Properties of H -Rings (*) (*%).

M. Epwarp PrrTiT, Jr. (Columbia, South Carolina, U.8.A)

Summary. — The purpose of this paper is to study the general properties of H;rings (& ring E
is an H;-ring in case, for every height i prime ideal p in B, height p -+ depth p = altitude K)
and to link the results to Nagata’s chain conjectures. For R a local domain with meximal
ideal M equivalences are given o « R is an Hving » in relationship lo the rings RE/[p, where
p is @ prime ideal in B such that height p<i; R[ Xy, .., X, Iyzx,,. x,1, where Xy, ..., X,
are indeterminates; ond Bley/b, ..., ¢;/b] MEIs/b, .0y 51 WhETE b, 64, ..., 0; are analytically inde-
pendent elements in B and §<i. Also, there are equivalences of B[ X (s, x), Bl6/b]nr,em)> the
completion of R, the Henselization of B and localities of R being H;-vings in terms of con-
ditions on R. These resulls then yield some new equivalences of the chain conjectures.

1. — Introduction.

The chain conditions (see (2.7) for the definitions) and the chain conjectures
((8.1)-(8.3)) have been studied for a number of years, begining with NAGATA in 1956
in {5]. In addition, a number of related conditions have been studied in connection
with the chain conditions, such as unmixed, quasi-unmixed, and the altitude formula.

The major open question concerning the chain conditions is the chain conjecture:
« The integral closure of a local domain satisfies the chain condition (c.c).» There
are a number of equivalent statements to this and weaker conjectures which have
appeared in the literature (for example, in [5] and [15]). None of these conjectures
are answered in this paper, but some new equivalences of the conjectures do arise
from the results obtained, and these are listed in Section 8 along with a list of open
problems on H -rings.

In [13] Ratliff defined an H-ring (in the terminology of this paper, an H,-ring),
and in [15] suggested the generalization to H-rings. Using this extended concept,
the results in this paper generalize most of the known facts about H,-rings. These
results give new statements about the chain conditions and imply some known
results, since the condition of a ring being an Hring is weaker than satisfying the
chain conditions (see (2.9)); in particular, the first chain condition (f.c.c.). Also,
some existing definitions can be shortened using the concept of H -rings; for example,
a semi-loeal ring R is quasi-unimixed in case the completion of R is an H,ring.

(*) Entrata in Redazione il 28 luglio 1977.

(**} Most of the results in this paper are from the author’s docboral dissertation at the
University of California, Riverside under the supervision of Professor L. J. Ratrivr, Jr.
and with the financial support of a National Science Foundation Traineeship.
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The « dual » condition of D, rings is defined (this is also a weaker condition than
satisfying the f.c.c.), A few results were obtained and are stated in Section 7. How-
ever, the majority of the results on H,-rings are not ¢ dnalized.» to D, rings,

R will be assumed to be a local domain with maximal ideal M. It is shown that
the following statements are equivalent: (1) R is an H,ring. (2) For every height
E{< 1) prime ideal p in R, Efp is an H, ,-ring and depth p = altitude B — % or depth
p<i—k (211). (8) R[X,, ..., X, ymx, . x, 18 an H,ring, where X,,..., X, are
indeterminates over R (3.1). (4) E[¢/b]ypy,p I8 an H,_y-ring, for every pair of elements
b, ¢ in R such that height (b, 0) = 2 (4.2). (5) Altitude R[e,/b, ..., ¢;/blypee ... .cm =
= gltitude R — 4, for every set of elements b, ¢, ..., ¢; which are analytically in-
dependent (a.r.) in B (4.2). (6) Every set of i - 1 elements which are a.i. in R can
be extended to a set of a (= altitude R) a.i. elements in K (4.3).

Theorems 3.2 and 4.5 show that the following statements are equivalent: (4) R is
H,_, and H; and the integral closure of B/p is a Dy-ring, for every height ¢ — 1 prime
ideal p in R. (B) R[X]y x is an H.ring. (C) R[e¢[b] .y, is an H, ;-ring, for each
pair of elements b, ¢ in R such that height (b, ¢) = 2.

In addition to these results Section 2 includes the basic definitions and more
results on the factor rings R/p; Section 3 discusses further the rings R[X ], 5 and
R[ X}y x); and Section 4 iy concerned with R[y],,), where y is in the quotient field
or R, and k-graded extensions (see (4.8) for the definition) besides the rings
Eley[b, ..., (0] smios,...coms 304 B0y ooy /b 3g0,p0,...com0-

In (3.1) (respectively, (8.5)) we give equivalences for the completion (respectively,
the Henselization) of R to be an H,ring.

Section 6 deals with loealities over R; for example, it is shown that R satisfies
the second chain eondition if and only if every locality over R is an Hring. Then
the paper concludes with Sections 7 and 8.

2. — Basic definitions and factor rings of H-rings.

In this section the basic definitions to be used in this paper are given. Then the
factor rings R/p, where p is a prime ideal in a local domain R, are analyzed in rela-
tion to these definitions; in particular, in (2.11) we show that the property of E
being an H ring implies that the rings R/p are H, ;rings, where j = height p. All
the results in this section, especially (2.11), are used throughout the remainder of
the paper in the proofs of many of the results.

In this paper a number of notational conventions are used. These conventions
are summarized in the following remark.

(2.1) REMARK., - (2.1.1) In this paper all rings will be commutative rings with
an identity element. An ideal will always be agsumed to be a proper ideal. ICJ
will mean that I is a subset of J, and I ¢ J will mean that I is a proper subset of J.
Any underfined terminology is as stated in [7].
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(2.1.2) If § is a ring, then §' will denote the integral closure of § in its total
quotient ring.

(2.1.3) (B, M) will always denote a local domain, a == altitude R, and K is the
quotient field of R. It will be assumed that ¢ > 1, since all results automatically
hold if a<1.

(2.2) DEFINITION. — A ring § is said to be an H,ring (or, § is H,) in case, for
every height ¢ prime ideal p in 8, depth p = altitude §— 4.

The above definition is a generalization of the definition of an H-ring given
in [13, {(4.5)].

It clearly holds that a ring § is an Hring, for all {<< 0 and all 7 > altitude §.
This fact will be used in various places in this paper without reference or further
eomment.

{(2.3) EXAMPLE. — For each i > 0, there is a local domain R which is not an H -ring
but is an H-rving, for all j = i 4 1, ..., a = altitude B. Namely, let 7 be fixed (i > 0).
Then in [7, Example 2, pp. 203-205] (for » > 0 and m = 4, and with the notation
of [7]) the local domain (R, I) is an H ring if and only if j £ 1, ..., 4. Since I = R: R’
(the conductor of R in R'), by [13, Remark 3.14 (iv)], there exists exactly one prime
ideal ¢ in R’ lying over any prime ideal p 54 I in R, by [16, Remark, p. 269], and,
by [3, Theorems 44, 46 and 47, pp. 29 and 31], height ¢ = height p and depth
g = depth p. Hence there is a one-to-one correspondence between the non-maximal
prime ideals in R and R'. Also, R’ has exactly two maximal ideals MR’ and NR/,
Ryy and Ryp are regular local rings (therefore satisfy the first chain condition
(see (2.7.2)), and height MR = ¢-+1 and height NR'=r 4 ¢4 1. With these
faets it is a straightforward proof that the above statement holds, g.e.d.

The following definition is & «dual» of (2.2), and as with (2.2), a ring § is a
Dring, for all 4 < 0 and all ¢> altitude §.

{2.4) DEFINITION. — A ring § is said to be a Dgring (or, § is D;) in case, for
every depth ¢ prime ideal p in 8, height p = altitude § — 4.

{2.5) EXAMPLE. — For each i > 0, there is a local domain R which is not a Dyring
but is a Dsyring, for oll j =i+ 1,..., ¢ = altitude R. Namely, in [7, Example 2,
Pp. 203-203] (for » > 0 and m = ¢) the local domain (R, I) is a D;ring if and only
if j51,...,7, as shown by an argument similar to that used in proving (2.3).

The following remark lists two facts which follow readily from the definitions
and which will be used frequently in the paper.

(2.6) REMARK. ~ Let S be a ring such that altitude § = a < oco.

(i) If (8, V) is a quasi-local ring, then § is D,, D,, H,_, and H,.
(if) If § is an integral domain, then § is H,, H,, D, and D,.
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The ehain conditions which are defined below in (2.7), will be used throughout
this paper. The definitions also appear in [2], [7], [11] and [15]; in particular, a
number of properties of the chain condifions are listed in {11, Remarks 2.5-2.7]
and [13, Remarks 2.22-2.25].

(2.7) DEriNITION. — Let § be a ring.

(2.7.1) A chain of prime ideals p, C p, C ... C p, in 8 is a maximal chain of prime
ideals in S in case p, is a minimal prime ideal in 8, p, is a maximal ideal in §,
and, for each 4 =1, ..., k, height p,/p, , = 1. The length of the chain is k.

