
Cotl t i~ui ty  and  Set F u n c t i o n  S u m m a b i l i t y .  

WILLIA~'I D.L. APPLINC~ (Denton, U.S.A.) (*) 

~tJmmary. - Ttvo cho~racterization theorems for f~,nctious from 6 "~" into R are given in terms 
of set f~uctiou integrabiuty and set fwnetion s~mmability. 

1.  - I n t r o d u c t i o n .  

The s ta tement  tha t  I U, F, ~t I is a f in i te ly  addi t ive  measure  space means  
that  U is a set, F is a f ield of subsets  of U, and ~ is a r e a l - n o n n e g a t i v e -  
va lued  f in i te ly  addi t ive func t ion  on F. I f  { U, F, ~} is a f in i te ly  addi t ive  
measure  space, then  Or denotes  the set of all r ea l -va lued  func t ions  on F, 
O+F denotes  the set o[ all n o u n e g a t i v e - v a l u e d  e lements  of pp ,  OFA ~denotes 
the set of all  bounded  f in i t ly  addi t ive  e lements  of 0F, and  t~r+~ denotes  

Or + N PFA. 
In  a previous  paper  [t] the au tho r  proved the fol lowing theorem:  

T~EORE)I 1.A.l. - I f  N is a posit ive in teger  and {[tk, uk] }~1 is a sequence  
of number  in terva ls  and  z is a r ea l -va lued  func t ion  on [t~, ul]X.. .  X[tN, ug], 
then  the fol lowing two s ta tements  are equ iva len t :  

1) I f  y is a r ea l -va lued  func t ion  on the number  in terva l  [a, b] hav ing  
bounded  var ia t ion  and {t~[~}~l is a sequence  of func t ions  of subin te rva ls  of 
[a, b] such that  for each posit ive in teger  k ~ N ,  the range  of Hk is a subset  
of [tk, uk] and  the ,, in te rva l  func t ion  in tegra l  >> (see sect ion 2) 

f gk~I)dy 
[~. p] 

exists,  then  the ~< in terval  func t ion  integral>> 

f ~[H~(1), ... 
[a. b] 

, HN(I)]dy 

exists,  and 

(*) Entrata in Redazione il ~ matzo 1970. 
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2) z is continuous. 

In section 2 we shall discuss how the following extension of 
1.A.1 can be obtained:  

Theorem 

TtIEORE]~[ 2.2. - Under  the hypothesis of Theorem 1.A.1 the following 
two statements are equivalent :  

I) !f {U, F, ~} is a finitely additive measure space and {Hk}~=~ is 
a sequence of elements of 0F such that for each positive integer k ~  ~5~ the 
range of Hk is a subset  of [tk, uk] and the integral (section 2) 

exists, then 

exists, and 

2) x is continuous. 

f Hk(I)~(I} 
U 

f z[H~(t}, ..., HN(1}]p.(It 
u 

The purpose of this paper is to give the following two extensions o[ 
Theorem 2.2 : 

TKEOREM 4.1 (section 4). - If N is a positive integer and ~ is a function 
from ~v into the real numbers,  then the following two statements are equivalent:  

N 1) If  {U, F, ~} is finitely additive measure space and {Hk}~=l is a 
sequence of lx-summable (section 21 elements of 0F, then tile integral 

fo[Hl(1), ..., 
U 

exists, and 

2) ~ is continuous and bounded. 

TItEOREM 5.1 (section 5). - If  N is a positive integer and F is a function 
from ~N into the real numbers,  then the following two statements are equi- 
valent : 

1) If (U, F, ~} is finitely additive measure space and {Uk}~=l is a 
sequence of ~t-summable elements of t0F, then r[H1, ..., HN] is ~-summable,  and 

2) i' is continuous and 
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is bounded. 

N N 

k ~ l  k ~ l  

2. - P re l iminary  theorems and definition. 

