
Calderdu algebras of smoothillg operators (~) 
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Summary. - Certain classes of  in tegral  operators between generalized Sobolcv spaces a~'e 
shown to form algebras,  en'lowed wi th  an approx imate  funct ional  calculus ,  havi~g 
properties s imi lar  to those of  pseudo-di f ferent ial  operators. 

I n t r o d u c t i o n .  

Over the last few years CALDERdI~ (see [1] and [2]) has developed an 
algebra of integral operators which refines the algebra of singular integral  
operators in [3] without imposing unduly  restrictive assumptions on the regu- 
lari ty of the symbols. The aim of this paper is to discuss this algebra of 
operators from a different point of view, providing new and simpler proofs 
of the fundamental  properties and describing some additional results which 
are indispensable for the study of these operators on manifolds. 

The paper is divided into three sections. In the first, we give the defi- 
nition of the operators and of their symbols, and, after establishing a few 
prel iminary properties, we state the main results. Section II  is devoted to 
the proofs of these main results. Finally,  in sections I I i ,  we present the 
additional results mentioned above. 

Our notation is fairly standard. We denote by x == ( x l ,  . . . ,  xn), y ,  z 

points of Eucl idean space E% n ~ 2 ,  and by ~ = ( ~ ,  ..., ~ )  and ~ the 
mult i- indices.  Points in the dual Euclidean space are denoted by ~ :  (~1, ..., 
~.) and <: z, ~ > - - z l ~  4-... ~ z ~  is the dual pairing. As usual, I w l -  (x~ ~ ... 
-4- x~)I/2, I ~ l - -  a~ -~- ... "4- ~ , ~d - :  ~ ! ... ~,,! and D ----. (2r~i)-~(~/~x) ,  where ~ / ~ x )  

denotes the gradientoperator on E ~. We write S ~-~ --- t ~ : i ~ l -~ 1}, Eo : E ~ - -  

t0}, and ~ . f - - ( ~ / ~ x V f .  The space of smooth, rapidly decreasing functions 

(**) This research was supported under National Science :Foundation grant GP-12"295 
and was completed while the author was Visiting :Professor at the University of Genoa un- 
der a grant from the Comitato l~azionale per ]a Matematica, Consiglio l~azionale Ricerche 
(C. N.R.), Italy. 
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is denoted by ~ and its dual, the space of temperate distributions, by $*. 
The Fourier  transform of a function f is denoted by f or Y(f}, where g" and 
~7-~ are respectively the FOUt~Ert transformation and its inverse.  When 
taking the (inverse) FOUR~E~ transform only with respect to certain variables, 
we use abbreviations of the form 

=_1 f 
Finally, with 1 < p  < c-~ and s real, we denote by L~ ~-L~(E~) the gene- 

ralized SoBoL]~v spaces (e.g. [4], Chapter II) and by ii f i!p,: the norm of f in 

L~. When p : 2 ,  L 2 - H  ~ and the norm is simply denoted by II il:. If s = k  
is a positive integer, L~ coincides with the SOBOLEV space L~(E~}-= I f : D  ~ f - - L ~ ,  
0 .<~ ] ~ i ~ k }, where Le is the-usual  LEBESGUE space and the derivatives are 
taken in the sense of distributions. 

I .  

Let us recall some convenient terminology. A function 0E C"(E ~) is cal- 
led a patch-function if 0(~} ~ 0 in a neighborhood of the origin and 0(~) -- 1 
on a neighborhood of infinity. Let [91 denote the integral part  of a real 
number ~, and let m ~ 1 be an integer. 

In what follows, we shall always l~ave 0 ~ ? < m. 

DEFINITION 1.0. - A function a(x, ~t, on E ~ X  E~, is said to be a B~ 
homogeneous symbol of degree-~ if, for all ~.> 0, 

and if, for every ~t and each ~ with 0 ~ . ~ l c z l ~ 2 m ~ [ ? ] ,  the functions 
3~a(x, ~) are continuous on E ~ X Eo and bounded on E ~ X S ~-~. 

For brevity we denote by £(p) the algebra of all bounded linear opera- 
tors on LG 1 < p < c~. Let us define certain classes ~ in this algebra. 

DEHNITIOY~ 1.1. - A linear operator S:S---+ L~ belongs to ~ if tile ope- 
rators S, (~/$x)~S and S(~/~x) ~ are bounded in LP norm for all ~ with [:¢1 ::: m. 

Clearly, we can regard ,~ as a subset of £(p) by extending (by conti- 
nuity) each S in ~ to an element of ~(p). We set 7 o - - £ ( p ) .  

L E ~ A  1.2. - Operators in 2,~ can be extended to bounded operators 
from L~ to P L~+,~ for all real s such that - - m  ~ s  ~ 0 .  Conversely, every 
linear operator S ' S - - > L ~  with this property belongs to g,~. 
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PROOF. - Let SE 2,, and s = 0 .  Then, as is well known, the boundedness 
in Lr norm of the operators S and (3/$x)~S, for all ]~1----m, implies that S 
extends by continuity to a bounded operator from LP to L~. Now, we let 
s ' - -  m and we recall that L~,) can be also characterized as the space of 
all distributions of the form 

fo + ~, (~ l~x )% 
I~I=., 

where fo and the f~ are functions in LP, endowed with the corresponding 
norm. I~ence, the boundedness in LF norm of the operators S and S(~/~x)% 
far all l a l = m ,  implies that S also extends to a bounded operator from 
L~,, to LP. Therefore I by interpolation, S can be extended to a bounded 
operator from L~ to L~+~ for all real s such that - - m  <. s ~ 0 .  