(2.7.2) 8 satisfies the first chain condition for prime ideals (f.c.c.) in case every
maximal chain of prime ideals in 8 has length equal to the altitude of 8.

(2.7.3) 8 is catenary (or satisfies the saturated chain condition for prime ideals)
in case, for every pair of prime ideals pcgq in 8, (8/p),, satisfies the f.c.c.

(2.7.4) S satisfied the second chain condition for prime ideals (s.c.c.) in case, for
every minimal prime ideal p in § and for every integral domain 7' which contains
and is integral over 8/p, T satisfies the f.c.c. and altitude T = altitude 8.

(2.7.8) 8 satisfies the chein condition for prime ideals (c.c.) in case, for every
pair of prime ideals p c g in 8, (8/p)y, satisfies the s.c.c.
The following lemms is used in the proof of (2.10), (2.11), and (5.1).

(2.8) LEMMA, — Let (8, N) be a local ring, and let p C q be prime ideals in S such
that g = N and height q/p = 1. If height ¢ > beight p 4 1, then there exist infinitely
many prime ideals @ in S such that p C @, height Q/p = 1, height @ = height p + 1
and depth @ = depth ¢ < altitude 8 — height Q.

ProoF. — Apply [13, Corollary 2.3(2)] to p c¢. Thus there exist infinitely many
prime ideals @ in § such that p c @, height @/p = 1 and depth ¢ = depth ¢. Sinee,
by [14, Lemma 2.1], there exist only finitely many prime ideals P in § such that
p c P, height P/p =1 and height P > height p 4 1, there exist infinitely many
prime ideals @ in 8 such that p c @, height Q/p =1, depth @ = depth ¢ and height
Q@ = height p 4 1. Turthermore, depth ¢<a — height ¢ < ¢ — (height p 1) = a —
— height @, q.e.d.

There are a number of results in [11], [13], [14] and [15] which can be restated
using the terms H, and Drings; for example, see [13, Corollaries 2.4 and 2.7].
Remark 2.9 combines two known results into an equivalence which is used to prove
that a local domain is eatenary in later theorems.

{2.9) REMARK. ~ The following statements are equivalent:

(i) R satisfies the f.c.c.
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(ii) R is catenary.
(iii) B is an H ring, for all <.

(iv) R is an D ring, for all <.

Proor. — (i) is equivalent to (ii), by [11, Remark 2.7], and the equivalence of (i),
(iii) and (iv) follows from [14, Theorem 2.2] and the definition of an Hring and a
Dy ring, g.e.d.

Lemma 2.10 ig part of Theorem 2.11 and is given here in order to include more
general rings than local domains.

(2.10) LEMMA. — Let 8 be a ring such that altitude § = a < oo, and let j be fized
(0<j<a). If 8 is a Dyring, then the following statement holds for each k (0<k<j)
If Slp is an H, ;-ring and either depth p<j— %k or depth p = a— ¥k, for every
height k prime ideal p in 8, then 8 is an H-ring.

Proor. — It may be assumed that 0 <<j <4 — 1, since it is clear if j = 0 and §
is H, ; and H,. Let p be a height j prime ideal in S. Since § is a D,-ring, p isnot
maximal. Also, there exists a prime ideal ¢ in § such that ¢ C p, height ¢ = &k and
height p/¢ = j — k. By hypothesis, height ¢ -+ depth ¢ = g, since height ¢ - depth
g>k -+ height p/q |- depth p>k + (j— k) +1 =j - 1. Since §/¢ is an H, ,-ring
and height pf/g=37— %, depth p = depth p/g = altitude Sjg— j -+ k = depth
g—j+k=a—j So §is an H,ring, q.e.d.

Thecrem 2.11 below shows the relationship between an H;-ring R and the ring R/p,
where p is & prime ideal in R such that height p<j. It and its corollaries will be used
frequently throughout the rest of the paper.

(2.11) THEOREM. ~ Let j be fived (0<<j<a), and let k be fized (0<k<j). Then R
is an Hring if and only if, for every height k prime ideal p in R, R|p is an H; ,-ring
and either depth p = a — k or depth p<j— k.

Proor. — The theorem is obvious for j = 0, so it may be assumed that j> 0.
Assume that R is an H,ring, and let p be a prime ideal in R such that height

p = k<j. Clearly, we can assume 0 < k< j. By [13, Corollary 2.7], either depth
= a— k or depth p<j— k. It remains to show that R/p is an H;_,-ring in both
cases. If depth p<j— k, then, R/p is clearly an H, ,-ring (this includes the case
where j == a; so assume j<<a). If depth p = e — k, then altitude R/p =a— L.
Let ¢ be a prime ideal in R such that p cgq and height ¢/p =j— k<< a—k, so
o > height ¢>j4. If height ¢ > j, then let height ¢ = m. Thus depth ¢<a — m, say
depth g == n. By [13, (2.2.1)] (the case ¢ == j — k — 1), there exists a prime ideal P
in R such that P cgq, height P == j-— 1 and height ¢/P == 1. Hence, by (2.8), there
exists a prime ideal @ in R such that P c @, depth @ = n and height ¢ = j. Then
n = a— j, since R is an H,ring. However, n<a — m < ¢ — j. This contradiction
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implies height ¢ ==4§. Thus depth ¢/p = depth ¢= (R is an H,ring) a—j=
= (a — k) — (j — k) = altitude R/p — height R/p. Hence R/p is an H, ,ring.
Since R is a D,-ring, the converse holds by (2.10), g.e.d.

3. — Conditions for R(X,, ..., X,) and ¥, to be H,rings.

This section describes the relationship, with respeet to being H,-rings, between
a local domain R and certain localizations of the polynomial ring R[X,, ..., X,].

If X,,..., X, are indeterminates over a local ring (8, N), we fix the following
notation for the remainder of the paper: 8, = S[X,, ..., X,I; 8(X;, ..., X,) = (8,)xs,3
and 9,(8) = (8,)w.x,... x5, We also let § = ,(R).

It is known [15, Theorem 3.1] that R is an H,-ring if and only if R(X) is an
H,-ring. Theorem 8.1 extends this result to H,rings,

(3.1) THEOREM. — Let i be fimed. Then R is an Hving if and only if, jor any
n>1, R(Xy, ..., X,) is an H ring.

PrOOF. — It suffices to show that B is an H-ring if and only if R(X) is an Hring,
since R(Xy, ..., X,) == R(X;, ..., X, )(X,). Also, altitude E(X)=a, so we can
assume 0 < ¢ <a—1, since R and R(X) are H,, H, , and H,, by (2.6).

First, assume that R is an Hring and let ¢ be a height ¢ prime ideal in R(X).
Then p = ¢ N R is either a height ¢ — 1 or height ¢ prime ideal in B. If height p =1,
then ¢ = pR(X) and a — i = depth p = altitude R/p = altitude R(X)/q = depth g,
as degired. If height p =i — 1, then ¢>pR(X) and height ¢/pR(X)=1. Also,
R[p is an H,-ring and either depth p = a— i -1 or depth p =1, by (2.11). Thus
(R/p)(X) == R(X)/pR(X) is an H,-ring, by [15, Theorem 3.1], and hence depth g =
= depth ¢/pR(X) = altitude R(X)/pR(X)— 1 = altitude R/p—1 = depth p—1.
So depth ¢ = 0 or a —i; thus depth ¢ = a — ¢, since ¢ is ot maximal. Hence R(X)
is an H ring.

Conversely, let R(X) be an Hring and let p be a height ¢ prime ideal in R. Then
height pR(X) = i. Therefore a — ¢ = depth pR(X) = (as in the previous paragraph)
depth p, and hence R is an H,ring, q.e.d.

It is known [15, Theorem 3.2 and Remark 3.4] that & is an H,-ring if and only
if R is an H,-ring and R’ is a D,ring. Theorem 3.2 generalizes this result to H,rings.

(3.2) THEOREM. — Let i be fimed. § is an Hring if and only if B is H; ; and H,
and (R|p)' is @ Dyring, for every height i — 1 prime ideal p in R.

PROOF. — The case i< 0 is trivial, by (2.6) (ii), and it is known that the theorem
holds for the case i = 1, by [15, Theorem 3.2 and Remark 3.4], so assume i>1.
Altitude § = a -~ 1, so we can assume i < a; since, by (2.6) (i), ¥ is H,and H,
and R is H,_, and H,, and if p is a height ¢ — 1 prime ideal in R, then altitude
R/p =1, so (R/p) is a D,ring, as is well known.
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First, assume § is an H,ring. R =~ §/XT and height XT =1, so, by (2.11), R is
an H, ,ring. Let P be a height ¢ prime ideal in B. Then height P{¥ == i; therefore,
since ¥ is an Hring, depth PJ = a + 1 — 4, and clearly depth PJ <depth PR[X] =
= depth P 4+ 1. On the other hand, depth PT = height (M, X)/PR[X]>height
MR[X]/PR[X] -+ 1 = depth P 1. Thus depth P = a — 4. Hence R is an H ring.
Let p be a height i — 1 prime ideal in R, so height p¥ =¢— 1. Since § is an
Hring, T/pF (=~ (R/p)[X](M,p’X)) is an H,-ring, by (2.11). Therefore, by the case
i =1, (Rlp) is a Dyring.

