On Tangent Bundles with Sasakian Metrics of Finslerian
and Riemannian Manifolds.

KenTaro YANo (Japan) and (*) Tansiro Oxubo (Canada) (*¥)

Abstract. -~ On the basis of the so-called phase completion the notion of vertical, horizonial
and complete objects is defined in the tangent bundles over Finslerian and Riemannian
manifold. Such a tangent bundle is made into a manifold of almost Kaehlerian stru-
cture by endowing it with Sasakian wmetric. The components of curvature tensors with
respect to the adapted frame are presented. This having been downe it is shown possible
to study the differential geomelry of Finslerian spaces by dealing with that of their
own tangent bundles.

Introduction.

There exist several essentially different points of view with regard to
Finslerian spaces. C. Camramaronory [2] dealt with the spaces by means of
variational caleulus, while since 1925 J. L. Syxexr [17] and L. Brrwanp [1]
developed tensor calculus by understanding that Finslerian space is a mani-
fold with a mefric ftensor whose components are the second derivatives of

1 .
§F2(oc, dx) where F' is a function satisfying the properties that it is positive,

homogeneous of degree one in the differentials and convex in the latter. Regar-
ding the differentials involved in F as the components of the element of sup-
port and providing with the socalled base connection, which we call 3-deri-
vation. E. Carrax [3] endowed Finslerian spaces with Euclidean connection.
The metric tensor being functions of position and element of support, a trend
arose to observe that Finslerian space can be derived from a Riemannian
space by the application of homogeneous contact transformation {6], [8] which
by K. Yano and E.T. Davirs [19] was elevated to the contact tensor calculus.
There the special frame of reference called the first and second contact fra-
mes introduced by M. S. Kxeperman [9] and Y. Muro [13], respectively, served
to define the sub-distributions complementary and non-holonomic in general.

Recently the presemt authors [24] developed the differential geometry of
tangent bundles over affinely connected spaces of Finslerian type, which are
called gemeralized spaces of paths [6], [11] and showed that it is always pos-
sible to regard the geometry of such a space as that of its tangent bundle
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by means of the so-called phase completion. There the definition of horizontal
distribution was given by the use of E. Carran’ s base connection which help-
ed to define the first contact frame in the contact tensor caleulus. Thus the
geometry of spaces of Finslerian fype lies in this category needless to say.

However, the problem we face consists in giving the metrics in tangent
bundles. For though it would be very natural for which to use the so-called
vertical, horizonial and complete tensor fields of type (0.2) that arise from the
Finsler metric g derived from the fundamental funetion F of the base ma-
nifold, either of them renders the tangent bundle unable to be a proper Rie-
mannian manifold. On the other hand S. Sasaxr [16] introduced a special
metric g° so that the tangent bundle over a Riemannian manifold may be a
proper Riemannian manifold, and later on K. Yawo and E. T. Davies adopted
this scheme to study the differential geometry of the tangent bundles over
Finslerian and Riemannain manifolds [21]. The purpose of the present paper
is to deepen K. Yano and E.T. Davies’ theory by applying what we obtained
in our theory of tangent bundles over generalized spaces of paths. The Sa-
sakian metric g° makes them into almost Kaehlerian manifolds and we prove
that they can not be Einstein manifolds. Also we derive the curvature pro-
perties of base IFinslerian manifolds uniformly by computing the curvature
tensor of their tangent bundles, which may by all means be one of the con-
tributions to the theory of tangent bundles to Finsler geometry.

§ 1. -~ Tangent bundle over a Finslerian manifold.

Let M be an n-dimensional manifold whose class of differentiability is
assumed to be as high as required. Then its fangent bundle T (M) is by defi-
nition

T(M)= pé)M THM)

where P is a point of M and 7p(M) is the tangent plane of M at P. A point
P of T(M) is an ordered pair (P, y,) of a point P and a vector yr€Tp(M).
m is the projection T(M)—> M defined by P=(p, yr) —> P. The set =—YP) is
called the fibre over P, and M is the base manifold.

Suppose that the manifold M is covered by a system of coordinate neigh-
bourhoods { U, "} (*), where («") is the local coordinate systems in the neighbour-
hood U. Let (y*) be the system of Cartesian coordinates in each tangent space
T, (M) of M with respect to the natural base (3;), where 3, = 2/3«". Then in
the open set n—Y(U) of I'(M) we can introduce local coordinates (x*, y") for
P, which we call coordinates in n—YU) induced from (%), or simply énduced
coordinates in w—1U).

