
Relative Continuum Mechanics in General Relativity (*)(**). 
I I . .  The Lagrangian Viewpoint. 

E~RICO MASSA (Geneva) 

Summary. - A n  axiomatic approach to the study o/ relative continuum mechanics in curved 
space-time is proposed. The explicit assumptions are: a) existence o] the energy.momentum 
tensor T iJ, satis]ying the eguations o] motion Ti~//~ ~ O, and b) existence o] the congruence 
o] stream.lines o] the given continuum. The argument relies on a relativistic extension o] the 
Lagrangian viewpoint, and involves the analysis o/ the relative dynamical behaviour o] an 
arbitrary infinitesimal globule A o] continuum in a given ]tame o] re]erence [/~]. The ptan 
is ]ul]illed in two steps: 1) geometrical theory o/ the Lagrangian viewpoint, valid /or any 
type o] continua satis]ying the stated requirements; 2) physical applications, illustra~ng the 
general theory in the case o] an energy-momentum tensor o] the ]orm T ij -~. I ~ o V i V  j - -  S ij. 

Introduction. 

In  a previous paper [1] (henceforth denoted by I) we have discussed the kine- 
matical foundations of relative continuum mechanics in General l~el~tivity. We 
shall now examine the dynamival  aspects of the theory. 

In the space-time manifold ~U~, we consider an ideal physical system, completely 
characterized by a symmetric energy-momentum tensor T %  and by a corresponding 
congruence E of stream-lines. Our plan is to develop a mathematical scheme for 
the study of the dynamical implications of the equations of motion 

(0.1) Ti~ll~= 0 

in any given frame of reference IF]. 
The line of approach is based on a relativistic extension of the so called Lagran-  

gian viewpoint ,  commonly used in Classical Continuum Mechanics [2, 3]. 
In  other words, we shall consider an arbitrary infinitesimal globule A of con- 

tinuum, and shall analyse its evolution relative to IF], within the framework of 
point particle dynamics [5--8]. 

The mathematical preliminaries are dealt with in Section 1. These include a 
short review of the concept of spatial  volume (see e.g. I), and a subsequent applica- 
tion to the study of an arbitrary equation of the form .W~k'"~/~-~ O. 

(*) Entrata in Redazione il 22 novembre 1977. 
(**) Lavoro eseguito nell'ambito dell'a~tivi~ del Gruppo Nazionale per la Fisica Mate- 

matica del C.N.R. 
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The relativistic formulation of the Lagrangian viewpoint is outlined in Section 2. 
We prove that, as a consequence of eq. (0.1), the dynamical behaviour of every 
infinitesimal globule A of continuum in the frame of reference [/~] is determined 
by a set of equations which are formally identical to the standard relative equations 
of motion for a point particle in General Relativity, i.e. 

~*Ez 
6 * P z : F z ,  - -  = W z  (0.2) 6T ~2 

the quantities pz (standard momentum), E~ (standard energy), F~ (standard force), 
W~ (standard power) being determined by a corresponding set of densities (momentum 
density ~, energy density e, force density f and power density w), each multiplied 
by the spatial volume of A relative to [/~]. 

The theory is completed by a suitable set of identi/ications, providing definite 
expressions for the densities ~, e , f a n d  w in terms of the energy-momentum tensor T% 
of the standard velocity v, and of the geometry of "J~. In particular, the description 
of f and w is seen to involve a further dynamical object, called the e//eetive stress 
of the continuum relative to [El, and described by a generally non-symmetric space- 
tensor ~a. 

We next come to the physieM implications of the theory-. As pointed out in I, 
these depend on the choice of an explicit relation between the four-velocity field V ~ 
and T ~j. The case discussed here is bused on the ansatz 

(0.3) (T.+ #Og~) VJ = 0 

/z ° denoting the invariant mass density of the system [9]. 
As a consequence of eq. (0.3) we have now a linear relation between momentum 

density ~ and standard velocity v. This allows a precise description of the inertial 
properties of the continuum in the frame of reference IF], and leads quite naturally 
to the introduction of a relativistic mass density tensor g~ (1). A remarkable conse- 
quence of this fact is that, in the Lagrangian scheme, an arbitrary infinitesimal 
globule A of continuum is not regarded as a point particle in the usual sense, but 
as an (~ anomalous ~ particle, whose inertial properties are described by a relativistic 
mass tensor ~ - =  ~ - v o l  A. 

A detailed discussion of this point shows that  the previous conclusion is una- 
voidable, and that  it is in complete agreement with Einstein's equivalence principle. 

