Global existence without uniqueness (*).

SterpHEN R. Berxrero (U. 8. AL (%)

Sammary, « In this paper we investigate the extendability of solutions of ordimury differen-
tial equations on [fo, oo} with the use of Liapunov functions. The results extend to non-
unique systems the work done by Conti and Slrauss, as well as establishing an equiva-
lence between two properties of a Liapunov function.

1. = Introduction.

Tdapunov functions have been used to determine many properties of so-
lutions of ordinary differential equnations including stability, boundedness and
invariance (see Yosmizawa [8]. More recently Liapunov functions have been
used to investigate the extendability of solutions on [fo, o) (existence in the
future) and on (— oo, oc) (exisience forever) under the assumption that solu-
tions are unique. In this paper we nse Liapunov fanctions to determine the
existence in the future of every solution x(f, fo, w0) of x = f(f, x) where
f:RB'X R‘— R? is merely continuous. A theorem (Theorem 1) is given
which extends to non-unique systems the work done by Conwr [1] and Srravss
[6]. Kneser's theorem as well as other theorems related to the properties of
solution funnels are used in the proofs. A second theorem (Theorem 2) is
presented which establishes an equivalence between two properties of a Lia-
punov function, assuming that all solations exist in the past.

2. - Main Results.

Let R¢ denote Euclidean d-space and let denote any norm in R<.
For x, ye R? define d(x, y) = |@ — y|. Consider the system

(E) x =, x)

where [ : R'X R*—s R? is continuous. Denote a solution of (E) through the
pOiﬂﬁ (to, WO) by GIP( ’y Ilo, 41’0).

(*) This work is part of the author's doctoral thesis under the direction of Professor
A. Stravuss at the University of Maryland. This research was supported in part by the
National Secience Foundation under Grant GP-6167.

(**) Entrata in Redazione il 20 febbraio 1970.
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Liet I be an interval and consider a function V:I X R¢4— R. V is said
to be locally Lipschitz if it is continuous on I X E? and if for each point
(¢, x) there exists a neighborhood N of (f, ) and a constant K >> 0 such that

[ Vis, y)— Vs, 2)| < K|y — 2|
for all (s, ) and (s, 2) in N N (I X B%. Define
Vit, ® = lim sup W=V + b, @ + bf(, ) — V(t. ).
k0%

If V is locally Lipschits, Yosmizawa [8 page 3] has proved that

V(t, ©) = lim sup h=YV({l + k. x(t + b, ¢, ©) — Vi, x).
b OF
We now state our main results.

Tareorem 1. - Assume V:E' X B‘—> E' is locally Lipschitz, satisfying
(2.1 Vit, ®) 07T as |x|—oc
for each fixed {e K*
and
2.2) Vit, @) < o, Vi, x)

where we assume o : B X B'-—> R' is continuous; and for every real f and
ro the maximal solution #{{, £, r5) of the comparison equation r = o(i, r)
exists in the future. Then all solutions of (E) exist in the future.

Using the same reasoning as that used in Theorem 1 we have the follo
wing corollary.

Cororrary 1. - Let V: E' X R?*— B' be locally Lipschitz and satisfy
(2.1) and )
Vi, o) =T, Vit, x)),

where we suppose W : B! X B'— R! is continuous; and for every real {, and
ro the maximal solution p(¢, &, ro) of r = W(f, ) exists in the past. Then
every solution of (E) exists in the past.

Tarporem 2. - Let V: R',X R?-> R' be locally Lipschitz and satisfy (2.1)
and (2.2). If solutions exist in the past then we have

(2.3) V(t, ©)—>co as |x]|-so0

uniformly for ¢ in compact sets.
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Remark. - Theorem 1 was first stated by Conr [1]. His proof, however,
needed the stronger hypothesis (2.3); see for example [4 page 108]. Later,
Strauss [6] gave a proof of Theorem 1. These results were for systems (E)
with uniqueness, and inleed Strauss’ proof relied heavily on this fact. In
proving Theorem 1, as a result of the non-uniqueness of solutions, we make
great use of the properties of solution funnels; and we then provide an
example which demonstrates how complicated the behavior of solutions can
be in the case of non-uniqueness.