Conversely, let R be H, ; and H,, and let (B/p)’ be a Dyring, for every height
i— 1 prime ideal p in B. Let g be a height ¢ prime ideal in F, and let p = ¢ N R.
Then, either height p =4 — 1 or 4. If height p = 4, then ¢ = p¥. Since R is an
H,ring, depth p = a — 4. As above, depth p& = depth p -1, and hence depth
q —=a—i-+ 1, as desired. If height p = ¢— 1, then p¥ C g and height ¢/pd = 1.
Since R is an H,_,-ring, depth p = a — ¢ - 1. Again, depth p§ = depth p + 1 =
=a—1-+ 2. Now (R/p) is a D,ring and R is an H ring, by hypothesis, so R/p
is an H,-ring, by (2.11). Thus, by the case ¢ =1, §/pT is an H,-ring, and so depth
g = depth ¢/pT = altitude T/pF— 1 = depth pF—1=a—< 4 1. Hence T is an
H -ring, q.e.d.

(3.3) EXAMPLE. ~ For eack i > 0, there exists o local domain R such that T is an
Hring id and only if j+~1,...,1; namely, [7, Example 2, pp. 203-205] {for » >0
and m = ¢— 1). To see this, use the facts from (2.3) and also that R’ is a special
extension of R (see [15, Theorem 4.7 and Remark 4.8]).

The next result is an immediate corollary to (3.2).

(8.4) COROLLARY. — Let i and j be fized (i, j > 0), and assume that T, is an H -ring.
Then the following statements hold:

(1) R is Hy,y ..., H,_;.

(2) (Rfp) ¢s a Dyring, for every prime ideal p in E such that ¢ — j<height
p<i—1.

(3) For all k (L<k<j), Ty is Hy, .o, H_s .

ProoF. — Sinee §,(T;) =~ F.,,, it follows from (3.2), by induction on &, that (3)
holds. Then (1) and (2) follow from (3) (k ==1), by (3.2), q.e.d.

(3.6) ExAMPLES. — (1) If R satisfies the s.c.c. (for example, if B is a complete
local domain [7, Theorem 34.4, p. 124]), then ¥, is an H -ring, for all 1>0 and j > 0.

(2) For i and j fized (i,§ > 0), there ewists a local domain R such that §; is an
H-ving if and only if k21, ...,4 - 7. Using a similar argument as in (3.3), [7, BEx-
ample 2, pp. 203-205] (for # > 0 and m == 1) provides this example.
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4. — Certain algebraic localities of H,-rings.

This section deals with three different types of algebraic localities and their con-
nection with R and §,(R) relative to being Hrings. In (4.2) an equivalence is given
for B to be an H,ring in terms of conditions on the localities R(e,/b, ..., ¢;/b) (see
below for the definition). Then the condition that all the localities RE[y],,,), where y
is in the quotient field of &, be H,rings, gives rise to a number of statements con-
cerning T(R) in (4.5). These results are followed by two lemmas which are needed
for the proof of (4.10) and which give general information on the polynominal rings
of B. To conclude this section, k-graded extensions are defined, and then (4.10)
relates k-graded extensions of R to T.(R).

A number of results concerning the ring R[¢/b], where b and ¢ are analytically
independent elements in R, are stated below; but first, the definition of analytically
independent elements will be given.

(4.1) DerFiniTION. — Let (S, N) be a quasi-local ring. The elements ¢, ..., ¢,
in N are analytically independent in 8 (a.5. in 8) in case the following condition is
satisfied: if F(X,,..., X,) is a form in S[X,, ..., X,] of arbitrary degree such that
Fleyy vy €,) = 0, then all the coefficients of # are in N.

{12, pp. 126-128] and [13, Remark 4.4] contain a number of known facts about
analytically independent elements that will be used.in the following results.

Let R(c, /b, ..., c,/b) = R[e,/b, ..., /D1 rtmiesp, .. cos WRETE Dy 0y, ..l are ad. in R,
(Note that by [13, Remark 4.4 (i)}, MR[e,/b, ..., ¢,/b] is a proper ideal, so the defi-
nition of R(c,/b, ..., ¢,/b) makes sense.) Also, recall from (2.1.3) that K denotes the
quotient field of BE.

[13, Proposition 4.7] gives statements which are equivalent to « R is an H,-ring ».
Theorem 4.2 below contains statements which are equivalent to « R is an H,-ring,
for some 4>2» and is an application of (3.1).

(4.2) THEOREM. — Le¢t ¢ be fiwed (1>2). Then the following statements are equivalent:

(1) R is an H ~ring.

(2) For ecach pair of clemenis b, ¢ such that height (b, ¢) = 2, R(c[b) is an
H, -ring.

(3( For each fived j (L<j<i— 1) and for each set of elements b, ¢, ..., ¢; which
are a.i. in B, B(eb, ..., ¢;/b) is an H, ;ring.

(4) For each set of elements b, ey, ...,c; which are a.i. in R, altitude
RBleyfb, ..., e;/b) = a— 1.

Proor. —~ The equivalence of (1), (2) and (3) will be shown first.
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For (1) implies (3), assume 1<j<i— 1 and let b, ¢y, ..., ¢; be an arbitrary set of
elements which are a.i. in R. Then R(X;, ..., X;)/P o~ R(cy/b, ..., ¢;/b), where P is
a prime ideal in B(Xj, ..., X;) such that P n B = (0). Itis well known (using [17, Pro-
position 2, p. 326]) that since R(X,, ..., X,)/P is algebraic over R and P N R = (0),
height P =j. Since R is an H ring, R(X,,..., X,) is an H,ring, by (3.1), and
therefore R{c,/b, ..., e;/b) is an H, ,ring, by (2.11). Hence (1) implies (3).

It will now be shown that (2) implies (1). Let p be a height ¢ prime ideal in R.
We can assume 1< a—1, by (2.6) (i). Since ¢>2, there exists a pair of elements
b, ¢ p such that height (b,¢) = 2, by [7, Theorem 9.5, pp. 26-27]. Then R(e/b)
is an H, ,-ring, by hypothesis, and altitude R(¢/b) = o — 1, by [12, Lemma 4.3]
(b, ¢ are a subset of a system of parameters, as in the first paragraph of this proof).
Also, pR[e/b] is a height ¢ — 1 prime ideal, since height (b, ¢) = 2 implies height
(b/1,¢/1) = 2 in R,, 80 b]1, ¢/1 are a subsel of a system of parameters in R, (as
above), and so p* = pR,[c/b] i3 a height ¢ — 1 prime ideal and the p*-residue class
of ¢/b is transecendental over R,/pR, [12, Lemma 4.3}, and pR[¢/b] = p* N Rlc/b]
[12, Lemma 4.2]. Fuorther pElc/b] c ME[e[b], so pR(e/b) is a height 7 — 1 prime ideal.
Therefore depth p.R(¢/b) = (¢ — 1) — (i — 1) == @ — ¢. Since the pR,[¢/b]-residue class
of ¢/b is transcendental over L = R,/pR, [13, Remark 4.4 (i}], and since L is isomor-
phic to the quotient field of R/p [2, Corollary 5.9, p. 57], Blc/b]jpRle/b] =~ (R/p)[X],
where X is an indeterminate. Hence depth p == height M/p = height (M/p)B/p[X] =
= height MR[c/b]/pR[¢/b] = depth pR(c/b) == @ — 4, and thug (1) holds.

For (3) implies (2), the case j==1 follows from [7, (9.8), p. 27] and [8, Theo-
rems 2 and 3, pp. 64, 68], since if b, ¢ are elements in R such that height (b, ¢) = 2,
then b, ¢ are a subset of a system of parameters and so are a.i. in R.

If 1< j<i—1, to prove that (2) holds, it will be shown that if (3) holds for j,
then (3) holds for all ¥ (1<k<j), by induction on k. It is clearly true for % = j.
Assume it holds for k-1 (2<% -+1<j), let b,¢,...,0. be ai. in R, and let
C = R{ey/b, ..., c,/b). If altitude C =1, then C is an H, ,-ring (in fact, is catenary).
If altitude € >1, then there exist d, ¢ which are a.i. in C. Then d, ¢c K, and so
¢/d € K. Therefore, ¢/d = s/r where r,s€ R and »5£ 0. If »¢ M, then s/r e C, which
contradiets C c Cs/r]. If s ¢ M, then v/s e MC, and so 1 = #[s s/r e MC[s}r], which
contradiects MO[s/r] is a proper ideal [18, Remark 4.4(i)]. Since O(sfr) =
= R(e,/b, ..., 6/b, 8/r) = R(eyr/br, ..., o,r[br, bs[br), it follows from [13, Remark 4.4(i)]
that br, e,r, ..., 6,7, bs are a.i. in E. Thus, by the induction hypothesis, C(s/r) is an
H, , syring. Apply the case j =1 to the local domain O, and gince (2) implies (1),
C is an H, ,-ring. Thus, by induction, the above statement holds; in particular,
for j =1. So (2) holds.

