Calderén algebras of smoothing operators (*)
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Summary. - Cerlain classes of infegral operators between gemeralized Sobolev spaces are
shown fo form algebras, enlowed with awn approximaie functional calculus, having
properties similar to those of pseundo-differential operators.

Introduction.

Over the last few years CALDERGN (see [1] and [2]) has developed an
algebra of integral operators which refines the algebra of singular integral
operators in [3] without imposing unduly restrictive assumptions on the regu-
larity of the symbols. The aim of this paper is to discuss this algebra of
operators from a different point of view, providing new and simpler proofs
of the fundamental properties and describing some additional results which
are indispensable for the study of these operators on manifolds.

The paper is divided into three sections. In the first, we give the defi-
nition of the operators and of their symbols, and, after establishing a few
preliminary properties, we state the main results. Section II is devoted to
the proofs of these main resulfs. Finally, in sections III, we present the
additional results mentioned above.

Ouar nofation is fairly standard. We denote by x = (e, .., o), 9, 2
points of Kuclidean space B, =2, and by 2 ={(o, .., «,) and B the
multi-indices. Points in the dual Euclidean space are denoted by {=({, ...,
G) and <z, {> =&+ ...+, is the doal pairing. As usual, |@|=(e2+ ...
2, Jal =+ i, ol =al.la! and D = (2rd)~Y2/3x), where (3/3x)
denotes the gradientoperator on E* We write S*'={{:|{|=1}, Eo=E"—
{0}, and & f=(3/3x)*f. The space of smooth, rapidly decreasing functions
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is denoted by § and its dual, the space of temperate distributions, by &*.
The Fourier transform of a function f is denoted by f or F(f), where & and
F—! are respectively the FoURIER transformation and its inverse. When
taking the (inverse) FOURIER fransform only with respect to certain variables,
we use abbreviations of the form

5 ple, Tife) = f < 5> o, Q)G

Finally, with 1 <p < oo and s real, we denote by L!{ = L{(E) the gene-
ralized SoBOLEV spaces (e.g. [4], Chapter II) and by ||f|,. . the norm of f in
L. When p =2, L!= H* and the norm is simply denoted by || [l,. If s =k
is a positive integer, LY coincides with the SoBOLEV space L = [f: D* f = L¢,
O0<<|a|<<k}, where L? is the -usual LEBESGUE space and the derivatives are
taken in the sense of distributions.

Let us recall some convenient terminology. A function 6€ C=(E" is cal-
led a patch-function if 6({) = O in a neighborhood of the origin and 6(f) =1
on a neighborhood of infinity. Let [p] denote the integral part of a real
number p, and let m =1 be an integer.

In what follows, we shall always bave 0 << p <m.

DeriNITION 1.0. - A function afx, §j, on E» X Et, is said to be a B,
homogeneous symbol of degree-p if, for all A> 0,

alx, A} = )C'(’GL({,{:; g

and if, for every B and each o with 0<C|a|<<2m —[p], the functions
b, §) are continuous on E" X E; and bounded on E® X S

For brevity we denote by £(p) the algebra of all bounded linear opera-
tors on L7, 1 <p <oco. Let us define certain classes o, in this algebra.

DerIiNITION 1.1. = A linear operator S:8 — L}, belongs to &, if the ope-
rators S, (3/3x)*S and S(3/3x)* are bounded in Lz norm for all « with | a| = m.

Clearly, we can regard J, as a subset of £(p) by extending (by conti-
nuity) each S in J, to an element of £(p). We set Jo = £(p).

LemmA 1.2, - Operators in &, can be extended to bounded operators
from L to L7;. for all real s such that —m <<s<0. Conversely, every
linear operator S:8 — L} with this property belongs to d,.
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Proor. - Let S€ J,, and s =0. Then, as is well known, the boundedness
in L? norm of the operators S and (3/2x)*S, for all |«| = m, implies that §
extends by continuity to a bounded operator from L7 to L. Now, we let
§ = —m and we recall that L”, can be also characterized as the space of
all distributions of the form

fo+ 3 (/).
ale=m
where fo and the [, are functions in L7, endowed with the corresponding
norm. Hence, the boundedncss in L? norm of the operators S and S(/3x)*,
far all || =m, implies that S also extends to a bounded operator from
IZ., to Lr. Therefore, by interpolation, S ean be extended to a bounded
operator from LY to Lf, for all real s such that —m < s<<0.