The converse follows easily from the fact ~hat, for every a ,  the linear 
P map ('~/~x) ~ " L~---> L,_[~] is continues for 1 < p < c~ and every real t. Q.E.D. 

The CALDER6~ algebra S~ of integral operators is defined as follows. 

DEFI~ITIO~ 1.3. - For an integer m ~  1, we denote by ~ ,  the class of 
l inear operators which are finite sums of the form 

(1.0) A = [EAj] + S 

where S E ~.~ and, for all f E ~, 

(1.1) [Ajf] x) = f e 2~<~, ~->pj(x, E(fiEtdE 

where, for some patch-funct ion 0, 

(1.2) pjtx, El = ajix, E)O(~) 

and aj(x, E) is a B~ homogeneous symbol of degree - -  ?], with 0 ~ ? j  < ~j+l < m 
The equivalence of this definition with the one given by CAt,DEn6~T is 

an immediate consequence of the following Lemma the proof of which, as 
given in [1], applies unchanged to our LP setting. 

LEMMA 1.4. - If tWO operators in S,~ have corresponding functions pi(x, ~) 
which coincide for all (x, ~) with I~1> c, then their difference belongs to ~,,. 

For any real number s, we denote by I s the operator given by 

[~ fV = ~(~)-:~ 

where d E C~(E n) '~is a strictly positive radial function which coincides with 
]E[ on ] E l ~ l .  ,See [2],[5]; the basic properties of I s are also discussed 
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in Chapter  I I  of [4], where this operator  was denoted by J'). We recall  that, 

for 1 < p  <c,~ and any real t, P L~-->L~+~ is an isometric i somorphism.  

LEMMA 1.5. - Let  A i be an operator  of the form (1.1) 

Then  : 

(a) Aj can be extended to a bounded operator from L~ to L~+~ provided 
that - - m ~ _ s ~ s - [ - t ~ m  and t ~ ] .  

(b) I f  t >~],  no such extension exists unless the corresponding symbol 
a i in (1.2) is identical ly zero. 

PROOF. - (a) I t  follows from Defini t ion i.3 and L e m m a  1.4 that  we can 
represent  AlVin the form 

(1.3) Aj = AoleJ + S 

where SEg.~, and hence by Lemma 1.2 has the desired cont inui ty  property,  
and where An is given by the principal  value integral  

[A of]{~) --  p.  v. f e 2~<~' ~'>ao(x, ~jft~)d~, f E $, 

with an(x, ~1 a homogeneous  symbol of degree zero. Consequently,  by a well 
know result  of CALDER6N and ZYGMUND [[3], or Chapter  IV of [4t) , 

[Aofl(x) = a(x)f(x) -4- p.v. f k(x, x--y)Dy)dy 

is a s ingular  integral  operator which gives a bounded l inear  map of L~ into 
itself, for every integer  k with / k ] ~ m and 1 < p < ~ .  3~oreover, let t ing 

, ~ ,, M~ ~- - sup l  ~z~aoCx, ~}[, over all x E  E " a n d i ~ l - - 1 ,  

and 

1t Ao H~-  max { M:, ~" 0 ~ ] ~  I ~  m a n d O ~  I ~ ] ~ 2n } 

we have that 

(1.41 [I AofI]p,~ ~ CI] Ao [I-, [] flip, ~ 

for all f in L~. 
Now, by interpolat ion,  An maps L~ cont inuously  into itself for all real s 

with I s I ~  m. Therefore,  combining this result  with the  cont inui ty  proper ty  
of IPJ, the desired conclusion follows directly from (1.3). 



U. NERI: CaIderdn algebras of smoothing operators 319 

(b) It  suffices to consider  the L ~ ca se  We write P1 in the form 
pj (x, ~) -~ so(x, ~)0{~) I ~ t-0, where ao is a homogeneous  symbol of degree zero 

n and 0 is a pa tch- func t ion .  If  "cECo(E),  O<~z(~)<: l ,  and ":(0 ~ 1  on a nei- 
ghborhood of the set where 01~)--O, then, for all ~EE", the funct ion ~(~t-- 
-" ':(0 -{- 0(01 ~ I e] satisfies est imates 

C~d(~) ~ ~ [ ~{~)[ ~ C~d(~('] 

and hence the  operator Lt . 'S--> ~. given by [Lf f]~--~f , ,  extends to a l inear 
2 i somorphism from L~ to L~_ei, for all real s. 

Now, A]L] = To -]- S where 

f [Tof](x)  --- e ~~<~' ~> So(X, ~)O~(~f{~)d~ 

and S E .~.~ since ~(0 has bounded  support .  If  we suppose that, for some 
:> 0 with p j +  ~< :m,  UAiul[ o~C[lu[I-ej-~ for all u E S ,  then, with u - - L i f  , 

we would have that  

and hence 

11 Tof l[o ~ C ]] f~_~ 

for all f E S. t towever ,  !it is an immedia te  consequence of a well known 
L e m m a  of GOHBE~O (e.~,.[i]) that  this last inequal i ty  cannot  holdS for any 

:> 0 unless so(x., El, and hence ai(x , E), vanishes identically.  Q.E.D. 