The proof that (1) implies (4) is similar fo the proof that (1) implies (3), so it
will be omitted.

To complete the proof it must be shown that (4) implies (1). Again, we can
agsume that ¢ <a—1, by (2.8) (i). Let p be a prime ideal in R such that height
p =14. Then there exists b,¢,...,0,,€p such that height (b, ¢, ..., 0,) =1
[7, Theorem 9.5, pp. 26-27], and so (as above), b, ¢y, ..., ¢;_, are a subset of a system
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of parameters. Let C = R(eyb, ..., ¢.4/b). Then, by [12, Lemma 4.3], altitude
C=qa—14--1(>2). Also, ag in the proof that (2) implies (1), b/1, e,/1, ..., ¢, 4[1
are a system of parameters in R,, pC is prime, height pC = height pR, — (i — 1) =1
and O/pC = (B/p)(#y, ..., #._y), Where the z, are algebraically independent over the
quotient field of R/p. Let d, ¢ be elements which are a.i. in €. Then, as in the proof
that (3) implies (2), there exist elements ¥/, ¢,, ..., ¢;, which are a.i. in R, such that
O(e|d) = R(c; /', ..., ¢i[b"). Therefore, by (4), altitude O(¢/d) = a— i, and thus C
is an H,-ring [13, Proposition 4.7]. Hence, since height p( =1, a — i = altitude
0 — 1 = depth pC = altitude 0/pC = altitude B/p(xy, ..., #,_,) = depth p and so (1)
holds, g.e.d.

Theorem 4.2 has some interesting implications which are stated in (4.3) and (4.4).

(4.3) BeMARK. - (i) R is an H,ring, for some ¢ {(1<i<a — 1), if and only if
every set of ¢ - 1 elements which are a.i. in R can be extended to a set of g a.i.
elements in Z.

(il Tf R is an H,-ring, for some ¢ (1<i<a— 1), then every set of k elements
(k<) which are a.i. in R can either be extended to a set of ¢ a.i. elements in R, or
is contained in a maximal set of at most ¢ elements which are a.d. in R.

ProOF. — (i) follows from (4.2) (4) and [13, Corollary 4.19], and (ii) readily fol-
lows from (i), g.e.d.

(4.4) BEXAMPLE. — With R as in [7, Example 2, pp. 203-205] (for r> 0 and
m = 1> 1), there ewists, for each j(1<j<i), a set of elements b, ey, ..., ¢; which are
a.i. in R such that R(c,fb, ..., ¢;[b) is an Hy-ring if and only if k#1,...,7— j. By (2.3)
and (4.2), R(e[b, ..., ¢;/b) is an H-ring, for all k> ¢—j and k = 0. The proof is
completed by showing that R(y,/(@*— @), ..., y:/(®* — x)) is not H,y, ..., H, ; (j<i),
sinece (#2— @), ¥, ..., ¥; are a subset of a system of parameters in B, q.e.d.

Theorem 3.2 stated an equivalence for & to be an H,ring (4>2). There are also
statements concerning R[yJ s ,zu;, Where y € K, which are equivalent to « ¥ is an
H-ring », and they are stated in (4.5).

(4.5) THEOREM. — Let i be fived (1 <i<a --1). Then the following statements
are equivalent:

(1) ¢ is an H ring.

(2) For every y € K such that 1 ¢ (M, y)Rlyl, B[yl is en H, y-ring.

(8) For each pair of elements b, ¢ which are a.i. in R, R[e[b] ) is an H,_,-ring.
(4) For each pair of elements b, ¢ in R such that height (b, ¢) = 2, R[6[b] s .

is an H, j-ring.

Proor. ~ It is clear that we can assume ¢ > 2, since if @ == 2, then § is H, and H,
and R[yl(y,, is Hyand H,, for allye K such that 1¢ (M, y)Rly] (altitude Ry, <2),
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by (2.6) (i). We can also assume ¢ <Ca -+ 1, since ¢ is an H,,,-ring and the rings
B[yl are H,.

For (1) implies (2), let y € K such that 1¢ (M, y)R[y] and let B = R[y]y,,-
If ye R, then B~ R and so is an H, ;ring, by (3.2). If y >~ R, then B~ /P
where P is a height one prime ideal in & such that P N R = (0). So, by (2.11), B
is an H, ,-ring, and henee (2) holds.

It is clear that (2) implies (3), by [13, Remark 4.4 (i)], and (3) implies {4), as in
the first paragraph of the proof of (4.2}, so it only remains to show that (4) implies (1).

For this, it will be shown that if (4) holds, then R is H, ; and H, and (E/p)’ is &
Dyring, for every height ¢ — 1 prime ideal p in E, and hence (1) holds, by (3.2).
To show that R is an H,_;-ring, let p be a height ¢ — 1 prime ideal in E. Then there
exist b, ¢ elements in R such that cep, be M, b ¢ p and height (b, ¢) = 2 [T, The-
orem 9.5, pp. 26-27]. Let A = R[o/b], let N = (M, ¢/b) A, and let g == pR[1/b] N A.
Since cep and 1jbe R[1/b], ¢/begq, and so Ajq >~ E/p, since ¢ N R =p. Thus
gqc N, N is proper, and depth p = depth ¢ = height N/q. Also, height ¢ =4 —1,
since height pR[1/b] = i — 1 = height p, and hence height ¥/q = height ¥ — ¢ 4 1,
since by hypothesis, Ay is an H, ;-ring. Since, as in the first paragraph of the proof
of (4.2), b, ¢ are a subset of a system of parameters, height M A = ¢ — 1 [12, Lemma 4.3].
Also N> MA, since the M A residue class of ¢/b is transcendental over B/ M [13, Re-
mark 4.4 (1)], so height N> a, but height N <a, since altitude 4 <a (since F/P ~ A
and, height P =1). Therefore o — 4 + 1 = height N/g = depth p. Hence R is an
H, ,ring.

To show that B is an H,ring, let p be a height ¢ prime ideal in R. Then there
exist elements b, ¢ in R such that b, c € p, height (b, ¢) = 2 and height pR[c¢/b] =
= i—1 (as in the proof of (4.2) (2) implies (1)). As in the previous paragraph, with
A = R[e/b] and N = (M, ¢/b)A, N> MA (DpA) and height N = a. Since Ay is
an H, ,-ring, height N/pA = height N — height p4 = ¢ —4 -+ 1, and so, depth
pA>a— i+ 1. Therefore, depth pAd = ¢ — i 4 1, sinee height pA 4 depth pA<
<altitude 4 <a. Also, as in the proof of (4.2) (2) implies (1), dfpd =~ R/p[X],
where X is an indeterminate; thus depth p -+ 1 = altitude A/p4 = depth p4 =
=a—+¢-+1. Hence R is an H,ring.

To show that (R/p) is a D,ring, for all height i — 1 prime ideals p in R, let p
be a height ¢ — 1 prime ideal in E. We must consider two cases. If ¢>> 2, then as
in the previous paragraph and with its notation, there exist b, ¢ € p such that height
(b, ¢) = 2, height pAd =i—2, pAcMACN, and A[pA ~ B[p[X]. Thus, with
B = Ay, B/pB =~ (B[p[X]) wp,x) (= T(R/p)). Since B is an H, ,ring and height
pB = 1i— 2, B/pB is an H,ring, by (2.11), and therefore, by (3.2) (i =1), (E/p)’
is a D,-ring.

It remaing to show, for the case ¢ = 2, that (B/p)’ is a Dyring, for every height
i— 1 prime ideal p in B. Let p be a height one prime ideal in B. We have proved R
is H, and H,, and hence R/p is an H,-ring, by (2.11), and altitude B/p = a—1. By
[15, Remark 3.4], either (R/p) is a D,ring, as desired, or there exists o height one
maximal ideal in (E/p)’. Assume the latter, and let » be an element in (B/p)’ such
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that v is in every height one maximal ideal in (R/p)’, and 1 — ¢ is in all the other
maximal ideals in (R/p), by [16, Theorem 31, p. 177]. Then ¢ = (R/p)[v] has exactly
two maximal ideals, namely, Ny = (M/p, v)C and N, = (M[p,1— v)C. Height N, =
=1 (since (R[p)’ is integral over C, there exists a prime ideal @ in (R/p)’ such
that height @ = height N, and @ N ¢ = N, [3, Theorems 44 and 46, pp. 29 and 31];
this implies v € @, and so height @ = 1) and height N, = ¢ — 1 (since € is integral
over Rfp, a — 1 = altitude R[p = altitude (). Since » is in the guotient field of R/p,
0 = gfw with w, z€ R/p and w, 254 0. Let b, ¢ be elements in R such that b - p = w
and ¢ 4+ p = 2, 80 b, ¢ ¢ p. Now it will be shown that there exists an element dep
such that b - d is not in any height one prime divisor of ¢R.