The converse follows easily from the fact that, for every o, the linear

map (3/x)*: LY — L{_, is continuos for 1 < p < co and every real t. Q.E.D.

The CALDERSN algebra §. of iuntegral operators is defined as follows.

DrrFiNiTION 1.3. - For an infeger m =1, we denote by &, the class of
linear operators which are finite sums of the form

(1.0) A=[S4]+ S

where S€ J, and, for all f€ 3,
(L) (4} a) = [[e<e pio, AL

where, for some pateh-function 6,
(1.2) pile, T =aje, 5B

and a,(x, {) is a B, homogeneous symbol of degree — p;, with 0 <<p; < gja < m

The equivalence of this definition with the one given by CALDERON is
an immediate consequence of the foliowing Lemma the proof of which, as
given in [1], applies unchanged to our Lr setting.

Lemma 1.4. - If two operators in &, have corresponding functions pja, )
which coincide for all (x, {) with |{| > ¢, then their difference belongs to ..
For any real number s, we denote by I° the operator given by

[Bf]” = d{g—f

where d € C~(E") |is a strictly positive radial function which coincides with
€| on |C|=1. See {2],[b]; the basic properties of I* are also discussed
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in Chapter II of [4], where this operator was denoted by J. We recall that,
for 1 <p <oo and any real ¢, I' | LI — L},, is an isometric isomorphism.

Lemma 1.5. - Let 4; be an operator of the form (1.1)
Then:

(a) 4; can be extended to a bounded operator from L! to Liy, provided
that —m<<s=<<s-{<<m and {<p;.

(b) IfE¢>p;, nosuch extension exists unless the corresponding symbol
a; in (1.2) is identically zero.

Proor. - (a) It follows from Definition 1.3 and Lemma 1.4 that we can
represent 4;7in the form

(1.3) A= Ado + 8

where S€3,, and hence by Lemma 1.2 has the desired continuity property,
and where A, is given by the principal value integral

[4of)ix) = p. v. fez”i<"’ Saolx, UFGAC,  [E€S,

with ao(®, {) a homogeneous symbol of degree zero. Consequently, by a well
know result of CALDERGN and ZYeMUND ([3], or Chapter IV of [4]),

(Aof ) = ala)f (o) + pov. f ke, o—y)f )y

is a singular integral operator which gives a bounded linear map of L into
itself, for every integer k with |k |<<m and 1 <p<oo. Moreover, letting
M,, o = sup | %oz, C)|, over all & € Erand |{|=1,
and
1 Aol =max { M, ¢:0<<|a|<<mand0<|B|<<2n)

we have that

(L.4) [ Aof o, x = Cll Ao || 15«

for all f in If.

Now, by interpolation, 4, maps L! continuously into itself for all real s
with [s| << m. Therefore, combining this result with the continuity property
of Ifj, the desired conclusion follows directly from (1.3).
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(b) It suffices to consider the L? case. We write p; in the form
P (o, T = aofee, L)BC)|L 7%, where ao is a homogeneous symbol of degree zero
and 6 is a patch-function. If 1€ Gf(E”}, O<tf)=<<1, and ={{) =1 on a nei-
ghborhood of the set where 6({) = 0, then, for all { € E" the function B(C =
= 1({) 4 6{8)| { |7 satisfies estimates

G0 < [ B(E) | < Ca(Q)Y

and hence the operator L;: & —>§. given by [L,f]” = Bf, extends to a linear

. . 2 2
isomorphism from L. to L.,

Now, A;L; = To + S where

for all real s.

(Tof o) = f i< > gofe, QRCIFIC)AL

and S€ J, since () has bounded support. If we suppose that, for some
e> 0 with pj+e<m, |dulo<<C|u|—,— for all u€S§, then, with u=Lf,
we would have that

VAL o < Cl Lif |- < O] f ]

and hence

V2o Jo < Ol £l

for all f €8. However, /it is an immediate consequence of a well known
Lemma of GOHBERG (e.g.[7]) that this last inequality cannot hold for any
e >0 unless ao>, ¢), and hence ayx, (), vanishes identically. Q.E.D.

