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Summary. - The purpose el this l~aper is to study the general properties el H~-ri~gs (a ring t~ 
is a~ H~-ring i~ case, for every height i l~rinbe ideal p in  t~, height p + depth p = altitude R) 
and to link the results to Nagata's ehai~ conjectures. IFor 1~ a local domai~ with maximal 
ideal M equivalences are given to ~( ~ is an H~-ring ~ i~ relationship to the rings l~/p, where 
p is a prime ideal in  ~ such that height p < i ;  /7IX 1, ..., Xn]M~[X,...,x,], where X 1, . . . ,X~  
are indeterminates; and ~[e~/b . . . . .  c/bJM~[c~/b,,..,cj/b], where b, e~ . . . . .  e~ are analytically inde- 
pendent elements in  R and j < i. Also, there are equivalences el I~[X](M,X ), t~[e/b](M,c/b), the 
completion el t~, the Henselizatio~ el ~ and localities el 1~ being Hi-~ings in  ter~vs of con- 
ditions on R. These results then, yield some new equivale~ees el the chain conjectures. 

l .  - I n t r o d u c t i o n .  

The chain conditions (see (2.7) for  the  definitions) and the  chain conjectures 
((8.1)-(8.3)) have  been studied for a number  of years,  begining with I~AGATA in 1956 
in [5]. In  addit ion,  a number  of re la ted  conditions have  been studied in connect ion 
with the  chain conditions~ such as unmixed,  quasi-unmixed, and the al t i tude formula.  

The major  open quest ion concerning the chain conditions is the chain conjecture:  
(~ The integrM closure of a locM domain satisfies the chain condit ion (c.c). ~) There  
are a number  of equivalent  s ta tements  to this and weaker conjectures which have 
appeared  in the l i te ra ture  (for example,  in [5] and [15]). None of these conjectures 
are answered in this paper ,  bu t  some new equivalences of the conjectures do arise 
f rom the  results obtained,  and these are listed in Section 8 along with a list of open 

problems on //~-rings. 
In  [13] l~atliff defined a n / / - r i n g  (in the  terminology of this paper ,  an / /x - r ing) ,  

and in [15] suggested the general izat ion to //~-rings. Using this ex tended  concept,  
the results in this paper  generalize most  of the known facts about  H~-rings. These 
results  give new s ta tements  a.bout the chain conditions and  imply some known 
results, since the condit ion of a ring being an //~-ring is weaker than  satisfying the 
chMn conditions (see (2.9)); in part icular ,  the first chain condit ion (f.c.c.). Also, 
some existing definitions can be shor tened using the concept  of H~-rings ; for example,  
a semi-locM ring R is quasi-unimixed in case the  complet ion of R is an / /0- r ing .  

(*) Entrata in Redazione il 28 luglio 1977. 
(**) Most of the results in this paper are from the author's, doctoral dissertation at the 

University of California, Riverside under the supervision of Professor L. J. RATLIP~, Jr. 
and with the financial support of a Iqational Science Foundation Traineeship. 
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The (~ dual  ~) condit ion of D,-rings is defined (this is also a weaker condit ion than  
satisfying the  f.e.e.). A few results were obta ined and  are s ta ted in Section 7. How- 
ever,  the major i ty  of the results on H~-rings are not  (~ dualized ~> to D,-rings. 

R will be assumed to  be a local domain with maximal  ideal M. I t  is shown t h a t  
the  following s ta tements  are equivalent :  (1) /~ is an H/-ring. (2) For  every  height 
k( < i) pr ime ideal p in R, tt/p is an H,_~-ring and depth  p ~ a l t i tude ~ --  k or depth  
p < i - - / c  (2.11). (3) R[X~, ...,X,]Malx,,..,x,~ is an H,-ring,  where X~, . . . ,X~ are 
indeterminates  over /~  (3.1). (4) l~[e/b]~c/bl is an H~_~-ring, for every  pair  of elements 
b, c in R such tha t  height  (b, e) ~ 2 (4.2). (5) Al t i tude t~[el/b , ..., cJb]MR~lb,..,~lb~ -~ 

al t i tude  / ~ - - i ,  for  every  set  of elements b,c~, ..., c~ which are analyt ical ly  in- 
dependent  (~.r.) in /~ (4.2). (6) E v e r y  set of i -~ 1 elements which are a.i. i n / t  can 
be ex tended  to a set of a ( ~  a l t i tude  R) a.i. e lements in /~ (4.3). 

Theorems 3.2 and  4.5 show tha t  the following s ta tements  are equivalent :  (A)/~ is 
H~_~ and H,  and the integral  closure of t~/p is a Do-ring, for  every  height  i -  1 pr ime 

ideal p in R. (B) t~[X](M,X) is an  H,-ring. (C) ~[o/b]{M,e~b) is an H,_~-ring, for each 
pair  of elements b, c in R such t h a t  height  (b, e) ~ 2. 

In  addi t ion to  these results Section 2 includes the  basic definitions and  more 
results on the factor  rings It/p; Section 3 discusses fm' ther  the rings R[X]M~X~ and 
R[X](M,X); and Section ~ is concerned with ~[Y](M,~), where y is in the  quot ient  field 
or l~, and k-graded extensions (see (4.8) for the definition) besides the  rings 

R [ c ~ / b ,  . . .  , e~/b ]Ml~[cdb,..,c~/b ] and  t~[e~/b, ... , c~/b ](M,~j~....,~/~). 
I n  (5.1) (respectively,  (5.5)) we give equivalences for  the complet ion (respectively, 

the  Henselization) of /~ to be an H,-ring. 
Section 6 deals wi th  localities over  R;  for example,  it  is shown t h a t  _R s~tisfies 

the  second chain condit ion if and only  if every  locali ty over  R is an H,-ring. Then 
the paper  concludes with Sections 7 and  8. 

2. - Basic definitions and factor rings of  H~-rings. 

I n  this section the basic definitions to be used in this paper  are given. Then  the 
factor  rings l?/p, where p is a pr ime ideal in a local domain/R,  are analyzed in rela- 
t ion  to  these definitions; in par t icular ,  in (2.11) we show t h a t  the  p rope r ty  of /~ 
being an H,-r ing implies t ha t  the  rings /~/p are H~_j-rings, where j -~ height  2. All 
the results in this section, especially (2.11), are used th roughout  the remainder  of 
the  paper  in the proofs of m a n y  of the  results.  

I n  this paper  a number  of nota t ional  conventions are used. These conventions 
are summarized in the  following remark.  

(2.1) I~E~A~K. -- (2.1.1) I n  this paper  all rings will be commuta t ive  rings with 
an iden t i ty  element.  An ideal will always be assumed to be a proper  ideal. I c J 
will mean  tha t  I is a subset  of J ,  and  I c J will mean  t h a t  J[ is a proper  subset of J .  
A n y  underf ined terminology is as s ta ted  in [7]. 
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(2.1.2) I f  S is a ring, then  S' will denote  the integral  closure of 8 in its to ta l  
quot ient  ring. 

(2.1.3) (17, M) will always denote  a local domain,  a = al t i tude 17, and  K is the 
quot ient  field of /~. I t  will be assumed t h a t  a > 1, since all results automat ica l ly  
hold if a ~< 1. 

(2.2) DEFI?~I~ON. - A ring 8 is said to  be an H~-ring (or, S is H~) in ease, for 
eve ry  height  i pr ime ideal p in 8, dep th  p = a l t i tude 8 -  i. 

The  above  definition is a general izat ion of the  definition of an  H-r ing  given 
in [13, (4.5)]. 

I t  clearly holds t ha t  a ring 8 is an H~-ring, for all i < 0 and  all i > a l t i tude 8. 
This fac t  will be  used in various places in this paper  wi thout  reference or fu r the r  
eomment .  

(2.3) EXAHPLE. -- For each i > O, there is a local domain 17 which is not an H c r i n g  

but is an Hi -r ing , /or  all j = i zr- 1, ..., a = al t i tude R. Namely ,  let  i be fixed (i > 0). 
Then  in [7, Example  2, pp. 203-205] (for r > 0 and m = i, and with the nota t ion  
of [7]) the local domain (R, I)  is an Hi-r ing if and only  i f j  # 1, ..., i. Since I = R : / ~ '  
(the conductor  of 17 in 17'), by  [13, l~emark 3.14 (iv)], there  exists exact ly  one pr ime 
ideal q in R ~ lying over any  pr ime ideal p # I in 17, b y  [16, I~emark, p. 269], and, 
by  [3, Theorems 44, 46 and 47, pp. 29 and 31], height  q -=  height  p and depth  
q = depth  p. Hence  there  is a one-to-one correspondence between the non-maximM 
prime ideals in 17 and 17'. Also, R '  has exac t ly  two maximal  ideals M R '  and 2V17', 
I?M~. and 17~. are regular  locM rings ( therefore satisfy the first chain condition 
(see (2.7.2)), and  height  M R s =  i ~- 1 and height  2VR'= r @ i @ 1. Wi th  these 
facts it  is a s t ra ightforward proof t h a t  the above s t a t emen t  holds, q.e.d. 

The following definition is a (( dual  ~ of (2.2), and as with (2.2), a ring 8 is a 
D~-ring, for all i < 0 and all i > a l t i tude 8. 

(2.4) DE~'INITION. -- A ring S is said to be a Dcr ing  (or, S is D~) in case, for 
every  dep th  i pr ime ideal p in S, height  p = a l t i tude 8 -  i. 

(2.5) EXAMPLE. -- ~or  each i > O, there is a local domain 17 which is not a D~-ring 

but is a D~-ring, Jot all j -= i ~- 1, ..., a = al t i tude  i2. Namely ,  in [7~ Example  2, 
pp. 203-205] (for r > 0 and  m = i) the  local domain (17, I )  is a Dj-ring if and  only 
if j =/= 1, ..., i, as shown by  an a rgument  similar to  t h a t  used in proving (2.3). 

The following remark  lists two facts which follow readi ly  f rom the  definitions 
and  which will be used f r equen t ly  in the paper.  

(2.6) I ~ E ~ n K .  -- Le t  S be a ring such tha t  a l t i tude S = a < c~. 

(i) I f  (S, 2V) is a quasi-locM ring, then  S is Do, D~, H~_I and  H~. 

(ii) I f  8 is an integral  domain,  then  S is Ho, Ha, Da_l and  D, .  
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The chain conditions which are defined below in (2.7), will be  used th roughout  
this paper .  The definitions also appear  in [2], [7], [11] and  [15]; in par t icular ,  
number  of proper t ies  of the  chain conditions are l isted in [11, l~emarks 2.5-2.7] 
and  [13, :Remarks 2.22-2.25]. 

(2.7) DEFINITION. - Let  S be a ring. 

(2.7.1) A chain of pr ime ideals P0 cp~ c ... cp~ in S is a maximal chain el prime 
ideals in S in case P0 is a minimal  pr ime ideal in S, p~ is a maximal  ideal in S, 
and, for each i -~ 1, ..., k, height  pJp~_~ ~ 1. The length of the  chain is k. 