A conclusive evidence in this sense comes from the physicM interpretation of 
the equations of motion (0.2). The relevant results are listed below: 

a) splitting of F~ into a part entirely due to the internal stresses, and a gray- 

(1) The need for a mass density tensor ~ is due to the lack of parallelism between ~x 
and v. This property is not peculiar of the Lagrangian scheme developed here, but is already 
present in Special Relativity (see e.g. [11]). 
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i tat ional  term. The analysis clarifies the physical  meaning of the effective stress 
tensor [ ~  and points out  the role of the mass tensor ~ in the  determinat ion of 
the  gravi tat ional  effects acting upon A in the given frame of reference (equivalence 
principle) ; 

b) splitting of the power W~ into a mechanical  par t  W~eo~ ~ and a dissipative 
one. A difficulty here arises f rom the fact  t ha t  W~ech is not  simply given by  F~.v ,  
bu t  includes an extra  term~ which depends on the internal structure of the globule A. 
Again, the use of the mass tensor ~ P  plays a fundamenta l  role in the interpreta-  
t ion of the results. 

1.  - M a t h e m a t i c a l  p r e l i m i n a r i e s .  

In  this Section we set up the necessary mathemat ica l  tools for the relativistic 
extension of the  Lagrangian viewpoint.  Fo r  the notat ion,  terminology, etc. the 
reader  is referred to I. 

(i) In  the space-time manifold ¢U4, let S denote a sufficiently smooth con- 
gruence of world-lines~ defined on a open world-tube ~ .  As in I,  we regard E as a 
kinematical object,  ra ther  than  ~s a pure ly  geometrical  one. Mathematical ly,  this 
is obtained b y  representing ~ as a differentiable map 0 of the  domain 2S onto an 
abst ract  three-space ~5, subject to the condition 

O(x) = O(y) if and only ff bo th  events x, y belong to the  same curve a e E .  

This allows to in terpret  5% as the  set of points of an ideal physical system~ and 
as the  congruence of stream-lines describing the  evolution, of 5~ in ~U 4. 

The in t roduct ion of a physical  f rame of reference [/~] specializes the si tuat ion 
as follows: 

1) The congruence ~ admits a distinguished tangent  vector  field 8T~ related 
to the temporal  1-form ¢o ° of [/~] b y  the dual i ty  relation 

(1.1a) <aT, ~o> = i. 

Equa t ion  (1.1a) is mathemat ica l ly  equivalent  to 

(1.1b) OT: v ÷ ~0 

v---- ff~(ST)e/~l denoting the standard velocity of ~ relative to [/~]. 

2) The s tandard  affine connection V* associated with IF] determines a differ- 
ential  operator  V~T ~ called the standard time derivative along the  curves of Z. The 
restrict ion of V ~  to an a rb i t ra ry  curve a e ~  is denoted b y  ~*/~T, and is called 

5 - A n n a l f  d i  M a l e m a t f c a  
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the  s tandard  t ime derivat ive along a (£, 2.1). I f  we indicate by  D/DT the  absolute 
derivat ive on a determined by  the  l~iemannian connection V of q ~  we have  the  

explicit relations [5] 

(1.2a) 

and 

(1.2b) 

DT 

DT -- ~-f ~*X f;~(D~o - 2 ~%a~) 

for all spatial vector  fields X - - - - ~  ~ defined on a (~). 
3) The  local kinematical  behaviour  of ~ in the  f rame of reference IF] is 

described by  the  spatial tensor field 

(1.3) ~ = s~,p,,,,- ~' ®,.o t' = (V~,v~-*" + 0~,~ + D ~ , ~  + :-,¢~),-o~ ~' ® ~ 

called the velocity gradient of ~ relative to [F]. The la t ter  is fur ther  decomposed 
into relative angular velocity tensor g~zto~A¢o~, relative dilatation ~ and relative shear 

4) The frame of reference [F] induces a t ime-dependent  Riemannian structure 
over  the  manifold ~ ,  completely described b y  the t ime-dependent  fundamenta l  form 

(i.4a) -~ q~-- 2g(Sz) @¢o°+  <Sz, g(Sz)>¢o ° ~)¢o ° 

and by  the associated Rieci tensor 

and ~ denoting respectively the fundamenta l  form and the  l~icci tensor of q54 

(I 3.2). 

(2) Throughout the subsequent discussion, a tilde placed over the components of an ar- 
bitrary tensor field will indicate that these components are referred to a natural basis ~i ,  ¢° i} 
of the tensor algebra over (~Ua, F) [4]. The same convention applies to the symbols Vt and V~ 
(covariant derivatives induced respectively by the Riemannian connection V and by the 
standard affine connection V* associated with [F]). For later use, we reeatl the following 
relation between the connection coefficients /~k of V and the spatial connection coefficients 

F~*~, of V* in natural bases: 

the meaning of the symbols being as in [4, 5]. 
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The differential forms (1.4a, b) determine a T-dependent euclidean structure on 
e~ch tsngent space T~(:5), ~ e :5, i.e. a T-dependent fundamental form ~ ( T )  and a 
T-dependent l~icci tensor ~]~(T) on T~(:5), the time T being evaluated on the world- 
line 0-1(~) e ~. 

