The Wazewski topological method for contingent equations (*).

J. W. Bepernms and J.D. Scruur (U.B.A) (¥

Sammary. - 4 Wazewski - lype theorem for contingent equalions is oblained using the fun-
damental theory of conlingeni equations.

1. - Introduection.

The topological method of WazEwskI [12], which was originally stated
for ordinary differential equations whose solutions are unique with respect
to initial conditions, has been subsequently extended to equations without
uniqueness (see for example, BieLEcKI [4], Jacksox and Krassen [9] or
BeBrRNES and ScoHUUR [3]) and to contingent equations (see for example,
Brereckl and Kruezny [5], or KLuczxy [10]).

Kruczny discusses several of these extensions. And in his paper he
shows that if a family of curves satisfies certain postulates, then a WAZEWSKI
theorem may be proved for this family. By proving that the family of solu-
tions of a contingent equation satisfies these postulates, it the follows that a
WA ZEWSKI theorem holds.

Here we develop the fundamental theory of contingent equations along
lines suggested by Yorke [14], [15]. We then use this theory to study the
properties of a set-valued consequent mapping and to obtain a WAZEWSKI
theorem for contingent equations.

Let ¢(B") (cc(B™) denote the family of all nonempty compact (compact
and convex) subsets of B*. For e E* and 4, Bec¢(R"), let |x| be the Euncli-
dean norm, r{x, B)= inf {|x —y| : ye B}, v(4, By= sup {r(x, B):xe€d},
and d(4, B)= max {r(d4, B), r(B, A)}. Let NJ/A)={x:rx, 4)< a}.

Let R* X B*=W and denote points of W by P = (¢, x,), or just (f, ),
or by P,=(t,, &.). For P, Qe W, |P — Q| is the Euclidean norm. For ACW
Fr(4) is the frontier of A and A is the closure of A.

(*) This work was done at the Istituto Matematico dell’ Universita di Firenze under the
auspices of the Ifalian Research Council (C.N.R.). The resident addresses of the authors
are, respeetively, the University of Colorado, Boulder, Colo., U.8. A, and Michigan State
University, East Lansing, Mich., U.S. A,

(**) Entrata in Redazione il 20 febbraio 1970.
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For ECW and P an accumulation point of E, the positive conlingent of
E at P is

DHE : Py={ye R*. there exists a sequence { P*| C E such that

as » — oo, P, — P, {,>1,, and |(w, — a,)({, — £, —y| — O}.

The negative contingent and contingent of E at P are defined in a
similar manner. If E is the graph of a function ¢ : B! — E* and P ={(f,, a0)
we write DVo(l,) instead of DHE | P)

A mapping F: W —¢(B") is usc (upper semi-continuous) at Pe W if,
for each = > 0 there exists a &> 0 such that |Q — P| <8 implies #(F(Q),
F(P)) < e. The mapping F is usc on a set ECW if it is usc at each point
of the set. If, in this definition, we replace »(F(Q), F(P)) by d(F(Q), F(P)),
then F is continuous.

We shall consider the contingent eguation

(1) o' e P, x) where F : W — c¢(R") is use on W.

By a solution of (1) we mean a continuous function ¢ . I — R*, where I
is some interval in R', such that Dg(f) C F(¢, o)) for te L (If I contains end-
points we use one sided contingents where necessary). It is known [13] that
it ¢(f) is a solution of (1) on I, then ¢(f) is absolutely continuous and
p{l)e Ft, ¢(f) a.e. on I

The trajectory of a solution ¢((), defined on I, is the set {(f, w(f) :lel}.
Later we discuss the maximal interval of existence of a solution ¢(¢) which
we shall denote by D,.

We note that our results hold equally well for W an open subset of
R' X Br.

2. - Basic Theory.

ZAReMBA [16] proved that given Pe W there exists a solution ¢(f) of (1)
which is defined on some open interval containing ¢, and which satisfies
¢(t,) = x,. (An account of Zaremba’s work may also be found in [6]).