REMARKS 1.6. - (a) Any operator 4; of the form (1.1) belongs to J; for
every integer k such that O <<k <[p]. This follows immediately from Lemmas
1.5 (a) and 1.2.

(b) For every integer m =% =1, the class &, is contained in §;,
and every operator in §, extends to a bounded operator on I?, for 1 < p < oo
and 0<<|s|<<m. In fact, with m >k and 4 =3 4,4 § in §,, if the homo-
geneous symbol a; associated to A4; is of degree — p; with p; =k, then, by
1.6(a), the corresponding operator 4; belongs to J;. Thus A€§,. Then, Lemma
1.5 (a) gives the remaining conclusion.

(c) Lemma 1.5 (b} implies, as is easily seen, that for operators 4 in
8. the expressions (1.0) are uniquely determined. In fact, if 4 =0 in (1.0),
then all the 4;,=0, and hence §=0, because the corresponding homogeneous
symbols ajfx, {) in (1.2) must be identically zero. Consequently, on 8., we
have a well-defined linear map 4 — o(4), given by

(1'5) G(A) =X aj(w) S 0< fi < pipr < M,
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with null space equal to J,. Conversely, each function ¢ of the form (1.5}
determines an operator A € 8,, unique modulo J., such that o(4)=o.

DEFINITION 1.7. - The function o{4) is called fhe {full) symbol of the
operator 4 in §,. The first term qa;(x, §} in {1.D) which is not identically
equal to zero is called the principal symbol of A, and A is said to be a
smoothing operator of degree p;, O<Zp; <m, (and class &,) with principal part 4;.

Of course, the principal part of an operator 4 in 8. is only uniquely
defined module J,. If we denote by X, the vector space of all finite ordered
sums of the form {'.5), then Remark 1.6 (¢} states that the symbol map,
6.8 — I, is a well-defined linear map for which

is an exact sequence, where ¢:J, — &, is the inclusion map.
As it is done for pseudo-differential operators, we can define a « product»
and an «adjoint» in Y, by means of the formulas:

(1.6) o(4) o o{B) = B(1/a!)2xii—I=[37c(4)][370(B))

(1.7) old)* = N(1/a ! )(2nd)~1=l[3737a(4)]

where these (finite, ordered) sums extend to all terms whose degree of
homogeneity in { is > —m. In other words, the formal sums I are
reduced modulo terms homogeneous of degree << — m. 7120

We need not verify a-priori, as it was done in [1], that with respeect to
these operations ¥, becomes an associative star-algebra. Since the homomor-
phic image of a star-algebra is again such an algebra, this result will be
a direct consequence of Theorem 1.8 below. On the other hand, in the style
of [3], we can define in O, a pseudo-product Ao B and a pseudo-adjoint A#
given by

(1.8) 6{4 o B} = 6{4) o 6(B)
(1.9 O(A#) = a(A).

Again, we should note that 4o B and A* are uniquely defined modulo J,.

ToeoreM 1.8 - For any 4 and B in 8., the operators AB--4oB and
A*— A* belong to d, and hence AB and A* are again in &, with

1.8 9{AB) = s(4) o o(B)

(1.9) o(4*) = o(A)*.
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CoroLLARY 1.9 - The class §, is a self-adjoint associative algebra of
operators. The map o : 8, — Z. is a star-algebra homomorphism with kernel J,.
Moreover, for each integer k with 0 < k<<m, S, is a subalgebra of §;.
J. is a 2-sided seif-adjoint ideal in §,..

The proof of Theorem 1.8 is given in the next section. Corollary 1.9 is
is a direct consequence of 1.8, Lemma 1.2 and Remark 1.6 (a).

II.

A smooth function ¢ is said to be a cui-off function if 1 —¢ is a
patch-function. Given a positive integer », we say that a function bix, #),
on E» X E;, belongs to B (E* X S*') if for every B and for each o with
0<|a|<<r, the functions bz, #) are continuous in E*X Hy and bounded
on E*XS*L. For instance, a B, symbol of degree-p belongs to B (E* X S*)
with 7 = 2m — [p]. Throughout this section, we fix r = 2m —[p], where
0<p <m as always.