(2.7.2) S satisfies the  ]irst chain condition /or prime ideals (].c.c.) in case every  
maximal  chain of pr ime ideals in S has length  equal  to  the  a l t i tude  of S. 

(2.7.3) S is catenary (or satisfies the saturated chain condition ]or prime idea~s) 
in case, for every  pair  of pr ime ideals p c q in S, (S/p)q/~ satisfies the f.e.c. 

(2.7.4) S satisfied the second chain condition ]or prime ideals (s.c.e.) in ease, for 
every  minimal pr ime ideal p in S and for every  integral  domain T which contains 
and  is integral  over S/p, T satisfies the f.e.e, and al t i tude T-- - -a l t i tude  S. 

(2.7.5) ~ satisfies the  
pair  of pr ime ideals p c q 

The  following lemma 

chain condition /or prime idea~s (c.c.) in ease, for  every  
in S, (S/p)~/~ s~tisfies the  s.e.e. 
is used in the  proof  of (2.10), (2.11), and (5.1). 

(2.8) I~ElVI~A. - Let (S, 2() be a local ring, and let p c q be prime ideals in S such 
that q V= 2~ and height  q/p -~ 1. I] height  q ~ height  p ~- 1, then there exist in]initely 
many prime ideals Q in S such that p c Q, height Q/p = 1, height  Q = height  p ~- 1 
and depth  Q ~ dep th  q < a l t i tude S -  height  Q. 

P~ooF.  - Apply [13, Corollary 2.3(2)] to p c ~. Thus there  exist infinitely ma n y  
pr ime ideals Q in ~q such t ha t  p c Q, height  Q/p - -  1 and  depth  Q --- depth  q. Since, 
by  [14, L e m m a  2.1], there  exist  only finitely m a n y  pr ime ideals P in S such t h a t  
p c P,  height  P / p - ~  1 ~nd height  P > height  p - ~  1, there  exist  infinitely m a n y  
pr ime ideals Q in S such tha t  p c Q, height  Q/p = 1, depth  Q = depth  q and height  
Q = height p -~ 1. Fur thermore ,  dep th  q 4 a  -- height  q < a -  (height p -~ 1) = a --  
-- height Q, q.e.d. 

There  are a number  of results in [11], [13], [14] and [15] which can be res ta ted  
using the terms H~- and D~-rings; for example,  see [13, Corollaries 2.4 and 2.7]. 
l%emark 2.9 combines two known results into an equivalence which is used to prove 
tha t  a local domain is ea tenary  in la ter  theorems.  

(2.9) I~,E}IAI~K. - The following s ta tements  are equivalent-  

(i) B satisfies the f.c.c. 
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(ii) R is cutenary .  

(iii) /~ is an H c r i n g ,  for  all i. 

(iv) R is an D~-ring, for all i. 

PnooF.  - (i) is equivalent  to (ii), b y  [11, R e m a r k  2.7], and  the  equivalence of (i), 

(iii) and  (iv) follows f rom [14, Theorem 2.2] and  the  definition of an H c r i n g  and  a 

Do t ing ,  q.e.d. 
L e m m a  2.10 is p a r t  of Theorem 2.11 and  is given here  in order to iIlclude more  

geners~l rings t h a n  local domains.  

(2.10) LEPTA. - Let S be a ring such that al t i tude  ~q ~ a < 0% and'let j be fixed 

(04j<~a).  I f  S is a Do-ring, then the following statement holds for each k ( 0 4 k < j )  
I f  ~/1) is an H~_~-ring and either dep th  1 ) 4 j -  k or dep th  1 ) ~ - a -  Iz, for every 
height k 1)rime ideal 1) in ~, then S is an Hi-ring. 

P~ooF.  - I t  m a y  be assumed  t h a t  0 < j < a - -  1, since it  is clear if j -~ 0 and  S 

is Ha_~ and  H~. Le t  1) be a height  j p r ime  ideal in S. Since S is a Do-ring, 1) is not  
maximal .  Also, there  exists a p r ime  ideal q in S such t h a t  q _c 1), he ight  q = k and  

height  1)/q ---- J --  k. B y  hypothes is ,  height  q + dep th  q == a, since height  q ~ dep th  
q ~ k  ~ height  1)/q • dep th  1)>k ~- ( j - -  k) -~ 1 - ~ j  -~ 1. Since S/q is an H~_~-ring 
a n d  he ight  1)/q = J -  k, dep th  p ---- dep th  1)/q =- al t i tude  S / q -  j -~ k = depth  
q - - j / - k = a - - j .  So S i s  an  Hi-r ing,  q.e.d. 

Theorem 2.11 below shows the re la t ionship be tween  an  Hi- r ing  J~ and  the ring I¢/1), 
where p is a p r ime  ideal in R such t h a t  he ight  1) <J .  I t  and  its corollaries will be  used 
f requen t ly  t h roughou t  the  res t  of the  paper .  

(2.11) T a ~ o ~ .  - Let j be fixed (O<j<a) ,  and let k be ]ixed ( 0 < k < j ) .  Then J~ 

is an Hi-ring if and only if, for every height k 1)rime ideal 1) in 1~, 1~/1 ) is an H~_~-ring 
and either dep th  1) = a -  k or dep th  1 ) < J -  k. 

P~oo~'. - The theorem is obvious for j = 0, so it m a y  be assumed t h a t  j > 0. 
Assume t h a t  £~ is an  Hi-r ing,  and  let  1) be a p r ime  ideal in R such t h a t  height  

1 ) - - - -k< j .  Clearly, we can assume 0 ~ k ~ j .  B y  [13, Corollary 2.7], ei ther  dep th  
1) = a -  k or dep th  1 ) ~ < J -  k. I t  r emains  to show t h a t  R/1) is an Hj_~-ring in bo th  
cases. I f  dep th  1 ) < ~ J -  k, then,  R / !  ) is clearly an  Hj_~-ring (this includes the  case 
where  j -~ a ;  so assume j < a). I f  dep th  p = a - -  k, t hen  a l t i tude  t t / l  ) = a --  k. 

Le t  q be  a p r ime  idea1 in R sm~h t h a t  1)c q and  height  q/1)-~ J - - k <  a - - k ,  so 
a > height  q ~>j. I f  height  q > j ,  t hen  let  height  q ---- m. Thus  dep th  q < a -- m, say  
dep th  q ---- n. B y  [13, (2.2A)] (the c~se i : j - -  k - -  1), there  exists g p r ime  ideal P 
in /~ such t h a t  P c q, height  /~ ------ j - -  1 and  height  q/P ----- 1. Hence,  b y  (2.8), there  
exists a p r ime  ideal Q i n / ~  such t h a t  P c Q: dep th  Q = n gnd height  Q ---- j .  Then  
n ---- a --  j ,  since /~ is an Hi-ring.  However ,  n ~< a - -  m ~ a - -  j .  This contradic t ion  
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implies height  q = j .  Thus dep th  q/p = dep th  q = (R is an H~.-ring) a - - j  = 
----- ( a - -  k) - -  ( j -  k) = a l t i tude  t¢/p -- height  l~/p. Hence  ~/p is an H~_~-ring. 

Since /~ is a Do-ring, the  converse  holds b y  (2.10), q.e.d. 

3. - Conditions for R(X~, . . . ,  X~) and 9"~ to  be H~-rings. 

This section describes the  relat ionship,  wi th  respect  to being H~-rings, be tween  

a local domain  /¢ and  cer ta in  localizations of the  po lynomia l  r ing ~[X1,  . . . ,X~] .  
If  X~, ..., X~ are  inde te rmina tes  over  a local r ing (S, N), we fix the  following 

no ta t ion  for the  r emainder  of the  paper :  S~ = SIX1, ..., X~]; S(X~, ..., X~) = (S.)~s ~; 

and  f f : ( S ) =  (S~)(~,x~,...,x,)s . .  We also let  ff--~ ff~(R). 
I t  is known  [15, Theorem 3.1] t h a t  R is an H~-ring if and  only if R(X) is an 

H~-ring. Theorem 3.1 extends  this resul t  to H~-rings. 

(3.1) T~01~EM. - Let i be /ixed. Then R is an H~-ring if and only if, /or any 
n > l ,  R(X1, ..., X , )  is an H~-ring. 

P~ooF.  - I t  suffices to show t h a t / ~  is an  H~-ring if and  only  if R(X) is an H~-ring, 
since I ¢ ( X ~ , . . . , X ~ ) ~ R ( X ~ , . . . , X , _ I ) ( X , ) .  Also, a l t i tude  R ( X ) - ~ a ,  so we can 

assume  0 ~ i < a - - 1 ,  since R a.nd /~(X) are He, H~_~ and  Ha, b y  (2.6). 
Fi rs t ,  assume t h a t / ~  is ~n H~-ring and  let  q be  a height  i p r ime  ideal in R(X).  

Then  p -~ q ~ / ~  is e i ther  a he ight  i - -  1 or height  i p r ime  ideal  in /~ .  I f  height  p = i, 
t hen  q = pR(X)  and  a - -  i = dep th  p --~ a l t i tude  l~/p ~- al t i tude  I¢(X)/q = dep th  q, 

as desired. I f  he ight  p - - - - - i - - 1 ,  then  q Dpl~(X) and  height  q/plY(X)-~ 1. Also, 
Rip is an  H~-ring and  ei ther  dep th  p = a -  i -~ 1 or dep th  p -~ 1, b y  (2.11). Thus 
(R/p)(X) _~ t~(X)/pR(X) is ~n H~-ring, b y  [15, Theorem 3.1], ~nd hence dep th  q =- 
----- dep th  q/pR(X) = al t i tude  t ~ ( X ) / p R ( X ) -  1 -~ a l t i tude  ~/p - -  1 = depth  p - -  1. 
So dep th  q ~ 0 or a ~ i ;  thus  dep th  q = a -  i, since q is not  maximal .  H e n c e / ~ ( X )  

is an H~-ring. 
Conversely,  let  R(X) be an H~-ring and  let  p be a height  i p r ime  ideal in /~ .  Then 

height  pR(X)  -~ i. Therefore  a - -  i -~ dep th  pR(X)  --- (as in the  previous  paragraph)  

dep th  p, and  hence /~ is an H~-ring, q.e.d. 
I t  is known  [15, Theorem 3.2 and  !~emark 3.4] t h a t  ff is an H~-ring if and  only 

if R is an  H~-ring and  R '  is a Do-ring. Theorem 3.2 generalizes this resu l t  to H~-rings. 

(3.2) TUEO]~E~. - Let i be ]ixed. ff is an H~-ring i / a n d  only i] R is H~_I and H~ 
and (R/p)' is a Do-ring, /or every height i -  1 prime ideal p in .~. 

