On Weyl’'s identity.

ELpanor GoupsteIN and Martin Karzen (New Jersey, U.S.A)) (%)

Summary. - The Weyl Identity (as orignally stated by H. Weyl and used by A. Wintner)
is not totally correct. Presented here is the correct version of the Identity, a concise
proof of it and some applications.

Introduction.

HermaN WEYL published the paper [10] in which the WEYL problem
was introduced and partially solved. One of the crucial steps in the solution
is to obtain an a priori bound for the mean curvature in terms of the metric
coefficients. WEYL deduces such a bound from his identity (33). Aurel
WINTNER published the paper [12] in which he named equation (33) the WEYL
identity and showed that this identity has other interesiing applications.

WeYL does not include the details of the computations which lead to the
WEeYL identity. He describes them as a “langweilige Rechnung,, and siates
“Hs ist wabrscheinlich, dass ein geschickterer RECHNER die ForMEL (33) auf
viel leichterem WEGE wird ermitteln konnen, als hier angeduetet wurde.,,
As far as we know except for some related results derived by CHERN in [1]
WEeYL’s request has thus far been unfulfilled.

The WEYL identity is not correct. A counterexample is given in section 2.
A corrected identity (3.6) was found in [3] by essentially following the tedious
algebraic procedure suggested by WEYL in [10]. NIRENBERG in [6] uses the
WEYL inequality which he proves directly by using an identity (10.9) in [6]
which is esentially equivalent to the corrected WEYL Identity (3.6) except that
NIReENBERG’s (10.9) is not in invariant form. As WEYL predicted, a more di-
rect proof was discovered and is given in section 3. We generalize the iden-
tity in section 4 by eliminating the restriction that the GAUSSIAN curvature
does not vanish. The corrected identity (3.6) leaves some applications unaf-
fected but does show that some of WINTNER’s formulas in [12] are not correet.
The related results derived by CHERN in [1] are shown in [2] to imply the

(**) Entrata in Redazione il 28 febbraio 1970.
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corrected identity (3.6) and not WEyYL’s identity as was claimed. In later
sections we correct other results in WINTNER’s paper which are not conse-
guences of his working with the wrong identity.

1. - Formulas from the theory of surfaces.

Liet M be a surface in FUcLIDEAN 3-space of class Cr =4) with first
fundamental form given by
ds? = gzdu'du’

and second fundamental form by
lijduiduj

The functions g¢;; and [; are of class C"—! and C? respectively. When K =0
we pick the unit normal to the surface N so that [, =>04i=1, 2.

We will be concerned with a neighborhood of a point P on a surface
of class (", r =0 which is neither an umbilic nor a flat point. In this nei-
ghborhood we will be using lines of cuivature coordinates. There is a loss
in differentiability involved in changing to lines of curvature coordinates. (See
[11, p. 860] for a discussion of this point).

The pavametric curves are the lines of curvature if and only if g1, = e, =0,
and in this case [; = kigs, ¢ =1, 2 where Lk and %, are the principle curva-
tures,

We denote the (GAUSSIAN curvature by X, the mean curvature by H and
define the quantity

J=1/2)l—k)
and note that J = H? — K.

The MAINARDI-CoDAZzI equations in lines of corvature coordinates be-
come as in [B, p. 66]

(l-l) (ln) = {gu)H
(ZZZ)u = (gzz)uﬂ

and Theorem Egregium takes the form (in any orthogonal coordinates):
4
(1.2) K = — (1/(2(gugs2)*))a + b)
1
a4 = ((gzz)u/{gngzz)z)u

b = ((gu),;/(gugm}g)»
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As defined in [4, pp. 230-1] we will denote the BELTRAMI parameters of
the first and second kind with respect to the first fundamental form by V'(g, 6)
and A’y respectively and with respect to the second fundamental form by
Vg, 0) and A”¢ respectively.

