Continuity and Set Function Summability.

Wirtriam D. L. AprrniNg (Denton, U.8.A)) (*)

Summary. - Two characterization theoremns for functions from &% into R are given in fterms
of set function infegrabinty and set funclion summabilily.

1. - Introduction.

The statement that { U, F, p} is a finitely addifive measure space means
that U is a set, F is a field of subsets of U, and p is a real-nonnegative-
valued finitely additive fanction on F. If [ U, F, p} is a finitely additive
measure space, then P denotes the set of all real-valued functions on F,
PF denotes the set of all nonnegative-valued elements of Pr, Prs [denotes
the set of all bounded {finitly additive elements of pp, and PFs denotes
PF O Pra.

In a previous paper [l] the author proved the following theorem:

TaroREM 1.A.1. = If N is a positive integer and {[f;, i Ji: is a sequence
of number intervals and t is a real-valued function on [f, w)X .. X[iy, ux],
then the following two statements are equivalent:

1) If y is a real-valued function on the number interval [a, b] having
bounded variation and { H, }ffv_,,l is a sequence of fanctions of subintervals of
[a, b] such that for each positive integer k<< N, the range of H; is a subset
of [fx, ui] and the <interval function integral » (see section 2)

Hyldy
{a, 7l
exists, then the «interval function integral»
T{Hl(l), ey H]v([)]d')’

fa- 4]
exists, and

(*) Entrata in Redazione il 4 marzo 1970.
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2) = is confinuous.
In section 2 we shall discuss how fhe following extension of Theorem
1.A.1 can be obfained:

THEOREM 2.2. - Under the hypothesis of Theorem 1.A.1 the following
two statements are equivalent:

1y If {U, F, p}] is a finitely additive measure space and |[H, e, s
a sequence of elements of pPr snch that for each positive integer k< N, the
range of H;, is a subset of [, u:] and the integral (section 2)

f H(I)( )

exists, then

f AT, ., HoD)add)

[
exists, and
2) < is continuous.
The purpose of this paper is to give the following two extensions of

Theorem 2.2:

TuegoreM 4.1 (section 4). - If N is a positive integer and o is a function
from &" into the real numbers, then the following two statements are equivalent:

1} If {U, F, u)] is finitely additive measure space and [Hili, is a
sequence of p-summable (section 2} elements of Pg, then the integral

f o1}, .., Ha{D)p(l)

[

exists, and
2) o is continuous and bounded.

THEOREM 5.1 (section B). — If IV is a positive integer and I' is a function
from &" into the real numbers, then the following two statements are equi-
valent:

1) If (U, F, n} is tinitely additive measure space and {H,}i, is a
sequence of p-summable elements of Pg, then I[H,, ..., Hy] is p-summable, and

2) I' is continuous and
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N N
U, s an]ll /0 2 (o] [ 1< 8 )

is bounded.

2. - Preliminary theorems and definition.

For the basic facts, notations and conventions concerning subdivision,
refinement and integral, we refer the reader to section 2 of [1] and sections
of 2, 3 and 4 of [2] for these notions as they pertain to intervals and fields,
respectively. We also refer the reader to {2] for a statement of KOLMOGOROFF’S
[3] differential equivalence theorem and its implications about the existence
and equivalence of the integrals that we shall use. When the existence of
an integral or its equivalence to an integral is an easy consequence of the
above mentioned material, the integral need only be written, and the proof
of existence or equivalence left to the reader.

We now consider a particular «extensicn» of an interval function.
Suppose a < b. It is well known that if Gu.oy={(p, qlla<<p <qg=b}, then
the smallest field Fi. s of sets including G., is the collection of all nnions
of finite subcollections of G. . Further, if V is in F(. s, then the collection
Cy of all components of V is a finite subset of G.;;. Suppose 1 is a function
of subintervals of [a, b]. We define * as follows:

For each subinterval {p, q] of [a, b] we let *((p, q)) = *([p, ql), and for
each F{,, we let

We have the following theorem which the reader can easily prove:

TaroreM 2.1. - If a < b and v is a function of subintervals of [a, b]
a<<p < g=<_h, then the «interval function integral»

v}
1p 41
exists iff the «set function integral » (with respect to F. )
v¥(I)
(F2x

exists, in which case equality holds.
‘We now prove Theorem 2.2, as stated in the introduction.
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Proor oF THEOREM 2.2. - It is easy to see that the argument that 2)
implies 1) can be formulated with only minor modifications to the correspon-
ding argument in [1], by virtue of analogous theorems in [2].