(*) The indices a, b, ¢, d, ..., B, 4, j, k, ... run over the range {1, 2, .., n{.
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If U’ is another coordinate neighbourhood of P in M, then =n—%U’) con-
tains P and the induced coordinates of P relative to n—U') are (&, y*),
where

o = ¥ (%)
(1.2)
Y =0uy" - o,

On writing (1.2) shortly as

1.3 2 = *() ()

where we understand that a* = g" and «” =y, the Jacobian of the trans-
formation (1.3) is given by

(1.4) (357) = {

i 0
Y°0.2:" duc™

Thus the tangent bundle 7(M) is orientable [21].
‘We suppose that there is given in T'(M) a function F(wx, y) satisfying
the properties

(a) Fxz, yy>0 for y=+0,

by F(x, ay) = «F(x, y) for real «,

(e) F(w; ?/-I—z):“«F(m; y)+F(90, 2),

(d) For aF = x4, the surface F(ax,, y) = 1 is a convex surface.

Then it is clear that the »* symmetric function gu(wx, y) defined in ==(U) by
1 -y
(1.5) g, y) = 3 5 F*/3y’3y’
undergo the law of transformation

(1.6) gy = 2),-/&'1' . ayoc" * g

. h
subject to (1.3), and when y" is replaced by the direction «* x%g% of a point
P(x" €U, g; can make M into a Finslerian space. Then T(M) is the tangent

bundle over a Finslerian manifold M.

(*) The indices 4, B, , D, E, ... run over the range {1, 2, .., n; 1, 2, .., nl,
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We suppose moreover that in each =n—}U) there are given n? functions
T, ) satisfying the properties

(@ Tix, ay) = al'(z, )

() Iiw, ) undergo the law of transformation
(.7 P, of) = 2ax® « Qu” « T + 4°3 »2,2™),

subject to (1.3).
By the use of I we introduce the operator 3; defined hy

(1‘8) Bi = ai - F‘iaa)

then for any function f(x, y) of class O, r =1, &f can be defined in T'(M)
globally in virtue of (1.2), (1.7) and

2vf = vt » 3if ey - 2.1
Since each of 3 and 3; serves to be the base of 7(}M), and denoting
them respectively by B and Cf, we introduce in T(M) a special frame of
reference A, = (B{', ), which we call adapted frame [21].

(1.9) B =@l —1%, 0f = (0, 3.

The dual frame Bj[;’:(B;’, C,E) has the components inverse to A% and
they are given by

(1.10) Bi= (8}, 0), Ch=(T" ).
Obviously the equations of a fibre are given by
(1.11) do* = Bjda® = 0,
while its complementary sub-distribution is given by » equations
(1.12) Chda® = dy* + I, y)dai =0

and it is called the horizontal distribution of T(M).
The non-holonomic object with respect to Aj is given by

(1.13) Qf = — 0F, = AYB, 45 — 5,47
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where _
8, =8 for « =4, and 3, = &7 for a = ¢,

and the non-vanishing components of Qf will be

(1.14)
gjﬁ = Q;i - ""‘SJTP;;'

Let O a*=a¥t) be a_curve of class O, r =1, in U of M and suppose
that its natural lift (x*, % in n—YU) lies in horizontal distribution always,
that is to say, «(f) satisfies the equations

d*x?
ae

- dod da

k —
(1.15} -+ fji(w, @) ar a*t— =0

where,
T = I,

then we call C the generslized geodesic of M, or simply the geodesic.
In M we take a vec »r field X along such geodesic C and consider the
infinitesimal fransforma on

1.17) x(t) = 2'(t) + XMee(t)du,

where X*w(t)) are the components of X with respect to (3:). Then the dire-
ction x(f) of C is fransformed into

(1.18) 2i(l) = () + X*, jei(t)u.

We say that if the transformation (1.14) carries C to a path of M within
the preservation of the parameter ¢, the vector field X defines an affine col-
lineation. The necessary and sufficient condition for X to define an affine
collineation is the vanishing of the lie derivatives I} [11], [14], [20]:

Lo, ®) = 3,9" — L3,V 4 Thdi Ve + Ved.T}
(1.19) + I} w3, Ve

= VjViXh + K%;Xk -+ P;lia.’;UbV;;,X“ == 0,
where we have put

(1.20 v, Xt = 8 XP 4 ThXe
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(121 Ky, €) = 5,0 — 5%, + LI — Tals,

and we notice that &;X"a(l)) = 3;X"ux(!)) for the case.
Lot X", y) and wfx, y) be two set of functions defined in =n—YU) such
that they obey the law of transformation

X¥ == ah%h’ o 0 = ai'mi « W

subject to (1.31). Since such functions can always be defined in U of M by
replacing the § s by «’ s as the standard work of defining vectors and
1-forms in Finsler geomefry, our concern is to define any vector or l-form
in T'(M) by the use of these » functions given a priori. Such an action may
be called phase completion of the tangent bundle over a Finslerian manifold.
There would be many ways for phase completion, but we shall deal with the
following three kinds. We define the wertical, horizontal and complete vector
fields denoted respectively by X”, X7 and X¢ which have in n—YU) the com-
ponents

0 X X"
(1.22) X = ),XH::( ],Xc‘:( )
X — X §oB, X

and the vertical, horizontal and complete 1-form’s denoted respectively by
o’, ¥ and ©¢ which have in n~YU) the components

o’ = (v;, 0), 07 = (v;, I";wh), ®° = (YB,0;, W)

where each components are expressed in ferms of the nabural base (3,).