REMARKS 1.6. - (a) Any operator Aj of the form {1.1) belongs to ~k for 
every integer  k such that 0 ~ k ~ [i~j]. This  follows immedia te ly  from Lemmas  
1.5~(a) and 1.2. 

(b) For  every integer  m ~ k ~ l ,  the class S~ is contained in Sk, 
and every operator  in S,~ extends to a bounded operator  on L~, for 1 < p < 
and 0 ~ l s ~ l _ ~ m .  In  fact, with m >  k and A - - ~ A j ~ S  in $,,, if the homo- 
geneous symbol aj associated to Aj is of d e g r e e -  p] with p j ~ k ,  then, by 
1.6(a), the corresponding operator  Aj belongs to ~[k. Thus  A E Sk. Then,  L e m m a  
1.5 (a) gives the remain ing  conclusion.  

(e) L e m m a  t.5 (b) implies,  as is easily seen, that for operators  A in 
S,~ the expressions (1.0) are un ique ly  determined.  In  fact, if A - - 0  in (I.0), 
then all the A j - -0 ,  and hence S : 0 ,  because the corresponding homogeneous 
symbols aj(x, ~) in (1.2) must  be identical ly zero. Consequently,  on S~, we 
have a wel l -def ined l inear  map  A--> a(A), given by 

(1.5) ~(A) --  ~. aj(x, ~), 0 ~ ej < &+l < m, 
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with nul l  space equal  to ~,n. Conversely,  each func t ion  ~ of the form (1.5) 
de te rmines  an opera tor  A E g~n, un ique  modulo ~ ,  such that  o ( A ) -  o. 

DEFINITION 1.7. - The  func t ion  z(A) is cal led the (full) symbol of the 
opera tor  A in $,~. The first  term a](x, 0 in {1.5} which is not iden t ica l ly  
equal  to zero is cal led the principal symbol of A, and  A is said to be a 
smoothing operator of degree  pj, 0 ~ ]  < m, (and class Sin) wi th  principal part Aj. 

Of course,  the p r inc ipa l  par t  of an opera tor  A in S,~ is only  un ique ly  
def ined  modulo ~,n. I f  we denote  by Z~ the vector  space of all f ini te  ordered 
sums of the form (:.5 b then  Re ma r k  1.6 (c) s tates  that  the symbol  map, 
o : $ , ~  ~,,, is a wel l -def ined  l inear  map for which 

{0}-.-$=--*' $.~+"==~i0! 

is an exact  sequence,  whe re  i ' ~ - - . - $ m  is the inc lus ion  map. 
As it is done for pseudo-different . ia l  operators,  we can define a (¢ product  ~> 

and an <<adjoiat >> in v .,,~ by means  of the fo rmulas :  

(1.6) o(A) o z(B) -- E(1/a! }(2r, irl~:[~o(A)][~z(B)] 

tl.7) 

where these (finite, ordered) sums extend to all te rms whose degree of 
homogene i ty  in ~ is > - - m .  In  other words, the formal  sums ~ are 

]e!>0 reduced  modulo terms homogeneous  of degree ~ - - m .  
We  need net  ver i fy  a-pr ior i ,  as it was done in [1], that  with respect  to 

these opera t ions  ~2,0 becomes an associat ive s t a r - a lgeb ra .  Since the homomor- 
phic image of a s t a r - a lgeb ra  is again  such an  algebra,  this resul t  will be 
a direct  consequence  of Theorem 1.8 below. On the other  hand, in the style 
of [3], we can def ine  in S~ a pseudo-product A o B and a pseudo-adjoint Ae 
given by 

i1,8) ,(A o B) = ,(A) o ~(B) 

Again,  we should note that A o B and  A # are un ique ly  def ined modulo 0 m ,  

TKEO~tEM 1.8 - For  any  A and B in gin, the operators  A B - - A  o B and 
A * - - A  s belong to ~.~ and hence AB and A* are again  in Sm with 

t1.8'i *(AB) .... z(A) o o(B) 

(1.9'~ *(A*) = ¢~{A) ~. 
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COROLLARY 1 . 9 -  The class Sm is a self-adjoint  associative algebra of 
operators. The map (7 : S,~ ~ Em fs a s tar -a lgebra  homomorphism with kernel  ~,,. 
Moreover,  for each integer k with 0 <  k ~ m ,  S,~ is a subalgebra of Sk. 
~,n is a 2-sided s e l f - ad jo in t  ideal in $,~. 

The proof of Theorem 1.8 is given in the next section. Corollary 1.9 is 
is a direct consequence of 1.8, Lemma 1.2 and Remark  1.6 (a). 

I I .  

A smooth function 9 is said to be a cut-off  function if 1 - - 9  is a 
patch-function.  Given a positive integer r, we say that a function b(x, z), 
on E n x E ~ ,  belongs to B~*{E n X S  n-l) if for every ~ and for each o: with 

0 ~ 1 a I ~ r, the functions ~ b i x ,  z) are continuous in E nX ~o and bounded 
on EnXS n-1. For  instance, a B :  symbol of degree-~ belongs to BT(E n X S n-~) 
with r =  2 m - - [ p ] .  Ti~roughout this section, we fix r - - 2 m - - [ ~ ] ,  where 
0 ~ ~ < m as always. 