P~ooF.  - The case i~<0 is t r ivial ,  b y  (2.6) (ii), and  i t  is known t h a t  the  theorem 

holds for the  case i = 1, b y  [15, Theorem 3.2 and  l~emark  3A], so assume i ~ 1. 
Al t i tude  ~ ~- a -~- 1, so we can assume i ~ a ;  since, b y  (2.6) (i), ff is H~ and  Ha+l 
and  R is H~_I and  Ha,  and  if p is a height  a -  1 p r ime  ideal in 1% then  a l t i tude 

Rip = 1, so (R/p)' is a Do-ring, as is well known.  
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Firs t ,  assume ff is a.n H,-r ing.  R _~ ($/Xff and  height  Xff  -~ 1, so, b y  (2.11),/~ is 
~n H,_~-ring. Le t  P be  a height  i p r ime  ideal  in R. Then  h e i g h t / ) f f  = i ;  therefore,  
since ff is an  H~-ring, dep th  Pff  -~ a ~ 1 - -  i, and  cleaxly dep th  Pf f  < dep th  IoR[X] -~ 
= dep th  P ~ -1 .  On the  o ther  hand ,  dep th  Pff  = height  (M, X)/PR[X]>~height 
MIt[X]/Pt t[X]  -~ 1 = dep th  P ~- 1. Thus dep th  _P = a -  i. Hence  R is an  H,-r ing.  
Le t  p be  a height  i - - 1  p r ime  ideal in /~, so height  p f f = i - - 1 .  Since ff is an  

H,-r ing,  '$/pff (~_-(R/p)[X](M/~,x) ) is ~n H~-ring, b y  (2.11). Therefore ,  b y  the  case 

i - - -1 ,  (R/p)' is a D0-ring. 
Conversely,  let  R be H~_I and  H , ,  and  let  (R/p)' be a Do-ring, for every  height  

i -  1 p r ime  ideal p i n /~ .  Le t  q be  a height  i p r ime  ideal  in if, and  let  p == q ( ~ / L  
Then,  e i ther  he ight  p -~ i - -  1 or i. I f  he ight  p = i, t hen  q = pff. Since R is an  
H,-r ing,  dep th  p = a - -  i. As above,  dep th  p ~  ---- dep th  p ~- 1, and  hence dep th  
q = a - -  i + 1, as desired. I f  height  p = i - -  1, t hen  pff  c q ~nd height  q/pS" ---- 1. 
Since R is an  H~_~-ring, dep th  p = a - -  i + ~. Again,  dep th  pff  = dep th  p + 1 = 
---- a -  i + 2. Now (Rip)' is a Do-ring and  R is an H~-ring, b y  hypothesis ,  so Rip 
is an  Hx-ring, b y  (2.11). Thus,  b y  the  case i ~ 1, ff/pr$ is an  H~-ring, and  so depth  
q ---- dep th  q/p'$ -~ al t i tude  ff/p~ - -  1 ---- dep th  p ~  - -  1 = a - -  i + 1. Hence  ff is an 

H~-ring, q.e.d. 

(3.3) E X A ~ L E .  - For each i ~ 0, there exists a local domain ~ such that ff is an 
H~-ring id and only i] j=/= 1 , . . . , i ;  namely ,  [7, :Example 2, pp.  203-205] (for r ~  0 
and  m = i - -  ]) .  To see this,  use the  facts  f rom (2.3) and  also t h a t  R '  is a special 

extension of R (see [15, Theorem 4.7 and  lCcmark 4.8]). 
The n e x t  resul t  is an  immed ia t e  corol lary to (3.2). 

(3.4) 
Then the 

Co~oL]~AI~¥. - Let i and j be ]ixed (i, j ~ 0), and assume that ff j is an H~-ring. 
]ollowing statements hold: 

(1) R is Hi~ ..., Hi_~. 

(2) (R/p) ~ is a Do-ring, ]or every prime ideal p in t~ such that i - - j ~ < h e i g h t  
p < i - - 1 .  

(3) For all k ( l < k < j ) ,  $~ is H~, ..., H~_j+~. 

P~ooF.  - Since ~l(~k) ~--~ ff7¢+1, it  follows f rom (3.2), b y  induct ion on k, t h a t  (3) 
holds. Then (1) and  (2) follow f rom (3) (k = 1), b y  (3.2), q.e.d. 

(3.5) ExA~n~LES. - (1) I] R satis]ies the s.e.e. (for example ,  if R is a complete  
local domain  [7, Theo rem  34.4, p. 124]), then ff~ is an H~-ring, for all i>O and j ~ O. 

(2) For i and j ]ixed (i, j ~ 0), there exists a local domain R such that ~$j is an 
H~-ring if and only if  k ~ 1, ..., i ~ j .  Using a similar  a rgumen t  as in (3.3), [7, Ex -  
ample  2, pp.  203-205] (for r ~ 0 and  m ~ i) provides  this example .  
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4. - Certain algebraic localities of  H~-rings. 

This section deals with three  different types  of algebraic localities and  their  con- 
nect ion with R and  9~(R) re la t ive  to  being H~-rings. In  (4.2) an equivalence is given 
for  /~ to  be an  H~-ring in Serms of conditions on the loca, lities ~(c~/b, ..., c~/b) (see 
below for the definition). Then  the  condit ion t h a t  all the  localities R[yJ(~,v), where y 
is in the quot ien t  field of R~ be H~-rings, gives rise to a number  of s ta tements  con- 
cerning if(R) in (4.5). These results are followed by  two lemmas which are needed 
for the proof of (4.10) and which give general  informat ion on the polynominal  rings 
of /~. To conclude this section, k-graded extensions are defined, and  then  (4.10) 
rela~es k-graded extensions of R to  ff~(R). 

A number  of results concerning the  ring R[e/b], where b and  c are analyt ical ly  
independent  elements in R, are s ta ted below; b u t  first, the  definition of analyt ical ly 
independent  elements will be given. 

(4.1) I)EFII~ITION. -- I~et (~q,_~) be a quasi-local ring. The elements  co, ..., c~ 
in iV are analytically independent in ~ (a.i. i n  S) in case the following condit ion is 
satisfied: if F(Xo, ..., X , )  is a form in S[Xo, ..., X , ]  of a rb i t r a ry  degree such tha t  
~(eo, ..., c~)----0, then  all the  coefficients of ~ are in £V. 

[12, pp. 126-128] and [13, l~emark 4.4] contain a number  of known facts abou t  
analyt ical ly  independent  elements tha t  will be used. in the  following results. 

IJet R(cl/b, ..., c~/b) = tt[cl/b ~ ..., c,/bJ~Ec,/b,....~tb~, where b, cl, ..., c~ are a.i. in R. 
(Note tha t  by  [13, Remark  4.4 (i)], MR[el/b, ..., c~/b] is a proper  ~deal, so the defi- 
ni t ion of ~(c~/b, ..., c,~/b) makes sense.) Also, recall  f rom (2.1.3) t h a t  K denotes the 
quot ien t  field of R. 

[13, Proposi t ion 4.7] gives s ta tements  which are equivalent  to  (~/~ is an  H~-ring ~. 
Theorem 4.2 beIow contains s ta tements  which are equivalent  to (~/~ is an Hi-ring, 
for some i > 2  )) and is an application of (3.1). 

(4.2) 

(1) 

(2) 

(3( 

(4) 

THEOI~EM. - -  Zet i be fixed ( i~2 ) .  Then the following statements are equivalent: 

1¢ is an Iti-ring. 

• ~or each pair o] elements b, c such that height (b~ c)-~ 2, l~(c/b) is an 
t t  i_l-ring. 

~or each ]ixed j (l ~ j ~ i - - 1 )  and ]or each set o] elements b, c1~ ..., cj which 
are a.i. in R, t~(clb~ ..., cj/b) is an tt~_fring. 

For each set o] elements b, c i , . . . , c t  which are a.i. in R, al t i tude  
R(cl/b, ..., c~/b) -~ a -  i. 

P:aooF. - The equivalence of (1), (2) and (3) will be shown first. 
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For  (1) implies (3), assume l ~ < j < i -  1 and let  b, e,, ..., e~ be an a rb i t r a ry  set of 
elements which are a.i. in It. Then I~(X,,  ..., X~)/P ~ R ( e , / b ,  ..., c~/b), where P is 
a pr ime ideal in It(X1, ..., X~) such t h a t  P n I t  = (0). I t  is well known (using [17, Pro-  
position 2, p. 326]) t ha t  since I t (X , ,  ..., X j ) / P  is algebraic over I t  and P ~ It  = (0), 
height  P=-- j .  Since It  is an H~-ring, I t (X, ,  . . . ,X j )  is an Hcr ing ,  b y  (3.1), and  
therefore  It(e,/b, ..., cj/b) is an  H~_~-ring, b y  (2.11). Hence  (1) implies {3). 

I t  will now be shown tha t  (2) implies (1). Le t  p be a height  i pr ime ideal in /~. 
We can assume 1 < a -  1, by  (2.6)(i). Since i > 2 ,  there  exists a pai r  of elements 
b, e e p  such t h a t  height  (b, c ) =  2, b y  [7, Theorem 9.5, pp. 26-27]. Then  It(e/b) 
is an  H~_l-ring, by  hypothesis ,  and  a l t i tude  I t ( c / b ) ~  a - - 1 ,  b y  [12, L e m m a  4.3] 
(b, e are a subset of a system of parameters ,  as in the first paragraph of this proof). 
Also, pit[e/b] is a height  i -  1 pr ime ideal, since height  (b, e ) =  2 implies height  
(b/1, c/1) ~ 2 in Its, so b/1, e/1 are ~ subset  of a sys tem of parameters  in It~ (as 
above),  and  so p* = pR~[e/b] is a height  i -- 1 pr ime ideal and the p*-residue class 
of c/b is t ranscendenta l  over  It~/pR~ [12, L e m m a  4.3], and  pit[e/b] : p* (~  It[e/b] 
[12, L e m m a  4.2]. Fu r the r  pit[e/b] c MR[e/b], so pit(e/b) is a height  i - -  1 pr ime ideal. 
Therefore  depth  pit(e/b) -~ (a -- 1) --  (i --  1) = a --  i. Since the pR~[c/b]-residue class 
of c/b is t ranscendenta l  over L = It~/pi?~ [13, Remark  4.4 (i)], and  since J5 is isomor- 
phic to  the  quot ien t  field of It /p [2, Corollary 5.9, p. 57], It[e/b]/pit[c/b] _~ (it/p)[X], 
where X is an indeterminate .  Hence depth  p == height  M/p  = height (M/p)R/p[X]  : 
-~ height  Mit[e/bJ/pit[e/b] ~ - d e p t h p i t ( c / b ) ~  a - - i ,  and thus (1) holds. 

Fo r  (3) implies (2), the  case j ~ 1 follows f rom [7, (9.8), p. 27] and  [8, Theo- 
rems 2 and  3, pp. 64, 68], since if b, e are elements in R such tha t  height (b, c) : 2, 
then  b, e are a subset of a sys tem of parameters  and  so are a.i. in It. 