Let P and @ be the two sets composed respectively of w+ functions
P _, .itsh-1and n't* funetions @, , .., *»f—1--% such that they obey
the law of fransformation

Py oyt ¥i= By aie L Buh o 9 @s . 23,201 0 Pyt

£ s, 3 s s 7.
Qf’t v j'lk we B = aj'twlt e ajllac',-l . aku%k LI aklwkl th o jlku kl,

and denote by P X Q the formal product of these two sets of funetions.
‘We define the vertical, horizontal and complete tensor fields by

(PX Q=P o4,
(PXQF=PI®Q 4+ P"® @~

(PXQ=P@d" 4+ P ®4,
respectively [24].
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From these definitions fhe vertical, horizontal and complete tensor fields
G of type (0.2) have in n—Y(U) the components

G]i 0 I‘;Gti + [‘;Gﬂ Gji yaBaGﬁ Gﬁ
G = , G = s G =
00 G, 0 G 0

respectively. Thus, on taking g; given by (1.5), we can metrize T(M) by g°,
However, such g° makes 7(M) into a pseudo Riemannian manifold [23], and
we now introduce in T (M) a special metric g5 which we call Sasakian lift
of the metric g of M and was adapted by S. Sasaxr [16] in order to make
the tangent bundle over a Riemannian manifold with the metrie gu(a) into
property Riemannian. On putting g.l.y® = Iy, it is given by

(1.23) s (gfi*'gcbp;rz Pf)

Ly gji
and with respect to the adapted frame if has the components

.
(1.24) gs=1

0 g
and consequently the element of arc lemgth in T(M) is given by
(1.2b) as? = gpdaide’ 4+ g;:3y/8y' .

Thus we have proved.

Taeorem 1. - The tangent bundle T(M) over a Finsler space M is o
Riemannian manifold with respect lo Sasakion lift g°.

Denoting by G° the inverse to g5 we find G° has the components
. gih e DH
(1.26) @& = ( _
R g +gcbpizr£
with respect to the natural base (24) and

"gih O "i
1.27) G5 =

0 ga ,i

with respect to the adapted frame, where g;g* = 3'.
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§ 2, - Eaclidean connection in T'(M).

T(M) having been made into a proper Riemannian manifold, there exists
a unique connection ¥ that keeps g° covariantly constant and is torsion free.
It is given by [12]
S ~ ~ -~ ~ ~ ~ -~ ~ ~ ~ ~
20°(vzY, Z2)= XgY, Z)+ Y94, X)— Zg%X, X)
2.1
+ 05X, Y1, Z)+ 952, X, V) + 95X, [Z, ¥),

where X, Y and Z are any vector fields of T'(M}), and in terms of the local
coordinates (x*, y* of n—*U) the parameter T¢s of ¢S is the Cristoffel symbol.
Its corresponding coefficients with respect to the adapted frame are given by

(2.2) I% = A%5, 4% + Tesd747)
whence
(2.3 P?g — }_wé\, = ﬂ?g .

. s . 5. .
The covariant derivative of g is given by

(2-41) Veldye = 869?3 - Pgrgsﬁ . Fg‘ﬁgrs - OJ

from which we obtain

P * 1 28 ) L o e *
(25) g = 2 g (8\{9&@ + aﬁgra - Oegyﬁ) + ’2“ (QTB + Q «tf + Q.By)a
where we have written

(2-6) Qa«fg e gssgo‘ﬂslg'rgt

The particular values of T' for different indices, on taking account of
(1.13) and (1.24), are found fo be

(@) 20% = g*Egia + 8igj — Bugp)
(b) 21‘—]-’; = g"70:u -+ Qh7,
(c) 21‘? = g"9ig9; + th_i

13

(d) 2‘[‘;7 = ghasagji + Qh}‘: + Q 77.
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2.7)
) 21’5‘é = — g"yag; + it

(B 2% =g'ogi + 0. "+ 0%,
(2) 21‘?; = g"3gi. + Q" + Qiﬁ,
(h) 21‘,:}7: = ¢"370ia-

If we use the notations

h
(2.8) 2 { j@} = §*(0i9ei + 997 — 94g1),
(2.9) 2 Ciir = 350,

the (2.7a) becomes

h
(2.10 1‘; = {]i« } — gka(I‘?Gbia -+ rbicbja — I\Zcbji)-

Taking account of homogeneity properties of (’s, we have immediately

@.11) gy = { ;: } yiy = 26*,

and if we now take

(2.12) I = 37G*,

we have an expression on the right hand side of (2.10) as

(2.18) P {m — (37G9C:* — (37G9 0" + g32GCs;i,

which coincides with the expression for I'* in Cartian’s theory [3].
The fact that

(1.16y =1y,
(2.14) 5.F = 3,F — I9:F =0,
(2.15) Y3 e = y*9il}, = y°y.0i"

are easily verified.