For  the basic facts, notations and conventions concerning subdivision, 
ref inement and integral, we refer the reader  to section 2 of [1] and sections 
of 2, 3 and 4 of [2] for these notions as they pertain to intervals and fields, 
respectively.  We  also refer the reader to [2] for a statoment of KOLMOGORO:F:F'S 
[3] differential  equivalence theorem and its implications about the existence 
and equivalence of the integrals that we shall use. When  the existence of 
an integral or its equivalence to an integral is an easy consequence of the 
above mentioned material,  the integral need only be written, and the proof 
of existence or equivalence left to the reader.  

We now consider a par t icular  (( extensicn )) of an interval function. 
Suppose a < b. It  is welt known that if G(o. bl = t (P, q] I a ~  p < q ~  b }, then 
the smallest field F(~.bl of sets including G(~.bl is the collection of all unions 
of finite subcollections of G(~.~]. Further ,  if V is in F(a.b], then the collection 
127 of all components  of V is a finite subset  of G(a.b]. Suppose ~ is a function 
of subintervals  of [a, b]. We  define z* as fellows: 

For each subinterval  [p, q] of [a, b] we let z'((p, q ] ) =  ~([p, q]), and for 
each F(:.b] we let 

"c*(g) = E z'(I). 
Ev 

We have the following theorem which the reader  can easily prove: 

TI-IEOREX{ 2 . 1 . -  If  a ~ b and u is a function of subintervals  of In, b] 
a .~  p < q ~ b, then the (( interval function integral 

f ~(z) 

[P, ql 

exists iff the << set function integral >) {with respect  to F(~.bl) 

f u*(I) 
{p, q] 

exists, in which case equal i ty  holds. 
W e  now prove Theorem 2.2, as stated in the introduction. 
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PRooF OF TItEOREM 2 . 2 . -  It  is easy to see that the argument  that 2) 
implies 1) can be formulated with only minor modifications to the correspon- 
ding argument  in [1], by virtue of analogous theorems in [2]. 

We show that l} implies 2). Suppose 1) is true and 2) is not true. There 
is a positive number  c and a sequence of points {(a~ ~), ..., x~ )}}~=o of 
Its, u~]X...X[tN, uN] such that 

N 
~(~) X(k o) "2 I~,0 - -  I ~ 0  

k~l  

but for each positive integer m, 

l~(~i  °) ,  . . ,  ~ ) ) -  ~t~7 ) . . . .  , ~ : ? ) ) l ~ .  

There is a sequence {H~}~=~ of functions of subintervals of [0, 1] such 
that if [p, q] is a subinterval of [0, 1], then 

N 
= 0  

if for some integer m, q is 1 / ,m;  and 

N 
I U~tlp, ql~ - z(~ °) = o 

k~l  

otherwise. 
There  is a function 7, defined on the snbintervals of [0, 1], such that 

yt[p, q ] ) =  J t if p = 0  

I 0 otherwise. 

We see that {(0, 1], F~o, 1], 7"1 is a finitely additive measure  space. 
For  each positive interger  k___~ N, let Hi'----(HkT)*/y*. We see that for 

each such k and subdivision ~) o[ (0, 1], 

Z H"~(I~'(*(I) = E E Hi(dly'(J) = Hk(J~), 
~ C I 

where Jm is the <<left most >) J in U~¢t, which implies 

f " , ~ X~ °) . Hk(I)~, ti) 

(o. 11 
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Now suppose ~ is a subdivision of (0, 1]. 
There  are re f inements  !E~ and ll~2 of ~ ,  each containing only e lements  of 
G(o.~], such that  for some integer  w, (0~ l / w ]  is in IE~, and for no integer  
m is (0, 1 / /m] in ]I~2. We see that 

X z(H"z(I) ....  , H~(I)),~*(I)- ~ -gHz(1)" . . . .  , HTM))7*(1)I= 

so that  

f z(HT(I), ... 
(0, 1] 

does not exist, a contradict ion.  
Therefore  1) implies 2). 