Neglecting higher order infinitesimals, this gives rise to a local T-dependent 
measure for distances, volumes, etc. in :5, based on the fact that, within first order 
~pproximation, every sufficiently small neighbourhood zl of a point ~ ~ :B may be 
identified with a corresponding neighbourhood d of the origin in T~(~B). 

In particular, under the stated assumption, the volume of A at the instant T 
in the frsme of reference [F] is given explicitly by  

(1.5) ( v o l 3 ) ~ = f ~ ( T )  

the right-hand side being the ordinary integral of the 3-form ~ (T)  over the domain 
d c T~(.~). 

(ii) As pointed out in I, the Lie derivative Ea~ l of the field (1.4b) satisfies 
the identity 

(1.6) 
A • A ~ A A 

g~ being the relative dilatation of 2 in the frame of reference [F]. 
~ow,  let Z e 9- denote an arbitrary solution of the equation (~) 

(1.7a) a d z )  = (G)~,, • = ? J ( ~ ) =  ~. 

Then, by  eq. (1.6), we have the identity 

(1.7b) 

showing that  the field exp [--Z]~I is an ordinary (time independent) geometrical 
object over :5. 

More generally, given any point ~E :B, let us indicate by x(T) the restriction 
of an arbitrary solution of eq. (1.7a) to the curve 0-I(~)e~,  parametrized by means 
of standard time T. Then, recalling the definition of the l~icci tensor ~ ( T )  induced 
by ~ on the tangent space T~(~B) (I, 3.2), the previous arguments imply that  the 
product exp[- -X(T)]~(T)  is an ordinary (T-independent) field over T¢(:5). From 
this, keeping the same notation as above, we conclude that, if A c :B is any suffi- 

(a) Eq. (1.7a) determines X up to an arbitrary solution of the homogeneous equation 
az(]) = 0. In particular,, the restriction of g to an arbitrary curve a e Z is determined up 
to an additive constant. 
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ciently small neighbourhood of the point  ~, the volume (1.5) factorizes into 

(1.8) (vol A), = exp [ z ( T ) ] f  exp [-- g(/ ')]  ~ a°~ exp [Z(T)] ~z(A) 
5 

with 8z(A)a___~ffexp[-- Z(T)]~%= constant  along the  curve 0-~(~). 
J 

RE)IA~K 1.1. -- F r o m  a geometrical  viewpoint,  the  quan t i ty  ~Z(A) m a y  be inter- 
pre ted  as a statical measure of A, induced by  the given solution g of eq. (1.7a). 
The  f reedom in the  choice of g (see footnote  (3)) is then  reflected in the fac t  
t ha t  the  funct ion exp[g(T) ]  and the  measure 8Z(A) in the  factorizat ion (1.8) 
are defined up to arb i t rary  t ransformations of the form exp [Z(T)] -+ a exp [)/(T)], 

~x(A) -~ ~-~ 8z(A) ,  ~ e / ~ .  

(iii) To complete our mathemat ica l  scheme, we shall now set up a general 
technique for handling any  equation of the form V~ ]~h...~, = 0 in the  world-tube 23. 
This will provide the  formM basis for the relativistic formulatiolt  of the  Lagrangian 

viewpoint,  to be discussed in Section 2. 
The me thod  relies on the  use of the  project ion operator  if: ~D~-+ ~* in t roduced 

in I. In  na tura l  bases, recalling eq. (1.1b), we have  the  explicit  relat ion 

for all X =  X ~ O~e ~)~. 
B y  means of ~, every  tensor field W e  ~+~ (r = 0, 1, ...) defined on 23 ma y  be 

factorized into 

(1.9a) W =  --  t@ ~)p ® ~  

with t e ~+~ a, nd  ~ E ~)~ given respectively b y  the equations 

(1.9b) td~_% f -  2S ® i d  @...  ®idW~--~ (-- l ~ ' " ~ - } - ' ~ } l z ° ~ " ~ ) ~ @ ~ , @ . . .  ® ~  

(1.9c) ~ ~°f 1~ ~ .... ~'(~,., o~°)~,  ® ... ® 0 ~ =  I ~ ° ~ ' " ~ ,  ® ... ® ~ ,  

Let  us now define the field z e ~ b y  

(1.1o) 

Then,  setting for simplicity Div  W ~ V j~ l~ j~ .... Jr -~i ~ -~ (~ "" @ a~ we have the  following 

LE~MA 1.1. - I f  Z e 97 is any  solution of eq. (1.7a), the equat ion DivW-----0 is 
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mathemat ical ly  equivalent to the t ransport  law 

D (exp [z(T)] ~) = z .exp  [z(T)] ( 1 . 1 1 )  
D T  

along each curve a c e  (where, by  abuse of language, we are using the same 
symbols ~, z to indicate the restrictions of the fields (1.9c), (1.10) to the curve a). 