For this, let Py, ..., P, be the height one prime divisors of ¢R, and assume that

%

beP,, .., P, and b P,y ..., P,, where l<m<n. (If b¢M Py, then let d =0,
1

and so we can assume m>1; if m = n, then ignore all the following expressions which

involve m + 1) Pick d€p such that d¢ UP and deﬂ P (Suppose pNN PC

i=m i=m
< UP Then there exists some P; (1<§ <m) such that either p C P; or some P, C P,
J=1

(m 4+ 1<k<n), by [1, Proposition 1.11, p. 8). Since &k = j, P, ¢ P;, therefore p C P;.
Since height p ==1 = height P;, p = P,. But e¢¢p and ¢ e P;; contradiction. Thus

PN ﬂ P. g UP,, so there exists such an element d) It follows from the choice
i=m i=1

of d that b - d is not in any of the P, (¢ =1, ..., n). Therefore height (¢, b + d) = 2,
and b+ p=w==>0-+d-+ p (since d e p).

Let A = Rlef(b + @)], N = (M, ¢/(b + d)) A and B = Ay. Then, by (4) ({ = 2),
B is an H-ring. Let q = pR[1/b | d] N A, thus height ¢ =1. Also, 4/qg ~ C, so
N/g >~ N,. Hence gCc N, and since B is an H,-ring, height N/¢g=a— 1. Since
B/¢B =~ 0Oy , 1= height N, = height N/g = a— 1. This contradicts the fact that
a > 2. Henee there does not exist a height one maximal ideal in (R/p), so (B/p)
is a Dyring. Thus (1) holds, g.e.d.

The following definition and three lemmas will be used in the proof of Theorem 4.10.

(4.6) LEMMA. — Let (8, N) be a quasi-local integral ewtension domain of E. Then
T.(8) is a quasi-local integral extension domain of F.(R).

Proor. — Since F,(8) = &, (5’1(8}), it is clearly sufficient to prove the lemma for
the case m = 1. It follows from [2, Theorem 10.7, p. 96] that S[X] is an integral
domain which is integral over R[X]. By [7, (10.6), pp. 29-301, S[X Ipx1— (s, xymex1 18
integral over & and, as is easily seen, (N, X)S[X] is the only prime ideal in S[X]
which lies over (M, X)R[X]. Therefore S[Xlpx—rmmx = F(8), q.e.d.

Recall from the second paragraph of section three that 8, = S[X,, ..., X.],
where § is a ring and X, ..., X, are indeterminates over §.

4.7y LEMumA. — Let 8 be a Noetherian integral domain such that altitude § < oo,
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and let k be fized (k> 1). Then, for every prime ideal q in S, such that height q¢ > k,
there exists a prime ideal Q in 8, such that @ Ccq, § N 8§ = {0), height @ =k and
height ¢/Q == height ¢ — %.

Proor. — The proof will be by induction on k. Let g be a prime ideal in §; such
that height ¢ =k + ¢ (i > 0).

For the case k =1, let p ==¢ N K. Then either p8,Cq or p8S; ==¢q. If pS;Cyq,
then there exists an element f € g such that f ¢ p8;. Since (8,), s a local domain and f
is a parameter, there exists a height one prime divisor @ of f8, sueh that @ c g and
height ¢/Q = 4, by [7, (9.2) and (9.7}, pp. 26 and 27]. Suppose @ N § = (0). Then
height @ N S = 1 = height @, and s0 @ = (@ N 8)8,CpS;. But this econtradicts
the fact that f¢ pS;, so @ N &= (0).

If pS, == q, then height p = ¢ |+ 1>2. Hence there exists a pair of elements
b,ccp such that height (b,¢)= 2, by [7, Theorem 9.5, pp. 26-27]. Let
I=(bX 4 ¢)8;, and let @ be a minimal prime divisor of I contained in ¢ such
that height ¢/Q = ¢ (as in the previous paragraph). Suppose @ N §s=(0). Then
QN 88, =g, and 80 b,ecQ N S (it is well known that geJ§;, J an ideal in §,
if and only if all the coefficients of g are in J). This contradiets the fact that height
(b, ¢) = 2 and height (@ N 8) = 1. So in both cases the prime ideal ¢ satisfies the
conditions in the lemma.

Assume the lemma holds for k—1 (k>2), and let p = ¢ N 8;_;: Then either
height ¢-— 1 = height p (p8,cq) or height ¢ = height p (pS,=¢q). If height
p = height ¢—1 =% + ¢— 1, then by the induction hypothesis, there exists a
prime ideal P in 8,_, such that Pcp, PN 8 = (0), height P =k — 1 and height
p/P =k i—1— (k—1)=14. It follows from [9, (5.4.6), p. 262] and [3, The-
orem 149, pp. 108-109] that PS,cpS.cgq, height P8,=%—1 and height
p8,/PS, = i, and so height ¢/PS8,>¢ 4 1. Hence height ¢/PS; = ¢ + 1, since height
¢g="F%-4 and height PS,=Fk— 1. Thus, by the case ¥ =1 for 8,,/P and
(8i_s/P)[X:] == (by [9, (5.4.6), p. 262]) 8,/PS,, there exists a prime ideal ¢ in 8,
such that PS8, cQ cq, (@/P8,) N (8xa/P) = P|P (30 Q N §;_; = P), height Q/PS, =1
and height (¢/P8,)/(@/PS;) (= height ¢/Q) = ¢. Since height P§; = &k — 1 and height
@/P8, =1, height Q>%. Hence height ¢ = £, sinee height ¢ = k -} ¢ and height
gl@ =1d. Also, N8 =0QN S )NS=Pn8=1(0). So @ satisfies the condi-
tions in the lemma.

The case where height p == height ¢ = k 1+ ¢ (p8; = ¢) remains. By the induec-
tion hypothesis, there exigts a prime ideal P in §,_; such that Pcp, P N 8§ = (0),
height P =%k —1 and height p/P =17+ 1. Hence PS,cp8,=¢ and height
q/PS; = height p/P =i - 1. Then, by considering (S,_/P}[X;] = 8:/PS;, the
gsecond case in the case k = 1 shows there exists a prime ideal ¢ in 8, such that the
conditions in the lemma are satisfied, q.e.d.

The following definition is needed for the statement of (4.10).

(4.8) DEFINITION. — Let k be a positive integer. A local domain 7 is called a

2 — Adnnali di Maiematica
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k-graded extension of B if T = S[uy, ..., wliy .y, uy» Where (S, N) is a local domain
generated by k elements which are integral over R and u, ..., 4; are in the quotient
field of S such that (N, 4y, ..., ) S[uy, ..., w,] is & proper ideal.

(4.9) LEMMA. — Let T = R[U;, ..o Wlinra,, . > Where s, ..., w, ave algebraic over B
such that (M, uy, ..., #;) is & proper ideal. Then T is o k-graded extension of R.

PrOOF. ~ By [2, Lemma 9.1, p. 84], there exist non-zero elements #;, ..., 7, in B
such that »ouy, ..., 7%, are integral over RB. Let r = ry ... 7, 80 #uy, ..., 7l are
integral over R. We agsume v ¢ M and 7= 0, since, for 0 = me M, mre M and
MPUy, oov, MU are integral over B. Then S = R[r?u,, ..., r*u,] is a local domain
with the only maximal ideal being (M, r2u,, ..., 7%u,)8, and r%u,,..., r®u;, are in-
tegral over R. Also, u,, ..., u, are in the quotient field of S, and hence 7 is a k-graded
extension of R, q.e.d.

Theorem 4.10 is an extension of (4.5) to an equivalence of ¥, being an H,  ,-ring.

(4.10) THEOREM. — Let ¢ and k be fized (4, k>1). T is an Hy;-ring if and only
if every k-graded extension of R is an H rring.

Proor. - Assume g, is an H, -ring, and let T be a k-graded extension of R,
say T = S[uy, ..., Wl iy, ny With (8, N) and uy, ..., up a8 in (4.8). By (4.6), F(8S)
is a quasi-local integral extension domain of §,(R), and hence ,(8) is an H, ,ring,
by [13, Corollary 2.16]1. Bssentially, the same proof as in the proof of (4.2) (1) im-
plies (3) shows that 7 =~ 7,(8)/@, where @ is a prime ideal of F.(S) such that
9 N R =(0) and height @ = k(uy, ..., u;) are algebraic over §. Thus, by (2.11),
T is an Hring, and so every k-graded extention of R is an H-ring.

The converse will be proved by induction on k. For the case k =1, assume
every 1-graded extension of R is an Hring. Then, in particular, for each y in the
quotient field of R such that 1¢ (M, y)R[y], R[Y),y,, is an H-ring, and hence J is
an H, ;-ring, by (4.5).

