Weak solutions for nonlinear functional equations
in Banach spaces. (*)

V. Barsu (lasi) (*%)

Sammary. - Some existence theorems for absiract differential eguations in Bawnach spaces
are given.

The paper is concerned with the perturbation of hyperdissipative mappings
in a Banaonm space X and with existence theory for the solutions of abstract
functional equation

(E) Ag — Az — Bz =y, A= 0 ye X

where 4 and B are (possibly) nonlinear dissipative operators from X into
itself. Under different assumptions about 4 and B this problem was studied
by several authors (see [1], [3], [6], [7T], [17]).

In section 1 we gather together some results from the theory of dissi-
pative mappings and nonlinear semigroups of contractions which we shall
need later. For detailed informations one must refer to works of Komura [11],
[12], Karo [10], Browper (7], Craxpary and Pazv [b], Brezms and Pazv [4)

In section 2 some results concerning the perturbation of hyperdissipative
mappings are established. For the sake of simplicity we have considered only
the case when 4 and B are single valued, but many of these results may be
proved for multivalued mappings. '

As application, in section 3 we give some existence results for the non-
linear evolution equation of the form

%—B(t}u——Au+ku:f{t}; O<t<c T, ufo) = 0.

where Bif} is a family of generators of Cy—contraction semigroups on a Baxacu
space Y and 4 belongs to a certain class of hyperdissipative nonlinear ope-
rators .defined in LF(0, T; Y). This problem was studied by many authors (see
e.g. F. Browper [6], J. L. Lioxs and A. Srravs [13], C. Barvos and H. Bre-
z1s [3], G. Da Praro [17]).

{*} Durante lo svolgimento di questo lavoro, autore ha usufruito di una borsa di ricerea
presso I'Istituto per le Applicazioni del Calcolo del C.N.R. - Roma.
(*¥) Entrata in Redazione 1’11 febbraio 1970.
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Finally the author is indebt to Professor Da Praro for having the chance
to see his papers [16], [17] before pubblication.

1 §. - Dissipative mappings and nonlinear contraction semigroups.

Let X be a real Bawxacu space of norm || and let X* its dual space.
We denote by {,) the pairing between X and X* and by F the duality mapping
of X into X¥# i.e.

(1.1) Flz)={y e X* ly|=|zl (= y) =]}

If X* is strictly convex then z — F(z) is a single valued demicontinuous
mapping (i.e. continuous from X into X)) and if in addition X* is uniformly
convex then F is uniformly continuous on every hounded subset of X (see
e.g. [10])).

A mapping A from X to 2% is said to be dissipative if for any z, y € D(4)
(the domain of A) and u e Az, v e Ay,

(1.2) (u—wv, f)=0 for all fe Flz—y).

A is said to be maximal dissipative if it has no properly dissipative exten-
sion in X.

Lemma 1.1 (c.f. [10], [11]). - Let X be a real Bawacu space and 4 be a
dissipative mapping from X into 2% Assume thaf the range of o — A is the
whole space X for some « > 0. Then A is maximal dissipative and for all
X>0, A — A has an inverse defined on all X which is lipschitzian of con-
stant A%

A mapping A satisfying the conditions of Lemma 1.1 is called hyperdis-
sipative. If X is strictly convex them A is hyperdissipative if and only if
for all X >0,

(1.3) M —8) 7 up = A7

If X* is uniformly convex then every dissipative and demicontinuous single
valued mapping defined on all of X, which maps bounded sets of X into
bounded sets is hyperdissipative (see F. Browprr [8]). If X is a Hiueerr spa-
ce then according to well known result of Minry [14], every maximal dissi-
pative mapping in X is hyperdissipative.

Let A be maximal dissipative. Then as easily follows, for any =z e D{4)
the set Az is closed and convex, hence if X is a strictly convex there exists
a unique element of minimum norm in Az denoted by A°%. If . is hyperdis-
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sipative we set

Jolz) = (1 — n—1A) 'z, zeX; n=1, 2 ..
Axfz) = n(du(z) — ),

we give without proof the following elementary results (for a proof see e.g.

[53, [10)).

Lewma 1.2, - Let X be a real Banvacu space with uniformly convex dual
space X* and A be a hyperdissipative mapping in X. Then

a) J, is a contraction and A, is dissipative on X.

