
Weak solutions ibr nonlinear  functional equations 
in Banach spaces. (*) 

V. BA~BU (Iasi) (**) 

Summary. - Some existence theo~'er~s for abstract differential equations in  ~ a n a c h  spaces 
are given. 

The paper  is concerned with the per turbat ion of hyperdissipative mappings 
in a BANACrt space X and with existence theory for the solutions of abstract  
functional equat ion 

(E) k x  - -  A x  ~ B x  - -  y ,  ~ > O, y e X 

where A and B are (possibly) nonlinear dissipative operators from X into 
itself. Under  different assumptions about A and B this problem was studied 
by several  authors (see [1], [3], [6], [7], [17]). 

In  section 1 we gather together some results from the theory of dissi- 
pative mappings and nonlinear semigroups of contractions which we shall 
need later. For  detailed informations one must  refer  to works of KO~URA [11], 
[12], KA~o [1% BROWD]~R [7], CRANDALL and PAzy [5], B ~ z l s  and PAz¥ [4]. 

In section 2 some results concerning the per turbat ion of hyperdissipative 
mappings are established. For  the sake of simplicity we have considered only 
the case when A and B are single valued, but many of these results may be 
proved for mult ivalued mappings .  

As application, in section 3 we give some existence results  for the non- 
l inear evolution equation of the form 

d u  
d t  B( l )u  - -  A u  -4- k u  = f(t); 0 < t < T, u(o) ---- O. 

where B(t) is a family of generators  of Co-contraction semigroups on a BA~cAcn 
space ~Y and A belongs to a certain Class of hyperdissipative nonlinear ope- 
rators de f ined  in LP(0, 2"; Y). This problem was studied by many authors (see 
e . g . F .  BROWDER [6], J. L. LioNs and A. S~RAvs [13], C. BA~DOS and H. Bn~- 
zis [3], G. DA P l ~ o  [17]}. 

(*} Durante lo svolgimento di questo lavoro, t'autore ha usufruito di una borsa di ricerca 
presso l'Istituto per le Applicazioni del Calcolo del C.I~.R. - Roma. 

~**) Entrata in l~edazione 1'11 febbraio 1970. 
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Final ly  the author is indebt to Professor D.~ PRA~O for having the chance 
to see his papers [16], [17] before pubblication. 

1 §. - Dissipative mappings and nonlinear contraction semigroups. 

Let X be a real BANAC~ space of norm I[ [I and let X* its dual space. 
We denote by {,) the pairing between X and X* and by F |he duali ty mapping 
of X into X*, i.e. 

(1.1) F ( ~ ) =  { ~  x*, Iiyii=lI~l, (~, y)=lI~II"}. 

If  X* is strictly convex then x ~ F(x) is a single valued demicontinuous 
mapping (i.e. continuous from X into X*) and if in addition X* is uniformly 
convex then /7' is uniformly continuous on every bounded subset of X (see 
e.g. [10]). 

A mappino~ h from X to 2 x is said to be dissipative if for any x, y eD(A) 
Ithe domain of A) and u G 5x, v e Ay, 

(1.2) (u - -  v, f) ~ 0 for all f e F(x --  y). 

h is said to be maximal dissipative if it has no properly dissipative exten- 
sion in X. 

Ln~M.~ 1.1 (c.f. [10], [tl]). - Let X be a real BANACH space and ~ be a 
dissipative mapping from X into 2 x. Assume that the range of :¢- -A is the 
whole space X for some ~ > 0. Then A is maximal dissipative and for all 
) .>  0, k - - A  has an inverse defined on all X which is lipschitzian of con- 
stant ),-:. 

A mapping 5 satisfying the conditions of Lemma 1.1 is called hyperdis- 
sipative. If X is strictly convex then a is hyperdissipative if and only if 
for all ), > 0, 

(1.3~ ll (x - a ) - :  tlL~p < z - ' .  

I[ X* is uniformly convex then every dissipative and demicontinuous single 
valued mapping defined on all of X, which maps bounded sets of X into 
bounded sets is hyperdissipative (see F. BROWDER [8]}. If  X is a I-IILBERT spa- 
ce then according to well known result  of M : ~ ¥  [14], every maximal  dissi- 
pative mapping in X is hyperdissipative. 

Let h be maximal dissipative. Then as easily follows, for any x e  D(A) 
the set 5x is closed and convex, hence if X is a strictly convex there exists 
a unique element of minimum norm in 5x denoted by h%. If  ~ is hyperdis- 
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sipat ive we set 

Jn(x) = (1 - 

A~(x) = n(J~(x) - -  x), 

x e X ;  n = l ,  2, . . .  

we give wi thout  proof  the fol lowing e l emen ta ry  resul t s  (for a proof see e.g. 
[5] ,  [I 0]) .  

LEM~A 1.2. Le t  X be a real BANACH space with  un i fo rmly  convex dual  
space X* and h be a hyperd iss ipa t ive  mapp ing  in X. Then  

a) J ,  is a cont rac t ion  and An is d iss ipat ive  on X. 

b) For  each x e D ( h ) ,  A , x ~ Ax  and II ~xl ]~- inf [ ]y] ] ;  y e A x } .  

c) For  any  x ~ D(A), lira J . ( x ) - - x  as n ~ cx~. 

d) Le t  t x~ t e D(A) be s t rongly  convergent  to x e X. If  exist y~ E hx~ such 
that  I/Y~[I-- ~ i  < ~ ,  then  x e D(A) and every weak c laus ter  point  of {Y,} be- 
longs to hx. 

e) I f  x ~ x  and I i A n x n ] ] ~ M < ~  as n - - ~ . ~ ,  then  x s D ( A )  and any  
weak c laus tcr  point  of t h~Xn! belongs to 5x. 

L~)I)IA 1.3. - Assume that  X is un i fo rmly  convex. Then  

a) For  any  x G D{A), A~x ~ A°x as n ~ c ~  

b) D(A) is a convex subset  of X. 

we ment ion  also the fol lowing usefu l  resul t  (see [10]) 

L ~ ) ~ A  1.4. - Le t  X be a real  BANACH space and x(t) be a X- v a l u e d  
func t ion  def ined on an in te rva l  of real  axis. Suppose that  x(t) is weak ly  dif- 
fe ren t iab le  at t = s and tha t  ~x(t) l ] is also d i f fe rent iab le  at t - - s .  Then  

d 
(1.41 U x(S)[I ~ l[ x(01 ̀=` : (~'(8}, f(8)) 

for any  f(s)  ~ F(x(s)). 