The proof is almost obvious: in view of eqs. (1.7a), (1.9a), (1.10), the equation 
Div W =  0 may  be writ ten in the form 

= - z +  e x p [ -  Z] Va~ (exp [x]=) 

which is equivalent to the transport  law (1.11) along each curve a ~ 3 ( D / D T  being, 
by  definition, the absolute derivative along a determined by the l~iemannian connec- 
t ion of °J4, see footnote (2)). Q.E.D. 

The importance of Lemma 1.1 lies in the following observation: suppose we 
concentrate our a t tent ion on a single world-line a e ~. Then, if A is any  sufficiently 
small neighbourhood of the point O(a) e 5~, eq. (1.8) implies exp [z(T)] --=- voI A/~Z(A), 
with ~Z(A)---- const, on a (~). We may  therefore express eq. (1.11) in the equivalent 
form 

D 
(1.12) D T  (~ vol A) -- z vol A . 

This formulation of the original equation Div W =  0 is especially relevant when- 
ever the quantities n and z correspond to fields of densities associated with the 
physical system in s tudy  (momentum density, energy density, force density, power 
density, charge density, current density, etc.). In  this case, eq. (1.12) determines 
the behaviour of the corresponding (~ integrated ~) quantities 7:A aefn 'vol  A, etc. asso- 
ciated with any  infinitesimal gtob~fle A of the system, titus leading to ~ precise 
description of what  is usually called the Lagrangian viewpoint. 

II. - The Lagrangian Viewpoint. 

2.1. General theory. 

(i) Let  us now assign to the physical system in s tudy a symmetric  energy- 
momentum tensor ~i¢~(D~¢, satisfying the equations of motion 

(2.1) Vi Ti¢ := 0 . 

(4) From here on, for simplicity, we shall drop the subscript T in (vol A)z. 
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Our plan is then to apply Lemma t.1 in order to derive the dynamical implications 
of eqs. (2.1) in the frame of reference [F]. At the present stage, we shall not impose 
any a-priori assumption concerning the relation between f~'~ and the congruence 
of stream-lines of the given physical system. 

As pointed out in I, this will not give rise to a complete dynamical scheme, but  
rather to a geometrical theory of the Lagrangian viewpoint, valid for any type of 
continua. Dynamical completeness is then restored in any specific physical situa- 
tion, by  adding to the present scheme the correct relationship between ~ and ~% 
An example of this procedure, covering a large class of material continua, will be 
illustrated in Subsection 2.2. 

To start our analysis, we observe that  the factorization (1.9a, b, v) for the energy- 
momentum tensor ~ reads 

(2.2a) 

with 

(2.2b) 

(2.2c) 

- ~  T °~ a i = - -  i ~ , -  

t = - -  ~ ® i d ( 2  ~ ~ ® ~ )  = (-- 2 ~ ÷  ~ ' ) ~ ® a ~ .  

The previous relations may be written more synthetically by introducing the spatial 
fields 

(2.3a) 

(2.3b) 

(2.3c) 

We have then easily 

(2.4a) 

(2.4b) t = i -  ( ~ o -  ~ . ~ o ) ~ ® ~ o =  i -  ( ~ - ~ . v ) ® ~ o  

5foreover, eq. (2.30) implies the identity 

(2.5) 

due to the assumed symmetry of the components T~.  
In view of eq. (2.2b), the field ~ coincides with the density of four-momentum 

of the given continuum in the frame of reference IF]. This property is implicit in 
the definition of the energy-momentum tensor, and may be proved directly on the 
basis of the statistical model proposed by S¥~GE [9, 10]. In particular, the fields 
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(2.3a, b) describe respectively the momentum and energy density of the continuum 
relative to [F]. 

An equally simple interpretation for the field (2.3e) is not possible at this stage, 
and must be postponed until we have discussed the dynamical equations (2.1). For 
reasons that  will be clear soon, we e~ll ~ the e]]ective stress of the continuum relative 
to [/7]. Notice that, in general, the components ~-~ are not symmetric, the only 
exception arising in the case =iIv (see eq. (2.5)). 

To sum up, taking eqs. (2.2a), (2An, b) into account, we conclude that momentum 
density ~, energy density e and effective stress ~, together with standard velocity v, 
are the natural relative quantities involved in the description of the evolution of 
the given continuum in the frame of reference [/~]. These quantities, however, are 
not independent, but  satisfy the inner identity (2.5). 

(ii) The next step in our analysis involves the evaluation of the field (1.10), 
which, in the present case, reads 

Setting for simplicity z : ~ z z  : ~ , ,  ~o= <z, to°>, and recalling eq. (2.¢b) and foot- 
note (2), a straightforward calculation yields the explicit expressions 

(2.6a) 

(2.6b) 

; = [(9[ + G)~;'~- ~-(g~- 9~J(~ ~- ~)]~ 

5o = _ (91 + OJ(~ ~- ~{~) + ½(g~. ÷ 9~){~.. 