I f  l < j < i - - 1 ,  to  prove  t ha t  (2) holds, i t  will be shown t h a t  if (3) holds for  j ,  
then  (3) holds for all k ( l<k~<j ) ,  b y  induct ion on k. I t  is clearly t rue  for k = j .  
Assume it  holds for k - ~ l  (2~<k-~l~<j) ,  let  b, e,, ..., c~ be a.i. in R, and let  
C = It(e,/b, ..., e~/b). I f  a l t i tude  C ~- 1, then  C is an  H~_~-ring (in fact ,  is catenary) .  
I f  a l t i tude  C > 1, then  there  exist  d, e which are a.i. in C. Then d, e e K,  and so 
e/d E K.  Therefore~ e/d = sir where r, s ~ It  and  r # 0. I f  r ~ M, then  sir ~ C, which 
contradicts  C c C[s/r]. I f  s ~ M, then  r/s ~ MC, and  so 1 = r/s. sir ~ MC[s/r], which 
contradicts  MC[s/r] is a proper  ideal [13, ~ e m a r k  4.4(i)]. Since C ( s / r ) =  
~- It(e,/b, ...~ e~/b, s/r) = It(e,r/br, ..., ekr/br, bs/br), i t  follows f rom [13, l~emark 4A(i)] 
t ha t  br, e,r, ..., e~r, bs are a.i. in It. Thus,  b y  the induct ion hypothesis ,  C(s/r) is an 
H~_~=,-ring. Apply the  ease j = 1 to the  local domain C, and  since (2) implies (1), 
C is an  H~_~-ring. Thus,  by  induction,  the above s t a t emen t  holds; in part icular ,  
for j = l .  So (2) holds. 

The proof  t h a t  (1) implies (4) is similar to  the  proof  t h a t  (1) implies (3), so i t  
will be omit ted.  

To complete  the proof it  mus t  be shown t h a t  (4) implies (1). Again, we can 
assume tha t  i < a - -  1, b y  (2.6) (i). Le t  p be a pr ime ideal in I t  such t h a t  height  
p = i .  Then there  exists b , e , , . . . , c ~ _ , e p  such t h a t  height  ( b , e , , . . . , c ~ _ , ) - ~ i  
[7, Theorem 9.5, pp. 26-27], and so (as above),  b, e,, ..., c~_, are a subset of a sys tem 
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o~ parameters .  Le t  C ~ t~(e~/b, ..., c~_~/b). Then,  b y  [12, Le mma  4.3], a l t i tude 
C : a - -  i -~ 1 (>  2). Also, as in the proof tha t  (2) implies (1), b/l, c~/1, ..., c~_i/1 
are a sys tem o~ parameters  in R~, p C  is prime,  height  pC = height  pR~ --  (i - -  I )  = 1 
and  C/pC-~  (R/p)(x~, ..., x~_~), where the  x~ ure algebraically independent  over  the 
quot ien t  field of ~/p.  Let  d, e be elements which are a.i. in C. Then,  as in the proof  

! 

t h a t  (3) implies (2), the re  exist  elements b', c~, ..., c~, which are  a.i. i n /~ ,  such t h a t  
C(e/d) __~ t~(ejb; ' ..., e~/b'). Therefore,  b y  (~), a l t i tude  C(e/d) = a - - i ,  and  thus C 
is an  H~-ring [13, Proposi t ion ~.7]. Hence,  since height  pC ~-1,  a ~ i = al t i tude  
C ~  1 = dep th  pC = al t i tude  C/pC ~- al t i tude  l~/p(x~, ..., x~_~) ---- dep th  p and  so (1) 

holds, q.e.d. 
Theorem 4.2 has some interes t ing implications which are s ta ted  in (4.3) and  (4.4). 

( 4 . 3 )  I~EIIIAI~K. - -  (i) 2 is an  Hcr ing ,  for  some i ( l < i < a - - 1 ) ,  if and  only if 
eve ry  set of i - ~  1 elements which are a.i. in 2 can be ex tended  to  a set of a a.i. 

e lements in /~. 

(ii) H / ~  is an  H,-ring,  for some i ( l < i < a - -  ]), then  every  set of k elements 
(k<i)  which are a.i. in R can ei ther  be ex tended  to a set of a a.i. e lements in /~ ,  or 
is conta ined  in a maximal  set of a t  most  i e lements  which are a.i. in R. 

P~ooF. - (i) follows f rom (4.2) (4) and  [13, Corollary 4.19], and (ii) readi ly  fol- 

lows f rom (i), q.e.d. 

(4.4) EXAMPLE. -- With R as in [7, Exumple  2, pp. 203-205] (/or r ~ 0 and 
m -~ i ~ ~), there exists, for each j ( l<j<~i) ,  a set of elements b, e~, ..., cs which are 
a.i. in R such that t~(c~/b, ..., e~/b) is an Hk-ring if and only i] k :/= 1, . . . ,  i ~ j .  B y  (2.3) 
and  (4.2), R(e~/b, ..., e~/b) is an H~-ring, for all k > i - - j  and k : 0. The proof is 
comple ted  by  showing t ha t  R(y~/(x ~ -  x), ..., y~/(x ~ -  x)) is no t  1ti, ..., H~_~ (j<~ i), 
since (x 2 ~  x), y~, ..., yj are a subset  of a sys tem of parameters  in R, q.e.d. 

Theorem 3.2 s ta ted  an  equivalence for ff to be an H,-r ing (i~>2). There  are also 
s ta tements  concerning R[y](~,v)~E~, where y ~ K ,  which are equivalent  to (~ ff is an 

H~-ring ,, and  t hey  are s ta ted  in (4.5). 

(4.5) T~EO~E~. -- Let i be ]ixeg (1 < i < a  + 1). Then the ]ollowing statements 

are equivalent: 

(1) ff is an Hi-ring. 

(2) For every y ~ K such that 1 ~ (M, y)R[y],  ~[Y](M.~) is an H,_~-ring. 

(3) For each pair o] dements b, e which are a.i. in R,/~[c/b](M.~le) is an H~_~-ring. 

(4) For each pair o/ elements b, e in R such that height (b, e) = 2, t~[e/b](M.,tb ) 

is an H,_x-ring. 

P~oo~.  - I t  is clear t h a t  we can assume a > 2, since if a = 2, then  ~ is H2 and  He 
and R[y](~,v) is H1 and  H~, for a l Iy  ~ K such tha t  16  (M, y) B[y] (altitude/t[y](M,v ) < 2), 
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by  (2.6) (i). We  can also assume i < a + 1, since ff is an Ha+l-ring and the rings 

R[y](~,~) are  H~. 
For  (1) implies (2), let  y e K  such tha t  1 ~ (M,y)R[y] and  let  B - ~  R[y](M,v). 

I f  y ~ R ,  then  B ~ R  and so is an H~_l-ring, b y  (3.2). I f  y ~ _ R ,  t h e n B ~ f / P  
where ~ is a height  one pr ime ideal in ff such tha t  P (~ R = (0). So, b y  (2.11), B 

is an H~_l-ring, and  hence (2) holds. 
I t  is clear t h a t  (2) implies (3), by  [13, 17~emark 4.4 (i)], and  (3) implies (4), as in 

the first paragraph of the proof of (4.2), so i t  only remains to show tha t  (4) implies (1). 
For  this, i t  will be  shown tha t  if (4) holds, t hen  R is H~_t and  H~ and (Rip)' is a 

Do-ring, for every  height  i -  1 pr ime ideal p in R, and  hence (1) holds, b y  (3.2). 
To show tha t  R is an H~_~-ring, let  p be a height  i --  1 pr ime ideal in R. Then  there  
exist  b, e elements  in R such that e ~ p, b ~ M, b ~ p and  height  (b, e) = 2 [7, The- 
orem 9.5, pp. 26-27]. Le t  A = R[e/b], let  iv = (M, e/b)A, and  let  q ~- pR[1/b] ~ A. 
Since e e p  and  1/beR[1/b], e/beg,  and  so A/q~-~R/p, since q V ' ~ R : ~ .  Thus 
q c iV, iV is proper ,  and  depth  p = dep th  q ~- height  £V/q. Also, height  q = i - -  1, 
since height  pR[1/b] -~ i -  t = height  p, and  hence height  ~ / g  ~- height  i V -  i + 1, 
since b y  hypothesis~ AN is an H~_x-ring. Since, as in the  first paragraph  of the  proof  
of (4.2), b, ca re  a subset of a sys tem of parameters ,  height MA = a --  1 [12, Le mma  4.3]. 
Also iv D MA, since the M A  residue class of c/b is t ranscendenta l  over R / M  [13, l~e- 
m a rk  4.4 (i)], so height  iV>a ,  bu t  height iV<a ,  since a l t i tude  A < a  (since ~/P ~ A 
and height  iP = 1). Therefore  a -  i + I = height iV/q = depth  p. Hence  R is an 

H~_~-ring. 
To show tha t  R is an H~-ring~ let  p be a height  i pr ime ideal in R. Then there  

exist  e lements  b, v in R such t h a t  b, c ~ p, height  (b, c) ---- 2 and height  pR[e/b] -~ 
= i -  1 (as in the  proof  of (4.2) (2) implies (1)). As in the previous paragraph,  with 
A - ~  R[e/b] and  i V :  (M,e/b)A, i V o M A  (opA) and  height  N = a .  Since AN is 
an  H~_~-ring~ height  iV/pA = height  l -V- height  pA = a - -  i + 1, and  so, dep th  
p a p a - -  i + 1. Therefore,  depth  pA = a - -  i + 1, since height p A  + depth  p A <  
< a l t i t u d e  A K a .  Also, as in the  proof  of (4.2)(2) implies (1), A/pA_~R/p[X] ,  
where X is ~n inde te rmina te ;  thus  dep th  p + t = a l t i tude  A/pA  = depth  p A  ~--- 
= a - - i + l .  Hence  R is an H~-ring. 

To show tha t  (R/p)' is a Do-ring, for  all height  i -  1 pr ime idea, Is p in R, let  p 
be a height  i -- 1 pr ime ideal in R. We must  consider two cases. I f  i > 2, then  as 
in the  previous paragraph  an4  wi th  its nota t ion ,  there  exist  b, e ~ p such t h a t  height  
(b, c) = 2, height  pA  = i -- 2, pA  c M A c  2~, and  A / p A  ~ RIp[X]. Thus,  with 
B -~ A~v, B/pB _~ (R/p[X])(M/v,z) (= "$(R/p)). Since B is an H~_x-ring and height 
pB : i -  2, B/pB is an H~-ring, b y  {2.11), and  therefore,  b y  (3.2) ( i -~  1), (Rip)' 
is a D0-ring. 