PrtOPOSlTION 2 . 0 . -  Let A - - - A  i be an operator of the form (1.1)with, 
P1 -- P and ~i ---- ~ > 0. Then, for all f E $, 

(2.0) [Af](x) --  l k ( x ,  x--y)f(y)dy 
d 

where the kernel  k(x, z ) -  ~ l [p(x ,  ~l](z) together with its derivatives S~k(x, z) 
for all I c c [ ~ r ,  is integrable with respect  to z, uniformly in x. Moreover, for 
any cut-off  function ~(z) there is a corresponding function t~(x, z) in 
BS(EnX S n-~) and rapidly decreasing with respect  to z, uniformly in x, 
such that 

(2.1) k(x, z) -- [h(x., z) + P(x, z) log ] z I ]9(z) -{- ~(x, z) 

where h EB~*(EnXS n-l) is homogeneous in z of degree ~ - - n ,  and P(x, z) 
is a polynomial  in z homogeneous of degree p - - n  if p - n is a non-nega- 
tive integer, P(x, z} ~ -0  otherwise. 

This result is a direct consequence of the Theorem in [5] and of Defini- 
tion 1.3 here. (See also [6], Theorem 1.5). 

Although the eventual  presence of a logarithmic term in (2.1) causes no 
serious harm in the proofs that follow, we may suppose, for the sake of 
simplicity, that m ~ n .  Thus 0 < • < n and (2.1) reduces  to 

k(x, z) = h(x, z)9(z ) -l- ~(x, z). 

AnnaIi di Matematica 41 
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In addition, on E ~ X E" o. for every N > 0 there exist constants Cu such that 

~2.2) 

for all ~ and all a with 0 ~ ] ~ ] ~ r ,  (The consta~ts C~ depend also on I~[). 
The first step in the proof of Theorem 1.8 is as fallows. 

LE~IMA 2.1 - If  A is in S,~, then A * - - A  ~ belongs to ~,~. 

PROOF - If  A E2m, then A = S  and A ~ . : -0 .  A* is again bounded in LP 
norm, 1 < p <: ~ ,  a~ld the same holds for (3/3x)~A * and A*(3/3x) ~, for all 
I ~ [ - m .  Hence A * - - A  ~ - - A * E ~ , .  

Let us consider operators A = A ]  of the form (1.1), with p ] - - p ,  
9 j = P < m ,  and suppose that  ~ :> 0. We may also suppose that on ] ~ [ ~ 1 ,  
p(x, ~) --  a(x, ~) where a - -  aj is the corresponding homogeneous symbol of 
degree --~.  Then, for all f E $. expressing A in the form (2.0) and passing 
to the adjoint, we find that 

(2.3) [A*f](x) = f k{y, y - -  x)f(y)dy 

where k is the complex conjugate of the kernel k. 
Consider now the following TAYLOR expansion in y of k(y, z) at the 

point y ---- x:  

-k{y, z ) =  E (1/~!~={x, z ) ( y - - x ) = + R ( x ;  y, z) 
Ia!<r 

where k~- -  ~- 3~k(x, zl. Lett ing z ~ y - x and substi tuting in (2.3!, we have 

(2.4) [A ' f  ](w) = 

where the term 

(2.5~ 

wilt be handled later. 

(I/a ! ) f k~(x, y - -  x)(y -- x i~f iy)dy+ [S2f](x) 

[82f](x) = f R(x ; y, y - -  x)ffy)dy 

It  follows from the definition of k that 

and thus 

- - 1  ,'~ X k~(~, z ) =  ~ [~p( , ~)](z) 

1 [ / i  \1~1 ] 
ks{w, z)Y ~ - ~ ~ 
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Hence, taking complex conjugates and recall ing lhat z = y - x, we obtain 

k~lx, y -- x}{y -- xV = (2~)-I ~ {~.p(x,, C']ix - Y) 

where p'x, ~) is conjugate to p(x, ~), andp(x ,  ~)=a(x,  ~)=~(A) on t ~ t ~ l "  
We observe that all integrals in (2.4) are absolutely convergent since, by 
Proposition 2.0, the functions f~(x, z)z ~ are integrable with respect to z, for 

all 0 ~ ] ~ t ~ r .  Moreover, for all y, f(y)=~:: [f~)](y) since f ~ .  Hence.  
using the formula (g-~u)*(g-~v) = g-l(uv), we obtain that, for all 0 ~ I ~ i ~-- r, 

(k~(x, y--x)(y--x)~f(y)dy (2r:i)-i~l f o2,~<~, ~>r~.~_~:~ ~)]f(~)d~. 
,) 

Consequently, substituting this expression in (2.4), we see that  for all f E S 

(2.6) {A*f](x) Z e 
lal<~ 

Grouping together all terms in (2.6) with f ~ i  = j ,  O ~ _ j ~ r - - 1 ,  we see 
that, modulo $2, A* is a finite sum of operators Bj of the form (1.1)with 
homogeneous symbols 

o(Bj) = Z ( l l ~ ' ) ( 2 m )  I '[3~3.zlA)] 
I~{=s" 

of degree - -  pj ----- - -  ~ - - j .  Moreover, z(B 1) E B,~_j(E ~ X S "-~) where r - - j  = 

