
Global existence wi thout  uniqueness (*). 

STEPHEN R. BSRNI~"ELt) (U. S.A..) (*~ 

$ummary. - In  this paper we investigate the extendability of  solutions o[ ordinary differen- 
tial eq~ations on [to, oo) with the use of  Liapunov fttnctions. The results extend to non- 
unique systems the work done by Conti aJtd Strauss~ as .mell as establishing an equiva- 
lence between two properties of a Liapttnov ftcnetion. 

1. - I n t r o d u c t i o n .  

L i a p u n o v  func t ions  have been used to de te rmine  m a n y  proper t ies  of so- 
lut ions  of o rd ina ry  d i f fe ren t ia l  equat ions  inc lud ing  st~bility, boundedness  and 
invar ianee  (see YOSlZ~ZAWA [8]). More recent ly  L iapunov  func t ions  have been 
used to invest igate  the ex tendab i l i ty  of solut ions on [~o, c~) (existence in the 
future)  and  on ( - - ~ ,  ~ )  (existence forever) under  the  assumpt ion  tha t  solu- 
t ions are unique.  In  this paper  we use L i a p u n o v  func t ions  to de te rmine  the 
exis tence  in the fu tu re  of every  solut ion x ( t ,  to, xo) of x = f ( t ,  x ) w h e r e  

f :  R ~ X  R a - - ) R  ~ is mere ly  cont inuous .  A theorem (Theorem 1) is g iven 
which  ex tends  to n o n - u n i q u e  sys tems the work done by CoN~ [1] and S~nAcss 
[6]. K n e s e r ' s  theorem as well as other theorems re la ted  to the proper t ies  of 
solut ion funne l s  are used  in the proofs. A second theorem (Theorem 2) is 
presented  which establishes an equ iva lence  between two proper t ies  of a Lia-  
punov funct ion ,  a s suming  tha t  a l l  solut ions exist  in the past. 

2.  - M a i n  R e s u l t s .  

Let  R ~ denote Euc l idean  d - space  and let I" I denote  any norm in R d. 
Fo r  x, y e R ~ def ine  d(x~ y) - -  [x  - y l .  Consider  the system 

(E) x -~ f ( t ,  x)  

where  f : R 1 )< R d--->R d is cont inuous .  Denote  a solut ion of (E) through the 
point  (to, x0) by ~c(., to, Xo). 

(*) This work is part of the authoL"s doctoral thesis under the direction of Professor 
A. STRAUSS at the University of Maryland. This research was supported in part by the 
National Science ]~oundation under Grant GP-6167. 

(¢*) Entrain in Redazione il 20 febbraio 1970. 
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Let I be an interval and consider a function V : I } ( R  d--->R ~. V i s  said 
to be locally Lipschitz if iQis continuous on I X~R ~ and if for each point 
(t, x) there exists a neighborhood N of (t, x) and a constant K~> 0 such that 

IV(s, y ) - -  V(s, z)t ~ K t y - - z  t 

for all (s, y) and (s, z) in N A (I X Rd). Define 

l~(t, x) = lira sup h-~((V(t -{- h, x + hf(t, x)) - -  V(t, x)). 

If  V is locally Lipsehitz, Yosnlzxwx [8 page 3] has proved that 

/V(t, x ) -  lira sup h-~(V(t + h, x(t + h, t, x ) ) -  V(t, x)). 
h---) 9+ 

We now state our main results. 

TE~oRE)I 1 . -  Assume V : R  ~ X Rd-->R ~ is locally Lipschitz, satisfying 

(2.1) V(t, x~)-->c~"~'as [x[--->~ 

for each fixed t~  R 1 

and 

(2.2) ~7(t, x) ~ ¢;(t, V(t, x)) 

where we assume ~ : R 1 X R ~--)R ~ is cont inuous;  and for every real to and 
ro the maximal solution r(t, to, ro) of the comparison equation r - - ~ ( t ,  r) 
exists in the future. Then all solutions of (E) exist in the future. 

