Calderón algebras of smoothing operators (*)

Umberto Nert (U.S.A) (**)

Summary. - Certain classes of integral operators between generalized Sobolev spaces are shown to form algebras, ex towed with an approximate functional calculus, having properties similar to those of psendo-differential operators.

Introduction.

Over the last few years Calderón (see [1] and [2]) has developed an algebra of integral operators which refines the algebra of singular integral operators in [3] without imposing unduly restrictive assumptions on the regularity of the symbols. The aim of this paper is to discuss this algebra of operators from a different point of view, providing new and simpler proofs of the fundamental properties and describing some additional results which are indispensable for the study of these operators on manifolds.

The paper is divided into three sections. In the first, we give the definition of the operators and of their symbols, and, after establishing a few preliminary properties, we state the main results. Section II is devoted to the proofs of these main results. Finally, in sections III, we present the additional results mentioned above.

Our notation is fairly standard. We denote by $x=\left(x_{1}, \ldots, x_{n}\right), y, z$ points of Euclidean space $E^{n}, n \geq 2$, and by $x=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and β the multi-indices. Points in the dual Euclidean space are denoted by $\zeta=\left(\zeta_{1}, \ldots\right.$, $\left.\zeta_{n}\right)$ and $<z, \zeta>=z_{1} \zeta_{1}+\ldots+z_{n} \zeta_{n}$ is the daal pairing. As usual, $|x|=\left(x_{1}^{2}+\ldots\right.$ $\left.+x_{n}^{2}\right)^{1 / 2},|\alpha|=\alpha_{1}+\ldots+\alpha_{n}, \quad \alpha!=\alpha_{1}!\ldots \alpha_{n}!$ and $D=(2 \pi i)^{-1}(\partial / \partial x)$, where $(\partial / \partial x)$ denotes the gradientoperator on E^{n}. We write $\$^{n-1}=\{\zeta:|\zeta|=1\}, E_{0}^{n}=E^{n}-$ (0), and $\partial_{x}^{\alpha} f=(\partial / \partial x)^{\alpha} f$. The space of smooth, rapidly decreasing functions

[^0]is denoted by \mathcal{S} and its dual, the space of temperate distribations, by \mathfrak{S}^{*}. The Fourier transform of a function f is denoted by \bar{f} or $\mathscr{F}(f)$, where \mathscr{F} and g^{-1} are respectively the Fourier transformation and its inverse. When taking the (inverse) Fourier transform only with respect to certain variables, we use abbreviations of the form
$$
\left.\mathscr{d}_{5}^{-1}[p(x, \zeta)](z)=\int e^{2 \pi i<x, \zeta}\right\rangle_{l}(x, \zeta) d \zeta .
$$

Finally, with $1<p<\infty$ and s real, we denote by $L_{s}^{p}=L_{s}^{p}\left(E^{n}\right)$ the generalized Sobolev spaces (e.g. [4], Chapter II) and by $\|f\|_{p, s}$ the norm of f in L_{s}^{p}. When $p=2, L_{s}^{2}=H^{s}$ and the norm is simply denoted by $\left\|\|_{s}\right.$. If $s=k$ is a positive integer, L_{s}^{p} coincides with the Sobolev space $I_{k}^{p}\left\{E^{n}\right\}=\left\{f: D^{x} f=L^{p}\right.$, $0 \leq|\alpha| \leq k\}$, where L^{p} is the usual Lebesgue space and the derivatives are taken in the sense of distributions.

I.

Let us recall some convenient terminology. A function $\theta \in C^{\infty}\left(E^{n}\right)$ is called a patch-function if $\theta(\zeta)=0$ in a neighborhood of the origin and $\theta(\zeta)=1$ on a neighborhood of infinity. Let [$[$] denote the integral part of a real number ρ, and let $m \geq 1$ be an integer.

In what follows, we shall always have $0 \leq \rho<m$.
Definition 1.0. - A function $a(x, \zeta)$, on $E^{n} \times E_{0}^{n}$, is said to be a B_{m}^{∞} homogeneous symbol of degree-p if, for all $\lambda>0$,

$$
a(x, \lambda \zeta)=\lambda-\beta a(x, \zeta)
$$

and if, for every β and each α with $0 \leq|\alpha| \leq 2 m-[\rho]$, the functions $\mathfrak{d}_{x}^{x} \hat{\theta}_{\underline{E}}^{2} a(x, \zeta)$ are continuous on $E^{n} \times E_{0}^{n}$ and bounded on $E^{n} \times S^{n-1}$.

For brevity we denote by $\mathfrak{L}(p)$ the algebra of all bounded linear operators on $L^{p}, 1<p<\infty$. Let us define certain classes \mathfrak{I}_{m} in this algebra.

Definition 1.1. - A linear operator $S: S \rightarrow L_{m}^{p}$ belongs to \mathscr{I}_{m} if the operators $S,(\partial / \partial x)^{\alpha} S$ and $S(\partial / \partial x)^{\alpha}$ are bounded in L^{p} norm for all α with $|\alpha|=m$.

Clearly, we can regard \mathscr{J}_{m} as a subset of $\mathcal{S}(p)$ by extending (by continuity) each S in \mathfrak{I}_{m} to an element of $\mathcal{L}(p)$. We set $\mathfrak{J}_{0}=\{\mathcal{L}(p)$.

Lemma 1.2. - Operators in \mathfrak{g}_{m} can be extended to bounded operators from L_{s}^{p} to L_{s+m}^{p} for all real s such that $-m \leq s \leq 0$. Conversely, every linear operator $S: S \rightarrow L_{m}^{p}$ with this property belongs to \mathfrak{I}_{m}.

Proof. - Let $S \in \mathfrak{I}_{m}$ and $s=0$. Then, as is well known, the boundedness in L^{p} norm of the operators S and $(\partial / \partial x)^{\alpha} S$, for all $|\alpha|=m$, implies that S extends by continuity to a bounded operator from L^{p} to \boldsymbol{L}_{m}^{p}. Now, we let $s=-m$ and we recall that L_{-m}^{p} can be also characterized as the space of all distributions of the form

$$
f_{0}+\underset{|\alpha|=m}{\mathbf{y}}(\partial / \partial x)^{x} f_{\alpha}
$$

where f_{0} and the f_{α} are functions in L^{p}, endowed with the corresponding norm. Hence, the boundedness in L^{p} norm of the operators S and $S(\partial / \partial x)^{x}$, far all $|\alpha|=m$, implies that S also extends to a bounded operator from $L_{m m}^{p}$ to L^{p}. Therefore, by interpolation, S can be extended to a bounded operator from L_{s}^{p} to L_{s+m}^{p} for all real s such that $-m \leq s \leq 0$.

The converse follows easily from the fact that, for every α, the linear $\operatorname{map}(\partial / \partial x)^{x}: L_{t}^{p} \rightarrow L_{t-|\alpha|}^{p}$ is continuos for $1<p<\infty$ and every real t. Q.E.D.