=2m--[~]- - j=2ra- -[~ j] .  Therefore, according to Definition 1.0, z(Bji is a B: 
homogeneous s y m b o l  of degree -~s  if and only if ~s-" ~ + j  < m. In other words, 
by Definition 1.3, B i belongs to $,~ for all j<m--[~] ,  and hence A~ = Z B s 

o_j<,,--[p] 
and formula (2.6) becomes 

(2.7) A*f = A~f + S~f + S2f 

where 
r - - 1  

[ S l f ] r x )  = 
l aJ=~--[[,] 

f 2~i<x I I/'~ ! )(2,-:i) -:~1 . )  e ' 

and $2 is given by (2.5). Consequently, it remains to show that $1 and $2 
belong to ~,~. 

By Remark  1.6 (n), $1 belongs to ,~,~, being a finite sum of operators B] 
of the for (1.I) with [,~i] -- [p] + j  > [~] + m - -  [~] = m. Moreover, since A*, A ~ 
and $1 are all bounded in Lp norm, l < p < ~ ,  lhe same is true for $2 by 
formula (2.7). Let  us show next that, for all ~3 with l ~ ] - - m ,  also Ss(~/~x)~ 
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is bounded in L~ norm. In order to do this, we need suitable estimates for 

t ~R(o~; ~, ~ - -  *)1, where 

R(oc; y, z) "- k(y, z) - -  v. (1/~!} f~(oc, z) (y -- x) ~ 

]~=(x, z)=?.~k(x, z), z = y - - x  and x is fixed. 
First  of all, using {2.2} and a standard estimate on TAYLOR remainders, 

we have that for all y and all l ~ l ~ r  

t a~R(*; y, ~)I ~ c i~ l~ -~ lo~ -v  i~-~ (~ + Io~-u i )  -~ 

on I z l ~ l .  Similarly, but  keeping y fixed, we have that on [ z l ~ l  

t a~ R(*; y, z) i ~  cl~! ~ - ' -~  ] x - y l  ~ ~l + ] x - y t  )-~. 

Therefore, letting now z - - y - - w ,  ! ~ [ - - m  and combining the preceding 
estimates, we see that 

I a~R(x; y , v - ~ ) t ~  v l 0 ~ - y l  ~+~ . . . .  (~ + 10~-y[ l  -~ 

on I x - - y I ~ l .  Hence,  using again (2.2~ and substi tut ing r = 2 m - - [ ~ ] ,  it fol- 
lows that for any h r ~  1 there is a constant CN such that 

(2.8l 

for all ~, with [ ~ ] - - m ~ l ,  and all x, y in E ~'. 
Now, on account of (2.51, we see that for all [ e ~  

£ 
[& ~ f] (x) ] R ( x ;  y, y - -  x) = ~yf(y) dy .  

3 

J 

Consequently, integrating by parts and applying estimate (2.81 with h r - -  
m- ] - ? - - [~ ]  q-l,  we conclude by YouNc~'s theorem that the operators S2t~/~x)~ 
are bounded in Le norm, for all !~ l= :m and l ~ p ~ c x ~ .  

Let  us consider at this point the case ? - - 0 .  By formula (1.31 with ~i - -0 ,  
we see that, modulo ~ ,  A - - A o  where 

[Ao f ] (ac) --  a(oc~ f(x) q- p.v. f k(x, x --  y) ~{x - -  y} fty) dy -{- [ Sf] (x) 

with ¢~ being a cut-off  function and with S in 2.. Now, the Lemma is clear- 
ly true for the operator  [M~f](x)=a(x)f~x) ,  and also holds for S ~ . ~ ,  as we 
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saw earlier. The remaining term is a principal value operator of the form (2.0), 
with kernel  satisfying estimates (2.2) for p=0 .  Consequently, interpreting the 
approppriate  integrals in the principal  value sense, we see that the proof of 
the Lemma, as far as it goes, remains valid also when p - - 0 .  

Summing up, we t/ave shown that if A e ~ ,  or else if A = A  i is an ope- 
rator  of the form (l.t) with 0 ~ p = ~ i < m  , then A * - - A ~ ' - - S I + S 2  where 
S x ~ , ~  and the operators 82 and S~(3/3~c)~ are bounded in Le norm for all 
1 < p < c ~  and [~ [ - -m .  Thus it remains to be proved that (3/~)~$2 or, equi- 
valent ly,  S*(3/3~)~ also has this p roper ty .  

C~AI~I: if ~ (A) - - a  is a homogeneous symbol of degree - - p ,  where 
O ~ p  < m ,  then [~(A)~].~ =~(A) .  