This theorem is the counterpart of the PEANO existence theorem for or-
dinary differential equations. In developing the WaZEWSKI method in [3] we
found it convenient to use not the PBANO theorem, but an existence theorem
of Nagumo |11]. The NagumMo theorem translates to contingent equations. We
include a proof for the sake of completenness. (The NacUMO theorem for
differential inequalities, and a remark on contingent equations, may be
found in [7]).
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DerFINITION. — A set 4 C W is right admissible (with respect to (1)) if,
for each Pe 4 there exists an a¢ > 0 and a solution ¢(f) of (1) such that ()
is defined and (¢, ¢(i))e d for I, <{<{,+ a and ) =2x,.

TaEorEM 1. - A closed set E C W is right admissible if and only if
DHE : P)N F(P)4= @ for all PeE.

Proor. - That this condition is necessary for right admissibility is im-
mediate.

‘We assume that in a neighborhood ¢f P, F(P) is continuous. If this is
not the case, then in the manner of ZAREMBA (|16, Theorem 11.8] or [6, Theo-
rem 1.3]), we may approximate F by a family of such functions. We shall
have the theorem for each member of the family and by a limiting argument
the theorem holds for F.

We next observe that the following conditions are equivalent:
iy DHE : PN PFP)=@ for all Pe k; i for PeE there exists a ve F(P)
such that given e >0 there exists a Qel with ¢, < o <f ¢ and
(o — a,)t, — to) — v| < e; @) for Pel and ¢ >0 there exists a Qe E
with 8, <y <{, 4 ¢ and r{xg — x,)(lp — ), F(P))< e.

For P,e E there exist a, L > 0 such that #(F(P), O)< L on

T={P:foﬁtpS{o+a, I(Y'p—ﬁ'ot,f:_(l;—]-l)ltpwtol}.
For ¢, 0 <e <1, let {P,} be a sequence of poinfs in £ satisfying
tn_l < ?tn < f,,_1 ‘}‘ g, ’V((Tn - wn—l)(f’n - tn'—l)_Iy F{Pﬁwl}) <e

(m=1, 2, ...) and P, given above. Liet M be the collection of all such points
(for fixed ¢) and let b=sup{t: (¢, x)e M}.

If & < f, -+ @, then M has a limit point (b, yye EN T.

Hence, there exists a (¢, 2)€ E such that

b<ec<b+e, vz ylc—b, Fb, y)<e.

Now using the continity in (b, y) of this last expression we can find a
P.e M such that

L.<c<t +e, v{(z—u,)c—1t) F{,, o) <c¢

which contradicts the definition of 6. So b >+ «a.
For each integer n > 1 there is a sequence Py, .., P, in E such that

ta>b+aand i <t <t + (%),
Mo — o)t — )=, PR < (3] G=1, ey m)

Let ¢.(f) be the polygonal function whieh joins Po, ..., P,.
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Then |@ats) — @ ()| < (L + 1) |{, — §| so by the AscoLl theorem there
exists a sub-sequence {9i(f)} of {9,(f)] which converges uniformly to ¢(f) on
[to, to + al. Then ¢(to) = o, ¢(f) is continuous (in fact absolutely continuous),
and (¢, o(t)e TN E for {o < ¢ <, -+ a. The latter is true since for t e[l to 4 al,
{) each (¢, g.())e T and 9¢) there is a sequence of points in E which are ver-
tices of the approximating polygonal lines which approach (¢, 4(f)).

The proof can be completed by showing that given {elfy, f{ - a] and
v > 0 there eXists m > 0, N> 0 such that

r{(ou(s) — i) (s — &1, F(l, ¢(t)) <2v for al k=N,

s€lty, to + a] with 0 <|s — | <%. For then we can first let k¥ — oo and then
v — O and conclude that Delt) C F({¢, ¢(l).

