
The Wazewski topological method for contingent equations (~$. 

J.W. BEBE~NES and J. D. SC[4UUR (U.S.A.) (**) 

Summary.. A Wazewski - type theorem for contingent equations is obtained using the fun. 
damental theory of contingent equations. 

1 .  - Int roduct ion.  

The topological method of W~zEwsKI [12], which was originally stated 
for ordinary differential  equations whose solutions are unique with respect  
to initial conditions, has been subsequent ly  extended to equations without 
uniqueness  (see for example,  BIELECEI [4], J~c~:sO~ and K ~ A S S ~  [9], or 
BEBEIC:~ES and SCEUUR [3]) and to contingent equations (see for example, 
BIELECKI and KLUCZ~¥ [5], or KLUCZN¥ [10]). 

KLUCZNY discusses several of these extensions. And in his paper  he 
shows that if a family of curves satisfies certain postulates, then a WAZEWSKI 
theorem may be proved for this family, By proving |hat  the family of solu- 
tions of a contingent equation satisfies these postulates, it the follows that a 
WA~ZEWSKI theorem holds. 

Here  we develop the fundamental  theory of contingent equations along 
lines suggested by YOnKE [14], [15]. We then use this theory to study the 
propert ies  of a se t -¥atued consequent  mapping and to obtain a WAT, EWSKI 
theorem for contingent equations. 

Let  c(R") (cc(t~n)) denote the family of all nonempty compact (compact 
and convex) subsets  of /~'. For  x e ~ "  and A, B ec(R'), let ]x I be the Eucli- 
dean norm, r(x, B)----- inf { I x - - Y i  :Y  e B I ,  r(A, B ) ~  sup {r(~, U ) : w e A 1 ,  
and d(A, B ) =  max {r(A, B), r(B, A)}. Let  N~(A)= {x : r (x ,  A ) <  a 1. 

Let R~X R ~  W and denote points of W by P = ( t p ,  xp), or jus t  (t, x), 
or by P ~ = ( t . ,  x~). For P, Q~ W, [ P -  QI is the Eucl idean norm. F o r A C W  
Fr(A) is the frontier  of A and .4 is the closure of A. 

(*) This wol'k was done at the Istituto Matematico dell' Universith di Firenze under the 
auspices of 1he Italian Research Council (C. N, R.). The resident addresses of the aulhors 
are, respectively, ~he Universi|y of Colorado, Boulder, Colo., U.S.A. and Michigan State 
Universiiy, East Lansing, Mich., U.S.A. 

t**) Entrata in t~edaziene il 20 febbraio 1970. 
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For  E C W  and P an accumulat ion point of E, the posi t ive conti~gent o f  
]£ at P is 

D+(E:  P ) ~ { y e R ' :  there exists a sequence { P ~ } C E  such that 

a s  n ~ ,  P . - .  P, to> t~, and t (x~--x~)( t . - - t~)-~--y l - -O }. 

The negative contingent and contingent of E at P are defined in a 
similar manner.  If E is the graph of a function ~ : R  1 - *  R" and P----(to, xo) 
we write D+'~(to) instead of D+(E:  P)  

A mapping F : W ~ , c ( R  ~) is usc (upper semi-continuous) at P e  W if, 
for each ~ ~ 0 there exists a ~ ~ 0 such that I Q - - P I  ~ ~ implies r(F(Q), 
F ( P ) ) ~ e .  The mapping F is usc on a set E C W  if it is usc at each point 
of the set. If, in this definition, we replace r(F(Q), F(P)) by d(F(Q), F(P)), 
then F is cont inuous.  

We shall consider the contingent equation 

(1) ~' e F(t, x) where F : W ~ cc(R') is use on W. 

By a solut ion of (1) we mean a continuous function ¢? : I ~ R ' ,  where 1 
is some interval in R 1 , such that D~(t)CF(t, ~(t)) for t E L (If I contains end- 
points we use one sided contingents where necessary). It is known [13] that 
if ¢~(t) is a solution of (1) on I,  then ~(t) is absolutely continuous and 
~'(t) e F(t, ¢~(t)) a.e. on L 

The trajectory o f  a solut ion ~(l), defined on I, is the set {(t, ?(t)) : t e l } .  
Later  we discuss the maximal interval of existence of a solution ~(t) which 
we shall denote by D v. 

We note that our results hold equally well for W an open subset of 
R ~ X R " .  

2. - Basic Theory. 

