
On Weyl's identity. 

ELEANOR GOLDSTEIN and MARTIN KATZEN {~eV~ * Jersey, U.S.A.) (*) 

Summary. - The VVeyl Identity (as orignally staled by H. VVeyl a~d used by A. K~int~er) 
is not totally correct. Presented here is the correct version of the Identity, a co~cise 
proof of it and some applications. 

I n t r o d u c t i o n .  

HERMAN WEYL published the paper  [t0] in which the WEYI, problem 
was introduced and partially solved. One of the crucial  steps in the solution 
is to obtain an a priori bound for the mean curvature  in terms of the metric 
coefficients. WEYL deduces such a bound from his identi ty (33). Aurel 
WINT~ER published the paper  [12] in which he named equation (33)the WEYL 
identity and showed that this identity has other interesting applications. 

WEYI, does not include the details of the computat ions which lead to the 
WEYL identity, l ie  describes them as a " langwei l ige  R e c h n u n g ,  and states 
" E s  ist wahrscheinlich,  dass ein gesehickterer  R, EC~:~ER die I~O~M]~L (33) auf 
viel leichterem W~:GE wird ermitteln konnen, als hier angeduetet  wurde., ,  
As far as we know except  for some related results derived by CI~E~N in [1] 
WEYL~s request  has thus far been unfulfil led. 

The WEYL identity is not correct. A counterexample is given in section 2. 
A corrected identity (3.6) was found in [3] by essential ly following the tedious 
algebraic procedure suggested by WEYL in [10]. NIR]~B]~RG in [6] uses the 
W~,YL inequal i ty  which he proves directly by using an identity (10.9) in [6] 
which is esentially equivalent  to the corrected WEYL Ident i ty  (3.6) except  that 
~IRENBERG'S (10.9) is not in invariant form. As WEYL predicted, a more di- 
rect proof was discovered and is given in section 5. We generalize the iden. 
tity in section 4 by el iminating the restriction that the GAUSSIAN curvature  
does not vanish. The corrected identity (3.6) leaves some applications unaf. 
fected but  does show that some of WIN~:~-EI~'s formulas in [12] are not correct. 
The related results derived by CHERN in [1] are shown in [2] to imply the 

(~*) Entrata in I~edazione il "2.8 febbr~io 1970. 
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corrected identity (3.6) and not W~YL'S identity as was claimed. In later 
sections we correct other results in WI~T:N:ER~8 paper ~hich are not conse- 
quences of his working with the wrong identity. 

1. - Formulas  from the theory of  surfaces. 

Let  M be a surface in ]~VCLiDE~ 3 - s p a c e  of class C~(r~4) with first 
fundamental  form given by 

ds2 - -  g~jdzddui 

and second fundamental  from by 

l~jdu~du j 

The functions g~j and l~j are of class C ~-~ and C ~-2 respectively. When K ~ 0 
we pick the unit normal to the surface N so that l ~ 0 i  ~ 1, 2. 

We will be concerned with a neighborhood of a point P on a surface 
of class C ~, r > 5  which is nei ther  an umbilic nor a flat point. In this nei- 
ghborhood we will be using lines of curvature coordinates. There is a loss 
in differentiabil i ty involved in changing to lines of curvature coordinates. (See 
[11, p. 860] for a discussion of this point). 

Tile parametric curves are the lines of curvature if and only if g~2-- e~2 = 0, 
and in this case t~ - -k~g~ ,  i = t, 2 where k~ and k2 are the principle curva- 
tures. 

We denote the G:AUSSIAN curvature by K, the mean curvature by H and 
define the quanti ty 

J --  (I/2)(kl--k2) 

a n d  n o t e  t h a t  0/2 - -  H 2 - -  t ( .  

T h e  ~ [ A I N A R D I - C O D A Z Z I  equations in lines 
come as in [5, p. 66] 

of curvature coordinates be- 

(1.1) 

(122)~ = (g22)~H 

and Theorem Egregium takes the form (in any orthogonal coordinates): 

i 

(1.2) I (  = - -  (1/(2(g~g22)~))(a + b) 

i 

a, = ((g2:)~/(g~ig22)~), 

! 