I t  remains to show, for the case i = 2, t h a t  (Rip)' is a Do-ring, for every  height  
i - -  1 pr ime ideal p in R. Le t  p be a height  one pr ime ideal in R. We have  proved  R 
is H~ and H~, and hence Rip is an H~-ring, b y  (2.11), and  al t i tude Rip - -  a -  1. B y  
[15, l~emark 3.4], e i ther  (R/p)' is a Do-ring, a.s desired, or there  exists a~ height  one 
maximal  ideal in (R/p)'. Assume the la t ter ,  and  let  v be an element  in (R/p)' such 
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t ha t  v is in eve ry  height  one maximal  idesl  in (R/p)',  and 1 -  v is in all the  other  
maximal  ideals in (t~/p) r, by  [16, Theorem 31~ p. 177]. Then C ~ (/~/p)[v] hus exac t ly  
two maximal  ideals, namely,  2V~ ~ (M/p,  v) C and ~ = (M/p,  1--  v) C. Height/V~ 
-~ 1 (since (R/p)'  is integral  over  C, there  exists a pr ime ideal Q in (t~/p)' such 
t ha t  height  Q = height  _~ and Q n C ~ 2y~ [3, Theorems 4~ and 46, pp. 29 and 31]; 
this implies v e Q, und so height  Q ~ 1) und height  2V~ --~ a -- 1 (since C is integral  
over  Rip,  a -  1 ~ a l t i tude  ~ /p  ~ al t i tude  C). Since v is in the quot ient  field of t~/p, 
v ~ z/w with w, z ~ t~/p and  w, z ¢ 0. Le t  b, c be elements in /~  such thu t  b q- p ~ w 
and  c q- p -= z, so b, e ~ p. Now it  will be shown tha t  there  exists an e lement  d c p 
such t ha t  b q- d is not  in uny  height  one pr ime divisor of c/L 

For  this, let  P~, ..., P~ be the height  one pr ime divisors of oR, and assume tha t  
/ 

b ~ P1, ..., P~  and  b ~ P ~ + ~ . . . , P , ,  w h e r e l K m < n .  {If b ~ n P ~ ,  t hen  let  d = 0 ,  
\ 

1 

and so we can assume m~> 1; if m ~ n, then  ignore all the  following expressions which 

deNP,;" p involve m- t -  1.) P ick  d E p  such t h a t  d q i U P ,  and  (Suppose n p , c  
m ! J = l  ~; = z~'b \ 4 = ¢'a, 

_c U PJ.  Then  there  exists some P~ (1 < j  < m) such t h a t  e i ther  p c p~ or some P~ c p j  

(m q- 1 < k < n), by  [1~ Proposi t ion 1.11, p. 8]. Since/c ~a j ,  p~ ~t P j ,  therefore  p c p~. 
Since height  p : ! = height  P~, p ~ P~. B u t  c ~ p  and e ~ P~; contradict ion.  Thus 

p N ~fl P~ ~ ~J P~, so there  exists such ~n element  d). I t  follows f rom the choice 
i = m  . q = l  

of d tha t  b q- d is no t  in any  of the  P t  (i = 1, ..., n). Therefore  height  (c, b q- d) = 2, 
and  b q - p = w = b q - d q - p  (since d ~ p ) .  

Le t  A = R[e/(b q- d)], _¥ = (M, c/(b q- d ) ) A  and  B = A~. Then,  by  (4) (i = 2), 
B is an Hi-ring. I~et q = pR[1/b q- d ] n  A,  thus height  ~ = 1. Also, A/q ~ C, so 
N/q  ~ N~. Hence  q c hr, an4  since B is an H~-ring, height  N/q = a -  1. Since 
B/qB _~ C~v,, 1 = height  2Vz = height  2¢/q = a - - 1 .  This contradicts  the  fac t  t h a t  
a > 2. Hence  there  does no t  exist  a height  one m~ximal  ideal in (R/p)', so (R/p)'  
is a Do-ring. Thus (1) holds, q.e.d. 

The following definition ~nd three  lemmus will be used in the proof of Theorem 4.10. 

(4.6) LE)~A.  - Zet (~, ~'~) be a quasi-local integral extension domain of R. Then 
i,~(S) is a quasi-local integral extension domain of l , (R ) .  

P~ooP.  - Since ffdS) = if1 (~31(S)), it  is clearly sufficient to prove  the  lemma for 
the case n = 1. I t  follows f rom [2, Theorem 10.7, p. 96] tha t  SIX] is an integral  
domain  which is integral  over  R[X]. By  [7, (10.6), pp. 29-30], S[X]~rx~_(i,x)~tx J is 
integral  over  f and, as is easily seen, (~ ,  X ) S [ X ]  is the only pr ime ideal in S[X] 
which lies over  (M,  X )R[X] .  Therefore  S[X]~tzJ_(M,X)ntx ~ = if(S), q.e.d. 

Recall  f rom the  second paragraph  of section th ree  t h a t  S ,  = S[XI,  ..., X .] ,  
where S is s r ing and  X~, ..., X .  are indeterminates  over S. 

(4.7) L~r~A. - Let ~ be a Noetherian integral domain such that al t i tude  S < c~, 
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and let k be fixed ( k>  1). Then, /or  every prime ideal q in S~ such that height q > k, 
there exists a prime ideal Q in S~ such that Q c q, Q n S = (0), height  Q = 1~ and 
height  q/Q --- height  q -  k. 

P~ooF.  - The proof will be by  induct ion on k. Le t  q be a pr ime ideal in Sk such 
t ha t  height  q = k ~- i (i > 0). 

For  the case k---- l ,  let  p - - - - q n R .  Then  either p S l c q  or p S ~ = q .  I f  pg~cq,  
then  there  exists an  e lement  / e q such t h a t  / ~ ps i .  Since (S~)~ is a local domain and  i 
is a paramete r ,  there  exists a height  one pr ime divisor Q o f /S~  such t h a t  Q c q and 
height  q/Q = i, by  [7, (9.2) and  (9.7), pp. 26 and  27]. Suppose Q n S ~e (0). Then  
height Q n S --- 1 = height Q, and so Q = (Q n S)S~ c ps i .  Bu t  this contradicts  
the fact  t ha t  /~pS~ ,  so Q n S - -  (0). 

I f  pSx = q, then  height  p = i ~ 1 > 2. Hence  there  exists a pair  of elements 
b, c e p  such tha t  height  ( b , c ) =  2, by  [7, Theorem 9.5, pp. 26-27]. Le t  
I = (bX Jr-c)S1, and  let  Q be a minimal  pr ime divisor of I contained in q such 
t ha t  height  q/Q = i (as in the  previous paragraph) .  Suppose Q n S=/: (0). Then  
(Q n S)S~ = Q, and  so b, c e Q  n S (it is welt known t h a t  g e J S ~ ,  J an ideal in S, 
if and  only if all the  coefficients of g are in J ) .  This contradicts  the fact  t ha t  height  
(b, e) ---- 2 and  height  (Q n S) = 1. So in bo th  cases the pr ime ideal Q satisfies the 

conditions in the  lemma.  
Assume the lemma holds for k - -  1 (k>2) ,  and let  p = q n Sk_~, Then either 

height  q - - i - - - - h e i g h t  p (pg~cq) or height  q = h e i g h t  p (pST:=q). I f  height 
p = height  q - - 1  = k - t - i - - 1 ,  then  b y  the  induct ion hypothesis ,  there  exists a 
pr ime ideal P in S~_~ such t ha t  P c p ,  P n S ---- (O), height  P = k --  1 and height  
t ~ / P - - - l ~ - ~ - i - - 1 -  ( k - - 1 ) =  i. I t  follows f rom [9, (5.4.6)~ p. 262] and  [3, The- 
orem 149, pp. 108-109] t ha t  P S k c p S k c q ,  height  PS~ = k - - 1  and height  
pS~/PS~ = i, and so height  q/PSk>i @ 1. Hence height  q/PST~ = i ~- 1, since height 
q = k ~ - i  and  height  P & ~ = k - - 1 .  Thus~ b y  the  case k----1 for S~_~/P and 
(Sk_~/P)[X~] _~ (by [9, (5.4.6), p. 262]) S~/PSk, there  exists a pr ime ideal Q in S~ 
such that P &  c Q c q, (Q/P&)  n (~_~/P)  = P / P  (so Q n s~_~ = P), height Q / P ~  = 1 
and  height  (q/PS~)/(Q/PS~) (----- height  q/Q) = i. Since height  PST: = k --  1 and height  
Q/PS~ = 1, height  Q>k.  Hence  height  Q = k, since height  q = k @ i and  height 
q/Q---i .  Also, Q A S = ( Q A S ~ _ I )  A S = P A S = ( 0 ) .  So Q satisfies the  condi- 
t ions in the lemma. 

The case where height  p ----= height  q = k @ i (pS~ = q) remains.  By  the hlduc- 
t ion hypothesis ,  there  exists a pr ime ideal P in S~_~ such tha t  P c p ,  P (~ S = (0), 
height  P = k - - 1  and  height  p / P = i @ l .  Hence  P S ~ c p S ~ - = q  and height  
q/PS~ ---- height  p / P =  i @ 1. Then,  b y  considering' (S~_~/P)[X~] ~ S~/PS~, the  
second case in the  case k = 1 shows there  exists a pr ime ideal Q in S~ such t h a t  the 
conditions in the  lemma are satisfied, q.e.d. 

The  following definition is needed for the s t a t emen t  of (4.10). 

(4.8) D]~PI~ITIO~. - Le t  k be a positive integer.  A local domain T is called a 

2 - A n n a l t  d~ Mat~matica 
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k-graded extension of R if T = S[u~, ..., u~](~., ...... u~), where (S, _¥) is a local domain 
genera ted  by  k elements which are integral  over  R and u~ ..., u~ are in the quot ient  
field of S such t ha t  (N, u~, ..., u~):g[u~, ..., u~] is a proper  ideal. 

(4.9) LE~nV~A. - Zet T -~ R[u~, ..., u~](~,~ ...... ~), where u~, ..., u~ are algebraic over R 
such that (M, u~, ..., u~) is a proper ideal. Then T is a k-graded extension o] R.  

PROOF. -- By  [2, Lemma  9.1~ p. 84], there  exist non-zero elements r~, ..., r~ in R 
such t ha t  r~u~, ..., r~ u~0 are integral  over  R. Le t  r = r~ ... r~, so ru~, ..., ru~ are 
integral  over  R. We assume r e M  and  r ¢ 0 ,  since, for O ¢ m e M ,  m r e M  and 
rerun,...,  mru~ are integral  over R. Then S = R[r~u~, ..., r~u~] is a local domain 
with the only maximal  ide~] being (M,r~u~,.. . ,r~u~)S, and r~u~,...,r~u~ are in- 
tegral  over  R. Also, u~, ..., u~ are in the quot ient  field of S, and hence T is a k-graded 

extension of /~, q.e.d. 
Theorem 4.10 is an extension of (4.5) to an equivalence of ff~ being an H~+~-ring. 

(4.10) THE0~gEM. -- Zet i and k be ]ixed (i, k~>l), ff~ is an H~+~-ring i] and only 
i] every k-graded extension o] R is an H~-ring. 

P R O O F .  - -  Assume ff~. is an Hk+~-ring, and let  T be a k-graded extension of R, 
say T = S[ul, ..., uk](z¢, ~ ........ ) with (S, 2V) and us, ..., u~ as in (4.8). By  (4.6), ff~(S) 
is a quasi-local integral  extension domain  of ffk(R), and hence ~ ( S )  is an  Hk+~-ring, 
by  [13, Corollary 2.16]. Essentially,  the  same proof  as in the proof  of (4.2) (1) im- 
plies (3) shows tha t  T ~_ '$k(S)/Q, where Q is a pr ime ideal of ff~(S) such t h a t  
Q (3 R = (0) and height Q = k(ul, ..., u~o) are algebraic over  S. Thus,  b y  (2.11), 
T is an  H~-ring~ and  so every  k-graded ex ten t ion  of R is an H~-ring. 