Dv.rI~ITION. Let  Y be a subset  of a BaNACH space X. A func t ion  T:  
:[0, cx~) X Y ~  Y is said to be a semigroup of cont rac t ions  on ]z if it sati. 
st ies the fol lowing condi t ions  

it T( t  + s)x = T(t)T(s)x,  t, s ~ 0, x e Y 

ii) [] T(t)x - -  r ( t ) y  I[ ~ II x - y [], t ~ 0, x, y e Y 

iii) T(O)x - -  x and l im T(t)x = x for any  x e Y. 
~--)0 

Annali di Materaatica Is 
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I f  T i s  a s emig roup  on a subse t  Y o f  X then  for  each  x e  Y a n d  h > 0 ,  set 

L% = h- l (T(h)x  - -  x) 

and  deno te  by  D(L~) (D(L~) respec t ive ly)  the set of those x e Y for which  
l im Lhx (weak- l i ra  L%) exists .  Def ine  
h-..~O h-->O 

L~ac = l i m  L%, ~ ~ D(L,) 
h ->0 

and 

L,~x = weak- l i ra  Lt~x, x ~ D(L,o). 
h..->O 

The  ope ra to r  L~ (Lw respec t ive ly)  is cal led the s t rong (weak) gene ra to r  of T. 
I t  is easy to see that  L~ and L,~ are  d i ss ipa t ive  in the space  X. F o r  eve ry  
semigroup,  T on Y c X  def ine  

Dr  = i x E r such that  lira II T(t)x - -  x II t-~ < c,o ~. 
t ~ 0  

Obviously  we have  the inc lus ion  re la t ion  D(L~)C (Lw)C Dr. 

L n ) ~ A  1.5. - Fo r  any x e DT the func t ion  t - ~ T ( t ) x  is ] ipschi tz  con t inuous  

on [0, ~ ) .  

PnooF. - I t  is a d i rec t  consequen( .e  of the fac t  that  t ~ l ] T l l l x  ~ x tl is 
con t inuous  and subaddi t ive  on posi t ive  axe. F o r  a de ta i led  proof  see (5). 

PuoPoslmlON 1. - Le t  T be a con t r ac t ion  semigvoup on a r e f l ex ive  B A ~ c ~  

space  X. T h e n  D ( L ~ ) -  Dr. 

Paoo~'. - Le t  x be an an  a r b i t r a r y  poin t  of Dr .  Accord ing  to L e m m a  1.5 
the func t ion  t ~  T(t)x is l ipschi tz  cont inuous .  S ince  the space  X is r e f l ex ive  
it fol lows (see ¥ .  Ko~vt~x [11]) tha t  it is a.e. d i f f e ren t i ab le  on (0~ ~ ) .  H e n c e  
T(t)x ~ D(L~) for a lmost  all t > 0 which impl ies  tha t  x ~ D(L~). 

Pnot ,  oslmlO~ 2. - L e t  X be a r e f l ex ive  BANAO~ space  and  T be a non- 
l i ne a r  s emig roup  of con t r ac t ions  on X. I f  Dr  is dense  in X then the domain  
of eve ry  d iss ipa t ive  ex tens ion  of Lw is con ta ined  in Dr,  

N 

PROOF. - I t  suf f ices  to show that  if for  a r b i t r a r y  x, y ~ X,  the fol lowing 
i ne qua l i t y  

( 1.5t (L~ox -- y, f )  ~ 0 
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holds fo every fe  F(x--x) and x e D(Lw), then x e Dr. Let u be an arbi trary 
point of Dr. Since the function t - ~  T(l)x is almost everywhere differentiable 
on (0, ~ )  we have 

d 
T(I)u -" L=T(I)u, 

dt 
a . e .  

Using Lemma 1.4 we ge~ 

(1.6) 2 -~ all1T(t)u --  x 112 = (L~T(t)u, f(t)), a.e. on (0, ~ )  

for any f(t)e F ( T ( t ) u -  x). Taking in the inequali ty (1.5) x - - T ( t ) u ,  
we obtain 

11 T,~),~ - -  ; l i - -<  [l u - ; iI + t ll y II 

from (16} 

for all t ~ 0  and u e Dr. Since Dr is dense in X this implies 

(I.7) II T~t); - x II ~ t tl y I/, ~ t _> o 

completing the proof. 

PRoPos~io~ 3- - Let X be a reflexive BA~ACE space and let T be a 
semigroup of contractions ef X. If  Dr is dense in X and if for any y ~ X 
the mapping x ~ L . ~ - - y  is also the weak generator of a semigroup of con- 
tractions on X then L .  is maximal  dissipative and D(Lw) ----Dr. 

PaooF. - Let x, y e X such that 

(1.8) (L~x--~], f ) ~ O  

for all x e D ( L . )  and feE(x--x).  I[ 27 is the semigroup generated by L~o--~j 
then for any u e D(L,) we have 

d 
TT(t)u = LwT~(t)u--  y a.e. on (0, cx~). d~ 

Taking in (1.8} x - -TT( t ) ,  by the same argument  as in the proof of 
tmn 2 it follows 

[I T 7  ( t )u - -  x [I ~ 11 u - -  x ]l 

Proposi- 

for all u ~ D(L~) and t ~ 0 .  Since D(Lw) ~- D r - -  X this implies TT(t}x--  x - -  O. 
N 

Hence LwZ = y which completes the proof. 
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The following result  is essentialy due CRANDALL and PAzY [5~. 

PaoPosITmN 4. - Let X be a striely convex, reflexive B A~ACE space and 
T be a semigroup of nonlinear contractions on a subset  ~ of X. Then 
D(L~) - -  Dr. If in addition X is uniformly convex then D(Lw) --  D(L~) --  Dr. 

Paoos.  - Let /~ be the dissipative mapping defined by 

/Sa = weak-l ira t-l(T(t}x - -  x), x s Dr 

where the limit is considered for all filters ~0 convergent to 0. Denote by A 
maximal dissipative extension of /~. Because for x e Dr, T(t~x e D(L~) C D(A) 
a.e. then as in the proof of inequal i ty (17) we obtain 

(1.9} 

Since Lx C Aa~ for any a~ • Dr the inequali ty (1.9) implies L x  --  A°x .  There- 
fore the mapping tv--~ Lx is single valued i.e. D(Lw) --  Dr.  

To prove the second statement we notice that from (1.9} it follows 

(1.10) t -~l lT(t)a--al l~l]L,o~ll  for all x e D ( L , ~ ) - - D r  and t ~ O  

Since as t--,-O, t-l(T(t)x~ - -  x) is weakly convergent to Lw~ and X is uniformly 
convex, (l.10) implies that t - l ( T t t ) x -  x) converges strongly to Lwx as t - -+0.  
Hence  D(Lw)-" D(Ls) and the proof is complete. 

As consequence of Proposi t ion 2 and 4 we have 

COaOLLARY 1. -- Let  X be a strictly convex reflexive BANACK Space and 
let T be a contraction semigroup on X. If the the weak generator L~ of T 
is densely defined in X,  then Lw is f -maximal  i.e. no single valued dissi. 
pative mapping properly extends L~. 

2 §. - Perturbat ions  of  hyperdissipative mappings. 

In what follows we shall assume that X is a real BANAC~ space with 
uniformly convex conjugate space X*. 

Let  A and B be two dissipative single valued mappings from X into 
itself with the domain D(A) and D(B) respectively.  

Assv~r~Io~s.  - i) B is the generator of a Co-contraction semigroup of 
bounded linear operators on X. 

ii) A is hyperdissipat ive and there exist two non negative constants  
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to and  t~ such  that  ( ) ` - - A ) - ~ D ( # I C  D(B) for  ) , > t o  and the fol lowing inequa l iy  

(2.1) I1 B()` - A ) - ~ x  II <--It B .  II (()` - -  to)-~ + ~()` - -  ~ , ) - ~  

holds  for  any  x e D(B) and ), > to. 