The Calderon algebra \mathcal{S}_{m} of integral operators is defined as follows.
Definition 1.3. - For an integer $m \geq 1$, we denote by \mathfrak{S}_{m} the class of linear operators which are finite sums of the form

$$
\begin{equation*}
A=\left[\Sigma A_{j}\right]+S \tag{1.0}
\end{equation*}
$$

where $S \in \mathfrak{J}_{m}$ and, for all $f \in \mathcal{S}$,

$$
\begin{equation*}
\left.\left[A_{j} f\right] x\right)=\int e^{2 \pi i<x, \zeta} p_{j}(x, \zeta) \bar{f}(\zeta) d \zeta \tag{1.1}
\end{equation*}
$$

where, for some patch-function θ,

$$
\begin{equation*}
\left.p_{j}(x, \zeta)=a_{j}(x, \zeta) \theta_{1} \zeta\right) \tag{1.2}
\end{equation*}
$$

and $a_{j}(x, \zeta)$ is a B_{m}^{∞} homogeneous symbol of degree $-\rho_{j}$, with $0 \leq \rho_{j}<\rho_{j+1}<m$
The equivalence of this definition with the one given by CahDeron is an immediate consequence of the following Lemma the proof of which, as given in [1], applies unchanged to our L^{p} setting.

Lemma 1.4. - If two operators in \oint_{m} have corresponding functions $p_{j}(x, \zeta)$ which coincide for all (x, ζ) with $|\zeta|>c$, then their difference belongs to \mathfrak{J}_{m}.

For any real number s, we denote by I^{s} the operator given by

$$
\left[I^{s} f\right]^{-}=d(\zeta)-\widehat{s} f
$$

where $d \in C^{\infty}\left(E^{n}\right)$ is a strictly positive radial function which coincides with $|\zeta|$ on $|\zeta| \geq 1$. See [2], [5]; the basic properties of I^{s} are also discussed
in Chapter II of [4], where this operator was denoled by J^{f}). We recall that, for $1<p<\infty$ and any real $t, I^{s}: L_{i}^{p} \rightarrow L_{i+s}^{p}$ is an isometric isomorphism.

Lemma 1.5. - Let A_{j} be an operator of the form (1.1) Then:
(a) A_{j} can be extended to a bounded operator from L_{s}^{p} to $L_{s+\iota}^{p}$ provided that $-m \leq s \leq s+t \leq m$ and $t \leq p_{j}$.
(b) If $t>\rho_{j}$, no such extension exists unless the corresponding symbol a_{j} in (1.2) is identically zero.

Proof. - (a) It follows from Definition 1.3 and Lemma 1.4 that we can represent $A_{i}{ }^{*}$ in the form

$$
\begin{equation*}
A_{j}=A_{0} I \rho_{j}+S \tag{1.3}
\end{equation*}
$$

where $S \in \mathscr{I}_{m}$, and hence by Lemma 1.2 has the desired continuity property, and where A_{0} is given by the principal valne integral

$$
\left[A_{0} f\right](x)=p \cdot v . \int e^{2 \pi i<x, \zeta>} a_{0}(x, \zeta|\bar{f}| \zeta) d \zeta, \quad f \in \mathcal{S}
$$

with $a_{0}(x, \zeta)$ a homogeneous symbol of degree zero. Consequently, by a well know result of Calderon and Zygmund ([3], or Chapter IV of [4],

$$
\left[A_{0} f\right](x)=a(x) f(x)+p \cdot v \cdot \int k(x, x-y) f(y) d y
$$

is a singular integral operator which gives a bounded linear map of L_{k}^{p} into itself, for every integer k with $|k| \leq m$ and $1<p<\infty$. Moreover, letting

$$
M_{\alpha, \beta}=\sup \mid \partial_{x}^{x} \partial_{2}^{2} a_{0}\left(x, \zeta| |, \quad \text { over all } x \in E^{x} \text { and }|\zeta|=1,\right.
$$

and

$$
\left\|A_{0}\right\|_{m}=\max \left\{M_{\alpha, \beta}: 0 \leq|\alpha| \leq m \text { and } 0 \leq|\beta| \leq 2 n\right\}
$$

we have that

$$
\begin{equation*}
\left\|A_{0} f\right\|_{p, k} \leq C\left\|A_{0}\right\|_{n}\|f\|_{p, k} \tag{1.4}
\end{equation*}
$$

for all f in L_{k}^{p}.
Now, by interpolation, A_{0} maps L_{s}^{p} continuously into itself for all real s with $|s| \leq m$. Therefore, combining this result with the continuity property of $I^{\rho}{ }^{f}$, the desired conclusion follows directly from (1.3).
(b) It suffices to consider the L^{2} case. We write p_{i} in the form $p_{j}(x, \zeta)=a_{0}\left(x,\left.\zeta|\beta(\zeta)| \zeta\right|^{-\rho_{j}}\right.$, where a_{0} is a homogeneous symbol of degree zero and θ is a patch-function. If $\tau \in C_{9}^{\infty}\left(E^{n}\right), 0 \leq \tau(\zeta) \leq 1$, and $\tau(\zeta) \equiv 1$ on a neighborhood of the set where $\theta(\zeta)=0$, then, for all $\zeta \in E^{n}$, the function $\beta(\zeta)=$ $=\tau(\zeta)+\theta(\zeta)|\zeta|^{\rho_{j}}$ satisfies estimates

$$
C_{1} d(\zeta)^{p_{j}} \leq|\beta(\zeta)| \leq C_{2} d(\zeta)^{\beta_{j}}
$$

and hence the operator $L_{i}: S \rightarrow \mathfrak{S}$. given by $\left[L_{j} f\right]^{-}=\beta \bar{f}$, extends to a linear isomorphism from L_{s}^{2} to $L_{s-p_{j}}^{2}$, for all real s.

Now, $A_{j} L_{j}=T_{0}+S$ where

$$
\left[T_{0} f\right](x)=\int e^{2 \pi i<x, \zeta>} a_{0}(x, \zeta) \theta^{2}(\zeta \mid \widehat{f}(\zeta) d \zeta
$$

and $S \in \mathscr{I}_{m}$ since $\tau(\zeta)$ has bounded support. If we suppose that, for some $\varepsilon>0$ with $\rho_{j}+\varepsilon<m,\left\|A_{j} u\right\|_{0} \leq C\|u\|_{-\rho_{j}-\varepsilon}$ for all $u \in \mathcal{S}$, then, with $u=L_{j} f$, we would have that

$$
\left\|A_{j} L_{j} f\right\|_{0} \leq O\left\|L_{j} f\right\|_{\rho_{j}-\varepsilon} \leq C^{\prime}\|f\|_{-\varepsilon}
$$

and hence

$$
\left\|T_{0} f\right\|_{0} \leq C\|f\|_{-8}
$$

for all $f \in \mathfrak{\$}$. However, it is an immediate consequence of a well known Lemma of Gohberg (e.g.[7]) that this last inequality cannot hold" for any $\varepsilon>0$ unless $a_{0}(x, \zeta)$, and hence $\alpha_{j}(x, \zeta)$, vanishes identically.
Q.E.D.