Assume f€(ly, fo -} a); the proof at the endpoints is similar. Since F(P)
is wse there exists an 7, 0 < 2v <min (¢ — #, & + @ —{) such that »(F(u, x).
Fi, o@))<v on B=={(u, ):|u—1t = 2, |&—ou)|<7%]. Choose N such
that k=N implies 9) (1/K) <v, 7i) |qufu) — g(w)| <7 for {u—1| =<2y, and
i) (1/k) <7 (so that if P, .., P, are ihe vertices of ¢ (f), then max
(h—t_):1i=1, .., m} <%). Then k=N, |lu—{] < implies rF(u, ¢u)),
Fit, ¢y <v. Now Degu)y=(c;— ;) ({;— )~ where P, e Rif jlu—1t|<q.
So r(Dys{w), F(t, ) < r(Dgu(w), F(P;_1))+ r(F(P;), F, ¢(i)) < 2v for |[u—t|<n,
k= N.

If ¢(¢) is a continuous function defined on [d, e] and if D) C 4, a non-
empty, convex set, for d <<t <e, then (Ud)— d(e)d— ey e d. (See [16,
Theorem IL5] or [1]).

Since S={w:r@x, F{ ¢({)) < 2v} is compact and convex and since
Dou)C S for k=N, O<|u—t|<|s—t|, we can conclude that (pi(s)—
—ofNs—trteStor k=N, O<|is—1I| <.

REMARES. - 1) As in the theory of ordinary differential equations, any
solution ¢{#) of (1) can be extended to a maximal interval of existence which
we shall denote by D,.

2) If EC W is locally compact and F(P) is defined and usc only on E,
the theorem still holds. For then E is relatively closed in some open UC W,
F has a usc extension to all of U, and the preceding applies.

3) 1f F is defined and usc on a locally compact subset EC W, if E is
right admissible, if @(f, P) is a solution of (1) passing through PeE, and if
¢, (i, P)) — Q€ Fr(E) as t — Fr(D,), then Q¢ Fr(E) N E. (For remarks on the
continuation of solutions see [2])

The next definition and two theorems follow Yorxr [14], [15].



J. W. BEBERNES - J. D. Scuuur: The Wazewski topological, etc. 275

DEFINITION. — A set A C W is positively weakly invariant (with respect
to (1)) if and only if for each Pe A there exists a solution o{f) of (1) such
that o(f,) =, and ({, ¢(f))e 4 for t€ D, N [{,, oc). Negatively weakly invariant
and weakly invariant are defined in a similar manner.

THEOREM 2. - a) A set A C W is weakly invariant if and only if it is a
union of a family of trajectories of solutions of (1). b) A closed set EC W
is positively weakly invariant if and only if it is right admissible and hence
if and only if DHE : PN F(P)=+ O for all PeE.

Proor. - The proof is straightforward.

THEOREM 3. - If Gi, G C W are closed and positively weakly invariant
and if W= G1 U Gz, then H= G, N G, is positively weakly invariant.

Proor. - Assume H is not positively weakly invariant and let Poe H.
Then there exists two trajectories ¢i(f) of (1) with @/fe)=1u0 (¢ =1, 2) and an
a > 0 such that (¢, pi(f)e G, for bh <t <l 4 a, i =1, 2. Let L(f) be the seg-
ment joining (4, @i(f)) to (f, @u(f) and let (¢, x(?)e L{f) N (Gi ) Gi). Here we
use the restrictions placed on Gi, Gs.

Then () = alt)p:i(t) + (1 — alt)es(l), 0= aft) < 1.
Choose a sequence {{t,: 4, — o -+, and af,) — % }. Then

(@(t,) — o) (Fr — to)=* == (a(t)(r(ts) — ®0) + (1 — a(f)
(Paltn) — o)) (n — Ty~ .

We can now choose a subsequence {{;} of {{,] such that in the limit the
left side of this expression belongs to DH(H : %) and the right side equals
wgty - (1 — o)ty where v; € Do) (i =1, 2).

By convexity this vector is in F(Py) hence Dt(H : Po) N\ F(Py) == @ and H
is positively weakly invariant.

In the sequel we shall use the following KaAMEE-type convergence theo-
rem. (See for example [8, theorem 3.2]).