TUEOnE~t 1. - Assume that  the hypo theses  i) and  ii) are  sat isfied.  T h e n  
for  a n y  ), > to + It, 

~2.2) I)` A - -  B)(D(A) A D(B}) D D(B) 

and the inverse  ope ra to r  ()` -- A - -  B) -1 is a well  de f ined  l ipsehi tz ian  m ap p in g  

on D(B) with II (x - a - -  B )  -~  ll,,,~p <-  x - ~ ,  

DEFI~I~IO~¢. - An e l emen t  x e  X is said to be a weak  so lu t ion  of the 
equa t ion  

(E) ),x ~ A x  ~ B x  = y, ), e R,  y e X 

if the re  exis ts  a s equence  { x, } C D(A) ("1 D(B) such  tha t  x ~  x and ? , x , - -  
- - A x , - - B x , ~ y  as n - - , - ~ .  

COrOLLaRY. 2. - U n d e r  tlle a s sumpt ions  i) and ii) for  any  y ~ X and ) ` > 0  
the equa t i on  (E) has a u n i q u e  weak  solut ion x ~ X. Moreover  the m a p y ~  x 
is l ipsch i tz ian  of norm )`-1. 

PROOF, - Le t  F()`) be the ope ra to r  ( ) , - - A -  B) - I  de f ined  on D ( B ) f o r  
)` > ¢o-[-l~ and  deno te  aga in  by F()`) i ts es tens ion  on the whole  space  X. L e t  
5 : D ( A ) ~  2 x be the  d i ss ipa t ive  m ap p in g  de f ined  by 

(2.31 Ax : lira (A + B)x,,,  x e D(5). 
xn-->x 

W h e r e  D(A) consis ts  of the set  of all  x ~  X for  which  this l imit  exists.  I t  is 
eas i ly  seen  tha t  F(),)x - -  {>, ~ A)-lx for  any  )` > to + t~ and  x ~ X. Accord ing  
to L e m m a  1.1 the ope ra to r  [ ) , -  h)-I  is well  de f ined  on the space  X for  all 

), > 0 and I1(),--h)-lI]Lip ~ ) - 1 .  On the other  hand  it is easy  to see that  for  
any  y e X and  )` > 0, x = ()` - -  h)-~y is a weak solut ion of (E} and co n v e r se ly  
e v e r y  weak  so lu t ion  of {E) may  be wr i t t en  in this  form. In  this way Coro l la ry  
2 is proved .  

In  what  fol lows we deno te  by A - [ - B  the c losure  of A + B def ined  by  

the r e l a t i on  (2.3). Actua l ly  T h e o r e m  1 and Corol la ry  2 asser t  tha t  A - [ - B  is 
hyperd i s s ipa t ive .  
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T~EOI~n~I. 2. - If in addition to the hypotheses of Theorem 1 the space 
X is uniformly convex, then the operator A + B  is demiclosed on D(A)ND(B) 
i.e. if {x~} C D(A) n D(B} is strongly convergent to Xo ~ D(A) n D(B) and 
t(A + B)x~ t is weakly convergent to y0 e X then (A + B)xo = yo. 

In  order to prove Theorem 1 and 2 we note firstly the following 

L E ~  2.1. - Assume that the hypotheses i) and it} are satisfied. Then 
for each ). ~ 0 ,  x e D(A)QD(B) and y e D(B) there exists a lipschitz continuous 
function u(t) : [0, ~ )  ~ D(At N D(B) such that 

a) (A + B)u(t} is weakly continuous on [0, co) and the weak derivative 
of u(t) exists and equals (A + B -  ),)u(t)+ y for all t ~ 0 .  

b) u ( 0 ) - - x  and the map x ~  u(tt is nonexpansive on D(A)n D(B) for 
each t ~ 0. 

PROOF. - Consider the approximate equations 

(2.4) d u ( o  = (A. + B - -  )~) u(tt + y, u(O) = x, t ~ O. 

Using Banach's fixed poin~ theorem it follows easily that the mapping 
u-->(A~ ~ B --  ~.) u + y is hyperdissipative for any n = 1, 2. This implies (see 
e.g. [7], [10] that for any x e  D(B) there exists a unique lipsehitz continuous 
and weakly dif[erentiable function uflt:  [0, :x~)---> D(B) such that u,(0) -- ~c and 
which verifies the equation (2.4) in the weak sense. Let T,(t} be the l inear 
semigroup exp ( - - k - - n  + B)t. According to it} the solution u~ of (2.4) mu~t 
satisfy the integral  equation 

(2.5) 
t t 

0 0 

In  par t icular  this implies that u~(t) is s~rongly continuous dif[erentiable 
on [0, co) and satisfies the equation (2.4) iu the strong sense. It  follows from 
(2.1) and (2.5) 

UBu°It)tl ~ exp ( - -  in + ),) t)IiBx il + (~'~2( n - -  ~)-~ + 
t 

_  )-2fexp(- n + it--  s)tllB~,.is)~as + + il BYil, t>_O. 
O 

Solving this integral equation we get 

(2,6) tl Buo(tjll --< e x p  t~n  ~ + ~o~ (n - -  ~) - -  ~(n - -  ~o)~ ( ~ - -  o~)~ 0II B ~  i] + M II Bull 
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where .M is a nonnegative constant independent  of n and t. Similarly one 
obtains the estimate 

t 

(2.7) ll~(g)]t ~ ~ p  ( -  ~t)t1~ - uoll + (ll A ~oll + llBuoll + 11Yll~f exp ( -  xs)d~ + ll oll 
0 

for all t ~ 0 ,  Uo being an arbi t rary point of D{A)ND(B).  Now applying Lemma 
1.4 to the function v(0 = u~(t + h)--u~(t )  in virtue of dissipativity of A~ and 
B we get 

d 
II u~(t + h) - -  u.(0 il d~ [I u~(t + h) - ,,°ltlll g o, a . e  

If x e D(A)ND(B) then the proceding inequal i ty  implies 

(2.8~ I1 d uo(O ll<--ll,a~ll + 11Boc ll + X ilz~, V t ~ O  

Therefore  [[Bu~(t)l I and [IAnu~(l)] are bounded as n-->oo on each bounded 
interval of [0, oo). :Now following essentialy [10], I l l ]  it follows that the strong 
limit u(t) = lim u.(t) exists uniformly on every bounded subset. Thus according 
to Lemma t.2, u( t )eD(A)ND(B) ,  weak-l i ra  ~n(~):A$l(t) and weak-l i ra  Bu~(tl 

n --->DO n.~OO 

= Bu(t), for any t ~ 0 .  Since as easily follows (see [I0]) the function t - ->{A+ 
B) u(t) is weakly continuous, passing to limit in (2.5) we deduce that u verifies 
on [0, oo) the equat ion 

(Eo) d t dt U( ) + (k - A - -  B) u(l) : y, u(O) ---- x 

in the sense of weak differentiabil i ty,  b) is a direct consequence of Lemma 1 

PRoOf' oF T~EOnE~ 1. - Let  u(t, y) be the solution of equation (Eo) with 
y e D(B) and )~ > to + ~. Then from (2.6) and (2.7) we get 