‘We show that 1) implies 2). Suppose 1) is true and 2) is not true. There
is a positive number ¢ and a sequence of points {(x\”, .., &) |2, of
(&, )X ... X[lv, ux] such that

N

3 0

Saf?—al |50 as m—>oo,
k=1

but for each positive integer m,

i

m) m
‘quﬁ T, 2 — el L 2l =

There is a sequence | H, ];Ll of functions of subintervals of [0, 1] such
that if [p, ¢] is a subinterval of [0, 1], then

I {Hip, g —al | =0

it for some integer m, ¢ is 1 /m; and

N

T | Hlp, ¢h —a’1=0

]

otherwise.
There is a function y, defined on the subintervals of [0, 1], such that

vilp, q)) =

[ 1 it p=20
l 0 otherwise.

We see that {(0, 1], Fp, 1, v*] is a finitely additive measure space.
For each positive interger k<< N, let HY = (Hiy)* /v*. We see that for
each such % and subdivision ® of {0, 1],

Ay = T8 Hid)y'(J) = Hildw),
D o c;

where Jp is the «left most» J in UEQI, which implies
f Hi )y HI) = af”.
(0, 1]
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Now suppose ¥ is a subdivision of (0, 1].
There are refinements X, and ¥, of JE, each containing only elements of
G, 11, such that for some integer w, (0, 1,/w] is in ¥,;, and for no integer
m is {0, 1 ,7m] in XE,. We see that

l%t(ﬂ'f([), oy HM{I)YH(I) — i yHi(Z), ..., HY{I)YHI) | =
E’:(’x?ﬂ’ AR 1 mg\?)) - ?{xge}, -3 wg\?)}}20.
80 that
[, .., Bairy
©.1
does not exist, a contradiction.

Therefore 1) implies 2).
Therefore 1) and 2) are equivalent.

3. - Summable set functions.

In this section we discuss some previons results [2] concerning set
function summability and prove a representation theorem.

Suppose { U, F, n} is a finitely additive measure space.

We let W, denote the sef to which H belongs iff H is an clement of
pF such that for some number # and all nonnegative numbers K,

f min { H(I}, K} p(l)
T

exists and does not exceed #.
We observe that for each H in W,, the element s,(H) of pr defined by

su(H){(V) = sup

fmin{H(l), pl\[}lO<K§

Vv

is in p'}.?A. We also observe that, trivially,

I

U

sgtH)(l}—fmin {H{J}, K} p{J}J»a{}, K —>oco,
I

so that s,(H) is absolutely continuous with respect to y.
We state a previous theorem of the author [2].
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THEOREM 3.3.1, - If I is in W, and H is in pf, then I 4+ H is in W,
iff H is, in which ecase

S{L‘I—I "}“ H’ = SIL(H) + SV‘H"

We let W denote the set to which H belongs iff H is « p-summable »,
ie., for some II and Z, each in W,,

H=1I - Z

It is easily shown in [2] that Theorem 3.A.1 implies that if each of II,
II', Z and Z' is in W, and
n-z=0-7,
then
sp_{H} — s}L{Z) = sy_(ﬂ'} - sp{Z').

This consistency enables us to define a «summability operator >, sf on W,
as follows: If H is in W, then

s (H) = sy(Il) — sulZ),
where
H=Il—7,

and each of II and Z is in W,.
We also easily see that s, & s¥, so that we can write s, for si. It
further follows that

W, = Wi N pk.

We note that if Y is in W, then s,Y) is absolutely continuous with
respect to p.

We now state a condensation of some results of [2] that we shall need
in subsequent secfions.