Let the metric on the surface M be represented by the matrix 4. For
each point « € 3, the metric induces an isomorphism between the tangent
and cotangent spaces and hence leads us to define the operator g,, between
I, the vector fields on M, to A', the space of one forms on M, as follows:

For w" and wel

(gAw)w) = (W', w)a

where (W', w A is the inner product.
?
i

Let w, = (det A):du A dv be the volume element. We use cf. [7] the
operator
my A>T
defined as follows:
For « € A!

male): Al — C%M, RY)

where for B € A!

mae)(B) = s where a A B = sw,.
For the divergence of a vector field X, we use the formula cf. [7].
(1.3) div(X)w, = — dms(X).

2. = A counterexample to Weyl’s identity.

WeyL’s identity is the following relation between K, H and their diffe-
rential parameters:

AH — %A’[{ — RS2 = () J)V"H, J) — (1/)V(K, J)

Consider the one parameter family of surfaces X(u, v) = AX(u, v) for A € B.
The WEYL identity applied to the surface X;(u, v) yields:

@2.1)  (/WAATH — 2/HVH, Iy = (1 /134(% NE 4+ 2K — (1] HV(R, J)).

The coefficients of (1/A¢ and (1/3)* in (2.1) must be zero sinmce (2.1) must
hold for all A ==0. The surface defined by X(u, v)= (u, v, >+ 2¢?) is a
counterexample to WEYL’s identily since the origin is a non-umbilic point
at wich A"H=0, V'(H, J)=0 and K> 0.
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3. - Concise proof of the corrected Weyl identity.

Preliminares

LemyMa 1: Given o Riemannian n~dimensional wmanifold M with two
Riemannian metrics corresponding lo (he diagonal wmalrices 1 and 1I. Then
for any veclor field X

1

(8.1 div; (X)w; = divy;((det I/det IT* X)wy

Proor - It follows directily from the definitions in section 1 thaf
4
;! = (det I/ det IL*my—! and

4
Wy = (det I/det II)2 Wyr.
By (1.3)
div; (X)w; = — dm/X) which by the above

i

== — d((det I/det I1)*m ;X))

which from the@linearity of m; ' and the definition of div; give the desired
resulf.

LemmaA 2: Let M be a two-dimensional Riemannian manifold Let e, e,
be an orthonormal basis in the tangent space. Then the Gaussiawn curvalure K
satisfies the following equation:

3.2) Ko = — div((div e;)e; -+ (div eslex)w

where the volume element w 4s chosen in accordance wilh the wmetric.

We note here that Weatherburn in [9] first proved this result for surfaces.
Below we outline a more direct proof.

‘We observe from the form of Theorem Egregium in orthogonal coordinates
(1.2) that K can be expressed as the divergence of a vector field with respect to
the metric B = (3;;). Using Lemma 1 we express K as the divergence of a
vector”field with respect to the metric induced on M by its embedding in E2
Further applying this technique to the components of the vector field we arrive
at equation (8. 2).

We now consider a two dimensional surface imbedded in 3 -space with
K >0, and which is free from umbilics. Let I and II represent the matrices
associated with the first and second fundamental forms respectively in lines
of curvature coordinates. Lef (e;, e;) be an orthonormal basis in the directions
of the w and v parametric curves respectively and let (e}, ;) be the dual

basic in the cotangent space. Then we have according to our convention:
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(3.3) grie)=e
gie) =e/k for i=12,
Since grad,f =g, 'df we may somefimes write grad:f .t for any of the
expressions:
(grad; f, ©); = (grady f, ©u = df().
We use the relations
(3.4) bh=H4J
2 = H-— J
to rewrite the MAINarDpI - CopaZzr equations (1.1) by replacing the coeffici-
ents of the second fundamental form by expressions involving H and J:
(H + J)gn)e = (gu).H
and (H — J)gaz)e = (g2} .

By carrying out the differentiation in the above equations and rearranging
terms we get

(3’5} (gll)v/gll = (Hv + Jv)/(““ J} and
(g22)u/ Qoo = (H, — J,)/d.

We now prove the following form of the WEyrL identity (3.6) in the
neighborhood of a point P which is not an umbillic and at which K == 0.