(2.9) I]u( t, Y)ll + HBult, y)II~M for all t ~ 0 .  

where M is a nonnegative constant independent[(of t and ~.. Let us remark 

that if y, y ~ D(B) then the function v(t) ---- u(t, y ) - -  uit, ~J) is weakly  continuous 
different iabte  and t--> llv(l~ll is lipschitz continuous on [0, co). This follows from 
Lemma 2.1 since v(t) is the limit of a sequence of functions wit these pro- 
perties (see the proof of Lemma 2.1). Then the applying again Lemma 1.4 we 
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get 

2 -1 ~liv(g)ll = ~ - ~ [lv(t)ll = + Hy - yl/I/v(t)[I 

for ahnost all t ~ 0 .  Solving this differential  inequali ty we get 

(2.10) 

for any k > to Jr- t ~. In  a similar way it follows 

(2.11) [lu(t + h, V) - -  u(t, V)II ~ exp ( - -  ~t)llu(h, V) - -  u(O, y)~ 

for any y~D(B}  and t ~ 0 .  ]In par t icular  the inequali ty (2.11) implies that the 
strong limit u = lira u(t, y) exists for any y ~  D(B). According to Lemma 1.2, 

t--->CX) 

u e D(B) and 

weak- t im Bu(l, y) --  B u  

Since 

weak-lira h-~(u(h, y) --  u(O, y)) < ~ ,  
h.--)0 

from (2.11) we deduce 

d (u (t, y), x*) --  O, ~ x2 ~ X* (2.12) lira 
t - , - > ~  

Hence I[Au(t) ll is bounded on [0, cx~). Then using again Lemma 1.2 it fol- 
lows that u eD(A) and weak-l im Au( t )= Au. Passing to limit in (Eo) and ta- 

t -->o,o 

king account of (2.12) we obtain 

(X- -  A - -  B) u = y 

and from (2.10) 

(2.13) /l(X - -  A - -  B)-IIIL,p ~ X-~, ~ X > to + 

and the proof is complete.  

PROOF ON TlaEOm~ 2. - Let xo~D(A)(SD(B) ,  y o e X  and (x,} be a se- 
quence  of D(A) A D(B) such that x,,.->x and (A + B ) x , ~ y o  (-~ denotes the 
weak convergence in X). From the continuity of duali ty mapping it follows 

( y o - - ( A + B ) x , F ( X o - - C c ) ) ~ O ,  ~ c ~ D ( A )  ND(B)  
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Hence  

(2.14) (yo -- u, F(xo --  x)t ~ 0 

for all x e D { A + B )  and for any u e A + B x .  On the other hand it follows 
from Lemma 2.1 that for any y~D{B)  the mapping x . - - - > ( A + B ) x - - y  is the 
generator of a contraction semigroup on D(A) A D(B). Denote by Ty the exten- 

sion of this semigroup on D(A)AD(B)  and by Ly its generator .  Let  {y,} be 
a sequence of D{B) strongly convergent to yo and let T:,, be the associated 
semigroups. Let  ~c e D(A) N D(BL Noticing 

d 
~" Ty,~(t}x --- (A + B) Tx,[l ) x, - Yn, a,e. on (0, ~ )  
dt 

and applying Lemma 1.4 to the function T>,( t ) -  Ty,,,(l)x, we get 

(2.15) i t T y . ( t ) x - - T y , ~ ( t ) x I l ~ t l l y ~ - y ~ [ 1  , for all l ~ 0  and n , m = t ,  2. 

Therefore lira Yy,,(t)~c--T:o{l)x exists for any x e D ( A } O D ( B )  and t ~ 0 .  
n - - ) ~  

If Lyo denotes the generator of the semigroup Ty 0 then in virtue of Proposi- 
tion 4, the inequali ty (2.15) implies D(Lzo)= D(Lz,,) for any n - - 1 ,  2 and 

[t LyoX, - -  Ly,~X !l ~--[1 yo - y, II, ~ x ~ D(Lzo ) 

Hence  L>,ox = (A --}- Bjx -- yo for atl x e D(A)OD(B) C D(Lyo). Let  us remark 

that D{Lyo) C D(A + B) and Lyox e (A + B) x - yo for all x e D(Lyo}. Indeed for 
any ~ e D(Ly o) and ~ e D(A) :) D(B) we have obviously 

( t - l (Tyo( t )  x - -  - -  t - i t  Tyo(t(x - -  F ( x  - -  ) O,  t > 0 

Hence  

(Lyx - (A + B)x  + yo, F t x - - x ) ) ~ _ 0  

Since A + B is the closure of A + B ,  the above inequali ty implies 

(Lzox - u, F(x - -  x)) ~ 0 

for all x e D { A + B )  and u e A + B x - - y o .  As the mapping x - - - > A - { - B ~ - - y o  

is hypermaximal  dissipative it follows that x e D{A + B) and Lyox e A + B z - - y o .  

Then we may take in the inequali ty {2.14) x = T>,o(t)~ and u = LyoTyo(l)x 

+ yo for any '~eD(Lyol and for almost all t ~ 0 .  Taking account  that a.e. we 

AnnaIi di Matematica ~3 



98 V. BARBU: Weak solutions /or nonlinear ]unctionaI equations, etc. 

have 

d Tyo(t)~, - -  Lyo Tyo(t)x, 
dt 

as in the Proof of Proposition 3 from (2.14) we deduce 

Tyfl)VCo = xo, for all t ~ O  

Therefore LyoO¢O = 0. Since xoeD(A}V~D(B) this implies (A + B) xo = yo 
and Theorem 2 is proved. 

RE)~A~]~S. 1 ° By an easy adaptat ion of the proof, Theorem 2 follows if 
we merely assume that X is strictly convex and X* un i fmmly  convex. 

2 o . In part icular  Theorem 2 asserts that A + B x - ~  (A + B)x  for all 
x e D ( A ) A D ( B ) .  It then follows from a more generally result of R. T. Rocka- 
feller [18] that if X is a t t i lber t  space then under  hypotheses i) and it) the 
operator A + B is demieontinuous on DIA)ND(B).  

If  A and B are l inear we have a more precise result (see G. Da Prato 
[15] [16]). ~amely,  

COnOLLAnY 3. - Let  X be a reflexive Banach space and A, B be two 
linear operators from X into itself. Assume 

a) A and B are the generators of two linear semigroups of contraction 
on X 

b) There exist two non negative constants co and ~ such that (),--A) -1 
D(B) C D(B) and 

(2.16) UB(; ~ _ A)-lx,[l~_tIBx~i {(;~ _ (~)-1 + ~(;~ _ (,)-2) 

holds for any, ~ > co and x ~  D(B). 
Then 

(2.17) D(B)C(k - -  A - -  B)(D(A)V~D(Bt) for all ;~ > to + 

the operator A + B is preelosed and its closure A ~ B is the generator of a 
Co semigroup of contractions on X. 