In  view of Lemma 1.1, the dynamical equations (2.1) may now be "written in the 
equivalent form 

D~{exp [Z(T)] (~ q- e So)} = exp [Z(T)] (£ ÷ 5°50) 

with the usual meaning of the symbols. From this, taking eqs. (1.2a, b) into account, 
we get the final result 

(2.7a) 

(2.7b) d 
(exp [z(T)] ~) == exp [z(T)] (5 ° -  ~bz) d¢~ exp [z(T)] w 

providing the transport law for the fields exp [Z(T)]~ and exp[z(T)]e along each 
world-line a e Z .  In  particular, by eqs. (1.2a), (2.6a, b), (2.7a, b), one can easily 
derive the following expressions for the fields f and w: 

(2.8a) 

(2.8b) 
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Given any  curve a e Z,  let  us now indicate b y  A c ~5 an a rb i t ra ry  infinitesimal glob- 
ule of cont inuum surromlding the point  O(a) e (6. Then, proceeding as in Section i ,  
we m a y  replace the  factor  exp [Z(T)] on bo th  sides of eqs. {2.7a, b) b y  the  rat io 
volA/~z(A ). Again, for fixed A, all terms 8z(A) cancel out, and we are left  with 

the  equivalent  system 

(2.9a) 

(2.9b) 

~-~ (7: vol A) = f "  vol A 

d 
d--T (e vol A) = w.vol  A 

(compare with eq. (1.12)). In  view of the s ta ted in terpreta t ion for the  fields ~ and e, 
the quantit ies ~.  vol A and e" vol A coincide respectively with the total momentum p~ 
and the total energy E~ of the globule A in the f rame of reference IF]. This suggests 
na tura l  in terpreta t ion of the terms f . v o l  A and w.vol  A respectively as the total 
]orce F~ and total power W~ acting on A in the given frame of reference (i.e. of f a n 4  w 
respectively as the relative ]orce density and relative power density associated with 
the given continuum).  In  this sense, eqs. (2.9a, b) m a y  be identified with the  standard 
relative equations o/ motion for an a rb i t ra ry  infinitesimal globule A of cont inuum 
in the  f rame of reference [F], thus fuffilling the  requirements  of the Lagrangian 

viewpoint.  

2.2. Physical applications. 

(i) In  order to complete our dynamical  scheme, we have now to assume the 
existence of a functional  relationship between the energy mo me n t u m tensor ancl 
the congruence of stream-lines of the physical system in s tudy.  As un example of 
this procedure,  w e  shall consider un arb i t rary  material continuum, whose energy- 
m omen tum tensor ~ i i ~ @  ~ admits  a. canonical decomposit ion of the form [9] 

(2.1o) 2,~ = #o ?~ ? ~ -  S .  

with ? ~ =  - -1 ,  and S~?~-=  0 (5). The fields #o, V =  ? ~  and S =  S*J~@~j  are 
called respectively the  invariant mass density, the  ]our velocity and the  stress tensor 
of the continuum. 

l~ecalling eq. (1.1b) and the ident i ty  

(2.11) 8T= (1--  v2)½V 

(5) The use of natural units (e = 1) is implicitly understood. Notice also that the ansatz 
(2.10) excludes explicitly the presence of electromagnetic interactions, at least on a macro- 
scopic scale. 
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(I, 2.1), we have the explicit relations 

?~ = ( ~ -  ~ ) - ~ ,  ?o = - ~ o :  ( ~ -  v~)-~ 

o = .¢-  ? ~ =  - ~ o +  ~ 

whence also 

(2.12) ~ 0 =  S~7~; 

From these, setting for simplicity 

(2.~3) t * 0 :  (~ - v~)-~#°; : (~ - v')-~/~o 

and making use of eqs. (2.3a, b, e), (2.10), we derive the following expressions for 
the fields ~, s and t: 

(2.~a) 

(2.14b) 

(2,1~e) 

Eqs. (2.14a, b, c) are mathematically equivalent to the system 

(2.15a) 

(2.15b) 

(2.15e) 

#° : (I - v~)/~ : e- ~{~ 

~ =  [~+ (Z -- v~)-~ [~'~{J 

with 

(2.16) ~ defs~¢x_ ~ .  

Thus we see that, under the assumption (2.10), the basic dynamical objects asso- 
ciated with the continuum in study are reduced to two: effective stress ~ and energy 
density s. These, together with the standard velocity v, provide a complete spatial 
resolution of the energy-momentum tensor ~ J  in the frame of reference IF], and 
determine all the relevant quantities involved in the equations of motion (2.9a, b) (s). 

(6) Notice that, in view of eq. (2.15b), the components {~P and ~7~ are not independent, 
but satisfy the inner identity ( 1 -  v ~ ) ( ~ - - ~ ) =  ~ x ( { x ~ - - ~ ) .  From this (or also di- 
rectly from eq. (2.14c)), it ~ollows easily that, for Ilvtt << 1, the antisymmetric part of ~ is 
negligible compared with the symmetric part. 