Remarks 1.6. - (a) Any operator A_{j} of the form (1.1) belongs to \mathfrak{J}_{k} for every integer k such that $0 \leq k \leq\left[p_{j}\right]$. This follows immediately from Lemmas $1.5(a)$ and 1.2 .
(b) For every integer $m \geq k \geq 1$, the class \mathcal{S}_{m} is contained in \S_{k}, and every operator in \mathfrak{S}_{m} extends to a bounded operator on L_{s}^{p}, for $1<p<\infty$ and $0 \leq|s| \leq m$. In fact, with $m>k$ and $A=\Sigma A_{j}+S$ in S_{m}, if the homogeneous symbol a_{j} associated to A_{j} is of degree - ρ_{j} with $\rho_{j} \geq k$, then, by 1.6(a), the corresponding operator A_{j} belongs to \mathfrak{J}_{k}. Thus $A \in \mathfrak{S}_{k}$. Then, Lemma 1.5 (a) gives the remaining conclusion.
(c) Lemma 1.5 (b) implies, as is easily seen, that for operators A in \Im_{m} the expressions (1.0) are uniquely determined. In fact, if $A=0$ in (1.0), then all the $A_{j}=0$, and hence $S=0$, because the corresponding homogeneous symbols $a_{j}(x, \zeta)$ in (1.2) must be identically zero. Consequently, on \mathfrak{S}_{m}, we have a well-defined linear map $A \rightarrow \sigma(A)$, given by

$$
\begin{equation*}
\sigma(A)=\Sigma a_{j}(x, \zeta), \quad 0 \leq \rho_{j}<\rho_{j+1}<m \tag{1.5}
\end{equation*}
$$

with null space equal to \mathfrak{I}_{m}. Conversely, each function σ of the form (1.5) determines an operator $A \in \mathfrak{S}_{m}$, unique modulo \mathfrak{I}_{m}, such that $\sigma(A)=\sigma$.

Definition 1.7. - The function $\sigma(A)$ is called the (full) symbol of the operator A in \mathfrak{S}_{m}. The first term $a_{j}(\mathrm{x}, \zeta)$ in (1.5) which is not identically equal to zero is called the principal symbol of A, and A is said to be a smoothing operator of degree $\rho_{j}, 0 \leq \rho_{j}<m$, (and class Σ_{m}) with principal part A_{j}.

Of course, the principal part of an operator A in \mathbb{S}_{n} is only uniquely defined modulo \mathfrak{I}_{m}. If we denote by Σ_{m} the vector space of all finite ordered sums of the form (.5), then Remark 1.6 (c) states that the symbol map, $\sigma: \mathfrak{S}_{m} \longrightarrow \Sigma_{m}$, is a well-defined linear map for which

$$
\{0\} \rightarrow \mathfrak{I}_{m} \xrightarrow{i} \mathfrak{S}_{m} \xrightarrow{\sigma} \Sigma_{m} \rightarrow\{0\}
$$

is an exact sequence, where $i: \mathscr{I}_{m} \longrightarrow \mathfrak{S}_{m}$ is the inclusion map.
As it is done for pseudo-differential operators, we can define a «product» and an «adjoint» in \searrow_{m} by means of the formulas:

$$
\begin{align*}
\sigma(A) \circ \sigma(B) & =\Sigma(1 / \alpha!)(2 \pi i)^{-\mid \alpha x}\left[\partial_{\varepsilon}^{z} \sigma(A)\right]\left[\partial_{x}^{\alpha} \sigma(B)\right] \tag{1.6}\\
\sigma(A)^{\#} & =\searrow\left(1 / \alpha!川(12 \pi i)^{-|\alpha|}\left[\partial_{\Sigma}^{z} \partial_{x}^{x} \sigma(A)\right]\right. \tag{1.7}
\end{align*}
$$

where these (finite, ordered) sums extend to all terms whose degree of homogeneity in ζ is $>-m$. In other words, the formal sums $\underset{|x|>0}{\Sigma}$ are reduced modulo terms homogeneous of degree $\leq-m$.

We need not verify a-priori, as it was done in [1], that with respect to these operations Σ_{m} becomes an associative star-algebra. Since the homomorphic image of a star-algebra is again such an algebra, this result will be a direct consequence of Theorem 1.8 below. On the other hand, in the style of [3], we can define in \mathcal{S}_{m} a pseudo-product $A \circ B$ and a pseudo-adjoint A^{*} given by

$$
\begin{gather*}
\sigma(A \circ B)=\sigma(A) \circ \sigma(B) \tag{1.8}\\
\sigma\left(A^{*}\right)=\sigma(A)^{*} . \tag{1.9}
\end{gather*}
$$

Again, we should note that $A \circ B$ and A^{*} are uniquely defined modulo \mathscr{I}_{m}.
Theorem 1.8 - For any A and B in \mathcal{S}_{m}, the operators $A B-A \circ B$ and $A^{*}-A^{*}$ belong to \mathfrak{I}_{m} and hence $A B$ and A^{*} are again in \mathfrak{S}_{m} with

$$
\sigma(A B)=\sigma(A) \circ \sigma(B)
$$

$$
\begin{equation*}
\sigma\left(A^{*}\right)=\sigma(A)^{\#} . \tag{1.9'}
\end{equation*}
$$

Corohlary 1.9 - The class \mathcal{S}_{m} is a self-adjoint associative algebra of operators. The map $\sigma: \mathfrak{S}_{m} \longrightarrow \Sigma_{m}$ is a star-algebra homomorphism with kernel \mathfrak{g}_{m}. Moreover, for each integer k with $0<k \leq m, \mathcal{S}_{m}$ is a subalgebra of \mathcal{S}_{k}. \mathfrak{J}_{m} is a 2 -sided self-adjoint ideal in \oint_{m}.

The proof of Theorem 1.8 is given in the next section, Corollary 1.9 is is a direct consequence of 1.8 , Lemma 1.2 and Remark 1.6 (a).

II.

A smooth function φ is said to be a cut-off function if $1-\varphi$ is a patch-function. Given a positive integer r, we say that a function $b(x, z)$, on $E^{n} \times E_{0}^{n}$, belongs to $B_{r}^{\infty}\left(E^{n} \times S^{n-1}\right)$ if for every β and for each α with $0 \leq|\alpha| \leq r$, the functions $\left.\partial_{z}^{\beta} \partial_{x}^{\alpha} b \mid x, z\right)$ are continuous in $E^{n} \times E_{0}^{n}$ and bounded on $E^{n} \times \mathrm{S}^{n-1}$. For instance, a B_{m}^{∞} symbol of degree-p belongs to $B_{r}^{\infty}\left(E^{n} \times S^{n-1}\right)$ with $r=2 m-[\rho]$. Throughout this section, we fix $r=2 m-[\rho]$, where $0 \leq \rho<m$ as always.

Proposition 2.0. - Let $A=A_{j}$ be an operator of the form (1.1) with, $p_{j}=p$ and $\rho_{j}=\rho>0$. Then, for all $f \in \mathcal{S}$,

$$
\begin{equation*}
[A f](x)=\int k(x, x-y) f(y) d y \tag{2.0}
\end{equation*}
$$

where the kernel $k(x, z)=\mathscr{S}_{\bar{y}}^{-1}[p(x, \zeta]](z)$ together with its derivatives $\partial_{x}^{\alpha} k(x, z)$ for all $|\alpha| \leq r$, is integrable with respect to z, uniformly in x. Moreover, for any cut-off function $\varphi(z)$ there is a corresponding function $\psi(x, z)$ in $B_{r}^{\infty}\left(E^{n} \times S^{n-1}\right)$ and rapidly deoreasing with respect to z, uniformly in x, such that

$$
\begin{equation*}
k(x, z)=[h(x, z)+P(x, z) \log |z|] \varphi(z)+\psi(x, z) \tag{2.1}
\end{equation*}
$$

where $h \in B_{r}^{\infty}\left(E^{n} \times \mathrm{S}^{n-1}\right)$ is homogeneous in z of degree $p-n$, and $P(x, z)$ is a polynomial in z homogeneous of degree $\rho-n$ if $\rho-n$ is a non-nega. tive integer, $P(x, z) \equiv 0$ otherwise.