PROOF. - As easily seen Lemma 2.1 remains valid in this case. Let T 
be the l inear contraction semigroup generated by A - ~ B  on D(A)ND(B) and 
let L be its generator in X. As in the proof of Theorem 2 it follows that 

L C A ~ B .  Since L is maximal  dissipative (see {19}} this implies L - - A  ~ B  
completing the proof. 
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THEOREM 3. - Let X be a real Banach space and A, B be two hyperdis. 
sipative nonlinear  mappings from X into itself. Assume that X* is uniformly 
convex and 

a) For  any bounded sequence { x~ }C D(A) n D(B), [I (A~ -[- B) x ,  II ~-- M < ~ ,  
implies that []Ax~[] is bounded as n--->oo. 

b) There exists a subset Xo of X,  X o D D ( A )  and a non negative cons- 
tant ¢o such that ( ) , -  B)-~Xo  C D(A) for all ), ~ ~o. 

Then for al k ) 0 ,  

[2.18) XoC (~ --  A - -  B ) (D(A)GD(B) )  

and ( ) , - - A - - B )  -1 is a well defined lipschitzian mapping from Xo into X. 
~oreover  for any y~Xo and ), > 0 the equation (E) has a unique weak solu- 
tion x e X. 

PROOF. - Consider the approximate equations 

(2.19) ( ) , - - A ~ - - B ) x - - y ,  y e X ,  n - - 1 ,  2 . . . .  

which are equivalent to 

(2.20) x - -  (~, + n - -  B) -~ (y --[- n ( I  - -  n -~ A) -~ x~) 

Notice that by assumption b) for any y e X the equation (2.19) (or (2.20)) 
has a unique solution x - "  R : ( ) ~ ) y e D ( A ) N D ( B ) .  It holds moreover 

(2.21) 11Ro(~)y - Ro(~),5 II -< x-~ I y - ~ II 

for any y, y e X  and k ~ 0. If Xo is an arbi trary point of D(A)ND(B)  from 
(2.19) one obtains 

[I R.(~)y - xoll ~ [lyll + iI Axo!l + I] Bxol] + z ~Xoll 

for any ), ~ ¢ o -  n. From the inequal i ty 

(222) (k--A~--B) Rn(~)y--y, n : 1 , 2 , . .  

it follows in virtue of the assumption a) that AR~(),)y is bounded as ~---->~ 
for each k > 0 .  Since []Anwll~l]Axll for all ~ e D ( A )  this implies that also 
A,Rn(),) and BR,(),)y are bounded for any k ,~ 0 and y e Ao. On the other hand 
from (2.22) we have 

llR,(),)y - -  R,~(~)yl] 2 ~ (A~R,(~)y - -  A,~R~(),)y, F(R~(),)y - -  R,~(),}y)), n, m - -  1. 
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Using the dissipativity of A we get 

[I R~(X)y - -  R.~(xiy 11~ ~ [IA= R . ( X ) y  - -  zt ~ R, . (X)yl l  H FtR~(X)y -/~,,~(X)y) - -  

- -  F ( J =  R . ( X ) y  - -  J , .  R . ~ ( ? , ) y ) I I  

Noticing 

R,(X)y--& Ro(X)y = n -~ A~R~(X)y, n = 1, 2,. 

it follows from the continuity of the duality mapping F, 

[1 R,~(x)y - R ~ ( X ) y  Ii <- ~(n, ,,1 

where lim ~(n, m) = 0. Thus R(k)y = lira R,(),ty exists for any y e 22o and ), > 0 .  
n , m . - 3 . ~  n~yOD 

As A~RdX)y and BR~(),)y are bounded, according to Lemma 1.2, RI)~)yE 
D(A) (3 D(B), BR~(),)y.-> BR(),)y and A,R~(X)y .--> AR(y)y as n--) co.  Hence  

(x - ~ - B)R(X~V = y, 9 e Xo, X > 0 .  

It follows from (2.21) 

lin(x)~ - R(),~ II <_ x-1 f l y -  y~ 

for any y, y ~X0 and )~ ~ 0. Let  us denote again by R(X) the extension of the 

map y.--->R()~)y on the set Xo. It is easily see that for any y e X0, x-----R()~)y is 
the weak solution of the equation (E). Thus the last part  of Theorem 3 fol- 
lows. 

COROLLARY 3. - Let A and B be two hyperdissipat ive mappings defined 
in a real Banach space X with the dual 32* uniformly convex If D(B}CD(A) 
and the assumption a) of Theorem 3 is satisfied then the operator  A - b B  is 
hyperdissipative.  If in addition we suppose X uniform]y convex and 

c) [I(A - [ -B)xI I - ->~  as as I1o~11-->~, xeD(B~ 

then the range R(A 4,-B) of A - t - B  is the whole space X. 

PROOF. - Since the hypothesis b) is implied by DtB)cD(A), we refer to 
Theorem 3 to conclude that R ( ) ~ - - A - - B ) = X  for all ) , > 0 .  To prove the 
second part  consider y an arbi t rary  point of X and denote by x~. the solution 
of the equation 

( X - - A - - B ) x = y ,  X > O  
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Let  xo be an arbi t rary point of D(B). In virtue of the dissipativity of 
A-{-B we obtain 

II ~ - ~o II ~ II ~xo I1 + {I A~o II + II B~o II + tl Y il 

According m e) {xx} is bounded as X-->O. We may assume y - - 0  without 
loss of generality. Hence we have 

(2.23) lira (A + B) x~ - -  0 

Let T be the contraction semigroup generated by A-4-B on the convex 
set D(B~. Using' a standard argument  we deduce 

II T(l)x~.--xxll~ tlI(A + B)x~.ll, X, t > O. 

We may suppose that xx is weakly convergent to x e X .  Since for any 
t ~ O, Ttl)xx--xx is strongly convergent to 0 and X is uniformly convex, ac- 
cording to a well know result of Browder [7] we here  T~l)x--~c-'O for all 
t > 0. Hence tA ~ B)x=O which completes the proof. 

In part icular  we have (see [5] and [7]). 

COROLLARY 4. - Let A and B be hyperdissipative operators defined in a 
Banach space X with its dual X* uniformly convex. Assume that D(B}CD(A) 
and that for every r >  0 there exist constants b(r)~ 1 and c(r)'.> 0 such that 

(2.24) [IAxU~5(r)ll/3xl]-t- c(r), for ~ceD(B), II~[]~r 

Then the operator A-4-B is hyperdissipative.  ){oreover if the condition 
c) is satisfied then R(A d- B} -- X. 

COROLLA]~¥ 5. - Let X be a real Banach space with dual space unifor- 
mly convex and let A, B be two nonlinear  dissipative operators with domain 
and range in X. Assume that 

i) D(A)--X, A is demicontinuous and maps bounded sets into bounded 
sets. 

ii) B is hyperdissipative.  

Then the operator A ~ B  is hyperdissipative. If  in addition the condition 
c) is verified then R{A d - B ) =  X. 

Let A be a nonlinear operator with the domain and range in X and let 
~ 1 .  

DEFINITION. - A is said to be ~-quasil inear if D(A) is a l inear subspace 
of X and the following two conditions 
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i} l l A ( u +  v)Itll ~ ~ UAull ~t~ + ~Avl?/+ 

ii) tlA()~u)~j~ I] AuIl~t ), l ~ 

hold for any real ), and u, r e D ( A ) .  