As we mentioned before, originally Theorem 1 was proved using (2.3)
instead of (2.1) by Cownti. Later Karo and Srrauss [3] showed that if solutions
of x=f(t, x), where [ is locally Lipschitz, exist in the future then there
exists a function V(J, ®) such that V : BE' X R*— R' is locally Lipschitz sati-
sfying (2.2) and (2.3). In another paper [6], Srrauss provided an example of
a particular V satisfying (2.1) and (2.2) but not (2.3), so that Karo and Srravss’
earlier result shows some other V must satisfy (2.2) and (2.3). In Siravss’
example some solutions did not exist in the past. A natural question then
is whether it is precisely the existence in the past which is needed to prove
(2.1) and (2.3) are equivalent. Theorem 2 affirmatively answers the question.
Once again the assamption of uniqueness is not needed.

3. - Proofs.

We will need to carefully analyze the properties of solution funnels. For
(to, wo) € B X R* define the positive and mnegative solution funnels respecti-
vely as
Fi =it o) : t=l, ) = C B
and
Flow =1 o) 1 t <1, a(to) = ao! C B

where x(f) = f(t, x($). The solution funnel throngh ({, %), denoted by F, .,
is defined as

on"‘o = F;(i X0 U F;: Xp *
When the initial point is understood we shall only write F+, F—, and F.
The t-cross-section, denoted by F(z), is a subset of E? formed by the
intersection of F and the hyperplane { =z, that is

Fry=F N( ! X R

We shall now state without proof the following known results which
will prove useful in this section.
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Leuma 1 [2, page 14]. - Let x,(f) be a solution of (), xit,) = a..
We suppose f, — f, and ®, — @,. Then there exists a subsequence of
solutions ®.q)f), n@(f) ... such that x.(f) approaches xo(f) as k& — oo unifor-
mly on compact subsets of the domain of wo(f) where wx/f) is a solution of
(E) satisfying wo(fo) = 0.

The following resulf is due to Knmser [2, page 15].

Lewma 2. - The t-cross-section of the solufion funnel through (Yo, o)
is compact and connected if all solutious exist on [{,, 1.

The following lemma is a generalized convergence result proved by
Srravss and Yorke [7]

Lemma 3. - Let / be a continuous mapping on an open set D C R' X R%.
Let (t5. &)e D and suppose all solutions of (H) through (1, &) exist on
[o, b], wela, b]. Then for each & >0, there exists a &) > 0, such that if
di(z, &), (ts, Eo)) < &, thun for each solution x(+, 1, £) of (K), there exists a so-
lution of (E) through (1, &), ®(-, %, &), such that |a(f, 7, &) — x(l, w0, &o)| <e
for all {ela, b].

We shall define a metric fopology on the class { of non empty compact
sets of B?. Liet Aedl and € > 0 be given and define

R4, ey=i{Sed : SC B4, ¢,
e*(S, 1) =inf {e: SC R4, &)}, and

P(Sr A) = max («D*(Sy A)7 P*(A' S))'

It can be shown that p is a metric on J{. This topology is referred to
as the Hausdorff metric topology.

Limmyma 4 ([B]). - Consider the funnel of solutions of (B) through the point
{ts, xo) = p. Suppose all solutions exist in the future. Then the {-cross-section
through p, F,({), has the property that F,:R'— J{ is continuous in the Hau-
sdorff metric topology.

With these preliminaries we now state and prove a lemma concerning
funnel cross-sections when some solutions do not exist in the future.

Lemuma 5. - Assume all solutions through (4. %) exist up to but not ne-
cessarily at w* Suppose there exists a solution y{f, fo, %) such that |y(t,
o, ®)| — o0 ag ¢ — w¥ and there exists a solution x(f, %, %) which is de-
fined at w*. Then the w*-cross-section, F(sw*), is unbounded.

Proor or Lewma b. - We define M = |x(w*, f, @), where M < co by
assumption. By an application of Lemma 4, we may conclude that there
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exists a & > 0, such that it fe{w* — &, w*], we have
(8.1) !(L’(t, to, WQ)] < 2M.

Let {#.} be any sequence of points in the closed interval [w* — 3, w¥]
such that #, — w* as ® — oco. By hypothesis we have

|y(ta, to, x0)] oo as f, — w¥
Define

(32) kn = 1y(tna t(): “'0)}7

hence k, — oo as n — oo, Assume that k, > 2M for all » > 0.