This result is a direct consequence of the Theorem in [5] and of Definition 1.3 here. (See also [6], Theorem 1.5).

Although the eventual presence of a logarithmic term in (2.1) causes no serious harm in the proofs that follow, we may suppose, for the sake of simplicity, that $m \leq n$. Thus $0<p<n$ and (2.1) reduces to

$$
k(x, z)=h(x, z) \varphi(z)+\psi(x, z)
$$

In addition, on $E^{n} \times E_{0}^{n}$, for every $N>0$ there exist constants C_{N} such that

$$
\begin{equation*}
\left|\partial_{z}^{\mathcal{B}} \mathcal{c}_{x}^{\alpha} k(x, z)\right| \leq C_{N}|z|^{p-n-|\mathcal{P}|}(1+|z|)^{-N} \tag{2.2}
\end{equation*}
$$

for all β and all α with $0 \leq|\alpha| \leq r$; (The constants C_{N} depend also on $|\beta|$).
The first step in the proof of Theorem 1.8 is as fallows.
Lemma 2.1-If A is in \mathcal{S}_{m}, then $A^{*}-A^{*}$ belongs to \mathfrak{g}_{m}.
Proof - If $A \in \mathscr{J}_{m}$, then $A=S$ and $A^{*}=0$. A^{*} is again bounded in L^{P} norm, $1<p<\infty$, and the same holds for $(\partial / \partial x)^{x} A^{*}$ and $A^{*}(\partial / \partial x)^{\alpha}$, for all $|\alpha|=m$. Hence $A^{*}-A^{\#}=A^{*} \in \mathfrak{J}_{m}$.

Let us consider operators $A=A_{j}$ of the form (1.1), with $p_{j}=p$, $\rho_{j}=\rho<m$, and suppose that $\rho>0$. We may also suppose that on $|\zeta| \geq 1$, $p(x, \zeta)=a(x, \zeta)$ where $a=a_{j}$ is the corresponding homogeneous symbol of degree - p. Then, for all $f \in \mathcal{S}$. expressing A in the form (2.0) and passing to the adjoint, we find that

$$
\begin{equation*}
\left[A^{*} f\right](x)=\int \bar{k}(y, y-x) f(y) d y \tag{2.3}
\end{equation*}
$$

where \bar{k} is the complex conjugate of the kernel k.
Consider now the following Taylor expansion in y of $\bar{k}(y, z)$ at the point $y=x$:

$$
\bar{k}(y, z)=\sum_{|\alpha|<r}\left(1 / \alpha!\bar{h}_{\alpha}(x, z)(y-x)^{\alpha}+R(x ; y, z)\right.
$$

where $\bar{k}_{\alpha}=\partial_{x}^{\alpha} \bar{k}(x, z)$. Letting $z=y-x$ and substituting in (2.3), we have

$$
\begin{equation*}
\left[A^{*} f\right](x)=\underset{|x|<r}{\Sigma}(1 / \alpha!) \int \bar{k}_{a}(x, y-x)(y-x)^{\alpha} f(y) d y+\left[S_{2} f\right](x) \tag{2.4}
\end{equation*}
$$

where the term

$$
\begin{equation*}
\left[S_{2} f\right](x)=\int R(x ; y, y-x) f(y) d y \tag{2.5}
\end{equation*}
$$

will be handled later.
It follows from the definition of k that

$$
k_{\alpha}(x, z)=\mathfrak{d}_{\zeta}^{-1}\left[\partial_{x}^{x} p(x, \zeta)\right](z)
$$

and thus

$$
k_{x}(x, z) z^{x}=\mathscr{S} \zeta^{-1}\left[\left(\frac{i}{2 \pi}\right)^{|\alpha|} \partial \partial_{\xi}^{\alpha} p(x, \zeta)\right](z)
$$

Hence, taking complex conjugates and recalling that $z=y-x$, we obtain

$$
\bar{k}_{x}(x, y-x)(y-x)^{x}=(2 \pi i)^{-\alpha} \cdot \mathcal{O}_{y}^{-1}\left[\partial^{x} x_{x}^{x} p\left(x, \zeta_{1}\right](x-y)\right.
$$

where $p(x, \zeta)$ is conjugate to $\bar{p}(x, \zeta)$, and $p(x, \zeta)=a(x, \zeta)=\sigma(A)$ on $|\zeta| \geq 1$. We observe that all integrals in (2.4) are absolutely convergent since, by Proposition 2.0, the functions $\bar{k}_{x}(x, z) z^{x}$ are integrable with respect to z, for all $0 \leq|\alpha| \leq r$. Moreover, for all $y, f(y)=\mathscr{o f t}_{6}^{-1}[(\bar{f} \zeta)](y)$ since $f \in \mathcal{S}$. Hence. using the formula $\left(\mathfrak{f}^{-1} u\right)^{*}\left(\mathfrak{f}^{-1} v\right)=\mathfrak{g}^{-1}(u v)$, we obtain that, for all $0 \leq|\alpha| \leq r$,

$$
\int \bar{k}_{x}(x, y-x)(y-x)^{\alpha} f(y) d y=(2 \pi i)^{-|x|} \int e^{2 \pi i\left\langle x, h^{\prime}\right\rangle}\left[\partial_{\xi_{x}^{z}}^{z} \partial_{x}^{x} \bar{p}(x, \zeta)\right] \bar{f}(\zeta) d \zeta .
$$

Consequently, substituting this expression in (2.4), we see that for all $f \in \mathcal{S}$

$$
\begin{equation*}
\left[A^{*} f\right](x)=\sum_{|\alpha|<r}(1 / \alpha!)(2 \pi i)^{-|\alpha|} \int e^{2 \pi i<x, \zeta\rangle}\left[\partial_{\zeta}^{x} \partial_{x}^{x} \bar{p}(x, \zeta)\right] \bar{f}(\zeta) d \zeta+\left[S_{2} f\right](x) . \tag{2.6}
\end{equation*}
$$

Grouping together all terms in (2.6) with $|\alpha|=j, 0 \leq j \leq r-1$, we see that, modulo S_{2}, A^{*} is a finite sum of operators B_{j} of the form (1.1) with homogeneous symbols

$$
\sigma\left(B_{j}\right)=\sum_{|x|=j}(1 / \alpha!)(2 \pi i)^{-|x|}\left\{\partial_{z}^{x} \partial_{x}^{x} \overline{\sigma(A)}\right]
$$

of degree $-\rho_{j} \equiv-\rho-j$. Moreover, $\sigma\left(B_{j}\right) \in B_{r-j}^{\infty}\left(E^{n} \times S^{n-1}\right)$ where $r-j=$ $=2 m-[\rho]-j=2 m-[\rho]$. Therefore, according to Definition $1.0, \sigma\left[B_{j}\right)$ is a B_{m}^{∞} homogeneous symbol of degree $-\rho_{j}$ if and only if $\rho_{j}=p+j<m$. In other words, by Definition 1.3, B_{j} belongs to \mathfrak{S}_{m} for all $j<m-[\rho]$, and hence $A^{*}=\sum_{0 \leq j<m-[p]} B_{j}$ and formula (2.6) becomes

$$
\begin{equation*}
A^{*} f=A^{*} f+S_{1} f+S_{2} f \tag{2.7}
\end{equation*}
$$

where

$$
\left[S_{1} f\right]^{\prime}(x)=\sum_{|\alpha|=m-[f]}^{\Sigma^{-1}}(1 / \alpha!)(2 \pi i)^{-i x \mid} \int e^{2 \pi i<x, k>}\left[\partial_{\zeta}^{z} \partial_{x}^{\alpha} \bar{p}(x, \zeta, \zeta \mid \bar{f}(\zeta) d \zeta\right.
$$

and S_{2} is given by (2.5). Consequently, it remains to show that S_{1} and S_{2} belong to \mathfrak{I}_{m}.