Annall di Matematica
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With (2.16) we can determine the non-vanishing components of the non-
holonomic objects that were given in (1.14). For Qi we have

(2.16) Qi = — Kty
where K,;* are those given in (1.21) whose variables & s are replaced by the y's.
Similarly
Q" = — 23707G" = Gi*.
From this definition we have
91.G® = grd'i + (2791 L0)y° — 2CnJ0y®

from which, substituting from (2.10), we have

91 G5:® = gL + 47 .Cn

or

2.17) Q"= Gt =T} + pod;it,
where

(2.18) 4yt =F Cy”, Voz*%?/“Va-

We can now rewrite (2.7) in the form (%)
(a) I‘]-'E = I‘;h of Cartan,
(b) 21‘% = 2C;* — Khyy°,

(C) 21";‘{ = 2Gjih -— K"jaiy“ s

2.19)
(d) 1‘;7 = V()Ajihi
{(e) 2[‘;}; = —2C;* — Kji."y?,
) 1‘% = — yod;*,

hy TE = C;t,

(3} In the formulas of I s enlisted as (8.21) by K. Yano and E.T. Davies’ paper [21]},
the plus sign printed in (b) and (c} should be read to be the minus sign as seen above cor-
respondingly.
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[f we construct the vector field 4; by contracting 4;* given in (2.18)
with respect to j§ and A, we have

(2.20) A = Ay = % F3; log g, g = det. (g;),

and with regard to which A. Dmigs [D] proved.
Leuva. - If in a Finslerian space the n functions A: which are equal
to lF@i log g vanish identically, then the space is Riemannian.

2
For the case, the function F(x, y) defined in § 1 becomes

= g’y
and I" s in (2.19) reduce to

h
(a) Pj?ﬁg ..},

Vi
() 207, = — Ky,
(0) 20} = — Ku;'y”,
2.21)
@ I} =0,

() 2T = — Kj.'y°,

]B
)y I* =0

If we express X, X# and X¢ given by (1.22) in terms of the adapted
frame, they have the components

“0- S XhT - X

(2.22) X = X7 = , X¢ =

_X’L’ LYy WX '

0
respectively. When M is Riemannian, the X's appearing in (2.2) are the com-
ponents of a vector field in U, and X”, X¥ and X¢ are called the vertical,
horizontal and complele lift of X [16], [23].
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If we compute the covariant derivatives of those vector fields, we have
by using (2.19) for the vertical vector X"

= 1 .
@ ;X" = (0 — 5 Khy )XY, wiXP,

(2.23)
) v:Xe=[(yodihX', 97X" + CptX7],

and for the horizontal vector X¥

@ viXe=[yX", — Ku'ya),
(2.24)

= 1 . N
®) v Xe={6 -y KX, — (o)

and. for the complete vector X¢

- 1 1
(a) V?X“=[VjX"+(Cﬁ"“gK”faiy“)?/”va’,gy"VfaV"—l—

i

(2.25) 4

[

(Vv X" + K X?) — O’,-i"Xi] .
~ 1 i .
b v, X = lan” + (Oﬁh —3 K”;a,-y“) X' — City'yV',
3y v X" + Gty y.X) — Xy oAja"} -
Especially if M is Riemannian we have for the vertical lift X"

e [t o1k i
@ ViXe= |5 yyyXt — 5y jifr X
(2.23Y
) y;X*=[0, 0),

and for the horizontal lift X¥
5 & Yk h 3
(@) v;X*=|yX" y<ix a| yviv X",
(2.24Y
1
® viXe= [-Qy“(vavj— viv X", 0],
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and for the complefe liff X¢.

. 1 ‘
(@ viXe= [V;‘X;‘ — 5 K"y y'v X7,
, 1 e h
(2-25) 2 yanV“X -+ 9 Y SZX ja y

. 1
) viXe= [—— Y(Vive — vy X", va"},

from which we obtain.

Trarorem 2. - The vertical, horizontal and complete lifts of a vector field
X are parallel in T(M) if and only if X is a parallel vector field and defines
an affine collineation.

§ 3. - Almost complex structure of 7(M).