Taking this momentari ly for granted, let us consider the operator  B =  
A # + S x  in $~, , ( B ) = z ( A ~ ' j = z ( A )  #. Since A * = B + S 2 ,  we have A = B * +  

S~ and so S* = A - - B * .  
Applying the preceding results to the operator  B, we deduce that B * - -  

B ~ + S ,  where S{3/3x)~ is bounded in L~ norm for all l < p < c ~  and all 
I~t = m, and where 

on account of the Claim. Accordingly, A --B # belongs to ~ ,  since ~(A - - B ~ ) =  
- -~(A)- -~(B~}--O,  thus, in particular,  (A-B#){3/3x)~ is bounded in LP norm 
for 1 < p  < c~ and I ~[ --  m. Therefore, the operator 

S* (3 /3x)a = ( A - B# i q~13xJ ~ - -  SI313x)~ 

also satisfies this property. 
Finally, we verify the Claim by induction. We note that if m - - i ,  or if 

9 ~ m - - 1 ,  the conclusion is obvious since ~(A)#-- ~(A) in these cases. Thus, 
with m ~ 2 ,  we denote by ~(A) ~ the (~adjoint)) in Z~_~ and we may assume 
that [z(A)b]~ = ~(A). 

Supposing for simplicity that p-7-0, we observe that 

and 

Consequent ly ,  

a(A)# -- z(A)b + i2ni) 1-.~ Z 1/al ~ ? ~ a  

[e(A)b]~ 7_ [z(A)b] b + (2nii ~-~ Z 1/0,! O ~ a .  
I~[=-,-1 

[z(A)#]~ = [~(A)b]#--(2hi) 1-'~ Z l / s !  ¢q~O~a = [z(A)b] b -  ~(A] 
!a[=.~--i 
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and the Claim is established. 

Turn ing  to the composition of operators in S~, 
be handled in a similar fashion.  

Q.E.D. 

we shall see how it can 

LE~[A 2.2 - If A and B are in $,~, then A B - - A o B  belongs to ~,~. 

PROOF. - It is an immediate  consequence of Lemma 1.5 and Remarks  
1.6 that composition of operators in S~ with operators in ~ yields operators 
in ~ .  Consequently, with A - - A j ,  p - - p j ,  O ~ p - - p i < m  , and with B : B k ,  
q = q k  and 0 ~ p ' - - g k < m ,  it suffices to consider products of the form AB 
where, for all f in $ ,  

and 

Then, 

(2.9) 

f e -- f k(x, . o q(x, ~) "[(~)d~ x - -  y) fty)dy 

[ A(Bf)] (x) --  f h(x, x --  Y) l f k(y, Y --  zt f(z} dz l dY 

where the approppriate integrals are taken in the principal value sense if 
or p' equals zero. 

If [ ~ + p ' ] ~ m ,  then AB belongs to ~ since, on account of Remark 1.6 
(al, A e ~[.oi and B ~ ~[~,1. Otherwise, setting r' --  m - -  [9 + ~'], we consider the 
following Taylor expansion in y at the point y - - x :  

k(y, ~ -- Y~ 1/ ~! k~,(x, ~} (y - -  xV' + R(x; y, ~t 

where k~(x, ~ i = ~ k ( x , ~ ) .  Lett ing ~ - - y - - z  and substituting back into (2.9): 
we obtain 

(2.10) 

where 

(2.lI) 

A(Bf) = Zl~l<r. 1/~! f  h(x, x --  y) IY--  x) ~' l f v - f(z)dz l dy + A(Sf) 

[Sf] ( y ) =  f R(y, y - z) flz) dz 

with R(y, ~} : R(x; y, ~), x being kept f ixed.  
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According to the definit ion of the kernel  k, 

k~(~, y - z ) =  ~ [ ~ i x ,  ~ ] ( y -  z) 

whence, since f~$, 

f ka!~v, 
• " - 1  ~ a  0C y - -  z ) f ( z )d z=  t ~ [ ~q( , ~ l ] ( y - - z ) ~ [ f l ~ ] [ z ) d z  - -  

Again, by definition of the kernel  h, 

. . -1 rf i \I~i ~ ~ ] (~ 

whence 

h(x, x - -  y) (y - -  x) ~ = (27:i)-I~t ~-~ [~ p(x, ~)](~ - y). 

Therefore,  the summation on the r ight-side of 12,10} becomes 

E p(x,  V) ~ - -  [ ~ q(x, ~)]'f(~t}{y)dy 

= Y' • " -  I ' ' [~  (~ ,~*] [~q(x ,~ ) ] f (~ ld~  (Ao B} f 1/aT(2m} ',~F e 2~<~ ~> ~ p  x ~ = 
i a l < ~ '  J 

as is readily seen by the definition of r ' .  In  other words, we have 

A B = A o B + A S .  

Consequently, since A eS~ has the form prescribed above, in order to 
prove that A S ~ , ~  it suffices to show that the operator S given by {2.11} be- 
longs to ~,~. Since A B  and A o B  are bounded in LP norm for all 1 ~ p  < ~ ,  
the same holds for AS.  Hence S must also have this property, on account of 
%emma 1.5. Finally, est imating the derivatives ~ R I y ,  ~} of our remainder,  the 
desired conclusion follows as in the proof of Lemma 2.1.. Q.E.D. 

The two preceding Lemmas exhaust  the proof of Theorem 1 8. 

REMARK 2.3. - The algebra S~ contains, as a subalgebra, the algebra ge- 

nerated by all s ingular  integral operators of class C~ (see [311 and their  
adjoints.  
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I I I .  

Henceforth,  the pr incipal  symbol (el. Defini t ion 1.7} of an operator  A in 
$~ will be denoted by %(A). If  Aeg,~,  we shall say that  A is smoothing of 
degree m.  