( ,  " b = ((g~1)J~ilg2~)")~, 
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As def ined in [4, pp. 230-1] we will  denote  the BELTRAI~II pa rame te r s  of 
the f i rs t  and  second k ind  with respect  to the f i rs t  f u n d a m e n t a l  form by V'(% 0) 
and A'q~ respec t ive ly  and  with respect  to the second f u n d a m e n t a l  form by 
V'(% 0) and A"q0 respect ively .  

Le t  the metr ic  on the sur face  M be represen ted  by the ma t r ix  A. Fo r  
each  point  x EM, the metr ic  induces  an i somorphism between the t angen t  
and  co tangen t  spaces and hence  leads us to def ine  the operator  gA, be tween 
F, the vector f ields on M, to A ~, the space of one forms on M, as follows: 

For  w' and w E P  

(gZw'))(w) = (w', w)A 

where (w', w)~ is the inner  product .  
t 

Le t  t o ~ - - ( d e t  A ) ~ d u A  dv be the 
opera tor  

def ined as follows: 
For  a C A ~ 

where for ~ E A' 

volume element .  

mA : A ~ --> I ~ 

mA(:¢): A 1 ~ C°(M, RI) 

mA(c~)(~) ~--- s where  c~ A ~ --  stoA. 

We  use cf. [7] the 

For  the d ivergence  of a vector  field X, we use the fo rmula  el. [7]. 

(1.3) divz (X)oJ~ --  - -  dmzl (X) .  

2. - A co ,mte , ' example  to Weyi 's  i den t i ty .  

WEYL'S ident i ty  is the fol lowing re la t ion  between K, H and their  diffe- 
ren t ia l  pa ramete r s  : 

~ , " H -  1 , , ~A [i - -  2IIJ 2 -- (2/J)V"(H, J) - -  (1/J)V'(K, J) 

Consider the one pa ramete r  fami ly  of surfaces  X(u, v ) - - k X ( u ,  v) for k E R  ~. 
The  WEYL ident i ty  appl ied to the sur face  Xz(u, v) yie lds :  

(2.1) ( I /k)2(~"t l - -  (2/J)V"(H,J))--=(1/k)~(~A'K q -2KJ2- - (1 /J )V ' ( t~ ,J ) ) .  

The coeff ic ients  of ( l /k)  2 and (I /k)  ~ in (2.1) must  be zero since (2.1) must  
hold for all k :4 :0 .  The snr face  def ined by X(u, v ) - - (u ,  v, u 2.q-2v 2) is a 
coun t e r example  to W]~¥L's iden t i ty  since the origin is a n o n - u m b i l i c  point  
at wich A'H:4:0 ,  V"(H, J )~-O and K ~ 0 .  

AnnaIi di Matematica 37 
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3. - Concise proof  of  the corrected Weyl ident i ty.  

Prel iminares  

LF.MM~. 1: Given a R iemann ian  n - d i m e n s i o n a l  mani fo ld  M with two 
Riemannian  metrics corresponding to the diagonal mafrices I and H. Then 
for any  vector field X 

t 

(3.1) div~ (X)~o] ~ divH ((det I / d e t  II)~X)~o~ 

P a o o F  - It  follows directily from the definitions in section 1 that 

t 

m~ -~ = (det I / d e t  II i~m. -~ and 

By (1.3) 

~ox = (det I / d e t  II)~-~o~. 

divz(X)~o~-~-- dinTs(X) which by the above 

1 

----- ~ d((det I / de t  II)-~mit-~(X)) 

which from the~linearity of mzF 1 and the definition of divH give the desired 
result .  

LEM~IA 2: Let M be a two-d imens iona l  R iemann ian  mani fold  Let e~, e2 
be an orthonormal basis in the tangent space. Then the Gaussian curvature K 
satisfies the following equation: 

(3.2) Kto --  - -  div((div e~)e~ + (div e2~ez)to 

where the volume element o) is chosen in accordance wilh the melric. 
We note here that Weatherbnrn  in [9] first proved this result  for surfaces. 

Below we outline a more~direct proof. 
We  observe from the form of Theorem Egregium in orthogonal coordinates 

(1.2) that K can be expressed as the divergence of a vector field with respect  to 
the metric E-~-(~j).  Using Lemma 1 we express K as the divergence of a 
vector[f ie ld  with respect  to the metric induced on M by its embedding in/~3. 
Fur ther  applying this technique to the components of the vector field we arrive 
at equation (3. 2). 