Let T(M) be the tangent bundle over a Finslerian manifold and have
Sasakian lift g5 as its wmetrie.

We consider in 7(M) a tensor field F of type (1.1) such that it acts on
a vertical and horizontal veetors under the following rule:

(3.1) Fxr=X# and FXf=_X".
Then we find that F satisfies
3.2) = — R,

where F is the unit tensor field in T(M). Taking account of (2.2) they are
found to have the components

{ 0 8]
8.3) F = ,
L—-a’z 0
and
5 0]
(3.4) B = ,
0 8% |

with respect to the adapted frame.
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(3.2) or (3.3) implies that F is an almost complex structure [22] and has

the eomponents,
3 ¥ 2
3.5) F= 5* _ prt Pk}
— 9 —ljla — 1

with respect to the natural frame (3.,).

An using (1.23) and (1.26) if we compute the components Fp, of the
tensor field ' g% of type (1.1), they are found to be

Li =Ty gs
(3.6) Fpq= ,
— Gji 0
where we have put
8.7) Iy = gulyy’,

and taking account of (2.10), (3.6) can be writen as

‘ Y°(0fia — 9ifja) [
— G 0

This implies that the exterior differential of the 1-form 6 = gy'da’ glo-
bally defined in T(M) is
1
2

and consequently F,s is closed. Thus we have

b = 5 Fepdx® A da®

Tasorem 3. - The tangent bundle T(M) over a Finslerian or a Rieman-
nian manifold M whose melric is Sasakion lift g° is on almost Kaehlerian
manifold.

The Nijenhuis tensor N of the almost complex structure F is, by defi-
nition, given by [12]

NXY)=[FX, FY|—FIFX, 7| - FIX, FY]— (X, ¥
where X and ¥ are arbitrary vector fields in T(M), and N nas in n=YU)
the components of the form
Nep? = FP(QpFp* — 28Fp*) — F™0pFc* — 9cFp)
with respect to the natural frame. In terms of the adapted frame they are [21].
(N = F3@sFp* — 3pFs%) — Fp¥2:F,* — 5, Fs%)
(3.9) + FoF Q05 — Fed Qo) + (3:% + Fy2Fed) Qs
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On taking account of (2.16), (2.17) and (3.3) if we compute the particular
values of N* for the different indices, we find that

(5.10) [N]i* = [N]i* = — Ki"y"
all others being zero. Hence we have [18], [21].

Tagorem 4. ~ The tangent bundle T(M) over a Riemannion manifeld M
having Sasakian lift g5 as meiric is ¢ Kaehlerian manifold if and only if

(8.11) Kiy® = 0.

Tarorem 5. - The langent bundle T (M) over o Riemannian manifold M
having Sasakian lift g% as melric is a Kaehlerian mawnifold if and only if
M is flat (21).

A vector X with respect to which the tensor F has the vanishing Lie
derivative is said to be almost analytic. Denoling ay [£xF']z* the components
of £xF4; with respect to the adapted frame, we have [21]

[QXF]BC” ==z X555Fg°‘ —_ Fgeng“ -+ F{"aBXE - Xs(Qega‘Fga —_ Qgsana)a
Then we obtain for the vertical vector XV

ErF ) = g X" + Xogodot, [SxrF it = 97X,
8.12) B B
[QXVX]J-’” = 37X*, [QXVF]}}' =S V;X}' — X“V()Aajho

and for the horizontal vector X%

[ExfF b = 37 X%, [SxaF |;h = — g, X" — Xogodqt,
(3.13) ) )
[LxtF)j" = — g; X" — Xogody®, [Sxal it = — ;X7

from which we have

Tasorem 6. - The necessary and sufficient condition for the wvertical
vector XV or the horizontal wveclor field X7 to be almost analytic is that X*
satisfies in the base Finslerian wmanifold that

97X =0, yX'+ Xogod. =0.

Turorem 7. - The mnecessary and sufficient condition for the wvertical or
horizontal lift of a vector fleld X in the base Riemannian manifold to be al-
most analytic is that X is a paraliel veclor field.
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As to the complete vector field X¢ we have

[CxcF | = 37X" 4 y° { gy X" + Kya" X* + (02l0ly’y s X,
(3.14) [CxcF " = [£xF )" = yoy.27X",
[»QXCI"]?z = y*{yvX" + K" X* + (3 Daf)y v X

Therefore if X* are the components of a vector field X defined along a
geodesic C of the base Finslerian manifold, then by taking account of (1.19),
we have

TrroreM 8. - The necessary and sufficient condition for the complete ve-
clor field X¢ lifled from a wvector field X defined along a geodesic C in the
base Finslerion wmanifold fo be almost analytic is that X defines an affine
collineation.