LEMI~IA 3.0. - If A and B belong to ~,~ and are smoothing of degree 
and 9' respectively, 0 ~ p ,  p ' < m ,  then [A, B ] = A B - - B A  is smoothing of de- 
gree ~ m i n  { ~ + f + l , m ] .  I f  [A,B] is smoothing of degree ~ + p ' + l < m ,  
then its pr incipal  symbol is given by 

(3.0) %([A, B])== (2=i)-I~=1 ~ 13%(A)~ 3c,(B}~xk 3%,B)~k ~c%(A) 13x~ 

This result  follows directly from Defini t ion 1.7 and Theorem 1.8. 
For  any positive real s, the fractional integral  operator  1 ~ belongs to S,~ 

for all integers m ~  1. I f  s < m,  we have a(I ~) --%(I~j--[  ~]-~, whereas  I ~ e ~ 
if s ~ m .  We shall  set A = I  -~. 

THEOREM 3.1. - I f  A in S,~ is smoothing of degree ~, 0 ~ o  < m ,  then 
AA. ~ and AoA belong to S~, where 

13.1) p, = [m--  [p]/2], 

and are smoothing operators  of degree zero with pr incipal  symbol %(AAP)-- 

PROOF. - Using formula  (I.3} we express the operator  A in the form 

(32t A = AoI~ + A~I ej+* + ... + S = [Ao + A,I ei+a-e + . .  + SI-~] IP 

where %(Ao)e B~(EnX Sn-1}, with r - -  2m--[~],  is homogeneous  of degree zero 

in 4. Consequently,  %(Ao) is a By homogeneous symbol of degree zero where 
~ 1  is the integer  given by (3.1). Likewise ,  we see that  the operator  /9, 
given by the expression in brackets  in (3.2}, belongs to ~ and is smooting 
of degree zero. Tiros, AA~-- P and %(AA, ~) = %(Ao)-- %(A) I~[P. 

Moreover, by L e m m a  3.0, ApA = AePI~ -- P +  he[P, I~] -~Q is also an opera.  
tor of degree zero in S~, with %(A~A)---- %(P~ = %{A)I~le. Q.E.D.  

COROLLALY 3.2. -- Let  A in ~,~ be smoothing of degree ~ < m  and let 
be as in (3.1). Then there exist  operators  P and Q in S+ of degree zero, with 
%(P) ---- %(Q) = %(A}] ~ [P, such that 

(3.3) A = Pie -- Ie Q. 
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Let  ~2 be an open set in E ~. 

D~FINI~IO~ 3.3. - An operator  A in $~ is said to be elliptic on ~ if 

(i) A is of degree zero, 

(ii) %(A) (x ,~)#O for all (x,~) in Q ~ S  ~-~. 

The operator  A is said to be elliptic if it is elliptic on all of K~. 

EXAMPLE 3.4. - Let  P(x, D ) =  E a~(x)D ~ be a differential  operator  with 

coefficients a~(x) in B~(E~), r - -  m + ]al ,  and with characterist ic polynomial 
P~(x, ~}-- ~. a~(x)~ ~. Since 

D~ :-- ~ - ~ *  ~ = {g-~ [~:d(~] -~] ~ } .  {g-~ d(~) ~ Y } = H~ h o' 

we obtain 

(3.4) P(x, D ) =  { ~, a~(x)H~} A ~ --  AA '~ 

where A ' * - - I  -~ is an isomorphism on S (and $*), and the operator A belongs 
to S~, with principal  symbol 

homogeneous of degree zero in ~. Therefore,  the differential  operator P(vc, D) 
is elliptic on ~2 if and only if the corresponding integral operator  A in $.~ is 
elliptic on ~. 

O~ 

Let us recall  that a formal power series S - - Z  a~X ~, over the complex 
9--'=-0 

is said to be invertible if there exists another series field (for example) ,  

T--- Y, b~ X ~ such that 

S. T - -  ~ { E aL~b,~} Xk~. 1. 
k~O t ~ - ~ k  

Then, as easily seen, such a series is invertible if 
stant term ao ~ 0 .  

and only if its con- 

As before, we denote by M~ the operator  [M~f](x):~(x)f(x} 
LE~[MA 3.5. - Let A in $,~ be elliptic on 9,. Then, for all ? e C~(Q), there 

exists a B in $,~ such that BA-M~ and AB-Mv are smoothing of degree 1. 
Moreover, there exist operators  B and C in $~ such that BA-M~ and AC-M~ 
bAong to ~ .  
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PROOF. - Let  B in ~ .  be an operator with principal  symbol %(B)=c?(x) 
[%(A)] -~. Then the first conclusion follows from Theorem 1.8, since %(AB)-- 
= ,~(A) %{B~ = ?{x) = %(BA). 

Again from Theorem 1.8, we have that BA-M,  belongs to ~,~ if and only 
if z(B} o , ( A ) = ~ ( x ) .  Choosing bo ' -%(B)  as before,  we can solve successively 
for the remaining b] by an argument analogous to be one used for formal 
power serier. The existence of C is determined in the same way. Q.E.D. 

The following result  is a direct consequence of Lemma 3.5. 