T~EORE~ 4. - Assume that X* is uniformly convex and let A, B be hy- 
perdissipative operators in X. Suppose that A is ~-quasi l inear  and that there 
exist nonnegative constants ~o, ~ such that ( ) , - -B)-~D(A)CD(A) and 

[1A(k - -  B) -~ ac l] ~ [] A x  I] ((~ - -  o))-~ 4- ~t(k - -  (~)-2~] 

hold for any x e D ( A )  and )~ > to. 
Then for each k > ¢o + ~t+, (), - -  A - -  B ) (D(A)  (~D(Bi)  D D(A) .  3'[oreover for 

each )~ > 0 and y e D(A) the equation (E) has a unique weak solution x E X. 

Pr~ooF. - As above consider the approximate equations 

(2.26  (k - -  A :  - -  B)~  = y , y + D(A), n : l,  2, . 

and denote by R,(),)y the corresponding solutions.  It is easy to see that for 
any )~ > o~, R , ( k ) y +  D ( A ) n D ( B ) .  Recall ing that !!A,R:(k)yl l  ~--IIAR:(k)Y[[, from 
(2.25) we get the estimate 

(2.27) []AR,(k)yI]~/+ ~ ( I  I AyI[I/~ + n[IAR~()~)yll~/~) ((~ + n - -  ¢o) -~ + ~1+t)~ -[- n - -  o)) -2) 

which implies 

(2.2s) I)AR,() , )ylI~M(),)I)Ay[!  , )~ > (o -t- P.'/~ 

where M(),) is independent  of n. Then following essentially the proof of The- 
orem 3 one deduces that for any ), ~ to + ~d/+, R~(),)y is strongly convergent 
to x - -R() , )y  whie satisfies the equation (E) for any y ~ D(A) and ), ~ ~o + ~1/+. 
The last s tatement of Theorem follows by the same argument  as in the proof 
of Corollary 2. 

§ 3. - Nonlinear in i t ia l  value problems.  

In this section we consider the evolution equation 

d u  
(3.1) dt B ( t ) u ( t } - - A u i t )  = f(t); O ~ t ~ T ~ c ~  

in a real Banach Y of norm [] I1, where B(t) is a family of linear operators 
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from Y into itself and A belongs to a certain class of nonlinear  dissipative 
operators in Y. Assume that the dual space Y* is uniformly convex and de- 
note by (,) the pairing be tween :/ and Y*. About B(t) we make the following 
assumptions 

j) For  any t e [0, T], B(t) is a densely defined closed operator  of domain 
D(B(t)). The resolvent of B(t) satisfies 

(3.2} iI(~ - B(t))-lll<-- ~,-1, ) , > o ,  t ~ [ 0 ,  T] 

jjl  D(B(s))CD(B(t)) for all t ~ s  and 

(3.3) I]B(t)x- B(s)x[]~__ M(t-- s)l[B(s)x[[, V x  e D(B) 

where M is a nonnegative constant independent  of t and x .  
Let  X--LP(O, T; Y) be the space of all Y-valued measurable  functions 

defined on (0, T) normed by 

and 

T 

. 

[1,(0tl~ dr) 
0 

l ~ p < c c  

l d. 1 W~,p(O, T; Y )=  u e L~O, T; Y) such that ~ EL~(O, T; Y) 

d 
where ~t is considered in the sense of Y-valued veotorial distributions on 

(0, T). Let  us introduce the linear operator B defined in X as follows 

where  

Bu(t)= B(l) u(t) a.e. on (0, T) for ueD(B) 

D(B) = { u e Lp(O, T; Y) such that u(t) e DiB(t)) a.e and B(t) u(t) e LP(O, T; Y)} 

It follows (see G. Da Pra te  [16]} that D(B) is dense in X and j) implies 
that B generates a l inear contraction semigroup on X. Denote by A the ope- 

dt 
rater - - ~  with the domain 

D(A) = { u e w~+(o, T; y ) ,  u(O~ = o} 

We see easily that for any )~ > 0 and fe LP(O, T; Y), 



104 V. BARBU: Weak solutions ]or nonlinear functional equations, etc. 

t 

()~-  A} -~ f(t) = f exp (-),{t- s)} f(s)ds, 
O 

rE[o, T] 

In par t icular  the preceding formula implies that is the generator  of a 
l inear contraction semigroup on X. Final ly  let Lo be the operator defined by 

(3.4) Lou = A u  + Bu, u e D(B)ND(A).  

According to Corollary 3, Lo is a densely defined preclosed operator and 
its closure L : D(L)-->X generates a l inear contraction gemigroup on the space X. 

In what follows we denote by F the duali ty mapping between Y and Y* 
and by C(0, T; Y) the space of all continuous Y-valued functions defined on 
[0, T]. 

LEMMA 3.1. - D(L) C CI0, T; Y) and the following inequali ty 

(3.5t 

t 

u(t~iI~ ~ --±, f (Lut,), F(u(s))lt~(8)iI~ -2 as, t e [0, T] 
0 

holds for all u e D(L). 

PROOF. - First ly we assume that u e C1(0, T; _Y} and ul0 ) = 0. Here  C~(0, 
T; Y) denotes the space of all Y-valued differentiable functions on [0, T]. 
Thus by Lemma 1.4 we have 

(3.7) 
t 

f du  F(u(s})[tu(sii[~_2ds ' te[O, T] ]tu( t) II" = - -  P -~ , 
0 

Since the mapping u(O-->F(u(t))llu(t)[1P -2 is demicontinuous from LP(O, T; Y) 
in its dual, the equali ty (3.7) may be extended oubviously for all u eD(A). In 
part icular  this implies that D(A)C C(0, T; Y). On the other hand because B(t) 
is dissipative for any t ~ [0, T], from (3.7) we get 

(3.8) II.l t)t)  - p  f (Lo u(s), ds 
0 

for all u ~ D(Lo). Hence 

(3.9) llu(g) lI~ ~ p II ~, Lou  [l~ 11utl~ -~ , ~ u ~ D(Lo)  , t ~ LO, TA 
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where % deotes the characteris t ic  funct ion of the interval [0, t] with 0 < t < T .  
Let  u be a point of D(L). ]3y definition there exists a sequence {u~IC 

D(Lo)CC(O, T; Y} such that u,-->u and Lou~-->Lu in the strong topology of 
LP(0, T; Y}. It  follows from (3.9) that {un(tj} converges uniformly to u(t) on 
[0, T]. In this way it follows that u ~ C(0, T; [YI and (3.6} holds for all u e D(L). 