PropositioN 2.0. - Let 4 = A4; be an operator of the form (1.1) with,
pi=p and p; = p > 0. Then, for all f€3,

2.0) Mﬂ@=fﬂ%wﬂwm%

where the keruel Elx, 2z} = 3;“1(;){30, $))(z) together with its derivatives 37k(w, 2)
for all |« |<Cr, is integrable with respect to z, uniformly in «. Moreover, for
any cut-off function ¢(z) there is a corresponding function ¢ (x,2) in
BT |E" X 81 and rapidly decreasing with respect to 2, uniformly in w,
such that

(2.1) klw, &) = [hiw, 2) + Plz, 2) log | 2| l9(e) + i, o)

where &€ B”(E" X 8™!) is homogeneous in 2z of degree p —n, and Plx, 2)
is a polynomial in # homogeneous of degree p — u if p — n is a non-nega-
tive integer, P{x, z) = 0 otherwise.

This result is a direct consequence of the Theorem in [} and of Defini-
tion 1.3 here. (See also [6], Theorem L.D).

Although the eventual presence of a logarithmic term in (2.1) causes no
serious harm in the proofs that follow, we may suppose, for the sake of
simplicity, that m <<n. Thus 0 < p < n and (2.1) reduces fo

(2.1) kfw, 2) = hix, 2)9() + $lx, 2.

Annali di Matematica 4
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In addition, on E" X Eg, for every N > O there exist consiants Cy such that
(2.2) | $fakla, 2) | < Ol 2T 4 2] )7

for all § and all @ with O0<<|a|=Cr, (The constants Cy depend also on |B]).
The first step in the proof of Theorem 1.8 is as fallows.

LeMma 2.1 - If A is in §,, then 4%* — 4% belongs to J,.

Proor - If 4 €J,, then 4 = S and 4# = 0. A* is again bounded in L?
norm, 1 < p < oo, and the same holds for (3/9x)*4* and A*(/dx)*, for all
|| = m. Hence A% — A#* = A*€ J,.

Let us consider operators 4 = A; of the form (1.1), with p; =p,
pi = p <m, and suppose that p > 0. We may also suppose that on |{|=1,
plee, §) = afw, {) where g = a; is the corresponding homogeneous symbol of
degree — p. Then, for all f € &, expressing 4 in the form (2.0) and passing
to the adjoint, we find fhat

2.3) [ﬁmm=fm%y—@mwy

where k is the complex conjugate of the kernel k. -
Consider now the following TAYLOR expansion in y of Zk(y, 2) at the
point y = x:

75(_1/, 2) :—.l §< {1/} )7%(90, efly — x) 4+ Bx; o, 2)

where k, = ki, 2). Letting 2 =y - o and substituting in (2.3, we have
@Y e = 2 () [ R g — oy — sioflgldy+ i

where the term
2.5) [&mm=me%y~mmm@

will be handled later.
It follows from the definition of % that

E(x, 2) = J7 [32plx, )iz)
and thus

i \la
ka(m, z)z“ — 351 [(217;) aé‘a?p(w, C)} (z)
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Hence, taking complex conjugates and recalling that 2 =y - x, we obtain
kal, y — iy — o) = 2mi~1* §T 32plr, Tle — 9)

where px, () is comjugate to p(x, {), and plx, §) = al@, §) =0o(4) on |{|=1.
We observe that all integrals in (2.4) are absolutely convergent since, by
Proposition 2.0, the functions k,(x, 2)¢* are integrable with respect to 2, for
all 0<<|a|<<r. Moreover, for all y, f(y):gfl{ﬁC)](y) since f€ 8. Hence.
using the formula (F—u)¥J—'v) = F—uv), we obfain that, for all O << |a| <7,

f ko, y—a)y—x)"flydy = @ni)”™ f ¢S [zt QIFILAL,
Consequently, sabstituting this expression in (2.4), we see that forall f€ §

(2.6) [A*f](oc):lz (1o 1 )(2miy~* f T >t e, OIS [Sof ).