LEMMA 3.6. - Let A in $,~ be elliptic on ~ and let Q~ be a relatively 
compact subset  of t)~. Then there exists an operator B in $,~, with z(BA)= 1 
on ~-~, such that for all feL~_.~, 1 < p < o ~ ,  

B A r =  f +  Sf  

where z(S)= 0 on Q1. 

Another immediate consequence of Theorem 1.8 is the following ~ pseudo-  
locality >> proper ty .  

LEMMA 3.7. - Let A belong to S,~. Then,  for any ~1 and ~2 in B~(E ~) 
with disjoint supports, the operator M~,AM~ belongs to 2~. 

PRooF. - Since ~(M~}-- %(M9~) = %(x), it follows that 

~(Mg~ A3I~} = ~(x) a(A3l,.~) = 

= c?~(x) 2 (1/~I)~2~i)-I~1 [~(A}] [~  92] ---- 0 

since % and ~72 have disjoint supports. 

Let  us consider the local spaces 

Q.E.D. 

Lfo~(Q)= ( f e$* :~ feL~  for all ~ e  C~tt2)}. 

LEMMA 3.8. - Let A in $,~ be smoothing of degree t~, 0 ~ m .  Then, for 
all 1 < p < c ~  and O~_]s]~[s-~pl~,m, if [e[v'~'Q ~ ,lot( ~ then (A f)e Lfo*e+P(Q). 

PROOF. - Let ~ C~(~) and choose a corresponding + + C~(~) such that 
+(x} =: 1 on a neighborood of the support  of ~o. Then 

¢¢Af = ~A+f + ~¢A(1 --  +)f. 

for O lsl<is+pl<m Now, since +f is in L~, ¢~At~f) belongs to L~+p __ . 
Moreover, by Lemma 3.7, since ~ and (1--~) have disjoint supports.  M~AM(I_+) 
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is in ~,, and  hence also ~A(1 - -  ~)f belongs to Lf+~ for I s + ~ [ ~ m. Therefore ,  
~Af  is in L~+p. Q.E.D. 

We  are now ready to obtain the fol lowing (local) r egu la r i ty  proper ty  of 
el l ipt ic  opera to rs .  

TttEOREM 3.9. - Le t  A in $,~ be el l ipt ic  on ~2 and let Q~ be a re la t ive ly  

compact  subset  of Q. Then  for all 1 < p  < c o  and all f in L~_,~, O ~ s ~ m ,  
if (Af} e Lf~;(~]~) then f e L~o,:(~)" 

PaOOF. - By L e m m a  3.6 there exists  a B in $,~ such that  B A f : f ~ - S f  

where  a(S~--0  on ~1. By L e m m a  3.8, since B has degree zero, Af in L~;(Q-1) 
p ,  s 

impl ies  tha t  B A f  belongs to Llo¢(~). 

Now let ~0 e C~(Qd. Then  MgS belongs to 2~ since v ( S ) : 0  on ~ .  Thus,  
~ S f i s  in L~_,~+,~:L~ and so (SfleL~o~(~)~). Consequen t ly ,  f : B A f - - S f  be- 

p ,  s 
longs to Llo¢t~2~}. Q.E.D. 

W e  note that  combin ing  Theorem 3.9 wi th  Example  3.4, one obtains ano- 
ther  proof of the in ter ior  r e g u | a r i t y  for solut ions of cer ta in  el l ipt ic  par t ia l  
d i f fe ren t i a l  equa t ions  on .Q. F i n a l l y ,  we r emark  that  the a lgebra  ~ is inva- 
r iant  unde r  smooth local d i f feomorptf isms and that,  for such a map ~:~2-->E ~, 
the pr inc ipa l  symbol of an opera tor  in ~,~ behaves as a funct ion def ined  on 
the {trivial) co tangent  bundle  over ~)~. This  result ,  together  with its proof, is 
the ana logue  of Theorem 7 in [7]. The behavior  of the (fullt symbol  unde r  
local d i f feomorphism is more compl ica ted  and requi res  a d iscuss ion of cer- 
ta in  tier) equ iva lence-c lasses  of maps. Thus,  we shall  defer  its descr ipt ion to 
ano ther  occas ion .  

R E F E R E N C E S  

[i] A.. P. CALDERON, A priori estimates for singular integral operators, in Proe C.I.M.E. 
Conf., Stresa 1968 (Ed. Cremonese, Roma 1969), pp. 87.141. 

[2] --  --, Algebras of singular integral operators, Am. Math. See Prec. SFm p Pure Math., 
Vol. 10 (1967), pp. 18.55. 

[3] A.P. CALDm~bN a::d A, ZYG~C~D, Singular integral operators and differential equa- 
tions, Am. J. Math.. 79 (1957), pp. 90t-92i. 

[4:] U. •ERI, Singular integral operators and distributions, Lect. 57otes To. 4, University 
of Maryland, College Park, Md., 1968. 

[5] -- -- ,  Una nora sull'integrazione frazionaria, Bolt Un, Mat. Ital. S. IV~ 3 (i970), 
pp. 242-2~7. 

[6] -- --, The integrable kernels of certain pseudo-differential operators, Math. Ann., 186 
(1970),:pp. 155-162. 

[7] R.S. PALAIS and R.T. SSEUEY, Seminar on the Atiyah.Singer index Theorem, Ch. XVI, 
Ann. of Math. Studies No. 57, Princeton, ~. J ,  i965. 