Using the same reasoning as that used in Theorem 1 we have the follo 
wing corollary. 

Co~oL~xRY 1. - Let  V : R ~ X R ~--> R ~ be locally Lipsehitz and s~tisfy 
(2.1) and 

?(t, oe)~ qT(t, vct, ~)), 

where we suppose W : B ~ X  R~.--->R ~ is continuous;  and for every real to and 
ro the maximal solution ~(t, to, to) of r - - ~ ( t ,  r) exists in the past. Then 
every solution of (E) exists in the past. 

T g E o a ~  2. - Let V : R}.X R~--> R 1 be locally Lipschitz and satisfy (2.1) 
and (2.2). If  solutions exist in the past then we have 

(2.3) V(t, x)-->oo as Ixl--)cx~ 

uniformly for t in compact sets. 
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RE~ARK. -- Theorem 1 was first stated by Co~T~ [l]. His proof, however, 
needed the stronger hypothesis (2.3); see for example [4 page 108]. Later,  
STaAvss [6] gave a proof of Theorem 1. These results were for systems (E) 
with uniqueness, and t a l ced  S~a~vss' pcoof relied heavily on this fact. In  
proving Theorem 1, as a result of the non-uniqueness  of solutions, we make 
gceat use of the properties of solution funnels;  and we then p r o v i d e  au 
example which demonstrates how complicated the behavior of solutions can 
be in the case of non-uniqueness .  

As we mentioned before, originally Theorem 1 was proved using (2.3) 
instead of (2.1) by Co~i .  Later  K ~ o  and S~a~vss [3] showed that if solutions 
of x ~ f ( t ,  x), where f is locally Lipschitz, exist in the future  then there 
exists a function V(t, x~) such that V : R ~ X R~--> R ~ is locally Lipschitz sati- 
sfying (2.2) and (2.3). In  another paper [6], STaAUSS provided an example of 
a part icular  V satisfying (2.1) and (2.2) but not (2.3), so that Kx~o and SvRivss '  
earl ier  result  shows some other V must satisfy (2.2)and (2.3). In  STRAVSS' 
example some solutions did not exist in the past. A natural  question then 
is whether it is precisely the existence in tile past which is needed to prove 
(2.1) and (2.3) are equivalent. Theorem 2 affirmatively answers the question. 
Once again the assumption of uniqueness  is not needed. 

3. - Proofs. 

We will need to carefully analyze the properties of solution funnels. For  
(to, Xo)+R1X R d define the positive and negative solution funnels  respecti- 
vely as 

Fro +~o = {(t, x(t))" t~_lo,  x( to)=~o C R d+~ 
and 

F~.~o = i(t, x(t)) : t ~ t o ,  X(to)=Xo c t~ ~+~ 

where x ( t ) :  f(t, x(t)). The solution funnel  through (to, xo), denoted by F,o,+, 
is defined as 

F~0.~0--F + U F ~ ,  tO, x0 x0 * 

When the initial point is understood we shall only write F+, F- ,  and F~ 
Tile z-cross-section, denoted by F(~:), is a subset of R d formed by the 

intersection of F and the hyperplane t ~ z, that is 

F(~) -= F N (":~ X R~). 

We shall now state without proof the following known results which 
will prove useful in this section. 
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L n ~ A  1 [2, page 14]. - Le t  x~(t) be a solut ion of (E), xdt~)~ ~ .  
W e  suppose t. ~ lo a n d  x~ ~ xo. Then  there exists  a subsequence  of 
solut ions x~o)(t), x~(.~)(t) ... such that x~(k)(t) approaches  xo(t) as k ~ c~ unifor-  
mly on compact  subsets  of the domain  of xo(t) where Xo(J) is a solut ion of 
(E) sa t i s fy ing  xo(to) = Xo. 

The following resul t  is due to KN~SER [2, page 15]. 

LE~I~:A 2. - The  z -c ross -sec t ion  of the solut ion funne l  through (to, xo) 
is compact  and connected if all  solut ions exist  ou [to, z]. 