Now let & >1 and assume the conclusion holds for k— 1. Also, agsume every
k-graded extension of R is an Hring. To prove that ¥, is an H, ,ring it suffices,
by (3.2), to show that T,_, is H, . and H,,, and that (§,_,/@)" is a Dy-ring, for
every prime ideal Q in ¥;_, such that height Q =% 44— 1. Let T be a k —1— graded
extension of R with maximal ideal N. Then, for all u in the quotient field of T’ such
that (N, ) Tu] is a proper ideal, Tlu) i) is a k-graded extension of R, by the de-
finition (4.8), and henee T[u]y,, is an H,ring. Therefore, since T is & local domain,
$(T) is an H, ,-ring, by (4.3). Thus, by (3.2), T'is H, and H,,; and (T/g)' is a Dyring,
for every height ¢ prime ideal g in 7. Thus, since 7 is an arbitrary k — 1-graded
extension of R, the induction hypothesis implies that &, , is H,_,.; and H; ,: So it
only remains to show that (F,_,/Q) is a D,ring, for every height k - ¢ —1 prime
ideal @ in &,_;.

For this, let @ be a height k 4+ i — 1 prime ideal in §,_,. It follows from (4.7)
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that there exists a prime ideal P in §,_, such that Pc@, P N R = (0), height
P = k— 1 and height @/P = 4. Let P'= P N R;_,, and let U = (B;_;)(z_(p- Then
PNE=(0) and height P'=%k—1, and thus height P'U=Fk—1. Since
U~ K[Xy,.., X 3] [9, (5.4.7), p. 262], altitude U =%—1, and hence P'U is
a maximal ideal of U. Let N be the maximal ideal in K[X,, ..., X, ;] corresponding
to P'U. So, U/P'U is a field and is isomorphic to K[wu, ..., 4x_4], where u; =
= X, -+ N. By [17, Lemma, p. 165], 4, ..., 4, are algebraic over K and hence
are algebraic over R. Also, it follows from [9, Proposition 9 and (5.4.7), pp. 153, 262]
that Ry o/P = R[%y, ..., 4p_], and thus 8 /P o Bluy, ..., %y ks p, /ey Which I8
a {k — 1)-graded extension of R, by (4.9). Therefore, since height @/P = i, ($,_,/Q) ~
=~ ((F_4/P) /(Q/P)) is a Dyring, by the statement in the previous paragraph, g.e.d.

5. — Conditions for R* and RZ to be H rings.

The main objective of this section is to give necessary and sufficient conditions
for the completion R* (respectively, the Henselization R¥) of B to be an H,-ring.
(5.1) and (5.2) give equivalences for B* to be an H,-ring and an H,ring, respectively.
To close the section, (5.3) shows that certain eonditions on R are equivalent to
« R¥ is an H ring».

It is known that R* is a local ring [8, p. 92], that the theorem of transition holds
for B and R* [7, Corollary 17.11 and Theorem 19.1, pp. 57, 64-65], and that altitude
R¥=qa [7, (17.12), p. 57].

Theorem 5.1 gives an equivalence of « R is catenary and R/p satisfies the s.c.c.,
for every height one prime ideal p in R».

(6.1) THEOREM. ~ RE* is an H-ring if and only if R is catenary and R[p satisfies
the s.c.c., for every height one prime ideal p in K.

Proow. ~ First, assume that R is catenary and R/p satisfies the s.c.c., for every
height one prime ideal p in R, and let p* be a height one prime ideal in B*. Then
there exists & minimal prime ideal ¢* in R* such that ¢* c p* and height p*/¢* =1,
and it follows from [11, Proposition 2.16 (2)] (¢ = 1) that either depth ¢* =1 or a.
Since R* is a local ring and ¢>2, depth ¢* = «. By [8, Proposition 4, p. 86], E*/¢*
is a complete local domain, and hence, by [7, Theorem 34.4, p. 124], R*/¢* satisfies
the f.c.c. Since height p*/¢* = 1, depth p* = depth p*/¢* = altitude R*j¢g* — 1 =
= a — 1, and thus R* is an H,-ring.

Conversely, assume B* is an H,-ring. It will now be shown that, for every minimal
prime ideal p* in B*, either depth p =1 or a.

For this, let p* be a minimal prime ideal in R* (p* is not & maximal ideal since B*
is loeal). Assume depth p* > 1. Then there exists a prime ideal P* in R* such that
p* c P*, height P*/p* =1 and depth p* = depth P* 41 (so depth P* > 0). Thus
height P* =1 or height P*>1. In either case (height P*>1, by (2.8)), there
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exists a height one prime ideal ¢* in RB* such that p* c g%, height ¢*/p* =1, and
depth ¢* = depth p* — 1. Since, by assumption, B* is an H,-ring, depth ¢* =a— 1,
and hence depth p* = a. Thus, for every minimal prime ideal p* in R¥, either depth
p* =1 or a.

It will now be shown that B is catenary. Let ¢ be fixed (0 <i<a—1), let P
be a height ¢ prime ideal in R, and let P* be a minimal prime divisor of PR* in R*.
Then it follows from [7, Theorem 22.9, p. 75] (since the theorem of fransition holds
for B and R*) that height P* = height P = i. Let p* be a minimal prime ideal
in R* guch that p* c P* and height P*/p* = ¢. Thus depth p*>1, and so, by the
previous paragraph, depth p* = a. Hence ¢ — ¢ = altitude E*/p* — height P*/p* =
= (since R*/p* satisfies the f.c.c.) depth P*/p* = depth P*< altitude R*/PR* =
= (by [7, (17.12) and Corollary 17.9, p. 57]) altitude R/P = depth P<a — 4. So R
is an Hring, for all i (0 < i< a— 1), and hence R is catenary, by (2.9).

Finally, it will be shown that E/p satisfies the s.c.c., for every height one prime
ideal p in R. Let p be a height one prime ideal in R. Then, by the same argument
ag in the previous paragraph (for ¢ = 1), for every minimal prime divisor p* of pR*,
depth p* = g — 1 == depth p = altitude RB[p. Therefore, since RB*/pR* is the com-
pletion of R/p, [7, Corollary 17.9, p. 57], [11, Theorem 3.1] and the definition of quasi-
unmixed [7, p. 124] imply that R/p satisfies the s.c.c., g.e.d.

Theorem 5.2 adds five more equivalences to « B satisfies the s.c.c. » to those in
[12, Theorem 2.21]. More equivalent statements are in a similar theorem (7.6),
using the eoncept of D, rings.

(5.2) THEOREM. — The following statements are equivalent:
(1) B satisfies the s.c.c.
(2) R* is an Hyring.
(3) B* s an Hring, for all <.
(4) R* is an H,-ring.
() R*' is an Hqring, for all i.
(

6) R*' satisfies the f.c.c.

PRrOOF. — It will first be shown that (1), (2) and (3) are equivalent. If R satis-
fies the s.c.c., then B* satisfies the f.c.c., by [12, Theorem 2.21], and thus (3) holds,
by [13, Remark 2.22 (i)]. It is clear that (3) implies (2), and it follows from [11, The-
orem 3.1] and the definition of quasiunmixzed [7, p. 124] that (2) implies (1}).

The equivalence of (1), (4), (5) and (6) will now be shown. For (1) implies (6),
let ¢ be a minimal prime ideal in R*, and let p = ¢ N R*. Then R*'/q is integral
over R*|/p, by [1, Proposition 5.6, p. 61], and since B* and R* have the same total
quotient ring, p is a minimal prime ideal in R*. Since R satisfies the s.c.c., B* is a
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H,ring ((1) implies (2)), and so altitude R* = ¢ = depth p = altitude R*/p =
= altitude R*'[q = depth ¢. By [11, Remark 2.6 (ii)] and [12, Theorem 2.21], B*/p
satisfies the s.c.c., and hence, by definition (2.7.4), R*'/q satisfies the f.c.c. Therefore
R*' satisfies the f.c.c., by [13, Remark 2.23 (ii)], that is, (6) holds.

(6) implies (5), by [13, Remark 2.22 (i)], and it is eclear that (5) implies (4). So
it remains to show that (4) implies (1).

Assume (4) holds. Since R*' is integral over B*, it is easy to show, using [3, The-
orems 44, 46-48, pp. 29, 31 and 32], that B* is an H,-ring. Hence, by (5.1), B is
catenary and R/p satisfies the s.c.c., for every height one prime ideal p in R. Since R*'
is an H,-ring, there does not exist a height one maximal ideal in R, by
[11, Proposition 3.5]. Thus, by [11, Theorem 3.1 and Proposition 3.3], B satis-
fies the s.c.c., and so (1) holds, g.e.d.

It follows from the definition of R¥ that RZ/PR¥ is the Henselization of E/P,
for every prime ideal P in R, and, by {7, Theorem 19.1 and 43.8, pp. 64-65 and 182},
the theorem of transition holds for B and RZ.