We note that the equations:of a geodesic given in (1.15) is, by taking
the are tengths S as parameter, written as [11], [15]

duoi dot

asds — =0

a2t
as? +%]z

because of (2.10), and also that the statement similar to theorem 6 holds for
the Riemannian case [21].

Let us consider the ILie derivative of the tensor Fz. Denoting by
{£xF'Jcs the components of xF with respect to the adapted frame, we have

[£xF)p = X% F 5 + Fspd X0 4 F\ 53 X% 4 X, 3 F5p + Q.°F,5),
so that we have for the vertical vector field X7

Bl = v, Xi — vk, 0Pl = — v,
(8.15)
LxFl57=0,
where we have put
Xi = guX", viXi=9;X; — Gy X,

and for the horizontal vector field X#
[L:#F); =0,  [CoFj] = y;Xi — X°yodju
(3.16)
[QXHF]ﬁ = 97X, — 37X,

from which we have for T(M) over a Finslerian manifold M
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Tarorex 9. -~ The necessary and sufficient condilion for (a) Sx"Fes
(b) SxEFcp to vanish is that a) yX;— p:X; =0 and
viXi =0 () vXi = Xyodju and 37X; = 37X
and for T(M) over a Riemannian manifold M [21].
TurorEm 10. - The necessary and sufficient condition for (a) $x7Fcs
(by SxEFcp lo vanish is that a) the vector field X in M is closed
(b) X in M is parallel.
As to the complete vector field X¢
[SxCF)ji = gyt Yy e X + Koa?XC + QaTh)yoyal *
— 95 | yvaX? + K5t X 4 Gallyrv.X? g,
(ExcFl7i = v;Xi 4+ viX; + Gty v X,
[€xcF |77 = 87X, — 37 X:.
Let X be a vector field defined along a curve D x* = xS} of class
Or, r=1, and consider the infinifesimal transformation of the form given
by (1.17). The necessary and sufficient condition for the transformation to
preserve the arc lengths of the curve D is given by the vanishing of the Lie
derivative £x g5 {11], [20]:
(3.18) O g, ©) = 7% + vX; + CilyyXs =0,

The vector field X(x(f)) of a Finslerian manifold which satisfies this
condition is called Killing vector. If furthermore the Killing veetor defines
an affine collineation, we say that X (x(S)) generates motion [M.S. KngprrMAN
[11], p. B61].

Hence if in the above formula (3.17) the vector field X°¢ is supposed to
be constructed with the components of a vector field X defined along a geo-
desic C of M, we have

Taeorem 11. ~ The Lie derivative of Fop with respect to X¢ wanishes if
X generates a molion in the base Finslerian manifold. The similar statement
holds for the Riemannian case too [21].

§ 4. - Curvature tensor of ¢°.

Let X, ¥ and Z be any vector fields in T(M).

Annali di Matematica 20
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The curvature tensor K of the connection tv7 is, by definition, given by
(41) KX, Vi=Ivz, vilZ— v 7’
and has in n—%U) the components

(KSpep? = 3plen? — 3clnp? -+ Lpeilcs® — Teaflps®.

If we express the Equation (4.1) in terms of the adapfed frame, we have

(4.2) (VaVy — VyVa)4* = [KS]STE“ZB
where
(4.3) [K5)ope* = 85T — 3,5 + L5 15 - T%.D% — QovTee.

On using the expression of I for the various range of indices given in
(2.19) and taking account of (2.16) and (2.17), we find that all the particular
values of [K%J5* are

(@) (K" = K" — Cio"Cs® + G Ou®
= %(Oka"Kﬁb“ — K — 20, Ko -+ Ca*K o — CioK )y
+ Zi (K toaK ot — KiiKia® — 2K oKy,

0) [(KJsst = 7i0 — v Gy 5 (0K sy
— % (Kjiabyodia" + Khayodu® -+ Khayoduby®

(¢) [K%* = — viOy" + v"Cyi — % (v K oy

i
+ Z){KkiabVOAjbh + Khayodp® + Khavoduy®,

1
@ [Kyi" = veli" — 70" — 5 (7K — 7K iy

4.4) + K’y godu”,
!
(e) [Kl7it=— % (03K g — 37K My — 3 (K — KMy

+ CuCi* — CiuCui® — yodiyodi" + vodivodr®
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@

%)