The fol lowing l emma is a general ized convergence resul t  proved by 
STaAVSS and ¥ORKE [7]. 

Le~)I~ 3. - Le t  f be a con t inuous  mapping  on an open set D C R ~ X R d. 
Le t  (Zo. ~o)eD and suppose all solut ions of (E) through (*o, ~.o) exist  on 
[a, b], "toe[a, b]. Then  for each s ~ 0, there exists a ~ ( s )~  0, such that  if 
d((z, ~), (to, ~o))< ~, th,m for each solut ion x(. ,  z, ~) of (E), there exists  a so. 
h t i o n  of ( E ) t h r o u g h  (%, ~o), x(-, ~o, ~o), such that Ix(t, z, ~)--x( t ,  zo, ~o)1 ~ ¢  
for all t E[a,  b]. 

W e  shal l  def ine  a metr ic  topology on the class ~{ of non empty  compact  
sets of R d. Le t  A ~  and  ~> 0 be given and  def ine  

R(A, e ) :  {SeJ~  : S C  B(A, ~)}, 

~*(S, l ) - - i n f  {e: S C R ( A ,  ~)}, and 

e(S, A ) =  max (?*(S, A), ~*(A, S)). 

I t  can be shown that  ~ is a metr ic  on ~ .  This topoloo'y is re fe r red  to 
as the I t au sdo r f f  metr ic  topology. 

L E ~ I ~  4 ([5]). - Consider the funne l  of solut ions of (E) through the point 
(to, Xo) = p .  Suppose all solut ions exist  in the fu ture .  Then  the t - c ross - sec t ion  
through p, Fp(t), has  the proper ty  that  F p : R ~  ~ is con t inuous  in the Hau- 
sdorff  metr ic  topology. 

Wi th  these p re l iminar ies  we now state and prove a l emma  concern ing  
funne l  cross-sect ions  when some solut ions do not exist  in the fu ture .  

LEM~A 5. - Assume all  solut ions through (/o. Xo) exist  up to but  not ne- 
cessar i ly  at  w*. Suppose there  exists  a solut ion y(t, to, x o ) s u c h  that l y(t, 
to, xo)l ~ ~ as t ~ w*, and there exists  a solut ion w(t, to, Xo) which is de- 
f ined at w*. T h e n  the w*-cross-sect ion,  F(w*), is unbounded .  

PROOF OF LEM~A 5. -- We def ine M = Ix(w*, to, 'Xo)i, where M < c~ by 
assumpt ion.  By an appl ica t ion  of L e m m a  4, we" m a y  conclude that  there 
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exis ts  a ~ > 0, such  that  if r e [ w * - - ~ ,  w*], we have 

(3.1) !x(t, to, Xo) l ~ 2M. 

L e t  it=} be any  s e q u e n c e  of poin ts  in the closed 
such tha t  l= ~ w* as n ~ c~. By  hypo thes i s  we have 

]y(t=, to, xo)[ c~ as t~ -~ w*. 
Def ine  

(3.2) 

i n t e rva l  [w*- -  ~, w*] 

kn = t y(t°, to, Xo) t; 

hence  k~ -*  c~ as n ~ c<~. Assume that k= > 2M for all  n > 0. 
F o r  each  n we cons ide r  the t~ -c ross - sec t ion  of the funne l  of solut ions  

th rough  (to, Xo), By  L e m m a  2, these sets are  connec t ed  and  using (3.1) and 
(3.2) we conc lude  there  exists,  fo r  each i, a s eq u en ce  of so lu t ions  { ~ ( ' ,  to,xo)!, 
in which  the doma in  of ~ ( . )  i nc ludes  [to, t.] and  such tha t  

I~(t~, to, Xo)]=j~, for  i f ixed,  for  all n, 

where  2M < j l  ~ k~ and jl --- ~ as i .... c~.  
By an app l i ca t ion  of L e m m a  1 we have,  for  f ixed  i, a solut ion ~ ( . ,  to, ~o) 

such that ( re labe l ing  the subsequence)  

(3.3) ~](.) ~ ~( . )  as n ~ 

u n i f o r m l y  on compac t  subsets  of the doma in  of ~( . ) .  By the  de f in i t ion  of 
w*, '~d') is de f ined  on [to, w*). Since  I~(t~)l = j ~  for  all n, we have wi thou t  
loss of genera l i ty ,  

¢~(/~) ~ yo as n -* ~ ,  and [yoj = j~ .  