allr

Grouping together all terms in (2.6) with |a| =4, 0 <<j<<r—1, we see
that, modulo S,, A* is a finite sum of operators B; of the form (1.1) with
homogeneous symbols

oB)= I (I/a!)2mi) ""(3%3%0(4)]

{aj=j

of degree —p;=—p—j4 Moreover, oB)) € B (E" X S§*™') where r —j =
=2m —[p] —j = 2m — [p;]. Therefore, according to Definition 1.0, o(B,) is a B,
homogeneous symbol of degree — p; if and only if g; =p 4 7 <m. In other words,
by Definition 1.3, B; belongs to &, for all j<m —[¢], and hence A# = X B

o< j<m—[p]
and formula (2.6) becomes

2.0 A = A*f + Sif + Sof

r—1

Sffay = 2 (jal)@ei” f £ > (e, UL

laj=m—;]

and S, is given by (2.5). Consequently, it remains to show that §; and §;
belong to J,.

By Remark 1.6 (1), S belongs to I, being a finite sum of operators B;
of the for (1.1) with [g;] = [p] + 7 = [p] + m — [p] = m. Moreover, since A*, A#
and & are all bounded in I/ norm, 1 < p < co, the same is true for S: by
formula (2.7). Let us show mnext that, for all B with | 8| = m, also S:@/ox)®
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is bounded in L? norm. In order to do this, we need suitable estimates for
}agR(OG; ¥, ¥y —x)|, where

Riw; y, ) =kly, &) — 2 (1/aljkofe, 2) (y — @)
la]<r

kufx, 2) = 2 kix, 2), 2=y —x and x is fixed.

First of all, using (2.2) and a standard estimate vn TAYLOR remainders,
we have that for all y and all |§]|<r

| Bi; 9, )| < Clzl= |0 —y [~F (L + [0 —g| )
on |z|=<1. Similarly, but keeping y fixed, we have that on |z|<1
& Rlo; y, #)| < Clefe¥l e —y| (14 |z—y|)™

Therefore, letting now 2=y —«, || =m and combining the preceding
estimates, we see that

|8 Blo; y,y— x) | < Ol —y [+e——"(1 4 | — g |)

on |®—y|<1. Hence, using again (2.2) and substituting » = 2m — [p], it fol-
lows that for any N=1 there is a constant Cy such that

(2:8) & Rlw; g, y — )| < On |0 — g |mtolob=mil 4 [ — y | )=

for all 8, with [§|=m =1, and all «, y in BE".
Now, on account of (2.5), we see that for all fe§

[S23 1) fR (23 y, y—a) Ef (y) dy

Consequently, integrating by parts and applying estimate (2.8) with N=
m+p—[p] +1, we conclude by YouNa’s theorem that the operators Sy /o)
are bounded in L7 norm, for all |f|=m and 1 <<p<oco.

Let us consider at this point the case p =0. By formula (1.3) with p; =0,
we see that, modulo J,, 4 = 4, where

[407] (@) = ale) fiz) + p.v. j‘km & —y) slw—y) fly) dy + [S7 (@)

with ¢ being a cut-off funection and with S in J,.. Now, the Lemmwa is clear-
ly true for the operator [M.f](x) = a(x)flx), and also holds for Se€J., as we



U. Neri: Calderén algebras of smoothing operators 325

saw earlier. The remaining term is a principal value operator of the form (2.0),
with kernel satisfying estimates (2.2) for p=0. Consequently, interpreting the
approppriate integrals in the principal value sense, we see that the proof of
the Lemma, as far as it goes, remains valid also when p=0.

Summing up, we have shown that if 4e&d., or else if 4 = 4; is an ope-
rator of the form (L.1) with O<<p=p;<m, then 4*-— 4% =8 + 8§, where
S,ed, and the operators S, and Sy3/3x)f are bounded in 7 norm for all
1 <p<oc and |f|=m. Thus it remains to be proved that (3/3xBS: or, equi-
valently, S8;(3/0x)® also has this property .

Cramv: if o(d)=a is a homogeneous symbol of degree —p, where
0<<p <, then [o{4)#]¥ = o{4).

Taking this momentarily for granted, let us consider the operator B =
A* 481 in 8., o(B)=oa(d#*) =0o(4)*. Since 4*=B | S:, we bhave 4=B*4
Sy and so S =4 — B*.