THEOREM 3.A.2. - Suppose each of X and Y is in W) and ¢ is a number.
Then W# contains each of X 4 Y, ¢X, min (X, Y|, and max { X, Y'}. Further-
more,

SQ{X +¥)= sp‘X) + SP(Y}'

Also, if X is bounded, then for each V in F,

f X(I)el) = s,(X)( V).

I
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Now suppose Z is in Pr. We see that
Z=max{Z, O}+ min{Z, O},

and that 7 is in Wy iff cach of max|{Z, O} and — min{Z, O} is in W,.
We now prove a representation theorem.

TeEorEM 3.1. - If H is in pr and v is in Prs, then the following two
statements are equivalent:

1) His in W} and % = s,(H), and

2) it p<<0<q, then

fmin(maX{H(IJ, i q)wud)

exist and

[0y = [min fmax (1) 21, ¢ 10| >0, min [ —p, g] 0.

PRroor. ~ We observe that if ¢« <0< b and 2 is a namber, then
min { max {%, 0}, b} —min{—min{x, 0}, —a}=min{max{x, a}, b}.

Now suppose 1) is true.

We see that each of max{H, O} and —min{H, O} is in W,, so that,

it p<<0=gq, then by the above equality we have the following equality and
consequent existence:

v

U

(min[ma.X{H{I), 0}, gl wfmin{--—min{H(I), 0, —plly=

fmin{maX{H(I), ploqlpld)

We also see that

1 = s,(H) = s,(max { H, O]} —s( min(H, O}),
80 that
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”WJ—— [min{maX{H(J); Pl Q}MJ)}S

U I

/
J

sy(max { H, 0}}[Ij~fmin{maX{H{J), 04, q}p.{J}l +

su(—min {H, 0])1)— [ min {— min (HJ). 0], — p] piJ] >0

min { — p, ¢} = co.
Therefore 1) implies 2).
Now suppose 2) is true.
First, we see that if O<<min{K, K’} and V is in F, then, since
0<0<K,
fmin{max{H(I), 0}. K} pl)
Y

exists. se that, since — K'<<0< K, we have the following equality and
consequent existence:

fmin{ma.x{H([), — K'l, K}uwl) mfmin{max{H(I), 0), K}ul)=

¥

f’—min min { H{/), 0}, K’} u(l).
v

Uﬂml’)—

fmin{—min{H(J), 0}, K| p(J)H:

I

Therefore

fmin{max{H{Ji, 0}, Kipld)—

I

f"q(l) -—»fmin[max[H(J), — K"}, K}}L(J)!—eo, min { k', K}~ oco.
[ i

We see that there are numbers » and s such that » << 0<"s and such
that if p <<+ and s<Cgq, then
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fmin{max{H(J}, 0}, gld)—

ﬂml)—

f{nin{——min{HiJ}, 0}, —p%}i(J}H<1a

I

s0 that

J”’Q(I)—ifmin{max{H(J}, 0), ¢} uld)—

fmin{——min{H(J), 01, —r}pr}”<l
and I

ﬂn(z)_Umin{maxgHu;, 0}, 8] pl) —

u I

fmin{—min(H(J), O}%p}p(J)H<1,

i

which implies that

sup fmin{max{H(Z), U}, K}p(I}]OgK§<oo
7]

and

supUmin;mmgHsz), 0. K'}mzwoggxf}mo.

U

This implies that each of max{H, O} and —min{H, O} is in W, so that
H is in W} and, since

sp(H) = sz&tmax { H? O }} - sp{_ min { H, O }}7
it follows from then end of the preceding paragraph that v = s,(H).

Therefore 2) implies 1).
Therefore 1) and 2) are equivalent.

4. — An integrability theorem.

In this section we prove Theorem 4.1, as stated in the introduction.
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Proor or THEOREM. - First, suppose 2) is true, { U, F, n| is a finitely
additive measure space and {H, Ji, is a sequence of elements of wg.

