2.3). The resulting
expression for the energy equation (2.9b) is therefore

dB, )
(2.23) 'd—T:WAZFA”v"‘l—WA

with the usual meaning of the symbols %, F,, W ,, and with W', & = /3, .- vol 4 ().

(*) For simplicity, we have indicated by F,-v the scalar product Few,.
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From a physical viewpoint eq. (2.23) provides a natural splitting of the total
power W, into an external part Fs-v, due to the force F, acting on A4, and an internal
contribution W',, due to the internal structure of the globule 4, i.e. to the presence
of a non-zero effective stress inside A.

Al this—and, in particular, the expression (2.22) for the power density w—is
in complete agreement with the results of Classical Continuum Mechanics, and points
out once again the validity of the identifications adopted so far.

9.3. Further discussion of the energy equations.

(i) For completeness, we shall now examine an alternative splitting of the
power density w, into a mechanical part, and a non-mechanical (or dissipative) one.
Among other advantages, the argument will throw new light on the physical meaning
of the relativistic mass density tensor §of,

In carrying on the present analysis, we cannot rely on the usual four-dimensional
formalism (spatial resolution of Minkowski’s four force in the co-moving frame of
reference), since the quantities f and w do not form a four-vector under transforma-
tions of the frame of reference [/']. We have therefore to resort to strictly three-
dimensional methods.

Given an arbitrary infinitesimal globule 4 of continuum, we indicate by (vol 4),
and F° respectively the proper volume and the proper emergy of A, i.e. the volume
and energy of A, evaluated in the co-moving frame of reference (I, 2.1). Then,
recalling eqs. (2.13), (2.15¢) and the Lorentz contraction formula (I, 3.3), we have
easily

(2.240) o= po(vol A)y= uo(1 — v*)~t-vol A = p,-vol 4 .

Incidentally, this shows that the quantity w, defined by eq. (2.13) coincides with
the density of proper energy of the continuum relative to [I']. Moreover, by egs.
(2.1Ba), (2.24a), writing for simplicity p-v for @8, vold, and E for ¢-vold, we
obtain

(2.24b) B=(1— o) *B—pv)

in complete agreement with the corresponding formula, valid for an arbitrary point
particle in Special Relativity. From this, dropping all subscripts 4 in the dynamical
equations (2.94), (2.23), we derive the explicit relation

(2.25) W =— =—[(1— v E°+ p-v] = (1 — vz)é% +Fo+
&
+p— (@ — )P B S

the dot denoting sealar product.
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From a vphysical viewpoint, it is now quite natural to identify the term
(1 — ?)¥(dBe/dT) in eq. (2.25) with the dissipative power Wy, fw, -vold acting
on /4 in the frame of reference [I']. In faet, by eqgs. (2.23), (2.24a), recalling the rela-
tion between standard time 7 and proper time 7 [5, 6], and denoting by w® the power
density in the co-moving frame of reference, we have easily

arE° dB°
S T EESEAY Sin fove) — 2 ot — p2 O{v =S5
(2.260) Waiss = {1 — %) aT {1 -— 2% 0 {1 — o) w¥vol )
= (1 — v?)iu®vol 4
whence
(2.26b) Wae= (1 — v2)}0?,

again in complete agreement with Special Relativity [11] (8).
If we now define the mechanical power W, acting on A as the difference
W — Wy, ed. (2.20) yields the explicit expression

o*p
(2.270) Waen=Fv +[p— (1 — vz)'i’E"v]—;S—-f .

From this, setting as usual W ., = wy .. vold, and recalling eqs. (2.13), (2.24a)
and the definition of F, p and E°, we derive the relation

o . o o OF T
{2.27h) Ween = f00s + [fa— ,L&’U(x]—alTy
thus completing the required splitting of the power density in the frame of
reference [17].

(iiy The nature of eq. (2.27¢) is completely clarified, making use once again
of the point particle model for the globule 4 developed in Subsection 2.2. More
precigely, we shall now regard 4 as a ficticious « particle », completely characterized
by a proper energy E°, and by a relativistic mass tensor m##, and moving under the
action of an external force F and an external power W (the whole analysis being
performed in the frame of reference [I']). The problem is then to compare the defini-
tion of W, given by eq. (2.27a) with the mechanical work done by the force F on A.