(Cra®K o — G Ky + Cii® Ky — CpioKlu)y®

DD -

1
-+ 1 (KhackK“ibj — Khacj Kaibk)yc?/b s

1 1 1
(Kt = — 5 (@iKhay* — 5 K"y &KkackKajbiycyb
+ 230:* 4 Cr' 0y — C"Cri®
1 ha b 1 a |h b 1 e Jh b
-3 Cr."K%uy® + 3 Crit K*y® — 3 Ci“K oy
+ vivoedi’ — yivodu’,
1 1 1
[K*la7ih = 5 @7 K M)y + 3 Kty — i K i Ky
— 370" — G Cu® — CptCii®
1 b a b 1 aTh b 1 a Kk b
+ 9 Ci" Ko wiy® — 5 Ci K"y +§ Cu K0y
— Vivods" + vivod;*,
[K8)i77" = 8agodi" — 97y edu’®
|
- (Okah 3 K’”abky") vod;® — (Ci"K*u;y*)g 0 du®
— Cu*vodi” + Ciyodrt,
~ 1
(K5 = — 903t + v,0u* — ‘Q(Vijibh — vKuhy®

— Kip*ytyoda®,

[KSJ:?ﬁT’ = — ;—%(K;zahy“) — 370" — G0 + Ci*Cu

1 . 1 1
+ vivodu® 4+ 5 Cui°Kju*y® — 5 Cii*Krar "yt — 3 Ci" K my®

1
—_ Z:KjachKaibkycyb — v odyyoda’,
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&) (K7 = 37(Kuaty® + 370u* + CiuCu® — Cia"Cy®

1 1 . 1
— yivodp® — 9 Ci"Kraty® -+ 5 CuKia'y® 4 5 Cra" K%y °®
1 B 3 k
-+ iKkac Kewyy® + vodpgoda®,
— 1
) [Kfhit= Ky + i (Koo Kt — Koo Ko *Yy*
1
— Ci" 0y + G20y + 5 (Cu*Kiop® — CoKias™yy®
1
-+ 5 (Cre®Bi® — Cpu"Kui® + Cu"Kipy?,
_ 1 1
(m) [Ki7:t= — g:0i* + v, Ou" + 3 K ytyodu — 5 Keyytgodn®,

e T 1 1
) [ "= 00y" + v 0 — 5 Ky'vodi" — 5 Kia"y'yodu®,

L

_ 1
(o) [Ks}k}fiﬁ = — Vicjs‘sh + Vthki 3 Kakbi?fbv{)Aja& — 5 Kkabkbe(}Aﬁa;
2 2

(o) [K%7e" = 83:0i* — 37Ci* + CuCi* — 010 Cri”
A+ (Yodii®yod ju® — (Fody“yoedi.
From these it is clear that if the base Finslerian manifold is flat, then
Ci* and K;*. Conseversely being zero, all the components [K*];* vanish and
hence T'(M) is flat. If [K5];e* vanish, then by taking account of the homo-
geneity properties of (s and K’s, we find, for instance, from (4.4(;)) that
(4.5) 310" — G Cyi* ++ C;o"Crie = 0,

the left hand side being homogeneous of degree minus fwo in the ¥'s.
Then transvecting (4.5) by y* and by using the relations

(46) y"@z(?ﬁ}‘ _ - Oﬁh, G;mhy?‘ - O,

we obtain
Oﬁh = O)
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which implies that the base manifold M is Riemannian, and for the case
[K5]sey* given in (4.4(a) ~ (p)) reduce respectively to

1
y (chthjibd - Ka’cthkibd - QKfcathjb)yb,

@ (K% = Kyt + 5

(b) [Kozt = 3 (Vijaih)y“,
Sy, —. .k 1 [AYYT]
© [KLyi" = —5 (vulu"ly",
(d) IKSJSSJ P g (V sza] Kzak )?J“,
1
(e) (Ks_lk] i — Kk]z 4‘ (chahI(jbia - chathbi “)ycy 3

i
(£) [KS]lJTh =35 Kkijh -+ i Kio"Ka"yy

(@) [KN5it=+5 L Kyt 411}“’*}{%;“2:%%
®) [Kiet =0,

0 (K% = 3 (7Es e,

) U = — 5 Ko — Koy,

1
k) lKS]k]z = Kkjih +1 K" Kuiyy?®,

3
4.7

W (K% = Kyt + ) Kt Kay? — KoKy
(m) [K%h7:F =0,

() [KS7h =0,

(© [KSyi" =0,

() [K7et=0.
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Thus, if [K®jsp* vanish, then we find from (4.7(a)), for example, that
K" vanishes because it does not depend upon the y s, while the second
term in the right hand side of (4.7(a)) involves them as a linear combination,
and hence the base Riemannian manifold is flat. We have proved

Tarorem 12. ~ If the tangent bundle T (M) over a Finslerian manifold
M whose melric is Sasakian lift g° is flat, then M is flat and the converse is
lrue also.

We have from the Hquations (4.3) the relation
4.8 (K + [K°Tag* = 0

immediately, into which we substitute (4.4) corresponding to the range of dif-
ferent indices to obtain the sole relation (H. Ru~p [15], p. 105).