(3.6) 2KJ* = KA"H — KV"(J? H/J*+ V'K, H)/2 — NK/2 4 V'(?, K)/(2J%).

Case 1. - K> 0.

By Lemma 2, Kw;= — div;((divrele; I (div;exe)w;.
We proceed to write the vector (divrei)e: + (divseses in terms of H, J, and K.
It is easy to see that
divz er = (1/2(gu)"*)((ge2)u/ g22)

which becomes by the form (3.5) of the MAINARDI ~ CODAZZI equations
(3.7) div; ev = (1/2(gu)"?(H. — J)/J
divres = (1/2(922)1/2)(— H, — JD)/J

where the latter formula in (8.7) is similarly obtained. From J? = H? — K we
have

3.8 J. = QHH, — K.)/2J
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and an analagous equation with » replaced by ». By substituting (3.8) in
(3.7) and using (3.4) we write divye; and divse, in terms of J, H, K, k; and
k» as follows:

(3.9) divier = (1 /g — kaHo/J? + K./207)

L
div;e; = (1/(2(g2:)*(— b H./J* + K,/2J%)

By writing k = K/k; for i =1, 2, 4 == and rearranging terms we have
(3.10) (divree: + (divrees = 4 + B where

A = (1/4T (K. (guPler + (K. /(g22))es)
and

B = — (K/2JY(H./(gn) Ye:/ k) + (Ho/(gz) Yo/ k)
It is easily seen that 4 and B can be expressed by
A = (1/4J2(dK(e)e: -+ dK(es)es)
B = — (K/2J*(dH(ef(e1/ k) + dH(ex)(e2/k)).

We note here that the discussion up to this point holds for K> 0 and
K < Q. We now assume that X > 0.
Using equations (3.3) and the linearity of g, and gn we get

A = (1/49%(gr(d K (eve; + dK(es)e]))
B = — (K/2J*gu=(dHe.e; + dH(ez)e})

which is simply
4 = (1/4J%g"YdK)

= (1/4J% grad; K and
B = — (K/2J%g:dH)
o e— (K/QJZ) gradu H.

Thus from (3.10) and the above we write in terms of H, J, K the vector
(divyeer + (div; es)e; = (1/4J% grad; K —- (K/2J% grad, H.
So by Lemma 2 we have

(3.11) Koy = div; (K/2J% grady H — (1/4J7%) grad; K)o;.
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Uging Lemma 1 on the first factor of the right band side of (3.11) and
noting that K = det II/det I we have

N
8.12) Koy = div; ((K)*/2J%) grad; Hwy,
— divr ((1/4J?%) grad; K)w;.

,17
Observing wy = (K)*w;, equating the coefficients of wsin (3.12), expanding,
substituting grad,(1/J% = — (grad, (J*))/J* for 4 =1 and II and finally multi-
plying by J* we get the WEYL identity (3.6).

CasE 2. - K< 0.

The use of a meiric corresponding to a negative definite mafrix does
not affect the formal definition of g, and thus the proof is valid through (3.11).
The proof appears to break down at equation (3.12), since the volume element
oy is equal to (det II)** du A dv where det Il is negative and also we see a
factor of (K)¥2. We overcome this difficulty by considering the complex tangent
space I'c as generated by the vectors 2/3u and 9/3v over the complex field C.
Replacing RB', A, T by C, Aig, I'c, we define m, d, and div exactly as in
seetion 1. Lemma 1 remains valid for real vector fields X, since w, =

Y i i
= (det)*du A dv, m,~(@/du) = — (det A)*dv and m,—'(3/dv) = (det 4)*du, for A=I
and IT. The entire proof for K < O follows verbatim from the proof which
was done in the real GrAssMAN manifold. If K <O the identity (3.6) is still
a real valued identity sinee divy of a real vector field is real.

Although the preceding proof is valid for C* surfaces where k=05, we
will show that the identity holds for k>=4. Given any C* surface, correspon-
ding to each point p, there exists a C* surface X(u, v) each of whose coordi-
nates is the first five terms of the two dimensional TAYLOR series expansion
at P, of the corresponding coordinates of the original C* surface. This C®
sarface and the original C* surface have the same values for all the quanti-
ties appearing in (3.6) at P.