For each n we consider the {,-cross-section of the funnel of solutions
through (f, #0), By Lemma 2, these sets are connected and using (3.1) and
(3.2) we conclude there exists, for each ¢, a sequence of solutions {¢%(+, f, xo)},
in which the domain of ¢’(.) includes [f,, {,] and such that

| @, fo, wo)| =j4i,  for 4 fixed, for all m,

where 2M < j; < k; and j; — co as § — co.
By an application of Lemma | we have, for fixed ¢, a solution {y(-, &, »)
such that (relabeling fhe subsequence)

(8.3) @ie) — Pfs) as n — oo
uniformly on compact subsets of the domain of ¢(.). By the definition of

w*, §f+) is defined on [f, w*). Since |¢(t.)| =4 for all », we have without
loss of generality,

it — Yo as m —oco, and yo|=j:.

We now construct a rectangle about the point (w* y,). Consider, first,
any number p, with 0 <p < n*—t,. For all points (f, ) in the rectangle

R=i( «):

t—w*<<p, |@x—y|=<<1},
there exists a T > 0 such that |f(#, x)| << T. Define

3= min (1/2T, 0/2)
and construet the rectangles

W=1( w): [t —w*|<<8/2, & — yo| =< 1/2}
and
L= xy:tew*—p§/2, w*], o —yo|<1/4".



232 SteErHEN R. BERNFELD: Global existence without uniqueness

Consider n so large that (f,, ¢i({.)) € L. From the construction, the graph
of ¢i(+) is defined in W for ¢e[w*—B/2, w*] and satisfies the following
inequality

Ji—1/2 < 9i) | < ji -+ 1/2.

Using the convergence theorem we have for {e[w* — §/2, w¥),
Ji 172 = [ bilh | = ji — 1/2;

hence, ${w*) is defined and
[4i(w*)| =i — 1/2.

Now we repeat this same procedure for each ¢ and obtain the existence
of a sequence of solutions {di(+, f, x)} such that

biw*, bo, wo)| =4 — 1/2
= M)i('l?}*, fo, wO)i - oo as { — oo,

Hence the w*-cross-section is unbounded, thereby proving the lemma.
We are now in a posifion to prove the main result.

Proor or Tueorem 1. -~ Suppose the conclusion is false. Then there
exist a point (t, o), a solution x(-, 7, %) and a point w > t such that

w(')EFj,?cZ:
|a(t, 1, @) — 0o at {— w—,

and (-, T, %) is defined on [t, w). There exists a point (f,, ) such that
T < b < w and all solution through (o, #o) exist on [{, w]. Define

x{le, T, ;,'0) = X,
and we see that o == 9.
Define
L=}z =M+ (1l — Ny :0<<i<1},
and let
A* = sup {A:x(w, b, &) is finite]}.

Since #, = go, We have by an application of Lemma 3 that 0 < *<C 1.

We claim that not all solutions through (b, #s) exist up to { =w for if
they do, then by a consequence ¢f Lemma 3, there would exist a neighbor-
hood of #: such that all solutions through that neighborhood exist at ¢ ==,
contradicting the definition of A*.



STEPHEN R. BERNFELD: Global existence without uniqueness 233

This establishes the claim.
Define

w* = sup {M: all solutions through (fo, #+) exist on [, M)}.

Hence, there exists a solution y(+) such that
ly(l, to, 23e)| — 00 as § — w*—,
where f, < w* << w. Define the set
B={]axw* t, z)]: 0<% < I¥, w(-)CF;};q_}.

We shall consider the two cases:

1. B is unbounded,

2. B is bounded,

and arrive at a contradiction for each case, thus proving the theorem.
Assume B is unbounded. Then we can choose a sequence of solutions
[x(w*, ty, 2,)!, where 0 <CA; < A¥, such that 4, — A* and

|o(w*, o, &) — o0 as § — oo.
By the countinuity of V, we know there exists an 7, > O such that
Vite, 2) <7, for O=CA < 1.
Using the differential inequality (2.2) we conclude that
Vi, (i, to, &)<t to, 1)

for f, < ¢ << w*, where #({, fo, 7o), the maximal solution of » = ¢, r), exists
in the future. In particular,

V(Wv*y m(W*) 1‘05 zl;))gr(;v*; tov 7'0)),

a contradiction to (2.1).
Assume now that B is bounded. Then there exists an M > O such that