Suppose 0 < ¢. There is a number M such that |olwy, ..., xv)|<<M for
all (1, ..., @y) in &'. By Theorem 3.1 there is a positive number 7 such
that if & is a posifive integer << N and each of r, 5, { and u = T, then

f}min{maX{H,‘(I), —ri{, s} —min{max {HyI), —¢}, u]|pl)<c/[BN{M 4 1)}

U

It follows that for each positive integer positive integer k<< N there is a
subdivision ®; of U such that if X is a refinement of ®,, then

¢/[8NM+ 1)] < T |min{max {Hyl), —T—1}, I'+1}{—
E
min { max { Hy(I), — T}, T}|pd) =2 p(),
]E*

where XE* is the set (if any) of all I in ¥ such thnt HJl)> T4 1 or
H{l) < — T — 1.

Let X(I) denote H;(I), ..., Hy(I) and Z(I} denote min { max { Hy(I), — T —
— 1}, T4+ 1}, .., min{max {Hs{I}), — T— 1}, T4+ 11},
There is a common refinement ® of all the above ®,. If ¥ is a refinement
of ®, then

| ol XUI)) — o(Z{I)) | (D) = 2 [ ol X(I)) — olZ(I)) | w1} <

w4
3%

3MNe,/[SN(M + 1] = 2Mc /[8(M + 1)] < ¢,/ 4,

where X' is the set (if any) of all J in ¥ such that for some positive infeger
k<N Hil)>T+1o0or B(l) < — T— 1.
By Theorem 2.2, [ o{Z(I})p(} exists, so that there is a subdivision B* of
u

U such that if ¥ is a refinement of ®*, then

=z
B

S — f e(Z(Jnu(J)i <o b

There is a common refinement T** of ® and D=
If ® is a refinement of ®** then
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2 X Tyl — f (LT | <

4

S [ oIX(T) — o) | iT) + | 2Tl f AT <04+ 0 /b

I

Therefore, if each of ¥, and ¥, is a refinement of D** then
| Z (XD — S oXD)pl) | <o 2 <.

Therefore [ o{Il(I), ..., Hy(I))i(I) exists, so that 2) implies 1).

U
We now that 1) implies 2). Suppose 1) is trme. It is easy to see that the
continuity of ¢ follows from Theorems 2.2 and 3.A.2.
We show o is bounded. Suppose, on the contrary, that there is a sequence
(@, ., 5122, of points of & such that

Lol ..., )| = oo, m —> co.

For each positive integer & << IV, there is a function II; defined on the subin-
tervals of [0, 1] by

S wgcl/P)

if pF=0and 1 7p is a positive integer
il p, q)) Z

0 otherwise

There is a function, 7, defined on the subintervals of [0, 1] by n([p, q¢]) = ¢ — p-
We see that {{0, 1], Fio,y, n*} is a finitely additive measure space.
For each positive integer k<< N, we let I} = (ILy)* /n*.
Suppose 0 <c¢ and 0 < S. There is a number w such that 0 <w <1 and
w < ¢/(4S). There is a subdivision B of (0, 1] containing only (0, %] and
elements of G, 1 such that if ¢ is the number of positive integers whose
reciprocals =w, and (p, g} is in ® and w<p, then ¢— p <c  (4SQ).
Suppose E is a refinement of . We see that there are at most ¢ elements
V of E included in (w, 1] such that I[;(V) == 0. Therefore

S min { | T(V)], S} 7%V) < Sc/(4S) + @Sc,/(45Q) = ¢,/ 2.

=

Therefore

[min {rmawy sy =0,

[4
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which implies that

fmingmaxiﬂ”{V}, 01, S%'{;*(V)=O.—.—.fmin§—min{H}§(V), 01, St9¥V),
i

U

so that I} is in Wjs. Now suppose 1 < M and ® is a subdivision of (0, 1].
There is a refinement ®' of ® such that for some w >0, (0, w] is in D).
There is a positive integer @ such that if m is a positive integer = ¢, then
w—1/m>w/2 and

Lol@l™, ..., ®%) | > M(L + T)2/w),
where

=100, ., 01|+ 3 [oI(T), ..., W1} [ 7*(0),
and
D*={I|Iin B, w<x for all ® in I}.
Let 6 ={(0, 1/Q), (1/0, w]} U D* XE is a refinement of B and

|2 (I (T), oy TRTMI) | = ol@d?, .., 28w —1/Q) —

[0, s 0)(1/Q)+ 2 (L), o, ALY (1)) >
ML+ T)@/w)w — 1/Q) — T'> M1 + T)2/wjw/2) — T =
M4+ MT—T>M.