By Remark 1.6 (i), S_{1} belongs to \mathfrak{I}_{m}, being a finite sum of operators B_{j} of the for (1.1) with $\left[\rho_{j}\right]=[\rho]+j \geq[\rho]+m-[\rho]=m$. Moreover, since A^{*}, A^{*} and S_{1} are all bounded in L^{p} norm, $1<p<\infty$, the same is true for S_{2} by formula (2.7). Let us show next that, for all β with $|\beta|=m$, also $S_{2}(\partial / \partial x)^{\beta}$
is bounded in L^{p} norm. In order to do this, we need suitable estimates for $\left|\partial_{y}^{\rho} R(x ; y, y-x)\right|$, where

$$
R(x ; y, z)=\ddot{k}(y, z)-\underset{|\alpha|<r}{\sum}(1 / \alpha!) \bar{k}_{c_{a}}(x, z)(y-x)^{x}
$$

$\bar{k}_{x}(x, z)=i_{x}^{\alpha} \bar{k}(x, z), z=y-x$ and x is lixed.
First of all, using (2.2) and a standard estimate un Taylon remainders, we have that for all y and all $|\beta| \leq r$

$$
\left|\partial_{y}^{\beta} R(x ; y, z)\right| \leq C|z|^{p-n}|x-y|^{-|8|}(1+|x-y|)^{-1}
$$

on $|z| \leq 1$. Similarly, but keeping y fixed, we have that on $|z| \leq 1$

$$
\left|\partial_{z}^{\beta} R(x ; y, z)\right| \leq C|z|^{p-n-\mid \beta}|x-y|^{r}(1+|x-y|)^{-1} .
$$

Therefore, letting now $z=y-x,|\beta|=m$ and combining the preceding estimates, we see that

$$
\left|\partial_{y}^{\beta} R(x ; y, y-x)\right| \leq C|x-y|^{r+\rho-n-m}(1+|x-y|)^{-1}
$$

on $|x-y| \leq 1$. Hence, using again (2.2) and substitnting $r=2 m-[\rho]$, it follows that for any $N \geq 1$ there is a constant C_{N} such that

$$
\begin{equation*}
\left|\hat{x}_{y}^{3} R(x ; y, y-x)\right| \leq C_{N}|x-y|^{m+\rho-|\rho|-n}\left(1+\left.|x-y|\right|^{-N}\right. \tag{2.8}
\end{equation*}
$$

for all β, with $|\beta|=m \geq 1$, and all x, y in E^{n}.
Now, on account of (2.5), we see that for all $f \in \mathcal{S}$

$$
\left[\mathcal{S}_{2} \partial_{x}^{\beta} f\right](x)=\int R(x ; y, y-x) \partial_{y}^{3} f(y) d y .
$$

Consequently, integrating by parts and applying estimate (2.8) with $N=$ $m+\rho-[\rho]+1$, we conclude by Young's theorem that the operators $S_{2}(\partial / \partial x)^{3}$ are bounded in L^{p} norm, for all $|\beta|=m$ and $1 \leq p \leq \infty$.

Let us consider at this point the case $\rho=0$. By formula (1.3) with $\rho_{i}=0$, we see that, modulo $\mathfrak{I}_{m}, A=A_{0}$ where

$$
\left[A_{0} f\right](x)=a(x) f(x)+\mathrm{p} \cdot \mathrm{v} \cdot \int k(x, x-y) \varphi(x-y) f(y) d y+[S f](x)
$$

with φ being a cut-off function and with S in \mathfrak{I}_{m}. Now, the Lemma is clearly true for the operator $\left[M_{a} f\right](x)=\alpha(x) f(x)$, and also holds for $S \in \mathscr{I}_{m}$, as we
saw earlier. The remaining term is a principal value operator of the form (2.0), with kernel satisfying estimates (2.2) for $\rho=0$. Consequently, interpreting the approppriate integrals in the principal value sense, we see that the proof of the Lemma, as far as it goes, remains valid also when $\rho=0$.

Summing up, we have shown that if $A \in \mathfrak{I}_{m}$, or else if $A=A_{j}$ is an operator of the form (1.1) with $0 \leq \rho=p_{j}<m$, then $A^{*}-A^{*}=S_{1}+S_{2}$ where $S_{1} \in \mathfrak{J}_{m}$ and the operators S_{2} and $S_{2}(\partial / J x)^{p}$ are bounded in L^{p} norm for all $1<p<\infty$ and $|\beta|=m$. Thus it remains to be proved that $(\partial / \partial x)^{\beta} S_{2}$ or, equivalently, $S_{2}^{*}(\partial / \partial x)^{3}$ also has this property.

Olaim: if $\sigma(A)=a$ is a homogeneous symbol of degree - ρ, where $0 \leq \rho<m$, then $\left[\sigma(A)^{\#}\right]^{*}=\sigma(A)$.

Taking this momentarily for granted, let us consider the operator $B=$ $A^{\#}+S_{1}$ in $S_{m}, \sigma(B)=\sigma\left(A^{*}\right)=\sigma(A)^{*}$. Since $A^{*}=B+S_{2}$, we have $A=B^{*}+$ S_{2}^{*} and so $S_{2}^{*}=A-B^{*}$.

Applying the preceding results to the operator B, we deduce that $B^{*}=$ $B^{*}+S$, where $S(\partial / \partial x)^{3}$ is bounded in L^{p} norm for all $1<p<\infty$ and all $|\beta|=m$, and where

$$
\sigma\left(B^{*}\right)=\sigma(B)^{*}=\left[\sigma(A)^{*}\right]^{\#}=\sigma(A)
$$

on account of the Claim. Accordingly, $A-B^{*}$ belongs to \mathfrak{J}_{m}, since $\sigma\left(A-B^{\#}\right)=$ $=\sigma(A)-\sigma\left(B^{\#}\right)=0$, thus, in particular, $\left(A-B^{*}\right)(\partial / \partial x)^{2}$ is bounded in L^{p} norm for $1<p<\infty$ and $|\beta|=m$. Therefore, the operator

$$
\left.S_{2}^{*}(\partial / \partial x)^{\rho}=\left(A-B^{\#}\right) \mid \partial / \partial x\right)^{\beta}-S(\partial / \partial x)^{\beta}
$$

also satisfies this property.
Finally, we verify the Claim by induction. We note that if $m=1$, or if $\rho \geq m-1$, the conclusion is obvious since $\sigma(A)^{*}=\overline{\sigma(A)}$ in these cases. Thus, with $m \geq 2$, we denote by $\sigma(A)^{b}$ the «adjoint» in Σ_{m-1} and we may assume that $\left[\sigma(A)^{b}\right]^{b}=\sigma(A)$.