C

)
b) For each z e D(4), A,z e Az and | 8.z |<inf|y]; ye Azl
) For any z e D(A), lim J,(z) =z as n — oo.

)

d) Let {z,}e D(A) be strongly convergent to ze X. If exist ,e Az, such
that |y, < M < oo, then z e D(4) and every weak clauster point of {y.} be-
longs to Az.

e) If z,—2 and |Az.|<M<oco as m— oo, then ze D(A) and any
weak clauster point of {A,z,} belongs to Aax.
Levua 1.8, - Assume that X is uniformly convex. Then
a) For any z e D{A), A,z — A% as n— o0
b) D(A) is a convex subset of X.
we mention also the following useful result (see [10])
Leyma 1.4. - Let X be a real Bansocm space and z(/) be a X-valued

function defined on an interval of real axis. Suppose that z(f) is weakly dif-
ferentiable at { = s and that |«(f)| is also differentiable at # =s. Then

(14 Ja(s) |1 =(0]= = (&), F(5)
for any f(s) € F(z(s).

Derinirion. - Let Y be a subset of a Bavacm space X. A function T':
{0, o) X Y— Y is said to be a semigroup of contractions on Y if it sati-
sfies the following conditions

i) Tt 4 s)e = T(HT(s)z, £, s=0, ze Y
i) [THe— Ty l<lz—yl, t=0, 2, ye Y

iii) T(0)z = # and lim T'(f}z = = for any ze Y.

t—>0

Annali di Matematica 12
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If T is a semigroup on a subset Y of X then for each ze Y and 7 >0, set
Lty = =Y T{h)x — x)

and denote by D(L,) (D{L.,) respectively) the set of those ze Y for which
lim I’z {weak-lim L*z) exists. Define
hsl R0
Lo = lim Lz, xe D(L,)
R0
and
L.z = weak-lim L'z, xz e D{L,).

k0

The operator L, (L, respectively) is called the strong (weak) generator of T.
It is easy to see that L, and L, are dissipative in the space X. For every
gsemigroup, T on Y C X define

Dr={ze Y such that lim | T(tjz — z[{~" < oo

130

Obviously we have the inclusion relation D(L,) C (L.) C Dr.

Lemma 1.5. - For any ze Dy the function ¢~ T(f]x is lipschitz continunous
on [0, oo}

Proor. - It is a direct consequence of the fact that {—|T(tjx — x| is

continuous and subadditive on positive axe. For a detailed proof see (5).

" Prorposition 1. — Let I' be a contraction semigroup on a reflexive Bawvacn

space X. Then D(L,) = Dr.

Proor. - Liet « be an an arbitrary point of Dr. According to Lemma 1.5
the function f-— T(fjx is lipschitz continuous. Since the space X is reflexive
it follows (see Y. Komura [11]) that it is a.e. differentiable on (0, oc). Hence

T(t)x e D(L,) for almost all {> 0 which implies that z e D(L.).

Proposimion 2. ~ Let X be a reflexive Banacu space and T be a non-
linear semigroup of contractions on X. If Dy is demnse in X then the domain
of every dissipative extension of L, is contained in Dr.

Proor. - It suffices to show that if for arbitrary z, y € X, the following
inequality

(1.5) (Loz — g, [) <0
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holds fo every fe Flz — «) and z e D(L,), then ze D;. Let u be an arbitrary
point of Dy. Since the function /— T{}z is almost everywhere differentiable
on (0, oo} we have

d

a—tT(ém = L,T(tju, a.e.

Using Lemma 1.4 we get
{1.6) 2—1%[] Thu — z | = (LT(¢m, f(t), ae. on (0, o)

for any f(t) e F{T{{ju — z). Taking in the inequality (1.5) z = T(f)u, from (1.6)
we obtain

[T — el <|u—a]|4 ]yl
for all { =0 and u e Dr. Since Dy is dense in X this implies
(1.7) | Tt — z|<t]y]. Wi=0

completing the proof.

Proposimion 3- - Let X be a reflexive Bawacm space and let T' be a
semigroup of contractions of X. If Dr is dense in X and if for any ye X
the mapping « — L,z — ¥ is also the weak generator of a semigroup of con-
tractions on X then L, is maximal dissipative and D(L,) = Dy.