W e  now cons t ruc t  a r e c t an g l e  about  the poin t  (w*, yo). Consider ,  first ,  
a ny  n u m b e r  9, with 0 < 9 ~ n ' * - -  to. F o r  all poin ts  (t, x) in the r ec t ang le  

R - - i ( t ,  x ) : [ t - - w * t ~ ,  I x - - y o  <<1}, 

there  exis ts  a T >  0 such that If(t,  x) t ~ T. Def ine  

= rain ( i / 2 T ,  9/2) 

and  cons t ruc t  the r ec t ang le s  

and 
W =  ,(t, x) : l t - - , v * i ~ 3 1 2 ,  !x  - y o [ ~  i /2!  

L = {(t, x) : t ~ [ w * - -  ~12, w*], i x - -  yo! ~_~ 114'.  
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Consider n so large that (t~, c¢~(l~))~ L, From the cons t ruc t ion ,  the graph 
of ¢p~(.) is defined in W for t ~ [ w * - - ~ / 2 ,  w*] and satisfies the following 
inequali ty 

j , - -  I / 2 ~  i ~?(t)t ~j~  + 1/2. 

Using the convergence theorem we have for t e [w*-- ~/2, w*), 

j, + 1/2 ~ i+~(t) t~__j~ -- 1/2; 

hence, tp~(w*) is defined and 
l +~(w*)l > j ~  - -  1 / 2 .  

Now we repeat  this same procedure for each i and obtain the existence 
of a sequence of solutions I~b~(., /0, x0)} such that 

t~(w*, to, x o ) l ~ j ~ -  1/2 

] +~(w*, to, xo) l - -  ~ as  i - -  o ~ .  

Hence  the w*-cross-sect ion is unbounded, thereby proving the lemma. 
We are now in a position to prove the main result. 

PBoos os THEORE/~[ 1. - Suppose t h e  conclusion is false. Then there 
exist a point (% ~o), a solution ~c(., z, xo) and a point w ~ z such that 

x(.) E ~+ ~o, 

I x ( t , ~ , x 0 )  l - ~  at t - ~ v - ,  

and x(., z, Xo) is defined on [z, w). There exists a point (to, y0) such that 
z < to < w and all solution through (to, yo) exist on [/o, w]. Define 

x(to,  ~, Xo) = Xo, 
and we see that Xo ~ yo. 

Define 
L - - I z ~ = k X o + ( 1 - - ) , ) y o : 0 ~ ) ~ l / ,  

and let 
) ,*--  sup {)~:x(w, to, z),) is finite}. 

Since zo = yo, we have by an application of Lemma 3 that 0 < k * ~  1. 
W e  claim that not all solutions through (to, z~,) exist up to t - - w  for if 

they do, then by a consequence cf Lemma 3, there would exist a neighbor- 
hood of z), such that all solutions through that neighborhood exist at t - - w ,  
contradicting the definition of k*. 
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This  es tabl ishes  the claim. 
Def ine  

w * =  sup {M: all solut ions  th rough  (to, zx*) exist  on lto, M)}.  

Hence ,  there exists  a solut ion y(.) such  that  

tY(t, to, ~ .~) t -*°°  as t ~ w * - ,  

where  to < w * ~  w. Define  the set 

F + 13 = { t x(w*, to, z~)l • 0 ~ z < ~.*, x( . )  c ,o, ~ }. 