4.9) Kii* + Ky = 0,
Also, by taking account of (2.4), we have
(4'10) [KS)S‘{'BOC -+ [KSJ&{%B - 07

where we have put
[KS]SyBoc = gssoc[Kslﬁ“rBEv

into which we substitute (4.4) to obtain the sole relation (H. Ruwnp, [15], p. 105)
(411) Kkhji '+‘ Kkhij —I— 2Gﬁkahab_y“ et 0

If in (4.1) we change X, Y and Z cyeclically and sum up the results, we
have so-called Bianchi’s identity, which has in terms of the adapted frame
the expression

(Ko + 1K Leo” + [Kes”
(4.12) = 350 + 3,08 + FpQs,*
T+ Q52Qyp® 4 Q®Qps® - Qp:* Q50

and by substituting each term of (4.4) in accordance with the various indices
that belong to (4.12), we deduce the following four relations (H. Ruwp, [15],
p. 105 and p. 110).

4.13) Kui* + K 4 Ky =0
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4.14) viKii* + viKi" + viKw®

+ (Klkc by”alr}li + Kkicbycaze + Kjlcbycazrl‘:c) = O;

4.15) (viKia" + vl + giKuye
+ (Kmeyodje" + Kipevodi” + Kt odr"yt =0
and
'37:\7014]3}‘ = Gt 4 ?f'VbCkﬁh
(4.16) — (Ciy 1Oy + CidhysCu® 4+ 00 + 201"y 0yt .

The formulas (4.13) and (4.14), or equivalently (4.15) are called by H. Ruxp
Bianchi’s identitites of the first and second kinds, respectively.
Taking account of the theorem 3 we have from (4.11) and (4.14)

Turorem 13. - If the langent bundle T(M) over a Finslerian wmanifold
is Kaehlerian, the curvature tensor of the base Finsler manifold satisfies

4.17) Kiji + K = 0,
v Ky + viKet + viKw" = 0.
§ 5. - Ricei and scalar eurvature of v°.
We now compute the Ricci curvature of ¢°. It is given by
®.1) (B e = [K Joge®

and on using (4.4) those components [K5],p will be

(a) [KS]ji = Kji — (Kajch aibd + 2Kaichajbd "‘|‘ Kjacha ¢ ibd)ycyb

[NoTREE AN

3 - (OjaCKciba -} OiacKc]’ba — Cc“Kﬁba)yb
— 2(Ch%Ci" 4+ Ci*Cy®)

1
— 5 AuEuy’) — 320" + Vivodi — vodyyoda’,

1 1
(b) [KS]], e E Vb(Kb]‘aiyb) + Q (deubVOAibd + KajbibeOA a)
(5.2)
+ vi0y* — v,Cu®,
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(e) (K57 = — é vo(K%ay®) + %deabvoAsbd + Kuy'yod.)
+ vily® — v;Cat,

@ KN = KKy
4 (32050 — 207C® + 2002Ci* — 20 Cu)
+ vovod;i® — yodayedsc®.

Now, if T(M) is an Einstein space, that is to say, if

5.8) [K%es = kgha,
or, by (1.24)
(5.4) (K%Y = kgji, [K°)7: = [KS];7 = 0 [KS)57 = kg;,

then, by taking account of the homogeneity properties of the functions in-
volved, we have from the fourth equations of (5.2) and of (5.4)

(5'5) Keacheabiycyb = O,
(5-6) ;‘)Zajia —_ 2370%‘“ -+ 2Ga(,ijia — 201»(,506# = O,
(5.7) Vavod;i® — yodayeds® = 0.

Multiplying (5.6) by y/ and taking account of (4.6) we find taht
Ci® =0,

and consequently
Ai = O,

which implies by Drixw’s theorem stated in § 2 that the base manifold M
is Riemannian, while we have from (5.5)

Kjiah?j“ =0
and consequently M is flat. Thus

Tuarorem 14. - If the tangent bundle over o Finslerian or Riemannian
manifold with Sasakian lift g5 as wmelric is an Einstein space, then the base
manifold is flat.
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Let us consider the scalar curvature of ¢5:
5.8) [K?] = [K],2.
Then we have from (5.2)

K9] = K + 2y.y0d® — vodoyod® — yodc ol pa

(5.9) — 'Zi Keachea bdycyb - 23 I;Cabu

where

K —— K]]’ Caba — gcbcuca

Thus, if [K®] vanishes, then by taking account of the homogeneity pro-
periies of the functions involved again, we have

K = vodl*codsd + vodagod® — 2vayed®
(5.10) Ky =0,

2.0 =0,

from which we have

Trrorem 10, - If in the tangent bundle T(M) over a Finslerian mani-
fold M with Sasakian wmelric g5 as welric its scalar curtvature vanrishes, the
T(M) is Kaehlerian and if M is a Riemannian wmanifold, M wmust be flal.
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