Supposing for simplicity that $\rho=0$, we observe that

$$
\sigma(A)^{*}=\sigma(A)^{b}+(2 \pi i)^{1-m} \sum_{|x|=m-1} 1 / \alpha!\hat{e}_{\varepsilon}^{x} \partial_{x}^{\alpha} \bar{a}
$$

and

$$
\left[\sigma(A)^{b}\right]^{\#}=\left[\sigma(A)^{b}\right]^{b}+(2 \pi i)^{1-m} \sum_{|a|=m-1} 1 / \alpha!\partial_{\underset{\varepsilon}{z}}^{x} \partial_{x}^{x} a .
$$

Consequently,

$$
\left[\sigma(A)^{*}\right]^{\#}=\left[\sigma(A)^{b}\right]^{\#}-(2 \pi i)^{1-m} \underset{|\alpha|=m-1}{\Sigma} 1 / \alpha!\partial_{\varepsilon}^{\alpha}{\underset{z}{x}}_{x}^{x} a=\left[\sigma(A)^{b}\right]^{b}=\sigma(A)
$$

and the Claim is established.
Q.E.D.

Tarning to the composition of operators in \mathfrak{S}_{n}, we shall see how it can be handled in a similar fashion.

Lemma 2.2 - If A and B are in \mathfrak{S}_{m}, then $A B-A 0 B$ belongs to \mathfrak{J}_{m}.
Proof. - It is an immediate consequence of Lemma 1.5 and Remarks 1.6 that composition of operators in \mathfrak{S}_{m} with operators in \mathfrak{I}_{m} yields operators in \mathfrak{I}_{m}. Consequently, with $A=A_{j}, p=p_{j}, 0 \leq \rho=p_{j}<m$, and with $B=B_{k}$, $q=q_{k}$ and $0 \leqslant \rho^{\prime}=\rho_{k}<m$, it suffices to consider products of the form $A B$ where, for all f in \mathcal{S},

$$
[A f](x)=\int e^{2 \pi i<x, \zeta>} p(x, \zeta) \widehat{f}(\zeta) d \zeta=\int h(x, x-y) f(y) d y
$$

and

$$
[B f](x)=\int e^{2 \pi i<x, y} q(x, \zeta) \widehat{f}(\zeta) d \zeta=\int k(x, x-y) f(y) d y
$$

Then,

$$
\begin{equation*}
[A(B f)](x)=\int h(x, x-y)\left\{\int k(y, y-z \mid f(z) d z\} d y\right. \tag{2.9}
\end{equation*}
$$

where the approppriate integrals are taken in the principal value sense if ρ or ρ^{\prime} equals zero.

If $\left[\rho+\rho^{\prime}\right] \geq m$, then $A B$ belongs to \mathscr{I}_{m} since, on account of Remark 1.6 (a), $A \in \mathfrak{J}_{[\rho]}$ and $B \in \mathscr{J}_{\left[\rho^{\prime}\right]}$. Otherwise, setting $r^{\prime}=m-\left[\rho+\rho^{\prime}\right]$, we consider the following Taylor expansion in y at the point $y=x$:

$$
k(y, \xi)=\underset{\mid \alpha_{i}<r^{\prime}}{\sum} 1 / \alpha!k_{\alpha}(x, \xi)(y-x)^{\alpha}+R(x ; y, \xi)
$$

where $k_{x}(x, \xi)=\partial_{x}^{x} k(x, \xi)$. Letting $\xi=y-z$ and substituting back into (2.9): we obtain

$$
\begin{equation*}
A(B f)=\sum_{|x|<r^{\prime}} 1 / \alpha!\int h(x, x-y)(y-x)^{x}\left\{\int k_{\alpha}(x, y-z \mid f(z) d z\} d y+A(\mathbb{S} f)\right. \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
[S f](y)=\int R(y, y-z) f(z) d z \tag{2.11}
\end{equation*}
$$

with $R(y, \xi)=R(x ; y, \xi), x$ being kept fixed.

According to the definition of the kernel k,

$$
k_{\alpha}(x, y-z)=\mathscr{F}^{-1}\left[\partial_{x}^{\alpha} q(x, \zeta]\right](y-z)
$$

whence, since $f \in \mathbb{S}$,

$$
\begin{aligned}
\int k_{\alpha}(x, y-z) f(z) d z & =\int \mathscr{F} \xi^{1}\left[\partial_{x}^{\alpha} q(x, \zeta)\right](y-z) \mathfrak{J} \xi^{-1}[\widehat{f}(\zeta)](z) d z= \\
& ={\mathscr{q} \zeta^{-1}}^{1}\left\{\left[\partial_{x}^{\alpha} q(x, \zeta)\right] \widehat{f}(\zeta)\right\}(y) .
\end{aligned}
$$

Again, by definition of the kernel h,

$$
h(x, x-y)(x-y)^{\alpha}=\mathscr{F}_{\zeta^{-1}}\left[\left(\frac{i}{2 \pi}\right)^{|a|} \partial \frac{\partial}{\tilde{\alpha}} p(x, \zeta)\right](x-y)
$$

whence

$$
h(x, x-y)(y-x)^{2}=(2 \pi i)^{-|x|} \mathfrak{F}_{\xi}^{-1}\left[\partial_{\underline{z}}^{\alpha} p(x, \zeta)\right](x-y) .
$$

Therefore, the summation on the right-side of (2.10) becomes

$$
\begin{aligned}
& \underset{|x|<r^{r}}{\sum} 1 / \alpha!\left(\left.2 \pi i\right|^{-|x|} \int \mathscr{F}_{\xi^{-1}}^{1}\left[\partial_{\zeta}^{\alpha} p(x, \zeta)\right](x-y) \mathscr{F}_{\xi}^{1}\left\{\left[\partial_{x}^{\alpha} q(x, \zeta)\right] \widehat{f}(\zeta)\right\}(y) d y=\right. \\
& =\underset{|\alpha|<r^{\prime}}{\sum} 1 / a!(2 \pi i)^{-|x|} \int e^{2 \pi i<x, \zeta\rangle}\left[\tilde{\partial}_{\xi}^{x} p(x, \zeta]\right]\left[\tilde{x}_{x}^{x} q(x, \zeta)\right] \widehat{f}|\zeta| d \zeta=(A \circ B) f
\end{aligned}
$$

as is readily seen by the definition of r^{\prime}. In other words, we have

$$
A B=A \cdot B+A S
$$

Consequently, since $A \in \mathfrak{S}_{m}$ has the form prescribed above, in order to prove that $A S \in \mathfrak{J}_{m}$ it suffices to show that the operator S given by (2.11) belongs to \mathfrak{J}_{m}. Since $A B$ and $A 0 B$ are bounded in L^{p} norm for all $1<p<\infty$, the same holds for $A S$. Hence S must also have this property, on account of Lemma 1.5. Finally, estimating the derivatives $\mathcal{C}_{\xi}^{\ell} R(y, \xi)$ of our remainder, the desired conclusion follows as in the proof of Lemma 2.1.
Q.E.D.

The two preceding Lemmas exhaust the proof of Theorem 18 .
Remark 2.3. - The algebra δ_{1} contains, as a subalgebra, the algebra generated by all singular integral operators of class O_{2}^{∞} (see [3]) and their adjoints.

III.

Henceforth, the principal symbol (cf. Definition 1.7) of an operator A in \oint_{m} will be denoted by $\sigma_{p}(A)$. If $A \in \mathfrak{I}_{m}$, we shall say that A is smoothing of degree m.