The converse will be proved b y  induct ion on k. For  the ease k = 1, assume 
every  1-graded extension of R is an  H~-ring. Then,  in part icular ,  for each y in the 
quot ient  field of R such t ha t  1 ~ (M, y)R[y], R[y](M.~ ) is an H~-ring~ and hence ~" is 

an H~+l-ring, by  (4.5). 
:Now let k > 1 and assume the conclusion holds for k ~ 1. Also, assume every  

k-graded extension of R is an Hi-ring. To prove tha t  ff~ is an H~+~-ring it  suffices, 
by  (3.2), to show tha t  ff~_~ is Hk+;_~ and H~+~ and tha t  (ff~_~/Q)' is a Do-ring, for 
every  pr ime ideal Q in ff~_~ such t h a t  height  Q ---- k ~ i -  1. Le t  T be ~ k -- 1--  graded 
extension of R with maximal  ideal N. Then,  for all u in the  quot ient  field of T such 
t ha t  (N, u) T[u] is a proper  ideal, T[u](~,~) is a k-graded extension of R, b y  the  de- 
finition (4.8), and hence T[u](zC, u) is an H~-ring. Therefore,  since T is a local domain,  
$(T) is an H~+~-ring, by  (4.5). Thus,  by  (3.2), T is H~ and H~+~ ~nd (T/q)' is a Do-ring, 
for  every  height  i pr ime ideal q in T. Thus,  since T is an a rb i t ra ry  k -  1-graded 
extension of R, the induct ion hypothesis  implies tha t  ff~_~ is H~_~+~ and  H~+~.' So it  
only remains to show tha t  (~_~/Q) is ~ Do-ring, for every  height  k + i ~ pr ime 
ideal Q in ff~-1. 

:For this~ let  Q be a height  k -}- i -  1 pr ime ideal in ~'~_~. I t  follows f rom (4.7) 
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t h a t  there  exists a pr ime ideal P in ff~_~ such tha t  P c Q, P (~ R ~--(0), height  
P = k - -  1 and height Q/P -~ i. Let  P ' =  P n R~_~, and let  U = (Rk_l)(R_(0)). Then 
P ' ( ~ R = ( 0 )  and  height  P ' = k - - 1 ,  and  thus height P ' U = k - - 1 .  Since 
U _ ~ K [ X I , . . . , X k _ , ]  [9, (5A.7), p. 262], a l t i tude  U :  k - - l ,  and hence P ' U  is 
a maximal  ideal of U. Le t  2~ ~ be the  maximal  ideal in K[X~, ..., X~_~] corresponding 
to  p t  U. So, U / P ' U  is a field and is isomorphic to  K[ul,  ..., uk_~], where u~-= 
= Xj  + N. By  [17, Lemma,  p. 165], u~, ..., u~_~ are algebraic over K and hence 
are algebraic over  R. Also, it  follows f rom [9, Proposi t ion 9 and (5.4.7), pp. 153, 262] 
tha t  R~_~/P'~--- R[u~, ..., uk_~], and thus '$k_i/P _~ R[u~, ..., u~_l](~.p,...]e~_~) , which is 
a (k 1)-graded extension of R, by  (4.9). Therefore,  since height  Q/P ---- i, (~_~/Q) 
_~ (('$~¢_~/P)/(Q/P))' is a Do-ring, by  the  s t a t emen t  in the  previous paragraph,  q.e.d. 

5.  - Condit ions  for  R*  and R R to be H~-rings.  

The main object ive of this section is to give necessary and sufficient conditions 
for the completion R* (respectively, the Henselization R n) of R to be an H~-ring. 
(5.1) and (5.2) give equivalences for R* to be an H~-ring and an H0-ring, respectively.  
To close the section, (5.3) shows tha t  cer ta in  conditions on R are equivalent  to 
(~ R H is an H~-ring ~). 

I t  is known tha t  R* is a local r ing [8, 1). 92], tha t  the theorem of t ransi t ion holds 
for R and R* [7, Corollary 17.11 and Theorem 19.1, pp. 57, 64-65], and tha t  a l t i tude 
R * ~ - a  [7, (17.12), p. 57]. 

Theorem 5.1 gives an equivalence of • R is ca tenary  and  Rip satisfies the s.c.c., 
for eve ry  height  one pr ime ideal p in R ,). 

(5.1) TItEOnE~. -- R* is an H~-ring i/ and only i/ R is catenary and Rip  satis]ies 
the s.e.e., for every height one prime ideal p in R. 

PROOF. - Firs t ,  assume t ha t  R is ea tenary  and  Rip satisfies the s.c.c., for every  
height  one pr ime ideal p in R, and let  p* be a height  one pr ime ideal in R*. Then  
there  exists a minimal  pr ime ideal q* in /~*  such t h a t  q* c p *  and height  p*/q* = 1, 
and it  follows f rom [11, Proposi t ion 2.16 (2)] (i = 1) t ha t  ei ther depth  q* = :l or a. 
Since R* is a local ring and a > 2 ,  depth  q* = a. B y  [8, Proposi t ion 4, p. 86], R*/q* 
is a complete local domain,  and  hence,  by  [7, Theorem 34.4, p. 124], .~*/q* satisfies 
the f.c.c. Since height  p*/q* = 1, dep th  p* ---- dep th  p*/q* ~-- a l t i tude  tt*/q* -- 1 -~ 
= a -  1, and  thus R* is an Hi-ring. 

Conversely, assume R* is an Hi-ring. I t  will now be shown tha t ,  for every  minimal 
pr ime ideal p* in R*, ei ther  depth  p = 1 or a. 

For  this, let  p* be a minimal  pr ime ideal in R* (p* is no t  a maximal  ideal since/~* 
is local). Assume depth  p* > 1. Then  there  exists a pr ime ideal P*  in R* such t h a t  
p* c P*,  height  P*/p* = 1 and  depth  p* ---- dep th  P* + 1 (so depth  P* > 0). Thus 
height P*  = 1 or height  P* > 1 .  In  ei ther  case (height P* > 1 ,  by  (2.8)), there  
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exists a height  one pr ime ideal q* in R* such t h a t  p * ¢  q*, height q * / p * :  1, and 
depth  q* ~- depth  p* -- 1. Since, b y  assumption,  R* is an  Hi-ring, depth  q* -~ a -- 1, 
and  hence depth  p* ~ a. Thus, for every  minimal  pr ime ideal p* in R*, ei ther  depth  
p* ---~ 1 or a. 

I t  will now be shown tha t  R is catena.ry. Le t  i be  fixed (0 < i ~ a --  1), let  _P 
be a height  i pr ime ideal in R~ and let  P*  be a minimal  pr ime divisor of lPR* in R*. 
Then i t  follows f rom [7~ Theorem 22.9, p. 75] (since the  theorem of t ransi t ion holds 
for  R and  R*) t ha t  height  P*  ---- height  P--~ i. Le t  p* be a minimal  pr ime ideal 
in R* such t ha t  p* c P*  and height  P*/p* = i. Thus dep th  p* ~ 1, and  so, b y  the 
previous paragraph,  depth  p* = a. Hence a -- i ---- a l t i tude R*/p* ~ height t)*/p * -= 
----(since R*/p* satisfies the f.c.c.) depth  P * / p * =  depth  /~*<a l t i tude  R * / P R * :  
~- (by [7, (17.12) and Corollary 17.9, p. 57]) a l t i tude R / P  : depth  P < a -  i. So R 
is an  He-ring, for all i (0 ~ i ~ a -  1), and hence R is catenary~ by  (2.9). 

Finally,  it  will be shown tha t  t¢/p satisfies the s.c.c., for every  height  one pr ime 
ideal p in R. Le t  p be a height one pr ime ideal in R. Then,  by  the same argument  
as in the  previous paragraph (for i : 1), for every  minimal  pr ime divisor p* of pR*, 
depth  p* = a -- ] = depth  p = a l t i tude l~/p. Therefore,  since R*/pR* is the com- 
plet ion of R/p,  [7, Corollary 17.9, p. 57], [11, Theorem 3.1] ~nd the definition of quasi- 
unmixed  [7, p. 124] imply t ha t  Rip  s~tisfies the  s.c.c., q.e.d. 

Theorem 5.2 adds five more equiva.lences to <( R satisfies the  s.c.c. ~> to those in 
[12, Theorem 2.21]. ) fo re  equivalent  s ta tements  are in a similar theorem (7.6)~ 

using the  concept  of De-rings. 

(5.2) 

(1) 

(2) 

(3) 

(4) 

(5) 

THEOR:ElVL -- The following statements are equivalent: 

R satisfies the s.e.c. 

R* is an Ho-ring. 

R* is an H~-ring, for all i. 

R *~ is an Hi-ring. 

R*' is an He-ring, ]or all i. 

(6) R*' satisfies the f.o.c. 

P R O O F .  - -  I t  will first be shown t h a t  (1), (2) and  (3) are equivalent .  I f  _~ satis- 
fies the  s.c.c., then  R* satisfies the  f.c.c.,  b y  [12, Theorem 2.21], and  thus (3) holds, 
b y  [13, Remark  2.22 (i)]. I t  is clear t h a t  (3) implies (2), and i t  follows f rom [11, The- 
orem 3.1] and the definition of quasiunmixed [7, p. 124] t h a t  (2) implies (1). 

The equivalence of (1), (4), (5) and (6) will now be shown. For  (1) implies (6)~ 
let  q be a minimal  pr ime ideal in R *r, and  let  p -~ q (~ R*. Then R*'/q is integral 
over  R*/p, by  [1, Proposi t ion 5.6, p. 61], and since R* and R *~ have  the same to ta l  
quot ient  ring, p is a minimal  prime ideal in R*. Since R satisfies the s.c.c., R* is a 
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Ho-ring ((1) implies (2)), and so a l t i tude  R * - ~  a - ~  dep th  p ---- a l t i tude R*/p = 
a l t i tude  R*'/q --~ depth  q. B y  [11, Re ma rk  2.6 (ii)] and  [12, Theorem 2.21], R*/p 

satisfies the s.c.c., and  hence,  by  definition (2.7.4), R*'/q satisfies the f.c.c. Therefore  
R*' satisfies the  f.c.c.,  by  [13, Remark  2.23 (if)I, t h a t  is, (6) holds. 

(6) implies (5), by  [13, Remark  2.22 (i)], and it  is d e a r  t h a t  (5) implies (4). So 
it  remains to show tha t  (4) implies (1). 

Assume (4) holds. Since R*' is integral  over  St*, i t  is easy to show, using [3, The- 
orems 44, 46-48, pp. 29, 31 and  32], t h a t  R* is an Hi-ring. Hence,  b y  (5.1), R is 
ca tenary  and  R/p  satisfies the  s.c.c., for every  height  one pr ime ideal p in R. Since R*' 
is an Hi-ring, there  does not  exist  a height  one maximal  ideal in R',  by  
[11, Proposi t ion 3.5]. Thus,  by  [11, Theorem 3.1 and Proposi t ion 3.3], St satis- 
fies the  s.c.c., and  so (1) holds, q.e.d. 