We shal l  cons ider  the two cases:  

1. B is unbounded ,  

2. B is bounded,  

and  arr ive  at a con t rad ic t ion  for each case, thus proving the theorem. 
Assume B is unbounded .  Then we can choose a sequence  of solut ions 

{x(w*, to, z).~)!, where 0 ~ ~ < )2, such that  ),~ ~ ).* and 

ix(w*, to, z),~) I -  ~ as i ~ c ~ .  

By the con t inu i ty  of V, we know there exists  an re :> 0 such that  

V(to, z z ) ~ r o  for  0 ~ ) , ~ i .  

Us ing  the d i f fe ren t ia l  inequa l i ty  (2.2) we conclude tha t  

V(t, x(t, to, zz~)).~r(t, to, re) 

for to ~ t ~ w*, where  r(t, to, re), the m~ximal  solut ion of r---- ~/t, r), exis ts  
in the fu ture .  In  par t icu lar ,  

V(w*, x(w*, to, z~ ) )~  r(w*, to, re)), 

a con t rad ic t ion  to (2.1). 
Assume now tha t  B is bounded.  Then there exists  an M ~ 0 such  tha t  

F x(w*, to, z~) r ~ M 

for 0 ~ ). < ).* and  for all  x ( . )EF~ ,~  z. Consider  any  sequence  {).~} such that  

z).~ ~ zz. and for each i, select  a solut ion x~(., to, z~) f rom F + H e n c e  by ) t o , z ~ , ~  • 

an appl ica t ion  of L e m m a  I, there exists  a solut ion x(, ,  to, z~,) and a subse- 

AnnaIi di Maternatica 3o 
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quence  of solut ions 

x~(., to, z ~ ) ~  x(. ,  to, z~:~) a s  

un i fo rmly  on compac t  subsets of the domain  
x(-, to, z),) exists,  we have  

{xi~(., to, z~) 1 of {x~(., to, z).~)} such that  

i k ~ o O  

of x(., to, z).). As long as 

Ix(t, to, z~,)] <_ 3M for 

I f  we def ine  KI--~ max  (3M, K)  then 

I0c(t, to, zz*)l--< Kt  for 

t e [w* - -  ~, w*). 

t e [to, w*); 

hence  ix(w*, to, z~,) I <--K1. Thus  we have precisely  the  condi t ions  needed  for 
L e m m a  5. Hence  there  exists a sequence  of solut ions {~(. ,  to, z~,)}, such  that  

l(q~(ro*, to, ~*)1 ~ ~ a s  i ~ ~ .  

There fo re  we have r educed  the problem to the point  w h e r e  we can use 
the techniques  used in Case 1, thus comple t ing  the proof. 

PROOF 0Y Tt[EORE~[ 2. - Assume V does not  sat isfy (2.3). Then  there  
exist  sequences  {x~}, Its}, and an 2 1 I > 0  such that ~x~ I ~ c~,  t,--* to, and 
V(t~, x~)-<M. W e  can a s sume  wi thout  loss of gene ra l i ty  | ha t  t~ ~ to monoto- 
nically.  

I x~(t, to, z)~k) - -  x(t, to, z~,)f ~ M 

for ik suf f ic ien t ly  l a rge  and t e [ t o ,  T] wheI'e [to, T] is in the doma in  of 
x,(., to, z~,). Therefore ,  

(3.4) ix(t, to, z~.)[ ~ I x~(t, to, z~.,k) t + M. 

Since  l~clk(rv*, to, z~)] ~ M ,  we have the ex is tence  of a ~ ~> 0 such that  

(3.5) I x~(t, to, z~k) t ~ 2M for t ~ [w* - -  ~, w*]. 

Since  the domain  of x(.,  to, z~,) is at leant as large  as [/o, w*), there  
exists  a K >  0 such that 

lx~(t, to, z ~ * ) l ~ K  for re[to,  w* --8]; 

and  f rom (3.4) and  (3.5) we also can conc lude  that 
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CXSE I. - Assume l~,7 to. For  each i pick any y~e F~, ~(to), which exists 
since solutions exists in the future, We  claim 

l y ~ [ - - o c  as i - - c o .  