, HgI))y*(It 

Therefore  1) and 2} are equivalent .  

3. - Summable  set funct ions .  

In  this section we discuss some previous resul ts  [2] concerning set 
funct ion  summabi l i ty  and prove a representa t ion theorem. 

Suppose { U, F, ~} is a finitely addit ive measure  space. 
We let W~ denote  the set to which H belongs iff H is an e lement  of 

pF + such that  for some number  z and all nonnegat ive  numbers  K, 

f rain { I-I(It, K} NI} 
U 

exists and does not exceed z. 
We observe that  for each H in We, the e lement  se(H } of OF defined by 

se( t t ) (Vl=supl ;min{H(l} ' .  NIJ 0 < K  f 
V 

is in pF+a. We also observe that,  trivially, 

f s~(H}(I)-- ( r a in  {H(J}, K} NJ) ,-+0, K--->oc, 
~o 

U I 

so that  s~(H~ is absolutely cont inuous  with respect  to It. 
We state a previous theorem of the author  [2]. 
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TKEOREM 3..4.1. - If  II is in W e and H is in pF +,  then  ll + H is in W e 
iff  H is, in which  case 

s e l l  + H) = s~flI) + s~tH}. 

W e  let W* denote the set to which H belongs iff H is << ,~-snmmable >>, e 
i.e., for some I/ and Z, each in IVy, 

H=II--Z. 

I t  is easi ly  shown in [2] tha t  Theorem 3.A.! implies  tha t  if each of l], 
II', Z and Z ~ is in W~ and 

II --- Z = II' - -  Z', 

then  

setlI} - -  sAZ} = s~llI'~ - s~(Z'~. 

This cons is tency enables  us to def ine a << summabi l i ty  opera tor  ~, s~ on W~, 
as follows: I f  H is in W~,  then  

s~t t}  = se(II ) -- setZI, 

where  
H = I I - - Z ,  

and each of I] and Z is in I¢~. 
We  also easi ly see that  s~ 

fu r the r  follows that  
se, so that  we can 

we = n +. 

* It write s~ for se.  

We note tha t  if :F is in W~, then  s~{]f) is absolute ly  con t inuous  with 
respect  to ~t. 

We now state  a condensa t ion  of some resul ts  of [2] that  we shal l  need 
in subsequen t  sections. 

TEEOI~E~¢[ 3.A.2. - Suppose e~ch of X and ]C is in W~ and c is a number .  
Then  W~ conta ins  each of X + t %  cX, m i n { X ,  ] ~ } , a n d m a x { X , ¥ } . F u r t h e r -  
more, 

stAX + r) = selX ) + serf}. 

Also, if X is bounded,  then for each V in F,  

f x(II~(I~ = s~,.(x)(v). 
V 
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Now suppose Z is in PF. We see that 

Z - - m a x { Z ,  O } - - [ - m i n I Z  , O},  

and that Z is in W* iff (bach of max{Z,  O } and -- rain {Z, O } is in W~. t~ 

We now prove a representat ion theorem. 

TKEORE~ 3.1. - If H is in OF and ~ is in PF~, then the following two 
statements are equivalent :  

1) H is in W~ and ~--sL~(H), and 

2} i f p ~ 0 ~ q ,  then 

f min { 
U 

max t H(I}, p t, q} Ix(I) 

exist and 

.flN(1)-- f min{max{H{J), p}, q! ix(J) --->0, m i n { - - p ,  q } - - > ~ .  
U I 

PROOF. - We observe that if a ~ 0 < _ _  b and x is a number,  then 

m i n { m a x t x  , 0}, b } - - m i n { - - m i n [ x ,  0},  - - a } = m i n { m a x i x ,  a} ,  b}. 