I t  follows f rom the definition of R"  t h a t  R ' / P R  H is the Hensel izat ion of R/P,  
for eve ry  pr ime ideal P in R, and,  by  [7, Theorem 19.1 and  43.8, pp. 64-65 and 182], 
the  theorem of t ransi t ion holds for  St and  St". 

Theorem 5.3 s tates  an  equivalence for (( R R is an  Hi-ring )> and,  using (3.2), 
shows tha t  if ~ is an Hi+l-ring (O<~i<~a), t hen  StH is an  Hi-ring. 

(5.3) T~_EOICEM. - _Let i be / ixed  (O<i<a) .  R H is an Hi-ring i/ and only i] St is 
an Hi-ring and (R/p)'  is a Do-ring,/or every height i prime ideal p in R. 

PROOF. - Assume R H is an  H~-ring, and let  p be a height  i pr ime ideal in R. Since St 
and  R H satisfy the  theorem of t ransi t ion,  i t  follows f rom [7, Theorem 22.9, p. 75] 
t ha t  height  q = i, for every  minimal  pr ime divisor q of p s t ' ,  and  it  follows f rom 
[7, Theorem 43.20, p. 187] tha t  every  pr ime divisor of p R "  is a minimal  pr ime divisor. 
Hence if q is a pr ime divisor of p R  ~, then  depth  q -~ a -  i, since R"  is an Hi-ring. 
By  [7, Theorem 43.20 and Exercise 2, pp. 187, 188], there  is a one-to one correspond- 
ence between maximal  ideals of (R/p)'  and pr ime divisors of p R  ~, and  if M'  corres- 
ponds to q, then  (R'/q) ' is the Henselization of (R/p)~,,  Thus a -  i -= depth  q = al- 

l 
t i tude  RH/q ~ al t i tude  (R~/q) ' --  - (by [7, Theorem 22.9, p. 75]) a l t i tude (R/p)~. : 
= height  M' .  Hence  the  heights of the  maximM ideals of (Rip)'  are the  same, and 
so (R/p)'  is a Do-ring. Also, a - - i  ~ a l t i tude  ( R i p ) ' =  al t i tude Rip = depth  p, 
and thus R is an Hr r i ng .  

Conversely, assume R is an Hi-ring and (Rip)'  is a Do-ring, for every  height i 
pr ime i d e a l p  in St. Le t  q be a height  i pr ime ideal in R s, and let p = q n R  
Then,  since St.S/pStS : (RIp)H, it  follows f rom [7, Theorems 43.20 and 22.9, pp. 187 
and 75] t h a t  q is a minimal  pr ime divisor of p R  s and height  p = i. Thus dep th  
q = (as in the  previous paragraph)  height  M'  (where M'  is the  maximM ideal of 
(Rip)'  assoeiated with q) = (since (RIP)' is a Do-ring) a l t i tude  ( R / p ) ' :  depth  p : 
----- (since St is an Hi-ring) a -  i. Hence R"  is an Hi-ring, q.e.d. 

6. - Condit ions  for certa in  sets  o f  local i t ies  to  cons i s t  o f  Hi-r ings .  

In  this section cer ta in  sets of localities over R are discussed relat ive to the con- 
dit ion t h a t  every  r ing in such a set is an Hi-ring. (6.1) shows t h a t  every  locali ty 
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over  i~ is an H~-ring (or is an H~-ring, for some fixed i (0 < i ~ a)) if and only if R 
satisfies the s.c.c. (6.2) uses a set 55 of localities contained in the quot ient  field of R 
to  get  ~n equivalence of ~ R is ca tenary  and R ~ satisfies the c.c. ~> 

Theorem 6.1 is an extension of [10, Corollaries 2.5 and 2.8] and lists a number  
of s ta tements  equivalent  to ~ R satisfies the  s.c.c. ~> Other  equivalent  s ta tements  

are in (5.2). 

(6.1) TI~EOI~E~. -- The ]ollowing statements are equivalent: 

(1) R satis]ies the s.c.c. 

(2) Eor each ]ixed i (0 ~ i ~ a), every locality S over t~ which dominates R is 

an H~-ring. 

(3) Every S, as in (2), is catenary. 

(4) Every S, as in (2), satis]ies the s.c.c. 

P R O O F .  - I t  follows f rom [11, Theorem 3.1] and [10, Corollary 2.8] t h a t  (1) im- 
plies (4). By  [11, I~emark 2.7], (4) implies (3), a.nd b y  (2.9), (3) implies (2). 

For  (2) implies (1), we first show t h a t  if (2) holds for any  fixed i (0 ~ i ~ a), 
t hen  (2) holds for i ~ 1. Then i t  is p roved  tha t  (2) (i ~ 1) implies (1). Le t  S be a 
locality over R which dominates  R, let  5¥ be the  maximal  ideal of S, and  let  
J5 = ffi_~(S). Then  S _~ L/(X1, ..., X~_I)L. I t  follows f rom the  definition of local- 

i t y  tha t  L is a locali ty over  R which dominates  R (since S is such a locality),  and  
thus, by  (2), is, a~  H~-ring. Since height  (X~, ..., X~_I)L -~ i -- 1, S is an H~-ring, 

by  (2.11). 
To show tha t  (2) (i ~ 1) implies (1), again let  S be ~ locality over _~ which 

dominates  R. By  the definition of locality, S = A~, where Q is a pr ime ideal in a 

finitely genera ted  integral  domain A over  l~ such tha t  Q n / ~  = M. Le t  T be a 
locality over S which dominates S. Then,  as is readi ly seen, T is ~ locality over R 
which dominates  R. Therefore  S is an Hi-ring and every  locality over 2 is an 
H~-ring. Hence,  since S(c~/b, ..., c~/b) is a locality over S, where b, el, ..., cj are a.i. 
in S, for all j (l~<j < al t i tude S -  1), 2 is eatenary,  by  (2.9) and (4.2). In  part icular ,  
since ff is a locali ty over R which dominates  ~ ,  ¢ is ca tenary .  Thus, by  [12, The- 

orem 2.21], R satisfies the s.c.c, t h a t  is, (1) holds, q.e.d. 
Theorem 6.2 gives ~n equivalence to (, R is c~tenary  and /~' satisfies the c.c. ~>. 

Some other  equivalences are s ta ted in (4.10) {for k ~ a -  2 and  i ~ 1) and {5.1). 
I t  should be no ted  t ha t  some of the localities in 55 (defined below in (6.2)) are 

k-graded extensions of i~, namely,  those R[u~, ..., u~]o, where Q = (M, u~, ..., u~)- 
• R[u~, ..., uk] is a. proper  ideal (u~, ..., u ,  E K ) .  

(6.2) THEOI~E~. - Let 55 be the set o] localities, B,  over R such that BC_ K,  
B = -~[ul, ..., u,]Q~ where O<n<~a--  2 and Q is a prime ideal in R[Ul, ..., u~] such 
that Q n t t  = M. Every B ~ ~B is an H~-ring "i/ and only if R is eatenary and R'  

satis]ies the c.c. 
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P~oo~. - Assume R is ca tenary  and  R ~ satisfies the c.c. Since, for all n 
(O<~n~<a--2) and every  set of elements u ~ , . . . , u ,  e K ,  R[u~, ..., u,] is a finitely 
genera ted  R-algebra and is an integral  domain,  every  B ~ 33 is eatenary,  by  [15, The- 
orem 4.3] and [11, Remark  2.6 (ii)]. Hence  every  B c 33 is an H~-ring. 

To prove the converse it  will be shown, using (2.9) and (4.2), t ha t  R[Y](M.~) is 
ea tenary ,  for every  y e K  such tha t  1~  (M, y)R[y]. Let  B = R[y](M.~) , for some 
y ¢ K such tha t  1 ~ (M, y)R[y]. 

Since B e 33, B is an Hx-ring, and  thus if a l t i tude  B~<3, B is eatena.ry, by  (2.8) (i) 
and  (ii). So we can assume al t i tude B > 3. By  definition, B(c~/b, ..., c~/b) is a locali ty 
over  B, for all j (1 ~<j ~< a l t i tude B --  3"~< a ~ 3) and  for each set of elements b, c~, ..., cj 
which are a.i. in B. Thus,  as in the  proof of (6.1)(2) implies (1), every  such 
B(e~/b, ...7 ej/b) is a locality over R and  is in 33, and  hence,  b y  hypothesis ,  is an 
H~-ring. Therefore  B is ea te rnary ,  by  (4.2)(3) implies (1) and (2.9). 

Since all such rings B are ca tenary ,  if(R) is H~ 7 ..., H~+~ 7 by  (4.5) and (2.9). I t  
follows f rom (2.11) tha t ,  if p is a height  one pr ime ideal in R, '$(tt/p) _~ '$/pff is 
ea tenary ,  and thus R is ea tenary  and RiP satisfies the s.c.e., for eve ry  height one 
prime ideal p in R, by  [12, Theorem 2.21]. Hence R is ca tenary  and R'  satisfies 
the e.e., by  [15, Theorem 4.3], q.e.d. 

7 . -  D~-rings. 

In  Sections 2-6 we analyzed H~-rings. In this section we consider the (~ dual )) 
concept  of Dcr ings  and state  some results (( dual )) to those in the previous sections ; 
in part icular ,  to (2.11)7 (3.1)7 (3.2) and (5.2). (7.1) considers the loealizations R~; 
(7.2) and (7.3) examine the rings R ( X ~  ..., Xn); (7.4) looks at  the ring 9"; and (7.6) 
deals with the complet ion of R. 

The following theorem is a (( dual  ~) to (2.10) and therefore  is pa r t  of a (( dual )) 
to (2.11). 

(7.1) THEOI~E~. - Let S be a ring such that al t i tude  S =- a < c~, and let j be ]ia~ed 
(O<~j<~a). Assume that S is an Ho-ring. Then the following statement holds ]or all k 
(0~<k~<j): I], /or every depth j - -  k prime ideal p in S, S~ is a D~-ring and either 
height  p < k  or height  p ~-- a - - j  -~ k, then S is a Dj-ring. 

P~ooP. - We can assume 0 < j < a - - ] ,  b y  (2.6). 
Le t  q be a depth  j pr ime ideal in g. Then there  exists a prime ideal p in S such 

t ha t  q c p, height  p/q = j -  k, and  depth  p = k. By  assumption,  S~ is a Dj_k-ring 
and ei ther  height  p d - d e p t h  p = a or height p d - d e p t h  p < j .  B u t  height p d- 
+ d e p t h  p ~ h e i g h t  q + h e i g h t  p / q - ~ k ~ ( s i n e e  j < a  and  S is ~n Ho-ring) 
1 d- ( j - -  k) d- k = j + 1; thus  height  p -~ depth  p = a, t h a t  is, height  p = a - -  k. 
Since S~ is a D~_~-ring and dep th  q2~ = height  p/q = j -  k 7 height  q = height  
q S ~ = a l t i t u d e  2 ~ - - ( j - - k ) = a - - k - - j d - k = a - - j .  So S is a Dj-ring, q.e.d. 