Theorem 5.3 states an equivalence for « R¥ is an Hring» and, using (3.2},
gshows that if 4 is an H, ,-ring (0<i<a}, then R¥ is an Hring.

(5.3) THEOREM. — Let ¢ be fized (0<i<a). R¥ is an H ring if and only if R is
an H-ring and (RBlp)' is a Dyring, for every height i prime ideal p in R.

PRrOOF. — Assume R¥ is an H -ring, and let p be a height ¢ prime idealin R. Since R
and RH gatisfy the theorem of transition, it follows from [7, Theorem 22.9, p. 75]
that height ¢ = ¢, for every minimal prime divisor ¢ of pR¥, and it follows from
[7, Theorem 43.20, p. 187] that every prime divisor of pR¥ is a minimal prime divisor.
Henece if ¢ is a prime divisor of pR¥, then depth ¢ = a — 4, since R¥ is an H-ring.
By [7, Theorem 43.20 and Exercise 2, pp. 187, 188], there is a one-to one correspond-
ence between maximal ideals of (R/p)’ and prime divisors of pR¥, and if M’ corres-
ponds to g, then (R¥/q)" is the Henselization of (R/p),,. Thus ¢ — ¢ = depth ¢ = al-
titude R¥/q = altitude (R7/q)'= (by [7, Theorem 22.9, p. 75]) altitude (R/p)y =
= height M’. Hence the heights of the maximal ideals of (BE/p)’ are the same, and
so (Blp) iz a Dyring. Also, @ — ¢ = altitude (R/[p) = altitude R[p == depth p,
and thus R is an H,ring.

Conversely, assume R is an H-ring and (E/p) is a Dyring, for every height ¢
prime ideal p in R. Let ¢ be a height ¢ prime ideal in R¥, and let p=¢N R
Then, since R¥/pR" = (R[p)¥, it follows from [7, Theorems 43.20 and 22.9, pp. 187
and 78] that ¢ is a minimal prime divisor of pR¥ and height p = ¢. Thus depth
g = (as in the previous paragraph) height M’ (where M’ is the maximal ideal of
(R[p)' associated with g) = (since (R/p)’ is a Dyring) altitude (R/p)’ = depth p =
== (gince R is an H ring) a — ¢. Hence RZ is an H,ring, q.e.d.

6. — Conditions for certain sets of localities to consist of H,-rings.

In this section certain sets of localities over R are discussed relative to the con-
dition that every ring in such a set is an H ring. (6.1) shows that every loecality
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over R is an H,-ring (or is an Hring, for some fixed 7 (0 < i < a)) if and enly if R
satisfies the s.c.e. (6.2) uses a set B of localities contained in the quotient field of B
to get an equivalence of « R is catenary and R’ satisfies the c.c.»

Theorem 6.1 is an extension of [10, Corollaries 2.5 and 2.8] and lists a2 number
of statements equivalent to « B satisfies the s.c.e.» Other equivalent statements
are in (5.2).

(6.1) THEOREM. — The following statements are equivalent:
(1) R satisfies the s.c.c.

(2) For each fized i (0 << i << a), every locality S8 over R which dominates R is
an H,-ring.

(3) Every 8, as in (2), is catenary.

(4) Ewery 8, as in (2), satisfies the s.c.c.

Proor. — It follows from [11, Theorem 3.1] and [10, Corollary 2.8] that (1) im-
plies (4). By [11, Remark 2.7], (4) implies (3), and by (2.9), (3) implies (2).

For (2) implies (1), we first show that if (2) holds for any fixed ¢ (0 <i<a),
then (2) holds for ¢ = 1. Then it is proved that (2) (i = 1) implies (1). Let 8 be a
locality over R which dominates R, let N be the maximal ideal of 8, and let
L=9,_(8). Then § =~ L/(Xy, ..., X, 1)L. It follows from the definition of local-
ity that L is a locality over R which dominates R (since § is such a locality), and
thus, by (2), is. an, H,ring. Since height (X, ..., X, ;)L =14—1, 8§ is an H,-ring,
by (2.11).

To show that (2) (¢==1) implies (1), again let S be a locality over E which
dominates R. By the definition of locality, § = A4, where @ is a prime ideal in a
finitely generated integral domain A4 over R such that Q "R = M. Let T be a
locality over § which dominates §. Then, as is readily seen, 7' is a locality over B
which dominates R. Therefore § is an H,-ring and every locality over § is an
H,ring. Hence, since S(ey/b, ..., ¢;/b) is a locality over §, where b, ¢y, ..., ¢; are a.i.
in 8, for all j (1<j<altitude § — 1), 8 is catenary, by (2.9) and (4.2). In particular,
since T is a locality over R which dominates B, § is catenary. Thus, by [12, The-
orem 2.21], R satisfies the s.c.c. that is, (1) holds, g.e.d.

Theorem 6.2 gives an equivalence to « R is catenary and R’ satisfies the c.c.».
Some other equivalences are stated in (4.10) (for k =a— 2 and i =1) and {b.1).

Tt should be noted that some of the localities in B (defined below in (6.2)) are
k-graded extensions of R, namely, those Rlu;, ..., e, Where @ = (M, uy, ..., Up)*
-R[Uy, ..., u;] i8 a proper ideal (u,, ..., u; € K).

(6.2) THEOREM. ~ Let B be the set of localities, B, over R such that BC K,
B = R[uy, ..., U)oy where 0<n<a— 2 and Q is a prime ideal in Blu,, ..., U,] such
that Q "R = M. Every Be 3 is an H;-ring if and only if R is catenary and R’
satisfies the c.c.
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Proor. — Assume R is catenary and R’ satisfies the ec.e. Since, for all »
{(0<n<a—~ 2) and every set of elements u, ..., u, € K, Blu, ..., u,] is a finitely
generated R-algebra and is an integral domain, every B € 3 is catenary, by [15, The-
orem 4.3] and [11, Remark 2.6 (ii)]. Hence every Be J is an H,-ring.

To prove the converse it will be shown, using (2.9) and (4.2), that Efy],,,, is
catenary, for every y € K such that 1¢ (M, y)R[y]. Let B = R[y],,,, for some
y € K such that 1¢ (M, y)Rly].

Since B € B, B is an H,-ring, and thus if altitude B <3, B is catenary, by (2.8} (i)
and (ii). So we can assume altitude B > 3. By definition, B{e,/b, ..., 6;/b) is a locality
over B, for all j (1 <j<altitude B — 3<a — 3) and for each set of elements b, ¢, ..., ¢;
which are a.. in B. Thus, as in the proof of ({6.1)(2) implies (1), every such
B(eyfb, ..., ¢;/b) is a locality over R and is in $, and hence, by hypothesis, is an
H,-ring. Therefore B is caternary, by (4.2)(3) implies (1) and (2.9).

Since all such rings B are catenary, #(R) is H,, ..., H,.;, by (4.5) and (2.9). It
follows from (2.11) that, if p is a height one prime ideal in B, $(B/p) =~ F/pT is
catenary, and thus R is catenary and R/p satisfies the s.c.c., for every height one
prime ideal p in R, by [12, Theorem 2.21]. Hence R is catenary and R’ satisfies
the c.c., by [15, Theorem 4.3}, g.e.d.

7. — D;-rings.

In Sections 2-6 we analyzed H,rings. In this section we consider the « dual»
concept of D,rings and state some regults « dual » to those in the previous sections;
in particular, to (2.11), (3.1), (3.2) and (5.2). (7.1) considers the localizations R,;
(7.2) and (7.3) examine the rings R(X;, ..., X,); (7.4) looks at the ring ; and (7.6)
deals with the completion of R.

The following theorem is a «dual» to (2.10) and therefore is part of a «dual»
to (2.11).

(7.1) THEOREM. — Let 8 be a ring such that altitude § = a << oo, and let j be fiwed
(0<j<a). Assume that 8 is an Hyring. Then the following statement holds for all %
(0<k<)): If, for every depth j— k prime ideal p in 8, S, is & D,-ring and either
height p<k or height p =a—j -+ k, then § is a D;-ring.

Proow. - We can assume 0 <j<<a—1, by (2.6).

Let ¢ be a depth j prime ideal in 8. Then there exists a prime ideal p in § such
that g c p, height p/g¢ = j — k, and depth p = k. By assumption, 8, is a D, ,-ring
and either height p 4 depth p = ¢ or height » 4 depth p<j. But height p +
—+ depth p>height ¢ -} height p/g -+ Ek>(since j<a and § is an Hyring)
14+{j— %)+ k=4 -+ 1; thus height p - depth p == a, that is, height p = o — k.
Since 8, is a D, ,-ring and depth ¢8, = height p/¢ = j— %, height ¢ = height
g8, = altitude §,—(j—k)=a—k—~j-+-k=a—j So 8 is a D,ring, g.e.d.

Theorem 7.2 states part of a «dual»s to (3.1).
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(7.2) THEOREM. — If R(X,, ..., X,) is @ D, ring, for some n>1, then R is a Dyring.