Now suppose 1) is true. 
We see that each of m a x t g ,  O} and - - r a i n / H ,  O} is in IA~, so that, 

if p ~ 0 ~ q, then by the above equali ty we have the following equality and 
consequent existence : 

rain H(I), 0 t~(I) -- | r a i n  { - -  min { HIÀ), 0 }, 
/ -  

[ } m a x  q 
. J  

f min { max I H(I), p f, q} Ix(l) • 
U 

We also see that 

- -  p} i~(It = 

"~ -- se(H) : s~(max I H, O }}-- sg rain I H, O }), 

so that 
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f t~(I) --.(rain { max { H(J), p } , q  }~(J) I ~  
u I 

f]~(ma~lH, O})(r)--fminIm.xtH'a), o}, qi~(j)I + 
U I 

f sE~ ( -  min {H, O } ) ( I ) -  fmin { -  rain { H(J), 0 }, - -  p} ~t(J) 
U I 

min { - -  p, q } ---> c~. 

Therefore 1) implies 21. 
Now suppose 2) is true. 
First, we see that if 0w~ rain {K, 

O ~ O ~ K ,  
K'} and 12 is in F, then, 

f mi. {,n~ (H(~), o}. K} ~(x) 

-->0 

since 

exis ts  se that, since - -  K ' ~ 0 ~  K, we have the following equality and 
consequent existence : 

f min { max { H(I), --  K'  }, K } ~(I) -- ( ra in  { max I H(I), 0 }, K} ~(I) = 
J 

v V 

Therefore 

f ~  rain { 
V 

min { g(/), 0}, K'} ~(I). 

f ~(i) - [  ( m~n I max (,(J), 0 1, g l ~(Jl -- 
.9 

U I 

f min { - -  rain { H(J), 0 }, K' } ~(JJ] -- 
I 

f ~ ( I ) - - f m i n { m a x ( H ( J ) ,  --K'}, K}~(J) --->0, min{ K', K } - - > ~ .  
U I 

We see that there are numbers r and s such that r ~ 0 ~ s  and such 
that if p ~ r and s~q ,  then 
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f l n ! l j - - ( f  min(max{H(J), 0}, q}~IJ)-- 
U I 

so that 

f min I --  min I H!JI; 0 }, --  p } l~(J}] < 1, 
t 

/t~(I)--l/'min{max{H(J b 0 } ,  q}~{Ji-- 
U 1 

and 

/ m i n { - - m i n t H ( J  L 0 } ,  - - r f g ' J l ] ] < l  
I 

U I 

f min { - -  min { H(Ji, 0 } - -  p } ~(J)] < 1, 
I 

which implies that 

and 

sap l f min l max ( H(li' O t ' K } ~qI~ l O ~-- K l  < 
u 

supl f minlmintH*I), 0 } ,  K'}~ilt]O~K'I<z,~. 
U 

This implies that each of max(H ,  O1 and - - m i n { H ,  O} is in 1~ r so that 
H is in W~ and, since 

se(H) = s~(max [ H, O t) --  s~(-- min { It, O }), 

it follows from then end of the preceding paragraph that ~ : se(H). 
Therefore 2) implies 1). 
Therefore 1) and 2) are equivalent. 

4. - An integrabi l i ty  theorem. 

In this section we prove Theorem 4.1, as stated in the introduction. 
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PROOF OF TI~ORE~X. - First, suppose 2) is true, { U, F, ~} is a finitely 
additive measure  space and t H~ }~'=~ is a sequence of elements of W~. 

Suppose 0 < c .  There is a number  M such that l~{xx, ..., x N ) ] ~ M  for 
all (x~, ..., xN) in ~ .  By Theorem 3.1 there is a positive number T such 
that if k is a positive integer ~ N am] each of r, s, t and u>_ T, then 

jl min 1 max [ H~(I) ,  - -  r l ,  s }  - -  rain I max { Hk(/), - - / } ,  u I[ Ix(I) < c/[SN{M -t- 1)]. 
U 

It follows that for each positive integer positive integer k _ ~ N  there is a 
subdivision ~ o£ U such that if ~ is a ref inement  of Ok, then 

c / [ S N ( M - I -  lj] < E t m i n i m a x { H ~ ( I J ,  - - T - - 1  }, T +  1 I - -  
~5 

min  { max  { H~(I), - -  T I, T l t  I~(I) ~ ~, ~(I~, 

where ]E* is the set (if any) of all S in ~ such thnt t tk(I)> T-{-1 or 
H ~ ( I ) < - - T - - 1 .  