Proor. - Let «, })e X such that
(1.8) (L — g, [)<0

for all ze D(L.) and fe F(z—gz). It T; is the semigroup generated by L. —
then for any u € D(L.,) we have

%T;(é)u =L 5(u —y ae. on (0, oo

Taking in (1.8) z = T5(f), by the same argument as in the proof of Proposi-
tion 2 it follows

| Tt — 2l <] w — =]

for all we D(L,) and ¢=0. Since D(L,) = Dr = X this implies T;()jz —z=0.
Hence L.z =y which completes the proof.
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The following result is essentialy due Crawparrn and Pazy [Bl.

Proposition 4. - Let X be a stricly convex, reflexive Banacm space and
T be a semigroup of nonlinear contractions on a subset } of X. Then
D(L,) = Dr. It in addition X is uniformly convex then D{L.)= D(L,) = Dr.

Proor. - Let I be the dissipative mapping defined by

Lz = weak-lim —(T{f)z — z), z e Dr
iE@

where the limit is considered for all filters ¢ convergent to 0. Denote by 4
maximal dissipative extension of L. Because for z e Dy, T(tjx e D(L,) C D(4)
a.e. then as in the proof of inequality (17} we obtain

(L.9) S T0e —wl<lyl, yedw, weDr, t=0

Since La C Awx for any x e Dr the inequality (1.9) implies Lx = A%. There-
fore the mapping ® — La is single valued ie. D{L.) = Dr.
To prove the second statement we notice that from (1.9) it follows

(1.10) | T{f)r — x| <| Lox| for all xe D(L.,)=Dr and t=0

Since as {—0, t—YT{¢jx — x) is weakly convergent to L.x and X is uniformly
convex, (1.10) implies that /—*(T\¢jx — ) converges strongly to L.,z as ¢-— 0.
Hence D(L,) = D(L,) and the proof is complete.

As consequence of Proposition 2 and 4 we have

CoroLrary 1. - Let X be a sfrictly convex reflexive Bawacw Space and
let T be a contraction semigroup on X. If the the weak generator L, of T
is densely defined in X, then L, is f-maximal i.e. no single valued dissi-
pative mapping properly extends L, .

2 §. - Perturbations of hyperdissipative mappings.

In what follows we shall assume that X is a real Bawacu space with
uniformly convex conjugate space X*.

Let 4 and B be two dissipative single valued mappings from X into
itself with the domain D(4) and D(B) respectively,

Assumprions. — i) B is the generator of a Cy-contraction semigroup of
bounded linear operators on X.

ii) 4 is hyperdissipative and there exist two non negative constants
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w and p such that (A — 4)~*D(B) C D(B) for A>w and the following inequaliy
(2.1) | BX — )z <] Be]((A — o)~ 4 pk — w)

holds for any z e D(B) and 2> w.

Tarorem 1. - Assume that the hypotheses i) and ii) are satisfied. Then
for any A >0 4 p,

(2.2) (» — A — B)(D(4) N D(B)) D D(B)

and the inverse operator (A — 4 — B)~' is a well defined lipschitzian mapping
on D(B} with “ 0\. — 4 — B)"l “l«ip << AL

Drerinimion. - An element ze X is said to be a weak solution of the
equation

(E) Az — Az — Bz = y, ‘e R, yeX

if there exists a sequence {x.!C D(4)N D(B) such that z,~~2z and Jz, —
— Az, — By, —y as n— cc.

Cororrary. 2. - Under the assumptions i) and ii) for any ye X and A >0
the equation (E) has a unique weak solution z e X. Moreover the mapy— =
is lipschitzian of norm A%

Proor. - Let F(A) be the operator {A — 4 — B)~' defined on D(B) for
A > o -+ p and denote again by F()) its estension on the whole space X. Let
A D{A)— 2% be the dissipative mapping defined by

(2.3 Az = lim {4 4- Bjz., z e D(A).

XpedX

Where D{A) consists of the set of all z e X for which this limit exists. It is
easily seen that F(A)z = (A — A)~'z for any A>w 4 p and ze X. According
to Lemma 1.1 the operator (A — A)~! is well defined on the space X for all
A >0 and |(A — A)|Lp << A~ On the other hand it is easy to see that for
any ye X and A >0, z = (A — A)~'y is a weak solution of (E) and conversely
every weak solution of (E) may be written in this form. In this way Corollary
2 is proved.