We  now consider a two dimensional surface imbedded in 3 - s p a c e  with 
K ~ 0, and which is free from umbilics. Let  I and I I  represent  the matrices 
associated with the first and second fundamental  forms respectively in lines 
of curvature  coordinates. Let  (el, e2) be an orthonormal basis in the directions 

* 
of the u and v parametr ic  curves respectively and let (el, e~) be the dual 

basic in the  cotangent space. Then we have according to our convention: 
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(3.3) g~-~(e:) = e 

g ~ ( e * )  -~ e~/k~ for i --~ 1,2. 

Since g r a d A f =  g~-~d f  we m a y  somei imes  write g r a d ~ f .  ~ for 
express ions  : 

(grad± f~ ~)i = (gradH f, z)ii = dr(z) .  

any  of the 

W e  use the re la t ions  

(3.4) kl "- H -{- J 

k 2 :  H - - J  

to rewri te  the ~¢[AINAaDI-CODAZZI equa t ions  (1.1) by rep lac ing  the coeffici- 
ents of the second f u n d a m e n t a l  form by express ions  involv ing  H and  J :  

((H + J)g~)o = (g~)~H 

and ( ( H  - -  J l ,q22)t t  - -  (g22) t~ /~ .  

By ca r ry ing  out  the d i f fe ren t i a t ion  in the above equat ions  
terms we get 

(3.5) (g~)~/ g~  - -  (H~, -{- J~)/ ( - -  J)  and 

(g22)o/g22 =- (H~ - -  J~)/J.  

and r ea r r ang ing  

We  now prove the  fol lowing form of the WE~L ident i ty  (3.6) in the 
ne ighborhood  of a point  P which is not  an umbi l l ie  and at  which K ~ 0. 

(3.6) 2 K J  2 - -  K U ' H -  K V " ( J  ~, H ; / J  2 + V " ( K ,  14)/2 - -  A ' K / 2  + V ' ( J  2, K) / (2J2) .  

CASE 1. - K ~ 0 .  

By L e m m a  2, Kcoz ~- -- divi ((divi el)el -t- (divi e~)e2)~ot. 
We  proceed to wri te  the vector (divie~)ei + (divie2)e2 in terms of H, J, and /(. 
I t  is easy  to see tha t  

divx e, --  (1/2(gll)l/2)((g22)u/g22) 

which becomes by the form (3.5) of the MAINARDI- CODAZZI equat ions  

(3.7) divi el - -  ( 1 / 2 ( g 1 1 ) ~ / 2 ) ( H ~  - -  J~) /J  

divi e2 --  (1/2(gz2)1/~)( - Ho - -  Jo) /J  

where the la t te r  fo rmula  in (3.7) is s imi la r ly  obtained.  F r o m  j 2 - - H  2 __ K we 
have 

(3.8) J .  = (2HHu - -  I (~)/2J 
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and an analagous equation with u replaced by v. By subst i tut ing {3.8) in 
(3.7) and using (3.4) we write div~e~ and dirge2 in terms of J, It ,  K, kl and 
k2 as follows: 

t 

(3.9) divz e~ : (t/(2(g~)~))( - k2[I~/J 2 ~ I (~/2J  ~) 

i 

div~ e2 --  (1/(2(g22)-~)( - k i H J J  ~ + I C / 2 J  2) 

By writing k~ : K / k j  for i -  1, 2, i =4=j and rearranging terms we have 

(3.10) (divz e~)e~ ~ (div~ e2)e2 - -  A + B where 

1 i 

A - -  ( 1 / 4 J  2)((K~/(g~2)e~ ~ (K~ / (g22)~)e2) 

and 

B : - -  (K/2J2)(H~/(g,~)~)(e~/k~) -~ (H#((.g~2)~)(e#k2)) 

It  is easily seen that A and B can be expressed by 

A - -  (1/4J2)(dK(e~)e~ + dK(e2)e2) 

B -~ - -  (K/2J2;(dH(e~)(e~/k,) ~ dH(e~)(e#k~)). 