Let X(IJ denote H~fIt, . . ,  He+(/) and Z(I) denote min l max/Hi( I ) ,  - - T - -  
- - 1 } ,  T + I } ,  ..., m i n t m a x t H N ( I ) ,  - - T - -  1}, T + [ } .  
There  is a common ref inement  ~ of all the above ~k.  If 115 is a ref inement  
of ~ ,  then 

t o(x~r))  - o(z ls ) )  ! ~(z)  = ~ I ~ x ( s ) )  - ~ l z ( s i )  I ~(s)  

2MNc/[SN(M + 1t] = 2Mc/[8(M + 1)] < o/4,  

where ]E' is the set (if any) of all I in ~ such that for some positive integer 
k ~ N ,  Hh(I)> T + I  or H k ( I ) < - - T - - 1 .  

By Theorem 2.2, j" e(Z(I)ll~(I ) exists, so that there is a subdivision ~*  of 
v 

U such that if ~ is a ref inement  of ]D*, then 

~Io(z(I}l~(I)-- f ~(z(J~)~(J)t < 0 / 4 .  
1 

There is a common ref inement  ~** of ~ and ~*. 
If ~ is a ref inement  of ~**, then 
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[ o ( x ( i ) ) -  o(z(5) 

U 

I 

< 0 / 4  + c / 4 .  

Therefore,  if each of ~ and ~2 is a ref inement  of ~**,  then 

t Z ~(X(I) )NI  ) - -  Z ~(X(I))N1) / < c / 2  < c. 

Therefore j" z(HgI ) . . . .  , HN(I))NI) exists, so that 2) implies 1}. 
v 

We now that 1) implies 2). Suppose 1) is true. It  is easy to see that the 
continuity of z follows from Theorems 2.2 and 3.A.2. 

We show z is bounded. Suppose, on the contrary, that there is a sequence 
~x 0~) ... ~'(~)) }m°°=~ of points of ~N such that 

[ ~(~i :),  ..., ~ ) )  [ + ~ ,  +'+ -~  o~. 

For each positive integer k ~ N, there is a function H~ defined on the subin- 
tervals of [0, 1] by 

IIk([p, q])t xO/P) if p # 0 and 1 / p  is a positive integer 

I 0 otherwise 

There is a function, "~, defined on the subintervals  of [0, 1] by ~T{[P, q]) = q -° P. 
We see that {(0, I], F(o, 1], ~*} is a finitely additive measure  space. 

For  each positive integer k ~ N ,  we let I I " =  
Suppose 0 < c  and 0 < S .  There is a number  w such that 0 < w <  1 and 
w <c / / (4S ) .  There is a subdivision ~ of (0, l] containing only (0, w] and 
elements of G(o, 1] such that if Q is the number  of positive integers whose 
reciprocals ~_~w, and IP, q] is in ~ and w_~_p, then q - - p < c / ( 4 S Q ) .  
Suppose :~ is a refinement of ~ .  W e  see that there are at most Q elements 
V of ~ included in (w, 1] such that II~'(V)~ 0. Therefore 

I t ' I  it . '  ~, rain { i k( V) l, S} ~*(V) < Se / (4S)  + QSc ff(4SQ) = e/ /2 .  