Lemma 3.0. - If A and B belong to \mathbb{S}_{m} and are smoothing of degree ρ and ρ^{\prime} respectively, $0 \leq \rho, \rho^{\prime}<m$, then $[A, B]=A B-B A$ is smoothing of degree $\geq \min \left\{\rho+\rho^{\prime}+1, m\right\}$. If $[A, B]$ is smoothing of degree $\rho+\rho^{\prime}+1<m$, then its principal symbol is given by

$$
\begin{equation*}
\sigma_{p}([A, B])=(2 \pi i)^{-1} \sum_{k=1}^{n}\left\{\frac{\partial \sigma_{p}(A)}{\partial \zeta_{k}} \frac{\partial \sigma_{p}(B)}{\partial x_{k}}-\frac{\partial \sigma_{p}(B)}{\partial \zeta_{k}} \frac{\partial \sigma_{p}(A)}{\partial x_{k}}\right\} \tag{3.0}
\end{equation*}
$$

This result follows directly from Definition 1.7 and Theorem 1.8.
For any positive real s, the fractional integral operator l^{s} belongs to \mathcal{S}_{m} for all integers $m \geq 1$. If $s<m$, we have $\left.\sigma \mid I^{s}\right)=\sigma_{p}\left(I^{s}\right)=|\zeta|^{-s}$, whereas $I^{s} \in \mathfrak{J}_{m}$ if $s \geq m$. We shall set $A=I^{-1}$.

Theorem 3.1. - If A in \mathfrak{S}_{m} is smoothing of degree $\rho, 0 \leq \rho<m$, then AAo and ApA belong to \Im_{μ}, where

$$
\begin{equation*}
\mu=[m-[\rho] / 2], \tag{3.1}
\end{equation*}
$$

and are smoothing operators of degree zero with principal symbol $\sigma_{p}\left(A \Lambda_{\rho}\right)=$ $\sigma_{p}\left(\Lambda^{\rho} A\right)=\sigma_{p}(A)|\zeta|_{\rho}$.

Proof. - Using formula (1.3) we express the operator A in the form

$$
\begin{equation*}
A=A_{0} I_{e}+A_{1} I^{p_{i+1}}+\ldots+S=\left[A_{0}+A_{1} I^{p_{j+1}-\rho}+\ldots+S I^{-\rho}\right] I^{p} \tag{3.2}
\end{equation*}
$$

where $\sigma_{p}\left(A_{0}\right) \in B_{r}^{\infty}\left(E^{n} \times S^{n-1}\right)$, with $r=2 m-[\rho]$, is homogeneous of degree zero in ζ. Consequently, $\sigma_{p}\left(A_{0}\right)$ is a B_{μ}^{∞} homogeneous symbol of degree zero where $\mu \geq 1$ is the integer given by (3.1). Likewise, we see that the operator P, given by the expression in brackets in (3.2), belongs to \mathfrak{S}_{μ} and is smooting of degree zero. Thus, $A \Lambda^{\circ}=P$ and $\sigma_{p}\left(A \Lambda^{\circ}\right)=\sigma_{p}\left(A_{0}\right)=\sigma_{p}(A)|\zeta|$.

Moreover, by Lemma 3.0, $\Lambda_{\rho} A=\Lambda p P T p=P+\Delta p[P, I p] \equiv Q$ is also an opera tor of degree zero in \mathfrak{S}_{μ}, with $\sigma_{p}\left(\Lambda_{P} A\right)=\sigma_{p}(P)=\sigma_{p}(A)|\zeta|$.
Q.E.D.

Corollaly 3.2. - Let A in \mathfrak{S}_{m} be smoothing of degree $p<m$ and let μ be as in (3.1). Then there exist operators P and Q in \mathcal{S}_{μ} of degree zero, with $\sigma_{p}(P)=\sigma_{P}(Q)=\sigma_{p}(A)|\zeta| \rho$, such that

$$
\begin{equation*}
A=P I^{\rho}=I^{\rho} Q . \tag{3.3}
\end{equation*}
$$

Let Ω be an open set in E^{n}.
Definition 3.3. - An operator A in \mathcal{S}_{m} is said to be elliptic on Ω if
(i) A is of degree zero,
(ii) $\sigma_{p}(A)(x, \zeta) \neq 0$ for all (x, ζ) in $\Omega \times S^{n-1}$.

The operator A is said to be elliptic if it is elliptic on all of E^{n}.
Exampla 3.4. - Let $P(x, D)=\underset{|\alpha| \leq m}{\sum} a_{\alpha}(x) D^{\alpha}$ be a differential operator with coefficients $a_{\alpha}(x)$ in $B_{r}\left(E^{n}\right), r=m+|\alpha|$, and with characteristic polynomial $P_{m}(x, \zeta)=\sum_{|\alpha|=m}^{\sum} a_{x}(x) \zeta^{\alpha}$. Since

$$
D^{\alpha}=\mathscr{F}^{-1} \zeta^{\alpha} \mathfrak{e}^{f}=\left\{\mathfrak{F}^{-1}\left[\zeta^{\alpha} d(\zeta)^{-m}\right] \mathfrak{F}\right] \cdot\left\{\mathscr{F}^{-1} d(\zeta)^{m} \mathscr{F}\right\}=H_{\alpha} \Lambda^{n}
$$

we obtain

$$
\begin{equation*}
P(x, D)=\left\{\sum_{|x| \leq m} \alpha_{\alpha}(x) H_{a}\right\} \Lambda^{m}=A \Lambda^{m} \tag{3.4}
\end{equation*}
$$

where $\Lambda^{m}=I^{-m}$ is an isomorphism on \mathfrak{S} (and \mathfrak{S}^{*}), and the operator A belongs to \mathfrak{S}_{m}, with principal symbol

$$
\sigma_{p}(A)=\left\{\sum_{|\alpha|=m} \alpha_{\alpha}\left(x, \zeta^{x}\right)|\zeta|^{-m}=P_{m}(x, \zeta)|\zeta|^{-m}\right.
$$

homogeneous of degree zero in ζ. Therefore, the differential operator $P(x, D)$ is elliptic on Q if and only if the corresponding integral operator A in \mathfrak{S}_{m} is elliptic on Ω.

Let us recall that a formal power series $S=\sum_{\nu=0}^{\infty} a_{\nu} X^{y}$, over the complex field (for example), is said to be invertible if there exists another series $T=\sum_{\nu=0}^{\infty} b_{\nu} X^{\nu}$ such that

$$
S \cdot T=\sum_{k=0}^{\infty}\left\{\underset{\mu+\nu=k}{\left.\sum a_{\mu} b_{\nu}\right\} X^{k}=1}\right.
$$

Then, as easily seen, such a series is invertible if and only if its constant term $\alpha_{0} \neq 0$.

As before, we denote by M_{φ} the operator $\left[M_{\varphi} f\right](x)=\varphi(x) f(x)$
Lemma 3.5. - Let A in \mathcal{S}_{m} be elliptic on \mathcal{Q}. Then, for all $\varphi \in \mathcal{C}_{0}^{\infty}(\mathbb{Q})$, there exists a B in \mathcal{S}_{m} such that $B A-M_{\varphi}$ and $A B-M_{\varphi}$ are smoothing of degree 1. Moreover, there exist operators B and C in \mathfrak{S}_{m} such that $B A-M_{\varphi}$ and $A C-M_{\varphi}$ brlong to \mathfrak{J}_{m}.

Proof. - Let B in \mathcal{S}_{m} be an operator with principal symbol $\sigma_{p}(B)=\varphi(x)$ $\left[\sigma_{p}(A)\right]^{-1}$. Then the first conclusion follows from Theorem 1.8 , since $\sigma_{p}(A B)=$ $=\sigma_{p}(A) \sigma_{p}(B)=\varphi(x)=\sigma_{p}(B A)$.