ZAREMBA [16] proved that given P e  W there exists a solution ¢~(t) of (1) 
which is defined on some open interval containing to and which satisfies 
~(tp) ~---xp. (An account of Zaremba 's  work may also be found in [6]). 

This theorem is the counterpart  of the P E ~ o  existence theorem for or- 
dinary differential  equations. In  developing the WAZEWS]~I method in [3] we 
found it convenient to use not the PEANO theorem, but an existence theorem 
of 5T~GuMo [11]. The NAGUMO theorem translates to contingent equations. We 
include a proof for the sake of completenness. (The ~AGUMO theorem for 
differential  inequalities, and a remark on contingent equations, may be 
found in [7]). 
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DEFINITION. - A_ set A C VI} is right  admissible (with respec t  to (i)) if, 
for each  P e A  there  exis ts  an a 2> 0 and a solut ion ¢~(t) of (1) such that ~(t) 
is def ined  and (t, ¢~(t)) e A for  [p _--< t _< tp -q- a and ~(tp) = xp. 

TIIEOREt¢I 1 . -  A closed set  E C W is r igh t  admiss ib le  if and only if 
D + ( E :  P )  N F ( P ) ~  0 for all  P e E .  

PROOF. - That this condi t ion  is neces sa ry  for r ight  admiss ib i l i ty  is im- 
media te .  

W e  a s sume  that  in a ne ighborhood  of P ,  F ( P )  is cont inuous .  I f  this is 
not  the case, then in the m a n n e r  of ZA~t:nIvIBA ([t6, T he o re m II.8] or  [6, Theo- 
rem 1.3]), we may  a p p r o x i m a t e  F by a fami ly  of such funct ions .  W e  shall  
have the theorem for e ach  m e m b e r  of [he fami ly  and by a l imi t ing a rgumen t  
the theorem holds for  F.  

W e  nex t  obse rve  that  the fo l lowing condi t ions  are  equ iva l en t :  
i) D+(E : P ) ( h  F(P):#= 0 for  all  P e E ;  ii) for  P ~ E  there  exis ts  a v EF(P)  
such that given ~ > 0  there  exis ts  a q e E  with tp ~ tQ ~ t p q - e  and 
I (XQ ~ Xp)(tp - -  tQ) -1 - -  V I < s; iii) for P e E and ~ > 0 [here exis ts  a Q e E 
with t~ < tQ < tp -4- e and r((xQ - -  xp)(tQ - -  tp) -~, F(P)) < e.  

F o r  P o e E  there  exis t  a, L >  0 such that r(F(P), O)<_L on 

T = { P : t o  <<.tp<_[o+a, l x p - - X o l < _ ( i +  l) I t p ~ t o ] } .  

F o r  ~, 0 < s < 1, let  (P~} be a s equence  of poin ts  in E sa t i s fy ing  

tn--I ~ tn <~ tn--t --~- ~, r((a°, - -  X,_~)(t, - -  t,_~) -~ , F(P,_~)) ~_ 

(n----- 1, 2, ...) and Pc given above. Le t  M be the col lect ion of all such points  
(for f ixed ~) and let  b ~- sup [t  : (t, x) E M } .  

I f  b <_ to q-- a, then M has  a l imi t  poin t  (b, y) e E  A T. 
H e n c e ,  there  ex is t s  a (c, z ) e  E such  that  

b < c < b q- s, r((z -- y) (c - -  b) -~, F(b, y)) < s. 

Now us ing  the cont in i ty  in (b, y) of this last  express ion  we can  find a 
P,  ~ M such  that  

t .  < c < t~ + ~, r((z  - -  x . ) ( c  - -  t~) -~, F(C,  x~)) < 

which  con t rad ic t s  the def in i t ion of b. So b > to-Jr-a. 
F o r  each in teger  n > 1 the re  is a s equence  Pc,  .,., P~ in E such  that  

t ~ > t o + a  and t ~ - ~ < t ~ < t ~ _ ~ + ( 1 ) ,  

r((x~--x,~_~)(t~-- t~_~)-~,F(P~_~))<( 1 ) ( i - -  1, ..., m). 

Let  ¢?.(t) be  the polygonal  func t ion  which jo ins  Pc, ..., P,,. 