THEOREM 4. - Let {P,e W: P, — P, as n — oo} and let g,(f) be a solu-
tion of (1) with ¢f)=x,. Then there exists a solution o) of (1) with
o(fo)) == o and with maximal interval of existence D, and a subsequence
{@a(f)} of {9.()} such that for any compact subinterval IC D, and all %
sufficiently large, ¢ (f) is defined on I and @u(f) — ¢(f) as £ — oo uniformly on 1.

ProOF. - Let ¢ff) be as in the hypotheses. There exists a, N> 0 such
that if n =N, then 9. is defined and uniformly bounded for |{— i ]| <= a.
Just let B={(f, x): 1t —t|=<2b, |o-—ao]<2b} for some b>0, M= max
(r(F(P), 0): Pe R}, and choose a= min ((0/2), (b/2M)) and N such that
# =N implies | P. — P| <b.
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It {9.6)} is a sequence of solutions of (1) waich are defined, uniformly
bounded, and equicontinmous on an inferval I, then exists a subsequence
{o(f)} such that u(f) — () uniformly on I as k& — oo (by the ARZELA-ASCOLI
theorem) and ¢(f) is a solution of (1) (by ZarREMBA, [16, theorem IL6]).

Lot {9.(f)} be as in the hypotheses and choose a as in the first paragraph
of the proof. Let {@Jf)} be a subsequence of {wv.(f)] such that o) — (8
uniformly on [{ — f]| < a where {(f) is a solution of (1) with ¢(f) == wo.

Let (b, ¢) be the maximal interval such that there exists a solution
o(t) defined on (b, ¢); ¢{f) = ¢(¢) on |f — | <a; and for each oompact I C (b, ¢),
some subsequence of { ()] is defined and converges to o(f) on I.

We claim that ¢(f) is not defined at { =25, ¢ and hence (b, ¢)= D, and ¢
satisfies the conclusion of the theorem. For suppose @) is defined. We can
find a subsequence of [ f)} and a sequence {{,:¢.—b—} such that

Lon(t) — @t)| < (;11;) on [fy, !.]. Now using the first two paragraphs of the proof
we can extend cp(}}) beyond b.

3. - The consequent mapping and Wazewski’s theorem.

DeriNiTIONS. - Let V be an open subset of W. A point Qe Fr(V) is a
consequent of a point Pe V (relative to (1)) if t ere exists a solution ¢(f, P)
of (1) and a £, ¢, <h <tp, such that ¢(f, P)is defined on [£,, &o], (¢, ¢, P)e V
for t, <t <t, (4, o, PYe Fr(V) for h <t <1y, and ({y, ¢, P))= Q. The
point Qe Fr(V) is a consequent of a point Pe Fr(V) (and P may equal @) if
there exists a solution o(f, P) of (1) such that (¢, of, P))e I'r(V) for [{,, {p].
Consequents will also be called poinis of egress and the set of all egress
points will be denoted by S.

A point QeS8 is a sirict egress point if for every solation ¢(f, Q),
c,==sup(f: (s, 08, QNeFrV), lp <5<t} <oo and there exists a sequence
{ta by — Cpr) with (f, @(f,, Q)€ W — V. The mapping C: (VU S) — Fr(V)
defined by C(P)y={Qe Fr(V): Q is a consequent of I} is the consequent
mapping.

A solation 9t, P), PeV, leaves V if there exists some /€ D, N[f,, co)
such that (&, ¢f, Pe W— V.

THEOREM D. - Let (VU S)— Fr(V) be the consequent mapping and
let Pe VU S. If all solutions throagh P leave V and if all points of egress
are striet, then C(P) is compact.

Proor. - We shall show that any sequence {Q,} C C(P) contains a sub-
sequence which converges to a point of C(P).
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Let o,(f) be a solution of (1) through P such;that (f., ¢.(l)= Q.. By
Theorem 4 there is a subsequence {u9{f)! of {¢.(f)} which converges to a so-
lution o) of (1) with ¢({,) = «,. By assumption, ¢(f) leaves V and every point
of egress is strict,

Hence there exists a f, > £, sach that (f,, ¢(t.))e W— V. For all k suffi-
ciently large, (f., vu(f.) € W— V hence {, <# <. Choose a snbsequence
it} of {£} sueh that £, — & < {,. Them Q, = ({n, 9.{tn)) — (s, ().