EXEMPLE 1 . -  Let  (A(t}l~e[o,~l be a family of nonlinear operators from 
Y into itself with D(A(t~))----- Y for all l E [0, T]. Assume 

jjj) For any t~[0,  T], A(t} is demicont inuous and dissipative on the 
space Y. 

j r )  For any u e  Y the function t-->A(t)u is continuous and there exist 
nonnegative constants a, b and :¢ such that 

{3.10) It A(t)u l] ~ a l! u ii~+ -~ + b 

for all u e Y and t e [0, T]. 
Let  A be the nonlinear  operator defined in Lp{O, T; Y} as follows 

D(A) : L~0+~)(0, I'; Y~, p ~ 1 

Au{t) = A(t)u(t), a.e. on (0, Ti, u ~ D(A) 

Let  us notice that A is hyperdissipat ive in X=LP(O, T; Y}. Indeed as 
we have remarked above (see F. Browder  [8]) the condition jjj) together (3.10) 
imply that A(t) is  hyperdissipat ive for all t e[O, T]. Hence for any feLp(O, 
T; Y), u(t) ' -O.--A(t})-l f( l)  is well defined for almost all t~IO , T) and from 
jr)  it follows that it is measurable  on (0, T}. Since for each t, (k--A(/}) -1 is 
lipschit~ian, this implies that u e LP{0, T; [Y). :[:[ence 0 . - -A} -~ is well defined 
on X for all ).~>0 and we have obviously /10.--Ai-~II~k -~. 

TI:[EOREM 5. - Assume that the hypotheses j ) ~  jr} are satisfied. Then for 
any feLP(O, T; Y), p ~  1 and ) , > 0  the evolution equation 

(3.il) 
du _ B(t) u(t} + A(t) u(t) 

u(Oi = 0 

-- f( t i ,  O<_t .<T 

has a unique weak solution u E  LpI0, T; Y) i.e. there exists a sequence {u~}C 
W1,P(O, T; Y}ADIB), u~(0) -- 0 such that u~.->u and 

dun _ B( t )  u.( t )  - -  Aug(t)  --> f(t) Xu~(O + ~i- 
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in the strong topology of LP(0, T; Y). Moreover the solution uit) is continuous 
on [0, T], u(0) = 0 and the mapping f--> u is lipschitzian on the space Lp(O, T; Y). 

PROOF. - We shall verify the hypotheses of Theorem 3 where X'-Lp(O,  
T; Y), Xo = D(A) and B = L. Since D(L)C C(O, T; Y) the condition jjj) implies 
D(L)CD{A).  In  order to verify a) consider a bounded sequence {u,~}CD(L) 
such that U(L-~A,~)u~II~.M~c~ as n---->cx~. We may assume A 0 - - 0  without 
lees of generality. Then taking account that A is dissipative we get from (3.6) 

(3.12) 
i , p  -- ~ " 

Combining jjj) and (3.12)it follows that I]Au~]lp is bounded and so the 
condition a) of Theorem 3 is verif ied.  Therefore for any fELp(0, T; Y) and 
), > 0 the equation 

(3.13) ),u - -  Lu  -- Au  --  f 

has a unique weak solution u E LP(0, T; Y), i.e. there exists { u,} cD(L)  such 
that u~-->u and u , - - L u ~ - - A u ~ - - > f  in Lq0~ T; Y). Using again Lemma 3.1 
and the dissipativity of A we get 

Ip--i • . {3.14} ~u={t)- u,,(t)liP ~ ptliA + L ) u = -  (A d- L)u=itPilu° - u<lfi , m, n = 1, 2 .  

Therefore { u,(t) } converges uniformly to u(l) which implies u ~ C(0, T; Y) 
and u(0)--0 .  In  par t icular  (3.14) implies I l A u ~ p ~ M < c , o .  According to Lem- 
ma (1.2) it follows that u s D ( A ) A D { L ) ,  Au~-~Au and Lu~--,.Lu as n-->c~.  
This shows that u is an ordinary solution of equation (3.13) and the conclusi. 
sion of Theorem 5 follows from the definition of the operator L repeating 
the above argument .  

EXEMPLE 2 . -  We take Y----LqI~) where ~2 is an open bounded subset 
of R ~ and q ~ l .  Let c¢ be a nonnegative number  and let A be the operator 
defined by 

(3.151 Au(t , . )=y:u{ t , . ) t~u( t , . ) ,  a.e. on (0, T} 

for all u ~ D(A)= L~(:+~)(0, T; Lq(:+~)(Q)). Here y is a nonnegative constant. In  
what follows we denote by Uultp, q the norm 

T 
\p/q \:/? 

0 

u e LP(O, T; Lq(~)) 
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Since the dual i ty  mapping  o[ L~(O, 7'; Y~ into its dual is given by K ( u ) =  

u(t, oc)lu{t, x)lq-~]Iu(t,.)lI~7(qo)ltu[]~S~ it is easily seen that  - - A  is dissipative.  
Let  us show that if p,  q ~_~(~z-}- 2)(~ q- 1) -1 then --  A is hyperdiss ipat ive  

in L~{0, T; Y). Denote by A), the operator  ) , u +  A u .  Wee see easily that  for 
any k >  0, A>~ is monotone,  demicont inuous  and coercive from L~+=(0, T; L~+ ~ 
(ga)) into its dual  L~+~/a,+~(0, T; L~+:/~÷*{Q)). Thus  according to a well k n o w n  
result  (see F. Browcler [9] ), A), is surject ivo.  Hence  for any f ~  Lp(O, T; Lq(~2)) 
c L~+~/~+~(0, T; L~+~/~+~(~2)) the equa t ion  

) , u +  A u = f  

has a unique  solution u eL~+~(O, T; L~+2(~2)). But  actual ly u eLP(O, T; Lq(.Q)) 
because  a.e.  on (0, T ×(Q)we have I,(t, x)l If(t, x)[= 

Let {B(t)} be a set of l inear  operators  in Lq(Q) satisfyng to assumpt ions  
j} and jj). Denote by/~(t} the restr ict ions of B(t) at the space LP(~+~){g~). Assume 

jjj'} For  any t e l 0 ,  T], J~(0 is the generator  of a l inear  semigroup of 
contract ions  on Lq(I+~)(Q) satisfyng to condit ion jj} in this space.  

Then  as above we may define /~u(t)---B(t)u(t) a.e. on [0, T] with D(B)--  

---- {u; u E LP0+~)(0, 7'; L~(~+~)(~)), u(t} e D(B(t)) a.e. and B(t}u(t) e Lg~+~)(O, T; Lq( 1+~ 
(~2~]. Similar ly  we consider 

du 
Lou -- - -  -dt + B u ,  u ~ D(Lo) 

d 
where  D(Lo) --  D(B)N{u E W~,p(~+~)(O, T; LqO+~)(~)); u(0) --  0] and d-~ is taken in 

the sense of Lq(~+~)(t-~j-valued dis t r ibut ions on (0, TJ. Let L be the closure of 

Lo in the space Le~l+~)(0, T; Lq(l+~)(~l). I t  follows easily that  L c L .  
In  par t icu lar  this implies  

and 

(), - -  L)-IL~(t+~)(0, T; LqCl+~)(~2)) C L~(~+~)(0, T; Lq(~+~)(~2)) 

(3.26) ] ()' - -  L) -1  fllp(~+:), +0+~) ~ ~-~  II fllp(1+:), ~(1+:) 

for any ), > 0 and f e  LP(I+~)(0, T; Lq(1Ta)(~)). Noticing 

= II fltpo+ ), I] J f llp, q ~ + ~ 

it follows from (3,16) th at tl A(~, - -  Ll-~f]LP(o. T: Y) <__ ~-(1+~)] Af]Lp(o. y; ~). 
Since A is obviously 0¢+ 1-quasi l inear  we reffer  to Theorem 4 to dedu- 
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ce that  for any feLP(O, T; Lq(~)) and ) ,>0  there exists a sequence [u.]C 
D(L)(3LpO+~)(O, T; LqO+~)(!~)) such tha, t u~-->u and 