AnnaIi di Matematica 35 



274 L W .  BEBERNES - ]. D.  SCHUUR: The Wazewski topological, etc. 

Then  I%(t2)--%~(t~)t_< (L @ 1) t  t2 - -  t~ I so by  the AScoL~ theorem there 
ex is t s  a s u b - s e q u e n c e  t~( / )}  ¢,f {%(t)} which converges  un i fo rmly  to ~(t) on 

[to, to + a]. T h e n  ~ ( to )=  ~co, ~(t) is con t inuous  (in fac t  abso lu te ly  cont inuous) ,  
and (t, ~(t)) e T A E for to ~ t -< to + a. The la t ter  is t rue  s ince  for  t e [to, to + a], 
i) e ach  (l, %(t))e T and ii) there  is a sequence  of points  in E which are  ver- 
t ices of lhe app rox ima t ing  polygonal  l ines which approach  (t, ~(t)). 

Th e  proof  can be comple ted  by sl~owing that  given te[to, t o + a ]  and 
v > 0 there  ex i s t s  "0 > 0, _IV > 0 such that  

r((~a(s)- ¢~(t))(s --  t) -~ , F(t, ~(/))) < 2v for all k __> N, 

se[to,  io + a] with 0 < I s - -  t I < ~.  For  then we can  f irs t  let  k - ~  c~ and then 
v ~ 0 and conc lude  that Deft)C F(t, ¢~(t)). 

Assume  te( to ,  t o + a ) ;  the proof  at the endpoin ts  is similar.  S ince  F(P) 
is use there  exis ts  an ~l, 0 < 2 ~  < m i n ( t - - t o ,  t o @ a - - t )  such that r(F(u, x). 
F(t, ¢p(/)))<v on R = { ( u ,  x) : l u - -  t[ ~ 2~, ]x--cp(u)[~_'ff}. Choose N such 
that  k ~ 2 ~  T implies  i) ( 1 / k ) < v ,  ii)IcFk(u)--7(u)]--<~ for  [u--tl<~2~, and 
iii) ( 1 / k ) < ~  (so that if Po, ..., P,~ are Ihe ver t ices  of ~(t), then max  
t ( t ~ - - t ~ - l ) : i = l ,  . . . ,  m } < ~ ) .  Then k ~ h  T, t u - - t  1 ~ implies  r(F(u, ~k(u)), 
F(t, oF(t))) < v. :New /)~k(u)--  (xj--  xi_~)(tj-- tj_~) -~ where  P :_I  e R if t u - -  t l ~  "~. 
So r(D~k(u), F(t, ¢~(/))) --<= r(D~k(u), F(P]_~)) @ r(F(P]_~), F(t, ~(/))) < 2v for l u--tl<_ ~, 
k ~ N .  

I f  ~(t) is a con t inuous  funct ion  def ined  on [d, el and if D~(t) C A, a non- 
empty,  convex  set, for d <_t ~ e ,  ll~en @ ( d ) ~ ( e ) ) ( d - - e ) - l e A .  (See [16, 
Theorem II.5] or [1]). 

S ince  S = { x : r ( x .  F(t, ~( / ) ) )<2v}  is compac t  and convex  and s ince 
D ~ k ( u ) c S  for k ~ E ,  0 < [ u - - t [  < ] s - - t l ,  we can conc lude  that (~k(s) 
- -  ~(t)) (s ~ t) - ~ E S  for k ~ 2 ; ,  0 < I s - - t [ < ~ .  

REmArKS. - 1) As in the theory  of o rd ina ry  d i f fe ren t ia l  equat ions ,  any 
solu t ion  ~(t) of (1) can  be  ex t ended  to a max ima l  in terval  of ex i s tence  which  
we shall  denote  by D e . 

2) If  E C W is local ly  compac t  and F(P) is de f ined  and use only on E, 
the theorem still holds. For  then E is re la t ive ly  closed in some open U C W, 
F has a use  ex tens ion  to all  of U, and the p reced ing  applies.  

3) I f  F is def ined and use on a local ly  compac t  subse t  E C W, if E is 
r ight  admiss ible ,  if ~(t, P)  is a solut ion of (1) passing" through P~E~ and if 
(t, ¢~(t, P ) ) ~  QeFr(F,) as  t ~  Fr(D,), then Q~.Fr(E) (~ E. (For r e m a r k s  on the 
con t inua t ion  of so lu t ions  see [2]). 