Applying the preceding results to the operator B, we deduce that B* =
B* -8, where S5(3/3x)® is bounded in L7 norm for all 1 <p <co and all
|Bl=m, and where

6| B#¥) = a(B)# = [a(4)*]* = o(4)

on account of the Claim. Accordingly, 4 — B# belongs to J., since o(4 — B#)=
=o{d} —s(B#*} =0, thus, in particular, {4 — B#}{2/3x}® is bounded in 1? norm
for 1 <p<<oc and || =m. Therefore, the operator

SF(3/30)t = (A — B*)(3/3x)E — S\3/3u)?

also satisfies this property.
Finally, we verify the Claim by induction. We note that if m =1, or if

p=m —1, the conclusion is obvious since o{4}* = o(4) in these cases. Thus,
with m =2, we denote by o(4)* the «adjoint» in Z, ; and we may assume
that [s(4)"P = o{4).

Supposing for simplicity that p =0, we observe that

o(d)* = o(d)r 4 (2nip— T 1/al ¥la
[ =m—1

and

[o(A)')# = [o(A)] + 2mip— = 1/l ¥3%a.

| =m-1

Consequently,

[o(A)#1# = [o[4)]* — @rifi== S 1/al 8 & a =[a(4)} = o{4)

!aimm—l
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and the Claim is established. Q.E.D.

Tuarning to the composition of operators in 8., we shall see how it can
be handled in a similar fashion.

Lemma 2.2 - If 4 and B are in 8., then AB— 40 B belongs to J,.

Proor. —~ It is an immediate consequence of Lemma 1.5 and Remarks
1.6 that composition of operators in 8§, with operators in J, yields operators
in J,. Consequently, with 4 =4;, p=p;, 0<p=p;<m, and with B= B,
g=q: and 0<<p'=p, <m, it suffices to consider products of the form 4B
where, for all f in §,

(A7) () = j st ple, O () dE = f hiew, & — o) fiy) dy

and

(B )= [+ g, U FC1C = [ b, 2 —3) iy
Then,
(29) LABF )10} = [, 2 ) | [ i,y 21l ey

where the approppriate integrals are taken in the principal value sense if p
or ¢’ equals zero.

If [o+¢']==m, then AB belongs to J, since, on account of Remark 1.6
(a), Aedy and Bedy,. Otherwise, setting +"=m —[po +¢], we consider the
following Taylor expansion in y at the point y =w:

kly, &= ‘ 2< 1/l kofw, &) (y — x)* + R(x; y, §)

where k,(x, £) =20, k(x, §). Letting £=y—2# and substituting back into (2.9),
we obtain

(2.10) A(Bf)= X l/oc!fh(w,m—y)(y——m)“
2| <<

f hu(t, 9 — 2) fle)dz | dy + A(Sf)

where
@.11) (SF) ()= f Riy, y - 2)f) de

with Ry, €)= R(x; y, £), « being kept fixed.
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According to the definition of the kernel k,

ka(w: Yy — z) = gz_l [ag wa, C)](y - Z)

whence, since fe 3,
f T, g — 2)fie) de = j S5 3% gl iy — ) 7 110 el =

= &7 {[3% glw, OIFC)} ().

Again, by definition of the kernel &,

j \lal
o, o — it — g =57 (5-) 22t 0] (0 )

whence
Iz, & — y) (y — x)* = (2m) 1= §Z (3¢ p(o, §) 1 (a0 - ).

Therefore, the summation on the right-side of {2.10) becomes

A Gl f F77 (38 plae,C V) e — o) §7{ (% glee, O] F ()} () dy =

= 3 lamirs f e2mi<= 5> (32 plor, 0] [3% g, 1 FiCIAC = (A0 B f

as is readily seen by the definition of +'. In other words, we have
AB=A+B+ AS.

Consequently, since 4 €8, bas the form prescribed above, in order fto
prove that 4Sed, it suffices to show that the operator S given by (2.11) be-
longs to J,. Since AB and AoB are bounded in L7 norm for all | <p < oo,
the same holds for AS. Hence S must also have this property, on account of
‘Lemma 1.5. Finally, estimating the derivatives 2 Riy, £) of our remainder, the
desired conclusion follows as in the proof of Lemma 2.1. Q. E D,

The two preceding Lemmas exhaust the proof of Theorem 1 8.