We note here that the discussion up to this point holds for K >  0 and 
K < 0. We  now assume that K ~> 0. 

Using equations (3.3) and the l inearity of g~ and gz~ we get 

B : - -  (K/2J~yg~-~(dH(e~)e: -}- dH(e~)e~)) 

which is simply 
A = ( 1/4J~)g~-l(dK) 

-- (1/4J  2) gra~± K and 

B = - -  (K /2J : )gz~ l (dH)  

- -  - -  ( K / 2 J  2) grader H.  

Thus from (3.10) and the above we write in terms of H, J, K the vector 

(divi el)el ~ (divl e:)e2 = ( 1 / 4 J  2) gradr K - -  ( K / 2 J  2) grad ,  H.  

So by Lemma 2 we have 

(3.11) Kco~ --  divl ( ( K / 2 J  2) grad ,  H -- ( t / 4 J  2) grad1 K)(~. 
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Using Lemma 1 on the first factor of the right hand side of (3.11) and 
noting tsar K--- det I I / de t  I we have 

l 

(3.12) K¢o~ : divH (((K)~/2J 2) grad±i H ) ~  

diw ((1/4J 2) grad1 K)coz. 

Observing ¢oiz = (K)2o)z, equating the coefficients of (1)1 in (3.12), expanding, 
substi tuting gradA (1/J ~) = -- (grad~ (j2))/j4 for A = I and II  and finally multi- 
plying by j2 we get the WEYL identi ty (3.6). 

CAs~ 2. - K < 0 .  

The use of a metric corresponding to a negative definite matr ix  does 
not affect the formal definition of g~ and thus the proof is valid through (3.11). 
The proof appears to break down at equation (3.12), since the volume element 
co~r is equal to (det II)~/2 du /~ dv where det I I  is negative and also we see a 
factor of (K) ~/z. We overcome this difficulty by considering the complex tangent 
space Pc as generated by the vectors 3/3u and 3/3v over the complex field C. 
Replacing R ~, A ~, F by C, A~c, rc, we define m, d, and div exactly as in 
section 1. Lemma 1 remains valid for real vector fields X, since ~oA = 

= (det) zdu A dr, mzX(3/3u) := - -  (det A)~dv and mA-~(3/~v) -- (det A)2du, for A =I 
and IL The entire proof for K < 0  follows verbatim from the proof which 
was done in the real GRASSS~AX manifold, i f  K < 0 the identity (3.6) is still 
a real valued identity since divzz of a real vector field is real. 

Although the preceding proof is valid for C k surfaces where k ~ 5 ,  we 
will show that the identi ty holds for k ~ 4. Given any C ~ surface, correspon- 
ding to each point p, there exists a C ~ surface X(u, v) each of whose coordi- 
nates is the first five terms of the two dimensional TAYLOR series expansion 
at P, of the corresponding coordinates of the original C ~ surface. This C ~ 
surface and the original C ~ surface have the same values for all the quanti- 
ties appearing in (3.6) at P. 

We remark that by integrating the identi ty (3.6) we can get the following 
identi ty wlfich is valid on surfaces of class C3: 

(1/2)~(1/J2)(gradz K, m±)~dsx-{-2 f Kda~ 

where mz, ds~ and dz~ are the outward normal, the axc length and the area 
element with respect to the metric I and similarly for II. 
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4. - The generalized Weyl identi ty.  

When  h ~ =  0 the corrected WEYb identity contains the terms K A " B  and 

K g r a d H H  whlch take the form 0/0. Below we de[ine an operator SH which 
permits us to generalize the WEYL identity to: 

(4.1) 2KJ  2 - -  L 2 H -  L IK  

where the L~i -~- 1, 2 are differential  operators for which Lt is elliptic and L2 is 
hyperbolic~ parabolic or elliptic:at a point according as ff at that point is less 
than zero, equal to zero or greater  than zero respectively. (B 2" parabolic we also 
include flat points at which all the second order derivatives of I (vanish . )  

Let  II  = (e~j) represent  the second fundamental  form. We  define the ope- 
rator 

S .  : C~(M, R ~) --> F as 

where lpq* is the cofactor of 1pq. We remark that Sn(f)  is well define forp 
all values of det (lu). Fur thermore if det (l~])~ 0 we define 

gradi~ f := (1/(det(/p~))) E (3f/3u~)lk~*(~/3uk). 