The  next  def in i t ion  and two theorems  fol low ¥OnKE [14], [15]. 
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DEFINITION. - A set A C W is positively weakly invariant (with respect  
to (1)) if and only if for each  P ~ A  there exists  a solut ion ~(t) of (1) such 
tha t  ~(ts) ~ xp and  (t, ~?(t)) e A for t s D+ O [tp, c~). Negat ive ly  weakly  inva r i an t  
and  weakly  invar ian t  are def ined in a s imi lar  manner .  

THEORE~ 2. - a) A set A C W is weakly  iuvar i an t  if  and  only if i t  is a 
un ion  of a fami ly  of t ra jec tor ies  of solut ions of (1). b) A closed set E C  W 
is posi t ively weakly  invar ian t  if and only if it is r ight  admissible  and  hence 
if and  only if D+(E : P) 0 F(P) ~ O for all  P s E .  

PROOF. - The proof is s t ra ight forward .  

THEOREm 3. - I f  G~, G2 C W are closed and  posi t ively weakly  invar i an t  
and if W =  G~ U G~, then  H~--- G1 (~ G2 is posi t ively weakly  invar ian t .  

PROOF. - Assume H is not posi t ively weakly  invar i an t  and  let  1°o~ H .  
Then there exists  two t ra jector ies  ¢?dt) of (1) with ~{ to )~  xo (i ~ l ,  2) and an  
a > 0  such tha t  (t, ~(t))eG~ for to ~ t < t o ~ - a ,  i-----l, 2. Let  L(t) be the seg- 
ment  j o in ing  (t, ch(t )) to (t, ¢72(t)) and let (t, x(t))eL(t) A (G1 (5 G~). Here  we 
use the res t r ic t ions  p laced on G1, G2. 

Then ~c(t) = ~(t)'~gt) -{- (1 - -  o~(t))~2(t), 0 ~ a(t) < 1. 
Choose a sequence  { t. : t~ ~ to -}-, and ~(t~) --* ~ot. Then  

( ~ ( t n )  - -  X o ) ( t n  - - -  to) - 1  = ( o ¢ ( t n ) ( ~ l ( t ~ )  - -  XO) -4- (1  - -  Ot(t~)) 

( ~ ( t ~ )  - -  X o ) ) ( t o  - -  t o )  - ~  . 

We can now choose a subsequence  {tk} of {t.} such that in the l imit  the 
lef t  side of this express ion  belongs to D+(H" Po) and the  r ight  side equa ls  
~oVl -}- (1 - -  ~o)v: where  v~ ~ D+~(to)(i = 1, 2). 

By convexi ty  this vector  is in F(Po) hence  D+(H : Po) 0 F(Po) ~ 0 and H 
is posi t ively  weakly  invar ian t .  

In  the sequel  we shall  use the  fol lowing KAMKE-type convergence  theo- 
rem. (See for example  [8, theorem 3.2]). 

T~EORE~ 4. - Le t  { P~e W : P~ ~ Po as n ~ cx~} and  let %(t) be a solu- 
tion of (1 )wi th  %(t~)-----x.. Then  there exists  a solut ion ~(t) of (1) wi th  
¢?(to)~xo and with max ima l  in te rva l  of exis tence D 9 and  a subsequence  
{e?~(t)} of {~(t)} such that for any compact  subin terva l  I C D ~  and all  k 
suf f ic ien t ly  large, ¢?k(t) is def ined  on I and ~dt) ~ ~(t) as k ~ ~ un i fo rmly  on L 

PRoo~. - Le t  %(t) be as in the hypotheses .  There  exists  a, ~ >  0 such 
that  if n ~  N, then %(t) is def ined  and un i fo rmly  bounded  for I f - -  tel ~ a. 
Jus t  let / ~ = { ( t ,  x ) : l t - - t o [ < 2 b ,  I x - x o l _ < 2 b }  for some b > 0 ,  M----max 
ir(F(P), 0)" P E R } ,  and choose a =  rain ((b/2), (b/2M)) and N such that  
n ~ 2? impl ies  tP" -- P ]  < b. 
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If ['¢~(t)} is a sequence  of solut ions of (1) wilic:t are  defined,  un i fo rmly  
bouudM,  and equ icon t inuous  on an in te rva l  L then exists  a subsequence  
( ~k(t)} such tha t  ~gt) ~ +(t) un i fo rmly  on I as k ~ c~ (by the ARZELA-ASCOLI 
theorem) and +(t) is a solut ion of (1) (by ZAnEMBA, [i6, t i leorem IL6]). 