Again from Theorem 1.8, we have that $B A-M_{\varphi}$ belongs to \mathfrak{I}_{m} if and only if $\sigma(B) \circ \sigma(A)=\varphi(x)$. Choosing $b_{0}=\sigma_{p}(B)$ as before, we can solve successively for the remaining b_{j} by an argument analogous to be one used for formal power serier. The existence of C is determined in the same way. Q.E.D.

The following result is a direct consequence of Lemma 3.5.
Lemma 3.6. - Let A in S_{m} be elliptic on Q and let Ω_{1} be a relatively compact subset of Q. Then there exists an operator B in \mathcal{S}_{m}, with $\sigma(B A)=1$ on Ω_{1}, such that for all $f \in L_{-m}^{p}, 1<p<\infty$,

$$
B A f=f+S f
$$

where $\sigma(S)=0$ on Q_{1}.
Another immediate consequence of Theorem 1.8 is the following "pseudolocality» property.

Lemma 3.7. - Let A belong to \oint_{m}. Then, for any φ_{1} and φ_{2} in $B^{\infty}\left(E^{n}\right)$ with disjoint supports, the operator $M_{\varphi_{1}} A M_{\varphi_{2}}$ belongs to \mathscr{J}_{m}.

Proof. - Since $\sigma\left(M_{O_{1}}\right)=\sigma_{p}\left(M_{\varphi_{1}}\right)=\varphi_{1}(x)$, it follows that

$$
\begin{gathered}
\sigma\left(M_{\varphi_{1}} A M_{\varphi_{2}}\right)=\varphi_{1}(x) \sigma\left(A M_{\varphi_{2}}\right)= \\
=\varphi_{1}(x) \Sigma(1 / \alpha!)\left(2 \pi i-|\alpha|\left[\tau_{\xi}^{\alpha} \sigma(A)\right]\left[\partial_{x}^{x} \varphi_{2}\right]=0\right.
\end{gathered}
$$

since φ_{1} and φ_{2} have disjoint supports.
Q.E.D.

Let us consider the local spaces

$$
\left.L_{\text {oo }}^{p, s}(\Omega)=\left\{f \in \mathcal{S}^{*}: \varphi f \in L_{s}^{p} \text { for all } \varphi \in C_{0}^{\infty} \mid \Omega\right)\right\}
$$

Lemma 3.8. - Let A in S_{m} be smoothing of degree $\rho, 0 \leq p \leq m$. Then, for all $1<p<\infty$ and $0 \leq|s| \leq|s+\rho| \leq m$, if $f \in L_{\text {loc }}^{p, s}(\Omega)$ then $(A f) \in L_{\text {loc }}^{p, s+p}(\Omega)$.

Proof. - Let $\varphi \in C_{0}^{\infty}(\Omega)$ and choose a corresponding $\psi \in C_{0}^{\infty}(\Omega)$ such that $\psi(x)=1$ on a neighborood of the support of φ. Then

$$
\varphi A f=\varphi A \psi f+\varphi A(1-\psi) f
$$

Now, since ψf is in $L_{s}^{p}, \varphi A(\psi f)$ belongs to $L_{s+\rho}^{p}$ for $0 \leq|s| \leq|s+p| \leq m$. Moreover, by Lemma 3.7, since φ and $(1-\psi)$ have disjoint supports. $M_{\varphi} A M_{(1-\psi)}$
is in \mathfrak{g}_{m} and hence also $\psi A(1-\psi) f$ belongs to $L_{s+\rho}^{p}$ for $|s+\rho| \leq m$. Therefore, $\varphi A f$ is in $L_{s+\rho}^{p}$.
Q.E.D.

We are now ready to obtain the following (local) regularity property of elliptic operators.

Theonem 3.9. - Let A in \S_{m} be elliptic on Ω and let Ω_{1} be a relatively compact subset of Ω. Then for all $1<p<\infty$ and all f in $L_{s \rightarrow m}^{p}, 0 \leq s \leq m$, if $(A f) \in L_{\text {ios }}^{p, s}\left(\mathcal{O}_{1}\right)$ then $f \in L_{\text {loc }}^{p, s}\left(\mathbf{Q}_{1}\right)$.

Proof. - By Lemma 3.6 there exists a B in \mathfrak{S}_{m} such that $B A f=f+S f$ where $\sigma(S)=0$ on Ω_{1}. By Lemma 3.8, since B has degree zero, Af in $L_{\text {oe }}^{p, s}\left(\Omega_{1}\right)$ implies that BAf belongs to $L_{\text {loo }}^{P_{0}^{s}}\left(\Omega_{1}\right)$.

Now let $\varphi \in C_{0}^{\infty}\left(\mathbf{\Omega}_{1}\right)$. Then $M_{\varphi} S$ belongs to \mathscr{J}_{m} since $\sigma(S)=0$ on \mathbf{Q}_{1}. Thus, $\varphi S f$ is in $L_{s-m+m}^{p}=L_{\mathrm{s}}^{p}$ and so $\left(S f \mid \in L_{\mathrm{loc}}^{p, s}\left(\Omega_{1}\right)\right.$. Consequently, $f=B A f-S f$ belongs to $L_{\text {foc }}^{p, s}\left(\Omega_{1}\right)$.
Q.E.D.

We note that combining Theorem 3.9 with Example 3.4, one obtains another proof of the interior regularity for solutions of certain elliptic partial differential equations on Q. Finally, we remark that the algebra S_{m} is invariant under smooth local diffeomorphisms and that, for such a map $\varphi: \Omega \rightarrow E^{n}$, the principal symbol of an operator in \S_{m} behaves as a function defined on the (trivial) cotangent bundle over Ω. This result, together with its proof, is the analogue of Theorem 7 in [7]. The behavior of the (full) symbol under local diffeomorphism is more complicated and requires a discussion of certain (jet) equivalence-classes of maps. Thus, we shall defer its description to another occasion.

REFERENOES

[1] A. P. Calderòn, A priori estimates for singular integral operators, in Proc. C.I.M.E. Conf., Stresa 1968 (Ed. Cremonese, Roma 1969), pp. 87141.
[2] - -, Algebras of singular integral operators, Am. Math. Soc Proc. Symp Pure Math., Vol. 10 (1967), pp. 18.55.
[3] A.P. Caldemon a:d A, Zygmund, Singular integral operators and differential equations, Am. J. Math. 79 (1957), pp. 901.921.
[4] U. Neri, Singular integral operators and distributions, Lect. Notes No. 4, University of Maryland, College Park, Md., 1968.
[5] - -, Una nota sull'integrazione frazionaria, Boll. Un, Mat. Ital. S. TV, 3 (1970), pp. 242-247.
[6] - -, The integrable kernels of certain pseudo-differential operators, Math. Ann, 186 (1970), -pp. 105-162.
[7] R.S. Palais and R.T. Seeley, Seminar on the Atiyah-Singer Index Theorem, Ch. XVI, Ann. of Math. Studies No. 57, Princeton, N. J, 1965.

[^0]: ${ }^{(* *)}$ This research was supported under National Science Foundation grant GP-12295 and was completed while the author was Visiting Professor at the University of Genoa under a grant from the Comitato Nazionale per la Matematica, Consiglio Nazionale Ricerche (C.N.R.), Italy.
 (**) Entrata in Redazione il 1 giugno 1970.