Theorem 7.2 states pa r t  of a (~ dual 7) to (3.1). 
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(7.2) Tm~O~E~L - I] R (Xz ,  ..., X~) is a D~-ring, ]or some n>~l, then R is a D~-ring. 

P~ooF. - I t  suffices to show tha t  i f /~(X)  is a D~-ring, then R is a D~-ring, since 
R(X~, ..., X , )  ~--- R(X~, ..., X~_~)(X~). Since a l t i tude R(X)  -~ a, R and R ( X )  are Do, 
D~_~, ~nd Do, by  (2.6)(i) and (ii), so we can assume 0 < i < a - - 1 .  

Le t  p be a depth  i pr ime ideal in R. As in (3.1), i ~ depth  p -~ a l t i tude JE/p --- 
: a l t i tude  R ( X ) / p t ~ ( X ) ~  depth  p R ( X ) .  Since R ( X )  is a D~-ring, a - - i  = height  
p R ( X )  ~ height  p, and  hence 2 is a D~-ring~ q.e.d. 

(7.3) I~E~A~K. - The converse of (7.2) holds if i = 1, b y  [13, Corollary 2.4 (2)], 

(2.9) ~nd (3.1). 
A por t ion of u ~ dual  ~ to (3.2) is given in Theorem 7.4. 

(7.4) T~EO~E~[. - I]  ~ is a D,-ring, then R is a D,_~-ring. 

P~OOF. - We can assume l < i < a ,  as before. Le t  p be a dep th  i - - 1  pr ime 
ideal in R. As in (3.2), depth  pff ---- depth  p ~- 1 ---- i, and thus, since ¢ is ~ D,-ring, 
height p ---- height pff -,- a l t i tude f f -  i ----- a + 1 -- i -~ a -  depth  p. Hence R is a 

D~_l-ring, q.e.d. 

(7.5)" EXA~2LE. -- For all i ~ O, there exists a local domain R such that ff is a D~-ring 
if  and only if  j V=I, ..., i - ~  1; namely  [7, Example  2, 10p. 203-205] (for r : >  0 and 
m ~ i). This follows f rom the facts in (2.3), (2.5) and (3.3), ~nd since if' is a special 
extension of ff (see [15, l~em~rk 4.8]). 

The following theorem lists equivalent  and (( dual ~) s ta tements  to those in (5.2). 
Also, the nota t ion R* for the complet ion of / t  is used, as in (5.2). 

(7.6) Tm~o~E~. - The following statements are equivalent: 

(1) R satis/ies the s.e.e. 

(2) R* is a Dl-ring. 

(3) R* is a D~-ring, for all i. 

(4) i2"  is a Dl-ring. 

(5) R*' is a Drring,  ]or all i. 

P~00F. - (1), (3) and (5) are equivalent ,  by  (5.2) and (2.9). Clearly, (5) implies (4). 
(4) implies (2) b y  a s t ra ightforward a rgument  using [3, Theorems 44 and  46-48, 
pp. 29, 31 and  32]. (2) implies (3) is p roved  b y  showing t h a t  if a local ring S is a 
D~-ring (i > 0) then  S is a D~+t-ring. This is accomplished b y  applying (2.8) to  8, 
where p is a depth  i ~- ] prime ideal and q is a depth  i prime ideal in 8, q.e.d. 
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8. - Open problems.  

This section is pr imari ly  a list of the  open problems re la ted  to H~- and  D~-rings. 
(8.1)-(8.3) are the  chain conjectures.  I n  (SA) and  (8.5) some equivalences of the chain 
conjectures are given, and  then  (8.6)-(8.11) s ta te  a. number  of questions about  H~- and  
D~-rings which arise f rom the  work in this paper .  

(8.1)-(8.3) give the s ta tements  of the  th ree  main chain conjectures.  Th e y  are 
contained in [5], [6] and [15] along with a number  of equivalent  s ta tements .  

(8.1) Cm(I~ CO?¢n~CTV~E. - The integral  closure R'  of a local domain R satis- 
fies the  c.c. 

(8.2) H-CoNJ~C~VI~E. - I f  ~ local domain R is an H~-ring, then  R is ca tenary .  

(8.3) CATE~ARY CEAI?¢ CONn~C~m~E. - I f  /~ is a ca tenary  local domain,  then  2 '  
satisfies the  c.c. 

The concept  of H~-rings allows us to  s ta te  in (8.4) a new equivalence of the 
H-conjecture .  

(8.4) Tm~olcE~I.- The H-conjecture holds if and only if the following condition holds: 
I f  R is an Hi-ring, then 1~ is an H~-ring. 

PROOF. -- Assume the H-conjec ture  holds, and let  R be an Hi-ring. Then  /~ is 
ca tenary  and  so is an H~-ring. 

Conversely, assume tha t  R is an H2-ring whenever  /~ is an H~-ring, and let  _~ 
be an H~-ring. I t  will be shown, b y  induct ion on i (1 < i < a  -- 2), t ha t  R is an H,-ring. 
Since R is an H~-ring, R is an H2-ring, b y  assumption.  Assume R is an Hi-ring, for 
all j < i .  Let  p be a height  i -- 1 pr ime ideal in R. Since R is H~_I and  H,, depth  
p - - - - a - - i - 1 - 1  and Rip is an H~-ring, b y  (2.11). Thus,  b y  assumption,  R/p is an 
H~-ring. Hence  R is an H~+~-ring, by  (2.11). So ~ is 111, ..., H~_,, and therefore  R 
is ca tenary ,  b y  (2.9). Thus the H-conjec ture  holds, q.e.d. 

Most of the  theorems in the  previous sections can be used to give at  least one 
new equivalence of the ea tenary  chain conjecture.  Some of those new equivalences 
are l isted below in (8.5). 

(8.5) T~EOl~E~. - The following conditions are equivalent: 

(1) The vatenary chain conjecture holds. 

(2) I f  R is catenary, then l~/p satisfies the s.c.c., for every height one prime ideal p 
in R. 

(3) I f  R is catenary, then ~_~ is an Ha_l-ring. 

(4) I f  R is eatenary, then ff is H~, ...,Ha_1. 
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(5) I f  R is eatenary, then ¢/pff is eatenary, for every height one prime ideal p in R. 

(6) I f  R is eatenary, then, ]or every pair o] elements b, e in R such that height 
(b, e ) :  2, R[e/b](M.~/b) is HI, ..., H~_~ (equivalently, is eatenary). 

(7) I f  R is eatenary~ then every ( a -  2)-graded extension o/ R is an H~-ring. 

(8) I f  R is eatenary, then R* is an Hi-ring. 

(9) I f  R is eatenary, then every B e ~ (as in (6.2)) is an H~-ring. 

P R O O F .  - (1) is equivalent  to (2), by  [15, Theorem 4.3]; (5) is equivalent  to (2), 
b y  [12, Theorem 2.21] (since '$(R/p)_~ ff/pff); (8) is equivalent  to (2), by  (5.1); 
and (9) is equivalent  to (1), by  (6.2). 

Since (6) is equivalent  to (4), by  (4.5), and (7) is equivalent  to (3), b y  (4.10); 
it remains to show tha t  (2), (3) and (4) are equivalent.  

For  (2) impl ies  (3), assume tha t  (2) holds. Then, b y  [11, Theorem 3.1 and Pro- 
posit ion 3.3], Rip satisfies the s.c.c., for every prime ideal p in R such tha t  p ¢ (0). 
Let  q be a height a -- 1 prime ideal in ff~-2, and let p : q 5~ R. Then height p =: m e 
E ~1, . . . , a - - 1 } ,  and s% by  the above s ta tement ,  Rip satisfies the s.c.c. Therefore, 
by  [10, Corollary 2.8] and [11, Theorem 3.1], every locality over l~/p satisfies the s.c.c. 
and thus is ea tenary  [11, l~emark 2.7]. In  particular,  '$~_2/p'$~_~ ~ ff~_~(R/p) is 
locality over Rip ~nd thus is catenary,  and so depth  q ---- depth  q/p'$~_~ ---- ~ltitude 
~$~_~/pff~_~- height q/Pff~-2 -~ depth  pff~_~-  height q/pff~_~. Also, depth Pff~-2 ~-- 
= (as in the second paragraph of the proof of (3.2)) depth p ~- a ~ 2 = (since R 
is catenary) a - - m - ~ a - - 2 - - - - 2 a - - m - - 2 .  If  follows from [2, Theorem 30.18, 
p. 368] tha t  height q = height p ~ -he igh t  q/pff~_~. Therefore height q/p'$~_~ = 
= a - - l - - m  and thus depth  q = ( 2 a - - m - - 2 ) ~  ( a - - l - - m ) = a - - l = a l t i t u d e  
ff~_~- ( a -  1). Hence  ff~_~ is an H~_~-ring. 

(3) implies (4), by  (3.4). For  (4) implies (2), let p be a height one prime ideal in R. 
Then height p f f = l  and  so ff~/p'$~ is H~_2~ ...,H~, b y  (2.11). Since al t i tude 
'$~/pff~<a, ff~/pff~ ~-ff~(R/p) is catenary,  by  (2.9). Therefore Rip satisfies the s.c.e., 
by  [12, Theorem 2.21], and hence (2) holds, q.e.d. 

A list of questions which arise i rom the work in the other sections of the paper  
are given below. (8.6) and (8.7) are basic s ta tements  which are related to some of 
the results in Section 2. 

(8.6) I f  R is ~n H~-ring, is the  ring R~ ~n H~-ring, for all prime ideals p in R 
such tha t  height p > i? 

(8.7) I f  R is H~ and H~+2, is R necessarily an H~+~-ring? 

(8.8) I~E~RK.  -- (8.7) is false for i : 0~ as [7, Example  2, pp. 203-205] (for r ~ 0 
and m ~ 1) shows. In  (2.3) it is shown tha t  the local domain (/~, I)  is an Hi-ring 
if and only if j ¢ 1. 

(8.9) Consider ff~. and R[ut, ..., U~](M.~ ......... )g K. Can (4.5) be  generalized in terms 
of conditions on these two rings? 
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(8.10) Do the  converses hold for (7.1), (7.2) a n 4  (7.4), or in other  words, can (2.11), 

(3.1) and  (3.2) be  (( du~lized ~)? 
(8.11) I n  (2.8) we used [13, Propos i t ion  2.2 and  Corollary 2.3]. I t  would be use- 

ful,  in working with  D~-rings, to have  a (( dual  ~ of [13, Proposi t ion  2.2] (of [13, (2.2.1)], 

or of [13, Corolla~ry 2.3]) l ike: 
Le t  p ' c p  c P  be p r ime  ideals in a l~oetheria.n r ing A, let  height  p i p ' =  h ~n4 

height  Pip  = d. Then,  for  e~ch i = 0, ..., h - -  1, there  exist  infinitely m ~ n y  p r ime  

ideals q in A such t h a t  p'  c q c P,  height  q / p ' =  h - - i  ~nd height  P/q = d + i. 
B u t  it  is no t  known Whether this s t a t e m e n t  is t rue  of false. 
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