Suppose the claim is false, that is there exists a subsequence {Y~k} such 
that Y~k-* yo as i~ - - - co .  The solution funnel through (to, y0) is compact on 
[ to--8,  to] for ~ > 0. By an application of Lemma 3, we have the existence 
of points (t~: z~)eF~,y, such that t z~--x~l  < 1/2. Thus we have tz~} - -  co as 

i -  oo, a contradiction to the fact that the funnel through (to, y0) F~. n, 
is compact, a consequence of Lemma 2. 

Since {y~l are unbounded and y~----- 
(2.t) and (2.2) that 

V(to, y~)<--r(to, t~, 

V(to, y~) - -  co as 

x~(to, t~, xs), we have as a result  of 

V(t~, x~)) and 

i ~ o o .  

Since V(t~, x,~)~ M, we have as a result  of the differential  inequality,  

V(lo, y~)<--r(to, t~, M). 

But r(to, t~, M) is bounded for all i si~ce solutions of +:~¢p(t, r) exist  in 
the future, thus leading to a contradiction. 

Now assume t ~  to. Let { b e  any point greater tllan to. Assume t~$[to,-~ 
and choose y~$F~,~i( ~ We claim {Yl/ are unbounded which would then 
reduce to the previous case. 

Assume {y~} are bounded;  there exists ~ such that Y~k-  9 as ik-+ oo .  

On [to, t], F~, ~- is compact, since solutions exist in the past. There exists 

a ~ > 0 such that if I Y~k--Yl < ~, then there exists a sequence of points 

{t~,z~} e F~  y= such that I x~k --- z~ I < 1/2. Since {z~ / are bounded, we arrive at 

a contradiction, thus proving the theorem. 

4. - An Example .  

The set B used in the proof of Theorem 1 is always unbounded when 
solutions are assumed to be unique. To show that B may be bounded when 
we do not require  uniqueness,  we consider the following example.  

Consider the scalar equation 

~----0 x < 0 ,  

(S) ~ ----- 2g~ lj2 0 "< ~0 ~ .  1 

x --~ 2x 2 m ~ i. 
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L e t t i n g  

to = 0 ,  yo = - -  1, xo  = 0 ,  
w e  h a v e  

z1 = 0 ,  ~o ~ - -  t ,  ~* = t ,  z~ ,  ~ 0 .  

There exists a solution y(., O, O) o[ (S)  such that  

l y(t, 0, 0 ) ! - - -~cx~  as t - - 3 / 2 .  

Therefore, letting w * ~  3/2 we have that 

B = (0,  11. 

BIBLIOGRAPHY 

[1] R. CO~TI, Sulla prolungabilit~ delle soluzioni di un sistema di eq~azioni differenziali 
ordinarie, Boll. Um ~Iat. Ital. 11 (1956)~ 510-51~ 

[2] P. HART~A~, (,Ordinary Differential Eq~ations,,~ Wiley and Sons, New York (196~). 

[3] J. KhTO and A_. STRAUSS, On th~ global existence of solutions and Liapunov functions, 
Ann. Mat. pnre appl. 77 (1967), 303.316. 

[4] J .P .  LASALLE and S. LEVSCHETZ, ~Stability by Liap~nov's Direct Method with Appli. 
cations,, Academic Press, New York (1961). 

[5] G.R. SELL, 03~ the fu~ndamental theory of ordinary differential equations, J. Differen. 
tim Equations 1 (1965), 370-39l. 

[6] A. Sv~ACSS, A note on a global existence result of R. Conti, Boll. Un. Mat Ital. 22 
{1967), 4%-4~1. 

[7] A" STRAUSS ond J .A.  YORKn, On the fundamental theory of differential equations, Siam 
Review, 11 (1969), "236-'246. 

[8] T, YOSHIZAWA, ,Stability Theory by Liapunov's Second Method, ,) the Mathematical 
Society of Japan, Tokyo, 1966. 