We note that if det ( / u ) ~  0 then this definition of g r a d i i f  agrees 
one in section 1 and if det(e~j)~ 0 then the relation 

SH(f) : det (lu) gradii f 
holds. 

The differential  operators which appear  in the generalized form 
WEYL identity, (4.1) can be writ ten as: 

with the 

of the 

(4.1a) 

(4.1b) 

L~H = divi (SII(H)/det  I) - -  (1/J2;(SII(H)/det I). grad~ j2  

LI[( = ( I / 2 ) A " K - -  (1/2J2)v'(K, j2) 

where the inner product  in L2H is given as in section 3. 
We remark that for det II  ~ 0 ,  S I I ( H ) / d e t f l - - K g r a d i i  H and by expan- 

ding (4.1) we obtain (3.6). 
To prove (4 .1)we observe that when K =  0 the proof of the corrected 

WEYL identity in lines of curvature  coordinates is valid up to equation (3.9). 
Using (3.9) we obtain 

(divi ei)et + (divI e2)e2 = (i/(4J2)) grad1 K + 

i t 
--(1/(2J2))(k2HJ(g~l)2)el + (klH /(g22)~)e2). 
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We note that the second vector  on the right hand side of the above is 
precisely S~r(H)/det  I. Thus from the above and Lemma 2 we have 

K --  divI ((t /2j2)(SI~(H)/det I) - -  (1 /4J  2) grad~ K 

Again expanding, letting (grad1 j2 ) / j4  replace - -  grad:~ (1 /J  2) ~nd mult iplying 
by 2J  2 we have equation (4.1) which is valid at nonumbill ics for all values 
of If. 

To see that L1 is an elliptic operator on K and that L: is an operator  on 
H whose type is determined by the sign of K we compute the coefficients 
of the higher derivatives and we obtain 

L1K - -  ( g 2 2 K u u  - -  2g12K~, + gllK~)/(2(glIg2z --  g,2 2) 

+ t(~(...):+ HL..).  and 

L2H - -  ( / 2 2 H ~  - -  21~2H~ + l t l H , , ~ ) / ( g l l g 2 2  - -  g~22) 

+ Its(...) + tL(,..). 

W e  see that LI is elliptic since the matr ix (gU(2(g~g22 ~ g 1 2 2 ) ) )  has de- 
terminant equal  to 1/(4(g~g22--g~22)) which is strictly greater  than zero. 

The matrix (l~j/(gl~g22--g~22)) corresponding to L2 has determinant  
(lj1/22--1122)/(gllg22--g~22) 2 which is equal to K/(gng22--g122) and hence L2 is 
a hyperbolic, parabolic or elliptic operator  at a point 1) according to whether 
K at P is negative, zero or positive respectively. 

We  remove the restrict ion that our surface contains no unbilics by ap- 
plyng the method WI~T~I~R used in section 4 of [12] to formula (4,l) obtaining: 

4KJ  4 -- J2(2 divi (S~I(H)/ det I) - -  A'K) + 

-4- ( - -  2)(SII(H)/det I ) .  gradi j2 _[_ V,(KJ2). 

5. - Some applicat ions of  the corrected Weyl ident i ty .  

At the end of his paper, WEYL concludes from the invalid <<W]~YL iden- 
tity>> the inequal i ty:  

H2(u, v) ~ max ( K - -  (4K)-IA'K) 
S 

for surfaces S which are compact  and on which the GAUSSIA~ curvature  is 
positive. The validity o[ this conclusion, in spite of WEYL's using an incorrect  
identi ty to start with, is due to the fact that WEYL's argument  uses the 
identity at ext remum points for H. At such points the corrected WEYL iden. 
tity and WEYL's original identity agree. In [6] ~I1~E~II3E~G proves the above 
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inequali ty directly from his identity (10.9) which is basically equivalent to 
(3.6}. In [12] WIN~NER extended the inequali ty to surfaces containing umbilics, 
however his proof is not correcL A corrected version follows: 

Let P be the point on S at which H attains its maximum. We only treat 
the case for P an umbilic point since otherwise WIg~NEa'S proof is correct. 