Therefore

f SAIAT), o, THAT )

o

does not exist, a contradiction. Therefore 1) implies 2j.
Therefore 1) and 2} are equivalent.

5. - A summability theorem.

In this section we prove Theorem b.1, as stated in the introduction.
We begin with a lemma.

LemMma b.1. - If {U, F, n} is a finitely additive measure space and H
is in Pg, then the following two statements are equivalent:

1} H is p-summable, and
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2) |H| is p-summable, and if p <0< ¢, then [ min{max{H(), p},
g} ) exists. v

Proor. - From the theorems of section 3 it is obvious that 1) implies 2).

Suppose 2} is true and 0 < K.
fmin{max{mn, 0}, Kw)sfmsnuﬁun, K| (),
o o

which implies that max {H, O} is p-summable. Further,

min{ —min{H, O}, K}=min{max{—H, O}, K}=max|{min{—H, K}, O} =
max { — max ({H, — K}, O} = — min{max {H, — K}, O}.

Now, we see that

f*min{max[H(I), — K1, 0} )

exists, so that

fmin {—min{H{I), 0}, K}l
U
exists. Also

fmin{— min { H{I), 0}, K} p([)g:fmiuHH(IH, K} w1,
U u

which implies that — min{H, O} is p-sommable, so that min{H, O} is
p-summable. Since H=max{H, O!-+ min{H, O}, it follws that H is
p-summable. Therefore 2} implies 1}.

Therefore 1) and 2} are equivalent.

Proor orF THEOREM 5.1. - Suppose 2) is true and } U, F, plis a finitely

additive measure space and | H, §ff:1 is a sequence of p-summable elements
of pr. Let X(I) denote Hi(l}, ..., Ha{l). 1f p<<0<q and 0 < K, then the
functions min { max |I, p!, gt and min{|['|, K{ are continuous and bounded,
so that by Theorem 4.1, each of

f min { max { X)), p 1, g pil) and f win | PX(I)]. K { p()
U 142
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exists. Now, there are nonnegative numbers M and M’ such that if (x:, ..., 2n)
is in &", then

N
SM it ml <t
=1

N
% x| otherwise
e

Dy, oy and | <<
[

k

N
M’ ¥ |H,| is p-summable. If B is a subdivision of U and 0 < K, leiting
E—1 N
BD*=171|Iin B, X |HJI)|{< 1} (if any), we have
k=1

gmiM'l‘(X(l)H, Kipl)= S min} [ UXUI) [, K{pl)+

E*

= min{ [TXWD) [, K=< M Z wil) +

S minj M I [HAI)|, K| wil) < Mp(0) +

BTy k=1
I\T
Tmin} M X |[HJl)|, Kiunl)
) k=1

This implies fhat

[ min TN K= M) + [in g 0SB | K
P =1

23

which implies that {['(H;, ..., Hy)| is p-summable. Therefore, by Lemma 5.1,
5.1, I'Hi, ..., Hy) is p-summable. Therefore 2) implies 1).

Now suppose 1) is truoe.

Suppose p<0=<<q. If { U, F, p} is a measure space and {H,li, is a
sequence of pu— summable elements of pg, then

fmin ymax | HWI). ..., Hat)), pt, gt pd)

U

exists. Theorem 4.1 implies that min {max|{T, pl, g! is continuous. We
easily see that the continuity of min{max}{I, p!, ¢! for all p and ¢ such
that p << 0 <C ¢ implies that I' is continuos.

Now suppose that

) N N
HI‘(xl’va)\/[)"‘ 'wkl]‘lgz I“'k“
k=1 k=1
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is not bounded, so that there is a sequence |(x{”, ..., a%) 12 of points of

&Y such that

l< = Lol |
k==1

and

w? < | Tl?, ... 93("”}1/{

II 4=

RE

for all positive integers w. For each positive integer w, let

= [w* s Edis

k=1
We see that
[ o]
X a, <co.
=1
Further,
co
z Z |l |} @ = 5w,
w==1 k=1 w=1
Also

T, ..., 5 @, =1

for all positive integers w. Set o be a function defined on [0, 1] by

S @ if (0— 1)/n < © < n/(n + 1),

w==1

a{x) =

w==]

0]
S a, if ©=1,
(Oifme.