70 [EIil~iCo MAss£: Relat ive con t inuum mechanics in  generag relat ivi ty  - I I  

I n  this sense, the present scheme is the natural  generalization of the one adopted 
in Classical Continuum Mechanics, the only (substantial!) differences being a) the 
presence of a non-zero ant isymmetr ic  par t  in the effective stress t, and b ) t h e  
anisotropy of inertial mass, i.e. the  la~ck of parallelism between momentum density 
and  s tandard velocity v. The last property is of fundamenta l  importance. As we 
shall see, it  will lead to a natural  interpretat ion of the field (2.16) as the relativist ic 

mass  densi ty  tensor of the cont inuum in the frame of reference [/~]. 

(ii) By  eqs. (2.8a), (2.16), we obtain the following expression for the force 

density f :  

(2.17) 

Let  us now concentrate our a t tent ion on an arbi trary infinitesimal globule A 
of continuum. Then, sett ing for simplicity ~-vol  A = p ,  e. vol A == E, ~ .  vol zJ -= rhea, 
V * ~ - v o l A  = #~, eqs. (2.9a), (2.150), (2.17) yield 

(2.18a) 

d*p 
(2nSb) ~T - -  = + ( D % -  

In  particular, when t = 0 (i.e. S = 0, corresponding to the case of an incoherent 
dust), eq. (2.16) implies 

~7~ = e p ~ .  vol A = E ~ N ~, ~ ,  

and eqs. (2.18a, b) take the more familiar form 

(2.19a) p = m v  

1 ~  
~T 

Eq. (2.19b) is identical to the equation of mot ion--a i ready discussed in [5]--for a 
freely-falling test  particle of relativistic mass m, subject only to the action of the 
external gravitat ional  fietds in the frame of reference [/~]. l~eturning to the general 
case, i t  seems therefore quite natural  to identify the quant i ty  

(2.20) 

with the total gravitational ]orce acting upon the globule A of cont inuum in the given 
frame of reference. The remaining term ~~~ a a ~ -  ( ~ ' v o l A ) ~  in eq. (2.18b) is then 
a description of the mechanical effects on A, due to the internM structure of the 
continuum. 
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The previous identification has a twofold advantage: on one side, it points out 
the physical relevance of the tensor ~, thus providing ~ complete justification for 
the term <( effective stress ~ introduced before. On the other side, it clarifies the role 
of the tensor ~5 ~ defined in cq. (2.16) (or, equivalently, of the tensor rSvP== ~-vo lz J ) .  
The latter, in fact, is not merely a formal object, relating momentum density ~ (or 
momentum p) to the standard velocity v (as implicit in eqs. (2.15c), (2.18a)), but 
is indeed a physical quuntity, which determines the coupling of every infinitesimal 
globule A of continuum with the external gTavitational fields, in complete agreement 
with Einstein"s equivalence principle. 

Accordingly, we call ~5 ~ the relativistic mass density tensor (and Ca ~% the mass 
tensor of the globule A) in the frame of reference [F]. 

By eq. (2.20), one can easily derive the expression for the density of gravitational 
iorce. Exactly as in [5], the latter is seen to consist of three different contributions, 
namely 

1) a static effect - - ~ % ~ ,  depending only on the acceleration of [F]; 

2) a Coriolis-type field ~0~Ax~, depending on the angular velocity of [F]; 

3) a deformation field (or Born field) ~r~ ~ E  depending on the non-rig- 
idity of the spatial geometry. 

The discussion of these effects is ~nalogous to the one presented in [5], and will 
not be repcatad here. 

(ii) A similar unalysis m~y be performed for the energy equation (2.9b). To 
this end, we observe that  eq. (2.15c) implies the obvious identity 

(2.21) D~(a~ + ~"G)  ~ = ~(~'~) ~ = o .  

Taking eqs. (1.3), (2.8b), (2.15c), (2.17), (2.21) into account, we may now express 
the power density w in the form 

(2.22) w = ( ~  + ( 7 ~ ) ( ~ ) 4 -  ½ ~ . -  ~ g } g ~ ; ~ +  ~-~(7~) = ~ l ~ +  ~ 

s : -  5~¢e~ ~)tee de~aoting the velocity gradient associated with the congruence of stream 
lines of the given continuum in the frame of reference [/~] (I, 2.3). The resulting 
expression for the energy equation (2.9b) is thereforo 

dE~ 
(2.23) d r  -- W~ = g ~ . v  ÷ W:~ 

with the usual meaning of the symbols E~, F~, W~, and with W ~ de2 ~zP ~ "  col A (7). 