(¥, b, o)< M

for 0 << A < A* and for all m(o)r—:F}f{, - Consider any sequence {1;] such that
2,, — %+, and for each 4, select a solution x(-, fo, 2,) from F,"o' ., Hence by
an application of Lemma 1, there exists a solntion «(-, &, 2;+) and a subse-
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quence of solutions {uy(+, &, zkik)} of {a(, f, #,)] such that
@i (-, to, ) — %+, o, 2x) as 4 — 00O

uniformly on compact subsets of the domain of a(, f, #). As long as
(=, ty, 2= exists, we have

|2yt to, 2,) — xlly bo, 21} < M

tor i, sufficiently large and fe[fy, T] where [fp, T'] is in the domain of
ax(+, to, 2,+). Therefore,

(34-) |, fo, 20| << lwi;;(ta lo, z},gk)

+ M.
Since |, (w*, o, zxik)] <. M, we have the existence of a & > 0 such fthat
(3.5) |2, (t, to, zki,)(f«:zM for telw* — 3, w'l

Since the domain of (-, f, #:) is at least as large as [fp, w*), there
exists a K > 0 such that

la(t, to, 215} | << K ftor tell, w* —3;
and from (3.4) and (3.5) we also can conclude that
|x(t, b, 25)] = 3M for tel[w*—3, w*.
If we define K; = max (3M, K) then
(2, o, 235)| < Ki for te[t, w¥);

hence |a(w*, #, 2:)| =< Ki. Thus we have precisely the conditions needed for
Lemma 5. Hence there exists a sequence of solutions {{i(., o, #;4)}, such that

(™, to, 219)] — oo a8 & — oco.

Therefore we have reduced the problem to the point where we can use
the techniques used in Case 1, thus completing the proof.

Proor or Tamomem 2. - Assume V does not satisfy (2.3). Then there
exist sequences {«;}, {#}, and an M >0 such that |a;| — oo, & — &, and
Vi, ;)< M. We can assume without loss of generality that #; — f monoto-
nically.
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Casg L. - Assume f; 7 4. For each ¢ pick any g, € F,, .(l), which exists
since solutions exists in the future. We claim

4] — o ag 1 - oo.

Suppose the claim is false, that is there exists a subsequence {y; | such
that g, — 3 as 4 — co. The solution funnel through (%, yo) is compact on
[to — 38, &] for & > 0. By an application of Lemma 3, we have the existence
of points (#:, »)€F, such that |& —x,|<1/2. Thus we have |z|— oo as
¢ — oo, a contradiction to the fact that the funnel through {f, %) F;yo,
is compact, a consequence of Lemma 2.

Since {y:} are unbounded and y; =x(fy, &, ), we have as a result of

(2.1) and (2.2) that
Vite, ) < rity, t;, VI, x)) and

V(tc, y,} — o0 a8 1 — oco.
Since V(;, ;) =< M, we have as a result of the differential inequality,
Vite, yi) = r{to, t:, M).

But #(f,, ;, M) is bounded for all ¢ since solutions of # = @(f, ) exist in
the future, thus leading to a contradiction. ~

Now assume £\ . Let ¢ be any point greater than f. Assume ¢ €[f, 1]
and choose yeF. .(f) We eclaim {y| are unbounded which would then
reduce to the previous case.

Assume {y;} are bounded; there exists § such that y, — § as 4 — oco.
On [t, 4, F— . is compact, since solutions exist in the past. There exists
a & >0 such that if |y, — | <%, then there exists a sequence of points
{t:;2:) € F-; -~ such that |x;, — 2] < 1/2. Since {z] are bounded, we arrive at
a contradiotion, thus proving the theorem.

4. - An Example.

The set B used in the proof of Theorem 1 is always unbounded when
solutions are assumed to be unique. To show that B may be bounded when
we do not require uniqueness, we consider the following example.

Consider the scalar equation

x=20 x <0,
(S) e=2w" 0<x<l

x© = 2’ x=>1.
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Letting
to=0, Yo = —1, x = 0,

we have

ZIZO, 5{):——1, ;\*xl, {3)\*:‘0.
There exists a solution g(-, 0, 0) of (8) such that
ly(t, 0, 0)) — oo as ¢-— 3/2.

Therefore, letting w* = 3/2 we have that

B =0, 1].
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