Therefore  

f min ( ! n ; ( v )  I, s i ~+(Vt = 0, 
U 
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which impl ies  that  

f min I max  I II"t V), 01 ,  S t ~*(V) = 0 --/minl - min  t H~'(F), 0 }, SI  ~*(V), 

U U 

so that  II~' is in W~L. Now suppose  1 < M and ~) is a subdiv is ion  of (0, 1]. 
There  is a r e f inemen t  ~)' of ~ such that for some w > 0, (0, w] is in ~)'. 
There  is a posi t ive in teger  Q such  that  if m is a posi t ive  in teger  ~ Q, then 
w ~ l /m, > w/2 and 

where  

and 

I~(x~ ~), ..., x(N'°l t > M t l  + Ti~2/w), 

T = !~(o, ... ,  o~i + N I ~(Hz(x}, ... ,  n ~ ( [ ) ) l  w*(I), 

~ * = l l I I i n  ~ ' ,  w < x  for all x in I } .  

Le t  ]5----1(0, l /Q] ,  ( l /O,  w]} (.-) ~)*. ~ is a r e f inement  of ~ '  and 

i x ~([Ii'(xt, g;¢(I))~*(ztt~I~(x9 m ~(YQ)i'(w - -  l/q} 

[I o(o, . . ,  o) l( i /Q ) + ~ I ,(II;(1), ... ,  H;¢JIt t ~*(I)] > 
:~* 

M~I + T)(2/w)(w --  l / Q ) -  T >  M(1 + T)(2 /w)(w/2) -  T =  

There fo re  

M + M T - - T > M .  

( l ( I ) ,  I]" " * II~gI))~ (I} 

U 

does not exist ,  a cont radic t ion .  There fo re  1) impl ies  2}. 
There fo re  1 t and 2) are  equiva lent .  

5. - A s u m m a b i l i t y  theorem.  

In  this sect ion we prove  Theorem 5.1, as s tated in the in t roduct ion.  
We  begin  with a lemma.  

LEMMA 5.1. - If  f U, F,  i~} is a f ini te ly addi t ive  measu re  space  and H 
is in OF, then the fol lowing two s t a t ements  are  equ iva len t :  

1 t H is ~ - summab le ,  and 
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2) [HI is Ft-summable, and if p ~ 0 ~ q ,  then j ' m i n { m a x { H ( I ) ,  p } ,  
q } I~(I) exists, v 

PROOF. - From the theorems of section 3 it is obvious that  1) impl ies  2). 

Suppose 2} is t rue and 0 ~ K. 

f min ( max (H(I), 0} ,  K} ~(1)  fmin {I H(z) I, K} ~(Z), 
U U 

which implies  that  m a x { H ,  O} is ~-summable .  Fur ther ,  

min[- -minIH,  0 } , K } - - m i n [ m a x { - H ,  0}, K}=rnaxlmint--H, K}, O}--- 

max I -- max { H, - K }, 0 } -- -- rain { max { I-I, -- K}, 0 }. 

Now, we see that  

exists, so that  

exists. Also 

J 
U 

f -- min { max (H(I), -- K}, 0 } ~(I) 
U 

f min { - -  min { H(It, 0 }, K } ~(I) 
U 

rain {-- rain {HI/), 0},  K} ~ ( I ) ~ f m ~ n  {I H4z~ [, K} ~(I}, 
U 

which implies that  - -  min i H, O } is ~-summable ,  so 
p.-summable. Since ]~ --  max { I-I, O I -{- rain / H, O I, 
i~-summable. Therefore  2} implies 1). 

Therefore  1) and 2) are equivalent .  

that  m i n { H ,  O} is 
it folh,ws that  H is 

PROOF OF TI-IEOREI~I 5.1. - Suppose 21 is t rue and I U, /;, Ftt is a f ini tely 

addi t ive measure  space and I Hk 1~=i is a sequence of lz-summable e lements  
of t0r. Let  X{I) denote ttl{I}, ..., HN{I} I f  p G O ~ q  and 0 <_ K, then the 
funct ions  min 1 max I r ,  p I, q I and mia I t p I, K I  are cont inuous  and bounded,  
so that  by Theorem 4.1, each of 

f min I max 11'~X(I}}, P t, q I~{1) a, ndfmin  11 vIx~I)l l, K II~(I) 
U U 
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exists. Now, there are nonnegative numbers M and M' such that if (x~, ..., xN) 
is in 8N, then 