~,u:(t,.) -- Lu,,(t, . ) -  TI u,Ig, .)t ~ u:tt, . )->fit , .)  

in Lp(O, T; Lq(9-))-norm. As in Exemple  i it follows that (u~(t)} is uniformly 
convergent  to u(t~ on [0, T] which implies that  u e CIO, T; L~(g)) and u(O)= O. 
In  this sense u(t) may be considered as a weak solution of the equat ion 

(3.17) 

I du(t,.) 
),u(t,. ) + dt 

l u(O, . )=o 

B(t)u(t,.) +yiu(t , . ) i~u(t , . )= f(t, .) ,  o ~ t e  T 

Summar i s ing  all there resul ts  we get 

TI=[EORE~ 6 . -  Let  {B(t)},e[0.~3 be a family of l inear operators in Lq(g~) 
sat isfyng the assumpt ions  j), j j ) a n d  .jjj'). Suppose p, q>(c~ + 2)(~ + 1)-L Then 
for each ) , >  0 and [ e  LeO, T; L~(~)) the equat ion (3.17} has a unique  solution 
u eLq(O, T; Lq(~)). 3[oreover u belongs to C(0 T; Lq((.)~)) and u ( 0 ) = 0 .  

REMARKS 1 °. - In  par t icular  the hypotheses of Theorem 6 are 
for [B(t)} defined as follows (see G. Da Pra te  [16]). 

Suppose that the boundary of the open domain ~ is sufficiently 
and denote by b(t, u, v) the bi l inear  form 

satisfied 

smooth 

b(t, u, v)--- --  Z b~j(x, tt ?ul?x~ ~v/~xj dx 
i , ] ~ i d  

Assume that  there exists F > 0  such that F-11 ~ 12 ~ Z b~](x,, l) {,{] ~ Ft { 12 and 
i~]=l 

consider  V a closed subspace of H1(~) such tht H~(~)cVcH~(~) and the fol- 
lowing condit ions are satisfied 

I) If u, v e C ( ~ ) N V  then ! u i e  V and u v e V  

II) There  exist  ~ R  and K ~ R +  such that  b(u, u ) +  [lutl 2 ~g[iuLt ~. 

Then  the variat ional  problem 

(u, v) --  b(t, u, v) : = (f, v), v e V 

has a un ique  solution u = B ( t ) f ~  Lq(•) for any fe  Lq(g h q >  1. Moreover the 
operator  B(l) is for every re[0 ,  T] the generator  of a Co contract ion semi- 
group on Lq~d) (for the proof see the paper  above mentioned). 
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T h u s  u n d e r  s u i t a b l e  r e g u l a r i t y  a s s u m p t i o n  a b o u t  b~j(t, x) the  c o n d i t i o n  jj) 
y e l d s  on  e v e r y  Lq(~) w i t h  q > 1. H e n c e  the  h y p o t h e s e s  of T h e o r e m  6 a r e  

s a t i s f i e d  ; 

2 ° . - F o r  the  a p p l i c a b i l i t y  of T h e o r e m  3 a n d  4 we m u s t  n o t i c e  t h a t  
t he  d u a l i t y  ma, p p i n g  of LP(O, T; Y} i n to  i t s  d u a l  s p a c e  is u n i f o r m l y  c o n t i n u o u s  

on  e v e r y  b o u n d e d  se t  of  LeO,  T; Y ) .  I n d e e d  th i s  m a p p i n g  m a y  be e x p r e s s e d  
in  the  f o l l o w i n g  f o r m  

Ku( t )  - -  F(u(t))ltu(t)]IP-2~utl~ -~ 

w h e r e  F is t he  d u a l i t y  m ~ p p i n g  of  Y in to  Y*. S i n c e  3~* is u n i f o r m l y  c o n v e x  

F is c o n t i n u o u s  u n i f o r m l y  on  the  b o u n d e d  se t  of  Y w h i c h  i m p l i e s  t h e  cont i -  
n u i t y  of  K .  

R E F E R E N C E S  

[1] V'. ]3ARBU, S~tr la perturbation d~t gdndrateur d 'un semigroupe nonlindaire de contrac. 
tion, C. R. Acad. Sc. t. 268, 1544-1547 (1969). 

[2] -- --, On existence of weak solutions of evolution equations, (to appear}. 

[3] S. BARDOS and X. BREZIS, Sur une classe de probl~mes d'dvolution non lindaires, J-our. 
Diff. Equations, 6, 345-418 (1969). 

[4] ]~. BaEzIs and A. PAZY, Accretive sets and differential equations in Bas~ach spaces 
(to appear). 

[4] M. CRANDALL and A. PAZY, Nonlinear se~nigro~ps of contractions and dissipative sets, 
J-our. ~unc. Analysis 3, 3~5418 (1959). 

[5] t i~. BICOWDER, Nonlinear initial value problems, Ann. Math. 82, 5D87 (1965). 

[6] - -  -- ,  Nonlinear eqsation of evol~tions and nonlinear accretive operators in Banach 
spaces, Broil Amer. Math. Soc. 73, 1967. 

[7] - -  -- ,  Nonlinear accretive operato~ in Banach ,spaces, :Bull. Amer. Math. Soc. 73, 470 
476 (1967). 

[9] - -  ~ Probl~tnes Nonlindaires, Montreal 1966. 

[10] T. KATO, Nonlinear semi-groups and evolution equations, Jour. Math. Sec. Japan,  19, 
508.519 (i967). 

[ t l ]  Y. KOMURA, ~\'onlinear semigroups in Hilbert spaces, Jour, Math. Soc. Japan,  19, 493 
507 (1967). 

[:[2] - -  -- ,  Differentiabitity of nonlinear semigroups, ;[our Math. Soc. Japan  5 (to appear). 
[:[3] J . L .  LIo~s and ~r. STRAUS, Some non-linear evolution eq~tations, Bul l  Soc. Math. de 

France 93,43 (1965). 



110 V. BArtBU: Weak solutions ]or nonlinear Junctional equations, etc. 

[14] G-. ~E~TY, Monotone nonlinear operators in Hitb~rt spaces, Duke  )'[ath. Jour .  29,341-346 
(t962). 

[15] G-. D~ PftATO, Somma di generator[ infinitesimal[ di semi-gruppi di contrazioni di 
spazi Banach riflessivi~ Boll. U.M.I .  138.1~1 (1968). 

[[6] - -  -- ,  Weak solutions for abstract differential equations in  Banach spaces (to appear}. 

[17] - -  - ,  Somme d'applications non lindaires duns des cSnes et dquations d'dvolution dans 
des espaces d'opdrateurs (to appear). 

[18] R . T .  ROGKkF~LLA~. Caavexity propzrties of  nonlinear maximal  monotone operators, 
Bull.  k m e r .  ~ a t h .  Soe. 75,7~t.77 (1969). 

[19] K.  YOSIDA, Functional Analysis, Spr inge r  1965. 