Now (1, ¢(t:))¢ C(P) implies that for m sufficiently large, Q. is pot an
egress point. The possibilities (for example, (f., ¢(f.)e W— V for some
t.e(l,, ) are easily checked. Thus C(P) is compact.

THEOREM 6. -~ Let C: (VU S) — Fr(V) be the consequent mapping and
let Pe VUGS, If all solutions through P leave V and all points of egress
are strict, then C(P) is connected.

Proor. - If Pe S, the proof is immediate. So assume Pe V.

If C(P) is not connected, then C{P)=C, U (C; where (;, and (; are
disjoint compact subsets of W.

For ¢f, P) a solution of (1) with PeV let D,== (2, w) be the maximal
interval of existence of ¢(f, P) relative to W and let E,= (3, y) be the ma-
ximal interval of existence of ¢(f, P) relative to V, i.e. E, is the largest
open interval about {, such that (¢, ¢({, P))e V for e E,. Let ®(P) denote
the trajectory of ¢(f, I’) relative to V, i.e. ®(P)=i(l, ¢, P)):t e E.}. Let
o(4, By==inf {{a —b|:a€ed, beB}.

Let B={®(Q): Qe V and oDQ), C)=<o(P(Q), Ot and let § be a set
similarly defined but with the inequality reversed. Then E, S are positively
weakly invariant and closed, relative to V, V=R U §, and Pe BN S. We
may conclude by Theorem 8 that there exists a o, P) such that
@ ot, PreRNSfort, <t<y.

Since o(f, P) leaves V,y <w and (v, 9(y, P)) e Fr(V), say (v, ¢(y, P) e (1.
Then 0= o(@(P), C))=o@P), 0;) >0 and from this contradietion we con-
clude that C(P) is connected.

THEOREM 7. - Let C: (VU §) — Fr(V) be the consequent mapping and
let A be a nonempty subset of VU S. If all solutions through P leave V,
for each Pe 4, and if all points of egress are strict, then O is usc on 4.

Proor. - By Theorem 5, C(P) is compact for each Pe A.

It C is not use at some I’ € A, then there exists an ¢ > 0 and a sequence
{P.eA . P, — Py and r(C(P), O(P)==¢ as n — ocol.

Hence, for;each n», there is a @.e€ C(I>) such that r(Q,, C(Py) =c¢.
Let .(f) be a solution of (1) through P, and Q,. By Theorem 4 there is a
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subsequence {o@if)} of {9, which converges to a solation o) of (1) with
@lbo) = . By assamption, ¢{f) leaves V and every point of egress is strict.
Now just as in the proof of Theorem 5 we can find a subsequence {f,! of
(£} such that (f., palln) = Q. — (&, 9t)) € C(P;) which is a contradiction.

ReMARK. - If A4 is a compact and connected subset of VU §, then
under the hypotheses of Theoren 7, C(A) is compact and connected. This is
a consequence of the properties of usc functions. (See for example [3],
Theorem 1).

DerFINITION, - Let A, B be subsets of B*M with B C 4. If there exists a
usc mapping G . 4 — ¢(B"') such that G@)C B and G(x) is connected for
all e d and xeGx) for all xeB, then B is a sel-valued refract of A4
and @ is a set-valued retraction from A into B.

TaEOREM 8. ~ If there exists a set Z C VU S such that Z N § is a
set-valued retract of § but not of Z and if all points of S are points of
strict egress, then there exists a PeZ and a solution ¢(f, P) of (1) such that
(t, ¢, P)eV tor te D, N[E,, oo).

Proor. - If, for all PeZ, every solution ¢, P) of (1) leaves V, then
the consequent mapping C: 7 — § is usc.

Let H:S8— ZMN S be the set-valued retraction which is given in the
hypotheses. Then HC:Z-~ZMN S is usc and for each PeZNS, Pe H(P)C HC(P).
Thus ZN S is a set-valued retract of Z which is a contradietion.

The authors would like to acknowledge several helpful discussions with .
Sedziwy during the preparation of this paper.
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