Let l'~dt)} be as in the hypotheses  and  choose a as in the f i rs t  paragraph  
of the proof. Le t  {~gt)} be a subsequence  of {',~(t)] such that ~ ( t ) ~  +(t) 
un i fo rmly  on [ t - - t e l  _--~a where  ~(t) is a solut ion of (1) with ~(to) ~ x o .  

Le t  (b, c ) b e  the max ima l  interval  such that  th+re exists  a solut ion 
~(t) def ined on (b, c); ~(t) ~ ,.~(t) on tt - -  tel < a ;  and  for each oompact  I c ( b ,  c), 
some subsequenee  of {~(t)} is def ined and  converges to ¢~(t) on L 

W e  claim that  ~(t) is not def ined  at t ~ b ,  c and hence (b, c ) ~  D+ and 
satisfies the conclus ion  of the theorem. For  suppose ~(b) is defined.  We  can 
f ind a subsequenee  of (~gt)} and  a sequence { t . ~ : t . ~ b - }  such that  

(') l~(t)--~(t)l < m on [to, t=]. Now using the f irst  two paragraphs  of the proof 

we can extend ~(t) beyond b. 

3. - The consequent  mapping  anal Wazewski ' s  t heo rem.  

DEFinITIOnS. - Le t  V be an open subset  of W. A point  O~Fr(V) is a 
consequent of a point P e  V (relat ive to (1)) if t ere exists  a solut ion ~(t, P )  
of (1) and  a t~, tp < tl ~ t Q ,  sue?~ that  ~(t, P) is def ined on [tp, tQ], (t, ~(t, P))e V 
for tp~- - t<h,  (t, ¢~(t, P) )eFr(V)  for t ~ _ < t ~ t Q ,  and  (re, ~(tQ, P))----Q. The  
point  OeFr(V) is a consequent o f a p o i n t  P~Fr (V)  (and P may  equal  Q) if 
there exists  a solut ion ~(t, P) of (1) such that  (t, ~(t, P))e  Fr(V) for [tp, tQ]. 
Consequents  will also be cal led points of egress and the set of alt  egress 
points  will  be denoted  by S. 

A point  Q e S  is a strict egress point if for every  solut ion ~(t, Q), 
c v = s u p I t  : (s, ~(s, Q))eFr(V), t q < : s ~  t} < ~  and  there  exists  a sequence  
{t~ " t~ ~ %+} with (t~, ¢~(t,~, O))e W - -  V. Tlle mapp ing  C ' ( V U  S) ~ Fr(V) 
def ined by C ( P ) ~  {O~ Fr (V) :Q  is a consequent  of P i is the consequent 
mapping. 

A solut ion ~(t, P), P c  V, leaves V if there exists  some t~e De (3 [tp, ~ )  
such  that (t~, ~(t~, P ) ) e  W - -  V. 

T~EORE~ 5. - Le t  C : ( V  (2 S ) - *  Fr(V) be the consequent  mapp ing  and  
let P c  V U  S. If  all solut ions th rough  P leave V and  if all  points  of egress 
are strict,  then  C(P) is compact.  

PROOf. - We shall show that  any  sequence {Q~tCC(P) conta ins  a sub- 
sequence  which converges to a point of C(P). 
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Let c~dt ) be a solution of (1) through P such:uthat (t,, %(/.))= Q~. By 
Theorem 4 there is a subsequenee  I~k(t)! of i cpdt)} which converges to a so- 
lution cp(t) of (l) with ~(tp)----- xp. By assumption, ¢~(t) leaves V and every point 
of egress is strict. 

Hence  there exists a to > tp such that (to, cp(l~))e I V - -  V. For all k suffi- 
ciently large, (t~, ~(tD) ~ W - -  V hence t~ < t~ < l~. Choose a subsequence 
iG1 of tt~f such that t~ ~ t~ < t~. Them Q~----(t,,,, ~n(G)) ~ (t~, ~(t~)). 

Now (t~, ¢~(t~))~ C(P) implies that for m sufficiently large, Q~ is pot an 
egress point. The possibilit ies (for example, (t~, c~(t~))e W - - V - f o r  some 
t~(t~,  t~)) are easily checked. Thus C(P) is compact.  

TttEORE~I 6. - Let C : (V U S) --~ Fr(V) be the consequent  mapping and 
let P c  V U S. If all solutions through P leave V and all points of egress 
are strict, then C(P)~is connected. 

PROOF. - If  P e S ,  the proof is immediate. So assume P e  V. 