The main difficulty lies, of course, in the construction of a mathematical model
for the study of point particles whose inertial properties have a tensorial character,
rather than a scalar one. A suggestion in this sense comes from Classical Mechanies

(®) Incidentally, eqs. (2.240), (2.26a) allow a straightforward evaluation of w® based on
the fact that the equation w®vol 4 = dEYdT = (d/dT){u, vol 4) is mathematically equiv-
alent to w? = V,(1,8%) (compare with the remarks following TLemma 1.1). From this, re-
calling eqs. (2.11), (2.13), we get the familiar expression w® = ¥,(u?¥?) [9].



74 Enrico Massa: Relative continuum mechomics in general relativity - I1

{more precisely from time-independent Lagrangian Dynamies), where the generalized
momenta p, are related to the « veloeities » ¢* by an equation of the form [12]

oL 006 .
(2.28a) Pa = —3@ == 5@& = Map§?®
the « mags tensor » mss being now directly involved in the definition of the kinetic
energy
(2.28h) T = {map®§f= L pag* .

The mechanical work 4L is then given by
(2.28¢) AL 46 = Y(dpag*+ padd®) = }(Padg®+ padi®) ,

the dot denoting time-derivative.
def

Setting for simplicity P2 ¥y, eq. (2.28¢) reads
(2.29) AL = §(Fadg*+- padg®) .

Of ecourse, all this is merely a consequence of the chosen definitions for p, and Fy,
and has nothing o do with effective mass anisotropies, However, it provides a
useful mathematical model for the problem in study. In fact, suppose for a moment
that we ascribe a real physical meaning to the « velocities » ¢* and momenta ps
—and therefore also to the «forces » Fy—Dby identifying them respectively with
the components of the velocity v, momentum p and force F acting upon a point
particle 4 in a given frame of reference. Then, the suggestion of eq. (2.29) is that
the presence of an effectively amisotropic inertial mass maps modifies the structure of the
elementary work dL, making i into a linear differential form

(2.30) AL = Ayda~ -+ Bydvs

involving explicitly oll differentials duve= dg~, and dv*= dg~ (i.e. into a linear differ-
ential form over the tangent space T(M) associated with the configuration manifold M).

In general, of course we cannot expect eq. (2.30) to be identical to eq. (2.29),
since the presence of effective mass anisotropies may in principle require a modifica-
tion of the expression (2.28b) for the kinetic energy. In this sense, the only reasonable
guide for a correct definition of the differential form (2.30) is a correspondence
principle, namely

AL = F-dw - dL*

where dL* depends only on the anigsotropy of the inertial mass, or, more generally,
on the fact that the « particle » in study is not a point particle in the usual sense.
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Returning to our problem (i.e. to the case of a relativistic particle with proper
energy E°, momentum p and velocity v), the only natural candidate for dL* is a
multiple of the differential form

[Pa— (1 — o2 HO,] do .

The latter is dimensionally correct, and is identically zero whenever the particle
reduces to an ordinary (isotropic) one. We are therefore led to accept a definition
of the elementary work dL of the form

(2.31) AL =F-dx- i[p— (1— ) Bv]-dv

A being a dimensionless constant.

The rest is now easy: comparison of eq. (2.31) with eq. (2.27a) shows that, with
the ansatz 1=1, the gquantity dL is identical to the fotal mechanicol work done
on the globule A in the frame of reference [I']. Therefore, sefting explicitly A=1
in eq. {2.31), we obtain a complete agreement between the point particle model and
the physical interpretation of the energy equations (2.23) discussed in (i).

As a concluding remark we observe that, in the case F°— const. (absence of
dissipative effects on A), eq. (2.31) (with 1=1) may be written in the equivalent
form

*p
(2.32) dL = ST “dz - [p— (L — v E']dv = d[p-v + (1 — 02} E].

If we now define the kinetic energy G of 4 by the usual conditions 4G = dL,

]3'}13}) T =0, eq. (2.32) gives

(2.33) C=pv+ (1— o) Eo— B

whence E= 64 E'= p-v+ (1— v?)}E°, in complete agreement with eq. (2.24b).

Conversely, one could use eq. (2.33) and the conditions dE'= 0, d6=dL as an
axiomatic definition of the mechanical work dL, thus avoiding most of the previous
caleulations. In this way, however, one would not get an equally direct evidence
of the fundamental role played by the relativistic mass tensor ##f in the interpreta-
tion of the energy equations.
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