We remark that by integrating the identity (3.6) we can get the following
identity which is valid on surfaces of class (°:

&(V ”K/Jz)(gradn H, ’mu)ud-S‘H =

(1/2)§(I/J2)(grad1K, m;};dsl +2deGl

where ue;, ds; and do; are the outward normal, the arc length and the area
element with respect to the metric I and similarly for IL
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4. - The generalized Weyl identity.

When K =0 the correcfed WEYL identity contains the terms KA"H and
Kgrad; H whleh take the form 0/0. Below we define an operator S; which
permits us to generalize the WEYL identity fo:

(4.1) 2KJ? = L,H — LK

where the L =1, 2 are differential operators for which L is elliptic and L, is
hyperbolic, parabolic or elliptic’at a point according as A at that point is less
than zero, equal to zero or greater than zero respectively. (By parabolic we also
include flat points at which all the second order derivatives of K vanish.)
Let II = (e;) represent the second fundamental form. We define the ope-

rator

Sy CKM, By — T as

Sulf) = % (f/ui)l, e /ou")

i, Iﬂ

where [,;* is the cofactor of /,,. We remark that Spy(f) is well define forp
all values of det (/). Furthermore if det (/;) &= 0 we define

grady [ = (1/( det(m) of/au L/ duk).

We note that if det (/;) > O then this definition of grad;;f agrees with the
one in section 1 and if det(e;) &= 0 then the relation

Sulf) = det (I;) gradr f
holds.
The differential operators which appear in the generalized form of the
WeyL identity, (4.1) can be written as:

(41&) LoH = div; (Sn( )/ det I (1/J2)(SII(H)/ det 1) crrad; o2
(4.1b) LiK = (1/2)A"K — (1/2J*V/(K, J?)
where the inner product in L:H is given as in section 3.
We remark that for det II 50, Si(H)/ det I = K gradys H and by expan-
ding (4.1) we obtain (3.6).
To prove (4.1) we observe that when K = 0 the proof of the corrected

WeYL identity in lines of curvature coordinates is valid up to equation (3.9).
Using (3.9) we obtain

(divy erer + (divy er)e; = (1/(4J%) grady K 4

— (/@I )EH./ (gr)Der + (e H /(g2)?)es).
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We note that the second vector on the right hand side of the above is
precisely Su(H)/ det I. Thus from the above and Lemma 2 we have

K = divy (1/2J%(S1(H )/ det 1) — (1/4J %) grad; K

Again expanding, letting (grad;J?/J* replace — grady(1/J?% ¢nd multiplying
by 2J2 we have equation (4.1) which is valid at nonumbillics for all values
of K.

To see that L, is an elliptic operator on X and that L, is an operator on
H whose type is determined by the sign of K we compute the coefficients
of the higher derivatives and we obtain

LK = (gzzKuu — 2gl2Kuv -+ gqu)/(2(gugzz — 015%)
+ K0+ Hf.). and

Lo H = (ZZZHuu - A H,, -+ lun)/(gngzz — 9122)
- H() 4 HL).

We see that L; is elliptic since the matrix (g;;/(2(g1.9:2 — ¢12%)) has de-
terminant equal to 1/(4(gngs: — ¢1»?)) which is strietly greater than zero.

The matrix (I;/(gugs — %) corresponding to L, bhas determinant
(halas — 1122)/(g11gaz — ¢1o¥)* which is equal to K/(gngs — g12*) and hence L, is
a hyperbolie, parabolic or elliptic operator at a point I’ according to whether
K at P is negative, zero or positive respectively.

We remove the restriction that our surface contains no unbilics by ap-
plyng the method WINTNER used in section 4 of [12] to formula (4.1) obtaining:

AKJ* = JY2 divy (S(H)/ det T) — AK) +
A (— 2)(Si(H)/ det Ty - grady J* + V/(KJ2).