If  WE~:L'S inequali ty does not hold we have: 

H2(uo, vo) > max {K --  A 'K/4K)  ~ K(uo, vo) - -  (V'K/(uo, vo)/4K(uo, Vo). 
S 

Since X(uo, v0)--Po is an umbilic, H2(uo, Vo)=K(uo, Vo) and we have 
0 < A'(K}/4K at Pc. But this contradicts the generally true fact that if H(u, v) 
assumes its maximal  value at an umbilic, K also assumes its maximal  value 
there, for : 

K(u, v) ~ H~(uo, Vo) <_ tt~(Uo, Vo) = K(uo, Vo). 

In section 6 of his paper W 1 ~ n  lets the third fundamental  form 
replace the first fundamental  form in WEYL's suggested proof of the W]~:fL 
identity to deduce a second invalid identity. We let the third fundamental  
form play the first in the proof of (3.6) to get the identi ty:  

((H*) ~ - -  [;*)(A"H* --  A*I;*/2K* - -  2((//*) ~ --  K*)/!(*) 

= V"(H*, H .2 -- K * ) -  V*(K*, ( H * J  2 - -  K*)/2K* --((H*) 2 -  K*)V"(K*, H*)/2K* 

where H*, K*, A* and V* are defined as in WJN~rgER's paper. This is an 
invoriant form of (16.8) in [6] which NIRSNBERG proved directly. For  reasons 
similar to those given at the beginning of this section pertaining to the WJ~¥L 
inequality, the method WIN~ER uses in section 6 of [12] does prove 5IInA~DA'S 
inequali ty from the above identity. 

We now use the corrected WE¥I, identity to derive a necessary condition 
for the existence of surfaces with constant G A U S S I A N  curvature. Let K = c 
on S. Then (3.6) reduces to: 

(1/2)(H ~ - -  c )A"H - -  H V " H - -  (H 2 -- c) 2 = 0, or 

divii (gradit H / ( H  2 - -  c)) = 2 

This expression is not equivalent to WINTNER~S formula (25) in [12] because 
WI~TN]~R employed WElL ' s  identi ty rather than its corrected form (3.6). 

6. - Smoothness of J .  

In section 2 of [12] WIdeNER claims that J(u, v) is  of class C ~-2 whenever 
X(u, v) is C ~ for n ~ 1. In section 9, WI~T~EI~ attempts to prove this 
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s t a t e m e n t ,  bu t  the p roof  is not  va l id  b e c a u s e  the func t ions  he  r e f e r s  to as 
Ca>) and  (< b>> canno t  be de f ined  in gene ra l  to be  con t inuous .  T h e  fo l lowing  

e x a m p l e  shows tha t  t he re  exis t  C ~ su r f ace s  with K >  0, on wh ich  J is not 

e v e r y w h e r e  C ~. 

M*(u, v) = l l / ( u  = + vz -{- (1 + uvZ)=))(u, v, 1 + uvZ). 

Thi s  s u r f a c e  is the i n v e r s i o n  in the un i t  sphe re  of the s u r f a c e  M(u,  v ) - -  

- - ( u ,  v, 1 + uvZ). A di rec t  c o m p u t a t i o n  shows tha t  on M(u,  v), 

J - -  (1/(det  I)~/e)(u~ + 4v ~ + (9u=v ~ + 4v ~ + lOu2v~))~l ~ 

which  is not C ~ at 31(0, 0). H o w e v e r  at M(O, 0), K - - 0 .  I n  [8] W E A T ~ m ~ U R N  
c o m p u t e s  t h e : r e l a t i o n  of J *  to J and  K *  to /~ for  an inve r s ion  in the un i t  

sphe r e  to be :  

(b) 

(a) J*  = - - ] !M(u ,  v)l~J 

K * =  I M I 4 K +  2 ] M ] 2 ~ J +  4p 2 whe re  ~ = N(u ,  v) .  M(u,  v) 

F r o m  (a) it is c l ea r  tha t  if J is not  C ~ n e i t h e r  is J* .  F r o m  (b) we see tha t  

K*(0,  0 ) = 4  > 0. T h u s  at M*(0, 0}, J *  is not  C ~ and  K * ~  0. 
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