N 

I Mif Z llx~]<l 

( M' Z I xk! otherwise 

N 

M' X [Hk[ is p-summable.  If ~3 is a subdivision of 
k - - 1  N 

~ ) * - - t l I I i n  ~), E [ H k ( I } [ < l f  (if any), we have 

U and 0 ~ K ,  letting 

E rain 11 l'tX(I}) 1, K I pII) = ~ m i n i ]  l'~X(i)) 1, K I ~(I) + 

Z min  I [ r(Xtli) I, K p(I} ~ M E NI} + 
~ - - ~ *  ~ *  

2; 

E m i n i M '  )3 I Hk(I} 
~ ) - - ~ ) *  k ~ l  

, K I NI)<_ MNU) + 

N 

Z min I M' E 

This implies that 

f min lr~x(1)){ ,  KIp(I)~_M~IU)+f 
u U 

N 

rain 1 M' x Hk(I) l, K I ~(lt, 
k = l  

which implies that [FtHI . . . .  , HNtl is p-summable.  Therefore,  by Lemma 5.1. 
5.1, F{Hx, ..., HN) is p-summable.  Therefore 2) implies t). 

Now suppose i) is true. 
2V 

Suppose p ~ 0 ~ q .  If I U, F, P l is a measure space and I tt~Ik=~ is a 
sequence of p- summable elements of pF, then 

f min i max I I'lHliI} . . . .  , Hz,,(I)}, p t, q l p(I) 
u 

exists. Theorem 4.1 implies that m i n l m a x l F ,  p l ,  q f  is continuous. We 
easily see that the continuity of m i n l m a x t F ,  p f, q l for all p and q such 
that p~0~___ q implies that P is continuos. 

Now suppose that 

N N 

l l r ( x l , , , , x N ) i / [  ~ ] ~ J ] ! l ~  z Ix~ll 
k ~ l  k = l  
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is not bounded, so that there is a sequence 
8 ~ such that 

N 
1 < _  z l~?)l 

k ~ l  

and. 

l (x~ ~), ..., x~ ~)) t ~  of points of 

N 
~v: ~ t r (x?  ), ..., x(;)) 1/[ ~ 1 ~?)t] 

for all positive integers w. For  each positive integer w, let 

We see that 

Fur ther ,  

Also 

N 
a= = [~v ~ z L x? ) [ ]  -~ .  

k~l 

oo 

N 

I r(~i  w), ... ,  x(;)) i a~ _> 1 

for all positive integers w. Set ~ be a function defined on [0, I] by 

¢~(xt = 

i n 
E aM if ( i t - -  1)/n < x ~ n/(n + I), 

oo 
E a ~ i f  x = l ,  

0 if ~ - = 0 .  

Let, for each subinterval [w, y] of [0, 1], z[[x, y ] l -  ~(y)--~(x), and for each 
positive integer k ~ N, 

Hk([x, Y]t--- t xF) if x -- {w --  1)/w and y < w/(w + I), 

( 0 otherwise. 

I(0, 1], F(o.,], ~*} is a finitely additive measure  space. For each positive 
integer  k ~ N, let Hi' = (H~':)*/':*. Suppose k is a positive integer ~ N. We 
show that ItS' is ~*-summable. We observe that if n is a positive integer 
and I is in a subdivision of (in ~ 1)/n, n/(n ~ 1)], then 
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Hi'{I)~*(I) (H~z*)([) ~ tk(J)z tJ), 
E[ 

which  is x~")a, if I inc ludes  ( ( n - - 1 ) / n ,  y] for some y, and is 0 o the rwi se ;  
and that  x * ( [ i - -  ~ ":'(J}, which is a= if I inc ludes  { ( n - - 1 ) / n ,  y] for some y, 

q;i 

and is 0 o therwive .  W e  see that  

x ixiW) l c t . < ~ .  