Let, for each subinterval [x, y] of [0, 1], =({x, y]} = o(y) — o(x), and for each
positive integer k<< N,

it 2 = (w— 1)/w and y < w/(w + 1),
Hiw, gli=4 Y /

0 otherwise.

1 (0, 1}, F.y, ™} is a finitely additive measure space. For each positive
integer k << N, let H) = (H,7)*/t* Suppose %k is a positive integer << N. We
show that Hy is t*-summable. We observe that if » is a positive integer
and I is in a subdivision of ((n — 1}/n, n/(n 4 1)], then
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Hil)H (1) = (Hee*)(I) = T HyJ)yw'(J),
ar

which is @{”a, if I includes ((n — 1)/n, y] for some y, and is O otherwise;

and that <*(I) = I <'(J), which is a, if I includes {(n — 1}/n, y] for some gy,
e

and is O otherwive. We see that

2 x| @, <oo.

w=]

Suppose p <0<<q and 0 <¢. From the above we see that

Y mi ()
|min { max jaf”, pi, ¢}]a. <oo.

w==1

There is a positive integer ¢ > 1 such that

SR
| o < c/4.
w=0

Let ® denote
((m — 1)/n, n/(nr + 1)]| n a positive integer << @ 41} U
Q4+ 1)/1@ 4 2), 1]1.

D is a subdivision of (0, 1]. Suppose ¥ is a refinement of ®. Let

Eo={I|Iin E, e<<(Q -+ 1)/(@ + 2) for all « in I},

We see that
I min { max | Hi(l), pt, ¢ to*() =
Eg
Z min { max { HY(Iyt¥1), pt*I)}, o)} =
Eg
0+1 : o w
2 win | max | afa,, pa.l, qa.} = X minimaxie”, p}, ¢} a..
w=1 wesms]
Therefore
0
| S min|{max{a{”, p}, ¢} d.— £ min { max { H(I), pt, glt*)|=
w=1 B
S ()

L min{max oy duw, POul, .} —
w=0+2
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Y min{ max | H{{I)*(), pt™I) 1}, ¢v* )} | <
D%,

@ (w
2 % aa. <c/2
w=0Q-}-2

Therefore

min { max { H{(I), p', ¢it*I)

0, 1]
oxists and is

£ (x)
Z min{maxiaxi , p}, ¢} G.

w=1

By observations and proceedures similar to the proceding ones, we see that
if 0 << K, then

min { | HY(I)|, K }*I)
(0,13
exists and is

S () |
S min{ja’ |, Kiaw,

w=1

so that | HY | is t*-summable. Therefore, by Lemma 5.1, H} is t*~summable.

It therefore follows, since we are assuming 1), that I'HY, .., Hy) is
t*-summable, which implies that |T(Hy, ..., Hy)| is t*-summable. However,
suppose 0 < M. There is a positive integer @ > M. There is a K =0 such
that | Nal”, ..., ®%) | < K for all positive integers w== Q. Suppose D is a
subdivision of U. There is refinement X of ® and i{x, y]| (2, y] = ((n—1}/n,
n/(n + 1)] for some positive integer n << Q! U {(@/(Q + 1), 1]}, such that E
contains only elements of G, 1. Let

¥*={I|Iin B, I ={n— 1)/n, y] for some y and positive integer n << @!.
Now

2 min { | THYI), ..., Ba(I))|, Kit)=

é min { | DHIT), ..., HY(I) |, Ki8) =

0
X mini] F{mgwl, s :zfgff)} [, Kia,=

w=—1

2 () ()
Z IT(Q‘] 3 ey mN )“a102Q> M‘
1

w=
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This implies that

fmin ) THEYL, .., HyI) |, K5 = M.
(1]

Therefore |[(HY, ..., Hy)| is not t*~-summable, a contradiction. Therefore 1)
implies 2).
Therefore 1) and 2) are equivalent.
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