5. — Some applications of the corrected Weyl identity.

At the end of his paper, WEYL concludes from the invalid « WEYL iden-
tity » the inequality:

H¥u, v) <t max (K — 4K)A'K)

for surfaces § which are compact and on which the GAUSSIAN curvature is
positive. The validity of this conclusion, in spite of WEYL's using an incorrect
identity to start with, is due to the fact that WEYL’s argument uses the
identity at extremum poiunts for /7. At such points the corrected WEYL iden-
tity and WEYL’s original identity agree. In [6] NIREMBERG proves the above
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ineguality directly from his identity (10.9) which is basically equivalent to
{3.6). In [12] WINTNER extended the inequality to snrfaces containing umbilics,
however his proof is not correct, A corrected version follows:
Let P be the point on § at which H attains its maximum. We only freat
the case for P an umbilic poinf since otherwise WINTNER’s proof is correct.
If WeYL’s inequality does not hold we have:

HZ(MQ, ’Uo) > max {X - A’I(/{LK) = K(?/lg s ’L‘Q} —— (V"K}(uo B @0)/’4—{{(’“0; ’L’o) .
5

Since X(uo, vo) = Po is an umbilic, Huy, wo) = K(us, v) and we have
0 < A'(K)/4K at P;. But this contradicts the generally true fact that if H(u, v)
assnmes its maximal value at an ambilic, K also assumes its maximal value
there, for:

K(u, v) << H?uo, vo) =< HYuo, vo) = K(#to, v0).

In section 6 of his paper WINTNER lets the third fundamental form
replace the first fundamental form in WrYL’s suggested proof of the WryL
identity to deduce a second invalid identity. We let the third fundamental
form play the first in the proof of (3.6) to get the identity:

(H*P — K*A"H* — A*K*/2K*—2((H*? — K*)/K¥)
= V"(H* H*?— K* — V¥K*, (H*? — K*)/2K* — (H*? — K*V"(K*, H*/2K*

where H* K¥* A* and V* are defined as in WININER’s paper. This is an
invoriant form of {16.8) in [6] which NIRENBERG proved directly. For reasons
similar to those given at the beginning of this section pertaining to the WEYL
inequality, the method WINTNER uses in section 6 of [12] does prove MIRANDA’S
inequality from the above identity.

We now use the corrected WEYL identity to derive a necessary condition
for the existence of surfaces with constant GAUSSIAN curvature. Let A =c¢
on S. Then (3.6) reduces to:

(1/2)(}12 —C)A”H— HV"H— (Hz — 0)2 =0, or
divyy (gradyy H/(H? — ¢)) = 2

This expression is not equivalent to WiNTNER’s formula (25) in [12] because
WinTNER employed WEYL’s identity rather than its corrected form (3.6).

6. - Smoothness of J.

In section 2 of [12] WINTNER claims that J{u, v) is of class C—* whenever
X(u, v) is C* for n > 1. In section 9, WININER attempts to prove this
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statement, but the prcof is not valid because the functions he refers to as
«@» and «b» cannot be defined in general to be continuous. The following
example shows that there exist C® surfaces with K> 0, on which J is not
everywhere (.

M, v) = (1/(w2 -+ 2+ (1 + wo?f o, v, 1 ).

This surface is the inversion in the unit sphere of the surface M(u, v) =
= (u, v, 1 4 uv?®). A direct computation shows that on M (u, v),

J = (1/(det IyPP){u® 4 40* 4 (Ju0® 4 4v° + 10u2p?)!2

which is not C* at M(0, 0). However at 1/(0, 0), K = 0. In [8] WEATHERBURN
computes the relation of J* to J and K* to K for an inversion in the unit
sphere to be:

(@) J*=—[M(u, v)|*]
{b) K* = |M|*K + 2| M |%0J 4 4¢* where ¢ = N(u, v)- M(u, v)

From (o) it is clear that if J is not C' neither is J* From (b) we see that
K#*0, 0) =4 > 0. Thus at M*0, 0), J* is not C* and K* >> 0.
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