RemMaRk 2.3. - The algebra 8, contains, as a subalgebra, the algebra ge-

nerated by all singular integral operators of class (3 (see [3]) and their
adjoints.
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III.

Henceforth, the principal symbol (ef. Definition 1.7} of an operator 4 in
O» will be denoted by o,(4). If 4€d,., we shall say that 4 is smoothing of
degree m.

LemMma 3.0. - If A4 and B belong to &, and are smoothing of degree p
and ¢’ respectively, O0<<p, ¢’ < m, then [4, B]=AB— BA is smoothing of de-
gree =min {p4o 4 1,m}. If [4, B] is smoothing of degree p+4o' +1<m,
then its principal symbol is given by

—an—1 3 19%(d) 3o,(B) 39,/ B) 20, 4)
(30) O'P([Aﬁ B” — (27“) k.El egk axk a:k awk

This result follows directly from Definition 1.7 and Theorem 1.8.

For any positive real s, the fractional integral operator I* belongs to S,
for all integers m=1. If s < m, we have o(l')= o,(I') =| (|, whereas '€ J.
if s=m. We shall sef A =TI,

THEOREM 3.1. - If 4 in §, is smoothing of degree p, 0<<o <<m, then
AAe and ArAd belong to §,, where

(3.1) b =[m—[p)/2],

and are smoothing operators of degree zero with principal symbol o, (4Ae) =
o Aed) = a,(4) € .

Proor. - Using formula (1.3} we express the operator 4 in the form
8.2 A=A e+ AT 4 .+ S=[do} A I . - S| Ir

where o,(4o) € BP(E*>< 8", with = 2m —[p], is homogeneous of degree zero

in {. Consequently, o,(4o) is a By homogeneous symbol of degree zero where
u=1 is the integer given by (3.1). Likewise, we see that the operator P,
given by the expression in brackets in (3.2), belongs to §, and is smooting
of degree zero. Thus, AA¢s =P and o,(AA?) = o,(do) = c,{4) | .

Moreover, by Lemma 3.0, Ard = AePIr = P+ Af[P, Ir} =@ is also an opera.
tor of degree zero in §,, with o,{Acd) = o,(P)= o,(4)|{]e. Q.E.D.

CoroLLALY 3.2. - Let 4 in 8§, be smoothing of degree p < and let p
be as in (3.1). Then there exist operators P and @ in S, of degree zero, with
6,(P) = 0,(Q) = 5,(4)| §|°, such that

(3.3) A=PIr=1I¢Q.
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Let Q be an open set in E=.

DrriNiTiON 3.3. - An operator 4 in 8, is said to be elliptic on Q if
(i) 4 is of degree zero,
(#8) a,(A) (2, ) =0 for all (x, §) in Q> S,
The operator A is said to be elliptic if it is elliptic on all of E".

ExampLe 3.4. - Let Plx, D)= 2 a,x)D* be a differential operator with

|o)=zm
coefficients a,lx) in B{E"), r=m 4 |a|, and with characteristic polynomial
Px, )= Z a,x)i*. Since
lat|==m
D* = §1 F = (FCed() | § ) - (F A F | = H A»
we obtain

(3.4) Pla,D\={ = a,@)H,jA" = A\~

| 2] ==m

where A™ = I—" is an isomorphism on & (and &%), and the operator 4 belongs
to 8., with principal symbol

opfd)={ I a(x)0*}|C| = Pul, H| T

lal=n

homogeneous of degree zero in {. Therefore, the differential operator P, D)
is elliptic on @ if and only if the corresponding integral operator A4 in §, is
elliptic on Q.

oo
Let us recall that a formal power series S= X ¢,X”, over the complex
ye=0

field (for example}, is said to be invertible if there exists another series

T—=3b,X such that

y=0

S T=2X{ 3% ab}Xt=1,
k=0 pfv=k
Then, as easily seen, such a series is invertible if and only if its con-
stant term ao==0.
As before, we denote by M, the operator [M,f](x) = ¢(x) flx)

LEMMA 3.5. - Let 4 in 8. be elliptic on Q. Then, for all pe C3(Q), there
exists a B in 8, such that BA-M, and AB-M, are smoothing of degree 1.
Moreover, there exist operators B and C in §, such that BA-M, and AC-M,
belong to d..
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Proor. - Let B in &. be an operator with principal symbol o,(B)= ¢(x}
[0,(4)]7*. Then the first conclusion follows from Theorem 1.8, since o,(4B)=
= 0,(4) 0, B) = 9(x) = c,(BA).