(~) For simplicity, we have indicated by FA.v the scalar product / ~ .  
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From a physical viewpoint eq. (2.23) provides a natural splitting of the total 
power W~ into an external part F~ .v,  due to the force F~ acting on A, and an internal 

contribution W ~ ,  due to the internal structure of the globul~ A, i.e. to the presence 
of a non-zero effective stress inside A. 

All this--and, in particular, the expression (2.22) for the power density w~is  
in complete agreement with the results of Classical Continuum Mechanics, and points 
out once again the va~dity of the identifications adopted so far. 

2.3. l~urther discussion of the energy equations. 

(i) ]?or completeness, we shall now examine an alternative splitting of the 
power density w, into a mechanical part, and a non-mechanical (or dissipative) one. 
Among other advantages, the argument .will throw new light on the physical meaning 
of the relativistic mass density tensor ~ .  

In carrying on the present analysis, we cannot rely on the usual four-dimensionul 
formalism (spatial resolution of Minkowski's four force in the co-moving frame of 
reference), since the quantities f ~nd w do not form a four-vector under transforma- 
tions of the frame of reference [/~]. We have therefore to resort to strictly three- 

dimensional methods. 
Given an arbitrary infinitesimal globule A of continuum, we indicate by (volA)o 

and E ° respectively the proper volume and the proper energy of A, i.e. the volume 
and energy of A, evaluated in the co-moving frame of reference (I, 2.!). Then, 
recalling eqs. (2.13), (2.15a) and the ]Jorentz contraction formula (I, 3.3)~ we h~ve 

easily 

(2 .24a)  2~o =/~O(vol A)o = #°(1 -- v2) -~" col A : 3~o" col A . 

Incidentally , this shows that the quantity /~0 defined by eq. (2.13) coincides with 
the density of proper energy of the continuum relative to [I~]. ~oreover, by eqs. 
(2.15a), (2.24a), writing for simplicity p . v  for ~ - v o l A ~  and E for e-colA, we 

obtain 

(2.24b) /~o = (1 - v~) -½( /~-  p .  v)  

in complete agreement with the corresponding formula, valid for an arbitrary point 
particle in Special l~elativity. From this, dropping all subscripts A in the dynamical 
equations (2.9a), (2.23), we derive the exphcit relation 

(2 .25)  
dE ° dE  d v~)½ ~, o (1 ~ o ~  ~- F . v  -~ 

W = d - T = d - - T [ ( 1 - -  - k p ' v ]  = - - v )  dT 

-j- [p -- (1 -- v2)-tE°v] • 8T 

the dot denoting scalar product. 
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From a physical viewpoint, it is now quite natural  to identify the te rm 
(1--vD½(dE°/dT) in eq. (2.25) with the dissipative power Wd~ ~ defwdi~'volA acting 
on A in the  frame of reference [F]. In  fact ,  by  eqs. (2.23)~ (2.24a), recalling the rela- 
tion between s tandard t ime T and proper t ime ~ [5, 6], and denoting by w ° the power 
density in the co-moving frame of reference, we have easily 

(2 .26a)  

whence 

(2.26b) 

o ~ d E  ° d E  ° 
= ( 1 -  v ) - h T  = ( 1 -  v~)w°(vol  A) .  = 

= (1 - v~)~w ° v o l  A 

w ~  = (I- vD~w ° , 

again in complete agreement with Special Relat ivi ty  [11] (a). 
I f  we now define the mechanical power Wm~oh acting on A as the difference 

W - - W a ~ , ,  eq. (2.25) yields the explicit expression 

(2.27a) 
~ T "  

From this, setting as usual W ~ =  w~¢h'volA , and recalling eqs. (2.13), (2.24a) 
rand the definition of F, p and /~o we derive the relation 

(2.275) Wm~ch -~ ] ~  -]- [ z~- - / z~]  ~T ' 

thus completing the required splitting of the power density in the frame of 
reference [/~]. 

(ii) The nature  of eq. (2.27a) is completely clarified, making use once again 
of the point particle model for the globule A developed in Subsection 2.2. More 
precisely, we shall now regard A as a ficticious<( particle ~), completely characterized 
by  a proper  energy Eo~ and by  a relativistic mass tensor f f ~  a,nd moving under  the 
action of an external force F and  an  external power W (the whole analysis being 
performed in the frame of reference [/~]). The problem is then  to compare the defini- 
t ion of W~ech given by  eq. (2.27a) with the mechanical work done by  the force F on A. 

The main difficulty lies, of course, in the construction of a mathemat ical  model 
for the s tudy  of point  .particles whose inertial properties have a tensoI~al character, 
rather than  ~ scMar one. A suggestion in this sense comes from Classical Mechanics 

(s) Incidentally, eqs. (2.24a), (2.26a) allow a straightforward evaluation of w °, based on 
the fact that the equation ~vOvol A = dE°/dT ~ (d/dT)(#ovol A) is mathematically equiv- 
alent to w ° = ~ i ( / ~ )  (compare with the remarks following L emma 1.1). From this, re- 
calling eqs. (2.11), (2.13), we get the familiar expression we= ~,(/~0I?~)/9]. 
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(more precisely f rom t ime- independent  Lagrangian Dynamics),  where the  generalized 
momen ta  p~ are related to  the (~ velocities ~ ~ b y  an equat ion of the  form [12] 

(2.28a) p~ = Oe ~ ~ m~¢~ 

the (( mass tensor )) m ~  being now directly involved in the definition of the kinetic 
energy 

(2.2Sb) = ½ m ~ , =  ½ p ~ .  