Suppose  p _ ~ O  ~_ q and 0 < c. F r o m  the above we see that  

oo 

Z ~(~) 
I m i n { m a x / ~ k  , P l , q f l aw < c<~. 

There  is a posi t ive  in teger  Q > 1 such~that  

i x(91a~ < ot4. 
w=Q 

Let  ~D denote  

t((n-- 1)/n, n/(. q- 1)]In a posi t ive in teger  < Q d- 1 f U 

I ((Q + 1)/~Q + 2~, ~] l . 

~) is a subdiv i s ion  of (0, 1]. Suppose  ~ is a r e f inement  of ~ .  Le t  

]~Q ~- t I I I  in :~, x _ ~ ( Q  + 1)/(O + 2) for all x in I f .  

W e  see that  

Q+I 

E rain { max  I H~'(IL p }, q }z*[I} = 
~p 

X min { max  H'k'(I)"c*(I), p'c*(I) t ,  q'c*(I) } = 
~Q 

rain I max  k 'w 

Q+I 
, q a ~ l =  Z 

w~I  

~(~) 
m i n l m a x l ~ k  , P l , q l aw. 

There fo re  

Oo 

[ .v min l max  xl °), p l, q a ~ - -  X rain t max  t H'k'{I}, p I, q I z*(1}t - -  

03 

w=Q-~2 
r a in  max I ~ ' ~ ,  pa~ t, qa~ } 
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Therefore  

exists and is 

E min  ~ max~H~(I)~'(I) ,  p t* ( I ) ! ,  qt*(I)! 1 
]O--~O 

--d 
~=QA-2 

xY) l a~ < ~/2. 

f m i n i  max H~'(I b p ! ,  q ":*(I) 
(0, 1] 

rain { max i x(k ~), P t, q a w .  

By observations and proeeedures  s imilar  to the proeeding ones~ we 
if 0 ~ K ,  then 

f min t] H~'(I) [, } K '~$(/)  

(o, 1] 

exists and is 

min i t x(k~) i, K ! a ~ ,  

see that  

H t !  so that  I k l is z*-summable.  Therefore,  by Lemma  5.1, H" k is x*-summable.  
I t  therefore follows, since we are assuming 1), that F~HI', . . ,  H~) is 

z*-summable,  which implies that  I r ( g l  ', ..., H ~ q  is z*-summable.  However,  
suppose 0 < M .  There  is a positive integer  Q > M .  There  is a K ~ 0  such 

p~.(w) ... X,(~) that  ] . ~  , , I ~ K  for all positive integers w ~ Q .  Suppose ~ is a 
subdivision of U. There  is re f inement  :~ of ~) and i(x, y]l{x, y ] - - ( (n - -1 } / n ,  
n / ( n + l ) ]  for some positive integer  n ~ Q !  U I(Q/(Q-~ 1), 1]!, such that  :~ 
contains  only e lements  of G(o.~]. Let  

~ * - "  I I I  I in ]~, I - -  ( (n--  1)In, y] for some y and positive in teger  n ~  Q !. 

Now 

E min t1F(H~'([), . . ,  H~(I)} I, K !  z*(I) 

E rain {] F(HI'(I), ..., H~-(I)) {, K ! ~*(I) --  

Q 

E rain iT Vt~,~ w) ~) , . . . ,  x )E, K ! a ~ - =  

Q 
] r l ~  w), . . ,  x~)~!a,o ~ q > ~ .  
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This implies that 

f min F(HI'(I), H~(I))], K I ~*(I)~ M. I I 

(o. q 

Therefore ] r(H~', ..., H~)] is not z*-summable, a eontr~tdietion. Therefore 
implies 2). 

Therefore 1) and 2) are equivalent. 

1) 
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