If  C(P) is not connected, then C(P)---C~ U C2 where C~ and Cs are 
disjoint compact  subsets of W. 

For  ~(t, P )  a solution of (1) with P e  V let D 9 = ( ~ ,  ~o) be the maximal 
intervalL of existence of ~(t, P )  relative to W and let E,  = (~, '() be the ma- 
ximal interval of existence of ~(t, P )  relative to V, i.e. E~ is the largest 
open interval about tp such that (t, ¢¢(t, P ) )~  V for t e e  9. Let (I)(P) denote 
the trajectory of ~(t, P )  relative to V, i.e. qb(p) ~ i(t, ¢¢(t, P)) : t s E~ !. Let 
~(A, B ) = i n f  i I a - -b [  : a e A ,  b s B ! .  

Let R = I ~ ( Q ) :  Oe  V and ~((I)(O), C~)<_~((I)(Q), C2)/ and let S be a set 
similarly defined but  with the inequali ty reversed. Then R, S are positively 
weakly invariant and closed, relative to V, V ~  R t.3 S, and P e R  A S. We 
may conclude by Theorem 8 that there exists a ~¢(t, P )  such that 
(t, ~(t, P ) ) e R N S  for t p _ < t < ~ , .  

Since ~(t, P )  leaves V, ~' <~o and (';, ~('l, P ) ) e  Fr(V), say (~,, ~(y, P ) ) e G .  
Then 0-----(:((I)(P), C~)=*((I)(P), C2)> 0 and from this contradiction we con- 
clude that C(P) is connected. 

TttEOBE~[ 7. - Let C : (V U S) -~ Fr(V) be the consequent  mapping and 
let A be a nonempty subset  of V U S. If all solutions through P leave V, 
for each P e A ,  and if all points of egress are strict, then C is usc on A. 

PROOF. - By Theorem 5, C(P) is compact  for each P s  A. 

If  C is not use at some P0e A, then there exists an ~ > 0 and a sequence 
IPn~A : P~ --~ Po and r(C(P~), U ( P o ) ) ~  as n ~ oof .  

Hence, for~'~each n,  there is a QneC(P,3 such that r(Q,, C(Po))~e. 
Let %(t) be a solution of (l) through P~ and Q,. By Theorem 4 there is a 
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subsequence  i¢~(t)l of {opt't)} which converges to a solut ion ~0(t) of (1) with 
¢~(to) ~ x.o. By assumpt ion,  ~(t) leaves V and  every point of egress is strict .  
Now j u s t  as in the proof of Theorem 5 we can f ind a subsequence  {t~} of 
{t~i such tha t  (t,~, ~.~t~))~ Q.~ ~ (t~, ¢~(tb))e C(Po) which is a contradic t ion.  

RE~[~a~: . -  I f  A is a compact  and  connected  subset  of V L)S,  then 
under  the hypotheses  of Theore u 7, C(A) is compact  and connected.  This  is 
u consequence  of the proper t ies  of use funct ions .  (See for example  [3], 
Theorem 1). 

DEFrNrTION. - Le t  A, B be subsets  of R ~+~ with B C A. If  there exists a 
use mapp ing  G : A  ~ c(R ~+~) such that G(x)CB and G(x) is connected for 
all  x ~ A  and x~G(x )  for all x e B ,  then B is a set-valued retract of A 
and G is a set-valued retraction from A into B. 

T~EOaEM 8 . -  I f  there exists a set Z C V L ) S  such that  Z ~  S is a 
se t -va lued  re t rac t  of S but  not of Z and  if all  points  of S are points  of 
str ict  egress, then there exists a P ~ Z  and a solut ion ~(t, P)  of (I) such that 
(t, ~(t, P ) ) e  V for t e D~ ~ [t~, ~ ) .  

P~oo~.  - If, for all  P~Z~ every solut ion ~(t, P )  of (1) leaves V, then 
the consequent  mapping  C : Z ~ S is use. 

Le t  H : S ~ Z ~ S be the se t -va lued  re t rac t ion  which is given in the 
hypotheses.  Then HC:Z--~Z~ S is use and for each P ~ Z ~  S, P e H(P) C HC(P). 
Thus  Z ~  S is a s e t -va lued  re t rac t  of Z which is u contradic t ion .  

The authors  would like to acknowledge  several  helpful  discussions  with S. 
Sed~iwy dur ing  the p repa ra t ion  of this  paper.  
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