The mechanical  work dL is then  given b y  

(2.2sc) 

the  dot  denoting t ime-derivative.  
Sett ing for simplicity 2b~a~_~f/~, eq. (2.28c) reads 

(2.29) 

Of course, all this  is merely  a consequence of the  chosen definitions for p~ and /v~ ,  
an4  has  nothing to  do with effective mass anisotropies.. However ,  i t  l~rovides a 
useful mathemat ica l  model  for the  problem in study.  In  fact~ suppose for a moment  
tha t  we ascribe a real physical meaning to the (~ velocities ~ ~ and momenta  p~ 
- - a n d  therefore  also to the  (~ forces ~ F ~ - - b y  identifying them respectively with 
the  components  of the veloci ty v, mo me n t u m p and  force F acting upon a point  
part icle  A in a given frame of reference. Then,  the suggestion of eq. (2.29) is tha t  
the presence o] an ef/eetively anisotropic inertial mass m~,~ modi]ies the structure of the 
elementary work &5, making it into a linear di]Jerential ]o~n 

(2.30) d_L ---- A~ dx ~ + Bo, dvc' 

involving explicitly all di]]erentials dx ~ = dq ~, and dv~= d~ ~ (i.e. into a linear differ- 
ential form over the tangent  space T(M) associated with the configuration manifoldM).  

I n  general, of course we cannot  expect  eq. (2.30) to be identical to eq. (2.29), 
since the presence of effective mass anisotropies m a y  in principle require a modifica- 
t ion of the expression (2.28b) for the kinetic energy. In  this sens% the only reasonable 
guide for a correct  definition of the differential form (2.30) is a correspondence 

principle, namely  

d Z =  F ' d x - l - d L *  

where alL* depends only on the  anisotropy of the  inertial mass, or, more generally, 
on the fact  t ha t  the (~ particle ~) in s tudy  is not  a point  particle in the usual sense. 
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l~eturning to our p rob lem (i.e. to the case of a relativist ic part icle wi th  proper  
energy E °, m o m e n t u m  p and  veloci ty  v), the  only na tu ra l  candidate  for dZ* is a 

mult iple  of the  differential fo rm 

The la t ter  is dimensional ly correct,  and  is identical ly zero whenever  the part icle 
reduces to an ordinary  (isotropic) one. We  are therefore  led to accept  a definition 
of the  e lementa ry  work dZ of the  fo rm 

(2.31) dL = F .  a x  + 2[p  - -  (1 --  v~) -~ Eo v]. dv  

being a dimensionless constant .  
The rest  is now easy:  comparison of eq. (2.31) wi th  eq. (2.27a) shows tha t ,  wi th  

the  ansatz  2 = 1, the  quan t i ty  dL is identical  to the  to ta l  mechanical work done 
on the  globule A in the  f rame  of reference [F]. Therefore,  set t ing explici t ly 2 = 1 

in eq. (2.31), we obta in  a comple te  agweement be tween the  point  particle model  and 
the  physical  in te rpre ta t ion  of the energy equat ions (2.23) discussed in (i). 

As a concluding r e m a r k  we observe tha t ,  in the  case E ° =  eonst.  (absence of 
dissipat ive effects on ~) ,  eq. (2.31) (with ~ = 1) m a y  be wr i t t en  in the  equivalent  
fo rm 

(2.32) d Z  = ~*p .dx  + [p -- (1 - -  v~)½E°v]dv ~- d [ p . v  + (1 - -  v~)½E °] . 
6T 

I f  we now define the kinet ic  energy ~ of A b y  the  usual  conditions d ~ - ~  dE, 

l i m ~  = 0, eq. (2.32) gives 
v-->0 

(2.33) = p .  v + (1 - v~)~E ° -  ~0 

whence E :  2 3 + E ° = p . v +  (1--v2)½E °, in complete  agreement  wi th  eq. (2.24b). 
Conversely,  one could use eq. (2.33) and  the conditions d E  ° = O, d~ - - -  dZ  as an. 

ax iomat ic  definition of the  mechanical  work  dL,  thus avoiding mos t  of the previous 
calculations. I n  this way,  however ,  one would not  get  an  equal ly  direct  evidence 
of the  fundamen ta l  role p layed  b y  the  relat ivist ic mass  tensor  ~ in the  in terpre ta-  
t ion of the  energy equations.  
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