Again from Theorem 1.8, we have that BA-M, belongs to J, if and only
if o{B)e o{4)=g(x). Choosing b, = o,(B) as before, we can solve successively
for the remaining b; by an argument analogous to be one used for formal
power serier. The existence of C is determined in the same way. Q.E.D.

The following result is a direct consequence of Lemma 3.5.

LemMuMA 3.6. - Let 4 in &, be elliptic on Q and let @ be a relatively
compact subset of Q. Then there exists an operator B in 8., with o(B4)=1

on €, such that for all feL?,, 1 < p < oc,

BAf={+S§f
where o(S)==0 on Q,.

Another immediate consequence of Theorem 1.8 is the following «pseudo-
locality » property.

LemMa 3.7. ~ Let 4 belong to §.. Then, for any ¢ and ¢, in B*(E"
with disjoint supports, the operator M, AM, belongs to J,.

Proo¥. - Since o(M,,)=o,(M,} = ¢ fx), it follows that
o{My, AM ) = gi(x)o{ AM,,) =
= @) B (1 /el 2nd)121[3F0{4)] [0 42} = 0
since ¢, and y. have disjoint supports. Q.E.D.
Let us consider the local spaces

LeiQ) = {fed¥:9fe Lr for all pe CPQ)}.

‘loe

LeMma 3.8. ~ Let 4 in 8, be smoothing of degree p, 0= p<-m. Then, for
all 1< p<oo and 0<<|s|<<|s+p|=<<m, it fe ILJRQ) then (Af)e L5 7(Q).

Proor. - Let g€ 05(R) and choose a corresponding ¢ & C5(Q) such that
${x} =1 on a neighborood of the support of ¢. Then

QAf = QA+ o AL —d)f.

Now, since §f is in Lf, 9A({f) belongs to LI, for O<|s|<<|s+pl<<m.
Moreover, by Lemma 3.7, since ¢ and (1—¢) have disjoint supports. M, AMu_y)
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is in J» and hence also $A(l — )f belongs to /iy, for |s+ p| < m. Therefore,
Af is in IZ,. Q.E.D.

We are now ready to obtain the following (local) regularity property of
elliptic operators.

THEOREM 3.9. - Let 4 in §, be elliptic on @ and let @, be a relatively

compact subset of Q. Then for all 1 <p <oo and all f in 72_,, O<s<<m,
if (Af)€ L:(@) then fe LryQ,).

lo¢
Proor. - By Lemma 3.6 there exists a B in §, such that BAf=/f-+ Sf

where o(S)=0 on Q,. By Lemma 8.8, since B has degree zero, Af in Lf;o(2;)
implies that BAf belongs to L{;:(Qi).

Now let @€ C5’(Q). Then A,S belongs to J, since o(S)=0 on Q,. Thus,
@Sfis in [, .=1L! and so (Sf)e L5,(RQ:). Consequently, f= BAf— Sf be-
longs to Lise(@). Q.E.D.

We note that combining Theorem 3.9 with Example 3.4, one obtains ano-
ther proof of the interior regularity for solutions of certain elliptic partial
differential equations on Q. Finally, we remark that the algebra 8, is inva-
riant under smooth local diffeomorphisms and that, for such a map ¢:Q — E~,
the principal symbol of an operator in &, behaves as a function defined on
the (trivial) cotangent bundle over Q. This result, together with its proof, is
the analogue of Theorem 7 in [7]. The behavior of the (full) symbol under
local diffeomorphism is more complicated and requires a discussion of cer-
tain (jet) equivalence-classes of maps. Thus, we shall defer its description fo
another occasion.
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