Proor. — It suffices to show that if R(X) is a D, ring, then R is a Dring, since
R(X,,..., X,) == R(X,, ..., X,_,)(X,). Since altitude R(X) = a, R and RB(X) are D,,
D, ,, and D,, by (2.6) (i) and (ii), so we can assume 0 <?<<a—1.

Let p be a depth ¢ prime ideal in B. As in (3.1), ¢ = depth p = altitude B/p =
== gltitude R(X)/pR(X)= depth pR(X). Since R(X) is a D,ring, a — { = height
pR(X) = height p, and hence R is a D,ring, q.e.d.

7.3) REMARK. — The converse of (7.2) holds if ¢ =1, by [13, Corollary 2.4 (2)],
(2.9) and (3.1).
A portion of a ¢«dual» to (3.2) is given in Theorem 7.4.

{(7.4) THEOREM. — If § is ¢ D ring, then R is a D, j-ring.

ProOF. — We can assume 1 << i< a, as before. Let p be a depth ¢— 1 prime
ideal in R. As in (3.2), depth p¥ = depth p 4 1 = ¢, and thus, since T is a D,ring,
height p = height p¢ == altitude §—~i=a +1— i = a— depth p. Hence R is a
D, -ring, q.e.d.

(1.5) BXAMPLE. —~ For all i > 0, there exists a local domain B such that § 4s a Dy-ring
if and only if j+#1,...,4 -~ 1; namely [7, Example 2, pp. 203-205] (for r > 0 and
m = 4). This follows from the facts in (2.3), (2.5) and (3.3), and since ' is a special
extension of ¢ (see [15, Remark 4.8]).

The following theorem lists equivalent and « dual » statements to those in (5.2).
Also, the notation R* for the completion of R is used, as in (5.2).

(7.6) TaroreM., — The following statements are equivalent:
(1) R satisfies the s.c.c.
(2) R* is a Dy-ring.
(8) B* is a D, ring, for all 4.
(4) B* 4s a Dyring.
(8) R¥ is a D ring, for all i.
PROOF. — (1), (3) and (5) are equivalent, by (5.2) and (2.9). Clearly, (5) implies (4).
(4) implies (2) by a straightforward argument using [3, Theorems 44 and 46-43,
PP. 29, 31 and 32]. (2) implies (3) is proved by showing that if a local ring § is a

D ring (i > 0) then § is a D, ,ring. This is accomplished by applying (2.8) to 8,
where p is a depth ¢ - 1 prime ideal and g is a depth ¢ prime ideal in 8, g.e.d.
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8. — Open problems.

This section is primarily a list of the open problems related to H,- and D rings.
{8.1)-(8.3) are the chain conjectures. In (8.4) and (8.5) some equivalences of the chain
conjectures are given, and then {(8.6)-(8.11) state a number of questions about H,- and
D rings which arise from the work in this paper.

(8.1)-(8.3) give the statements of the three main chain conjectures. They are
contained in [5], [6] and [15] along with a number of equivalent statements.

(8.1) CHAIN CONIECTURE. — The integral closure R’ of a local domain R satis-
fies the c.c.

(8.2) H-CoNJECTURE. — If a local domain R is an H,-ring, then R is catenary.

(8.3) CATENARY (HAIN CONIECTURE. — If K is a catenary local domain, then R’
satisfies the c.c.

The concept of H,-rings allows us to state in (8.4) a new equivalence of the
H-conjecture.

{8.4) THEOREM.~ The H-conjecture holds if and only if the following condition holds:
If R is an Hyring, then R is an Hyring.

Proor. — Assume the H-conjecture holds, and let B be an H,ring. Then R is
catenary and so is an H,ring.

Conversely, assnme that R is an H,-ring whenever B is an H;-ring, and let R
be an H,-ring. It will be shown, by induction on ¢ (1<i<a — 2), that R is an H -ring.
Since R is an H,-ring, R is an H,ring, by assumption. Agsume R is an H,ring, for
all j<i. Let p be a height ¢ — 1 prime ideal in R. Since R is H, ; and H,, depth
p=a—i-+1 and Rfp is an H,-ring, by (2.11). Thus, by assumption, B/p is an
Hyring. Hence E is an H, ,-ring, by (2.11). So R is Hy, ..., H, ,, and therefore R
is catenary, by (2.9). Thus the H-conjecture holds, q.e.d.

Most of the theorems in the previous sections can be used to give at least une
new equivalence of the catenary chain conjecture. Some of those new equivalences
are listed below in (8.5).

(8.5) TaroreM. - The following conditions are equivalent:
(1) The catenary chain conjecture holds.

(2) If R is catenary, then R|p satisfies the s.c.c., for every height one prime ideal p
in R.

(8) If R is catenary, then T, , is an H,_,-ring.

(4) If R is catenary, then T is H,,...,H, ,.
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(8) If R is catenary, then §/pT is catenary, for every hoight one prime ideol p in R.

(6) If B is catenary, then, for every pair of elements b, ¢ in B such that height
(b, ¢) = 2, Rle[blyyopy 18 Hy, ...y Ho o (equivalently, is catenary).

(7) If R is catenary, then every (& — 2)-graded exiension of R is an H,-ring.
(8) If R is catenary, then R* is an H,-ring.
(9) If R is catenary, then every Be B (as in (6.2)) is an Hy-ring.

Proor. - (1) is equivalent to (2), by [15, Theorem 4.3]; (5) is equivalent to (2),
by [12, Theorem 2.21] (since F(R/p) =~ F/pT); (8) is equivalent to (2), by (5.1);
and (9) is equivalent to (1), by (6.2).

Since (6) is equivalent to (4), by (4.5), and (7) is equivalent to (3), by (4.10);
it remaing to show that (2), (8) and (4) are equivalent.

For (2) implies (3}, assume that (2) holds. Then, by [11, Theorem 3.1 and Pro-
position 3.3], R/p satisfies the s.c.c., for every prime ideal p in E such that p == (0).
Let g be a height ¢ — 1 prime ideal in §,_,, and let p = ¢ N E. Then height p = m ¢
€{l,...,a—1}, and so, by the above statement, R/p satisfies the s.c.c. Therefore,
by {10, Corollary 2.8] and [11, Theorem 3.1], every locality over E/p satisfies the s.c.c.
and thus is catenary [11, Remark 2.7]. In particular, F, ,/pF,_, o T._(Bfp) is
loeality over R/p and thus is ecatenary, and so depth ¢ = depth ¢/pT,_, = altitude
Fos/pFa_y— height ¢/pT,_, = depth pF,_,— height ¢/pF,_,. Also, depth pF,_, =
= (as in the second paragraph of the proof of (3.2)) depth p + ¢ — 2 = (since R
is catenary) a—m +a— 2 = 2a—m— 2. If follows from [2, Theorem 30.18,
p. 368] that height ¢ = height p - height ¢/p¥.,. Therefore height ¢/pF, .=
=a—1—m and thus depth ¢ = (26— m— 2)— (¢ —1— m) = a — 1 = altitude
F.0s— (@—1). Hence ¥, , is an H, ,-ring.

(3) implies (4), by (3.4). For (4) implies (2), let p be a height one prime ideal in E.
Then height pF =1 and so TfpT, is H, ..., H;, by (2.11). Since altitude
T pTr<a, §:1/pF, = T,(R/p) is catenary, by (2.9). Therefore E/p satisfies the s.c.c.,
by [12, Theorem 2.21], and hence (2) holds, q.e.d.

A list of questions which arige from the work in the other sections of the paper
are given below. (8.6) and (8.7) are basic statements which are related to some of
the results in Section 2.

(8.6) If R is an H,ring, is the ring R, an H,ring, for all prime ideals p in B
such that height p>¢?

(8.7) If R is H, and H,,, is R necessarily an H, ,-ring?

(8.8) REMARK. — (8.7) is false for ¢ = 0, as [7, Example 2, pp. 203-205] (for » > 0
and m = 1) shows. In (2.3) it is shown that the local domain (R, I) is an H,ring
if and only if j=1.

(8.9) Consider §, and R[u,, ..., 4], . C K. Can (4.5) be generalized in terms
of conditions on these two rings?
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{8.10) Do the converses hold for (7.1), (7.2) and (7.4), or in other words, can (2.11),
{3.1) and (3.2) be « dualized »?

(8.11) In (2.8) we used [13, Proposition 2.2 and Corollary 2.3]. It would be use-
ful, in working with D, rings, to have a « dual » of [13, Proposition 2.2] (of [13, (2.2.1)],
or of [13, Corollary 2.3]) like:

Let p’cpc P be prime ideals in a Noetherian ring 4, let height p/p'= k and
height P/p = d. Then, for each 7 =0, ..., h — 1, there exist infinitely many prime
ideals ¢ in A such that p’cqc P, height ¢/p'= h— i and height Plg=d I 1.

But it is not known whether this statement is true of false.
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