In what follows we denote by 4 4 B the closure of 4 4+ B defined by
the relation (2.3). Actually Theorem 1 and Corollary 2 assert that 4 + B is
hyperdissipative.
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Taeorem. 2. - If in addition to the hypotheses of Theorem 1 the space
X is uniformly convex, then the operator 4 - B is demiclosed on D(4)N D(B)
ie. if {x.}] C D(4)N D(B) is strongly convergent to o€ D(4) N DB) and
{ (4 + Bjz.} is weakly convergent to 5o e X then (4 -+ Bjzo = .

In order to prove Theorem 1 and 2 we note firstly the following

Lemma 2.1. - Assume that the hypotheses i} and ii) are satisfied. Then
for each A >0, z € DI4)ND{B) and y e D(B) there exists a lipschitz continuous
tunction u{f):[0, oo} — D(4)[] D(B) such that

a) (4 + Bju(t) is weakly continuous on [0, oc) and the weak derivative
of u(f) exists and equals (4 + B — Nu(l) + y for all £ =0.

b) #{0) = = and the map z— u(fl is nonexpansive on D(4)[] D(B} for
each 1 =>=0.

Proor. - Consider the approximate equations

(2.4) %u(t} = (4 + B—Nult)+y, ul0) ==, t =0.

Using Banach’s fixed point theorem it follows easily that the mapping
u—>{4.+ B — X u + y is hyperdissipative for any n = 1, 2. This implies (see
e.g. (7], [10] that for any e D(B) there exists a unique lipschitz confinuous
and weakly differentiable function u.(f): [0, o0)— D(B) such that u,(0) = 2 and
which verifies the equation (2.4) in the weak sense. Liet T1,{f) be the linear
semigroup exp (— A — n 4 B)f. According to ii) the solufion u. of (2.4) must
satisfy the integral equation

(2.5) ult) = Toftje + nf Tt —8) (1 —nA)" u(s)ds f T.(s)yds

In particular this implies that wu.(f) is strengly continuous differentiable
on [0, oo} and satisfies the equation (2.4) in the strong semnse. It follows from
(2.1) and (2.5)

| Busit)]| < exp(— (n + 2) )| Bx | + (n3(n — o]~ +

Z

pni{n — )= f oxp(—(n + ) (£ — 8)) | Bun(s) | ds + (n - 2= By], £==0.

o
Solving this integral equation we get

(2.6) [ Bu.{t)] < exp (un? 4 no (n — ) — A(n — 0)? (n — w)* §)] Be| + M| By|
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where M is a nonnegative constant independent of » and {. Similarly one
obtains the estimate

@.7) Jud)] < exp (— M) J& — uo] + (| Atto] + | Buo] +- ﬂyﬁ)f exp (— As)ds + |[uto]

for all £==0, u, being an arbitrary point of D{A)ND{B). Now applying Lemma
1.4 to the function w(f) = u,{t + k) — u.(f) in virtne of dissipativity of 4, and
B we get

d
ol 4 1) — )] Ghele 4 1)~ )] <0, ae
It x e D(A)ND(B) then the proceding inequality implies

28) | )| <] del+ | Bol 4+ 2ol ¥ =0

Therefore | Bu,(f)| and [4.u,({)] are bounded as n-—sco on each bounded
interval of [0, oc). Now following essentialy [10], [11] it follows that the strong
limit #(f) = lim u,{f) exists uniformly on every bounded subset. Thus according
to Lemma 1.2, u(t)e D(4)N D(B), weak-lim A4, u,(})= Au(f) and weak~lim Bu,({)

n—>20 n->C00

= Buft), for any ¢=0. Since as easily follows (see [10]) the function {—(4 4
B) u(t) is weakly continuous, passing to limit in (2.5) we deduce that u verifies
on [0, oc) the equation

(Ed Gult+ 1~ A— Bjul) =y, w0) =2

in the sense of weak differentiability. b) is a direct consequence of Lemma 1

Proor or THEOREM 1. - Let u(f, y) be the solution of equation (E) with
y € D(B) and x> w4 . Then from (2.6) and (2.7) we get

(2.9 [utt, )] + | Butt, y)] =< M for all £=0.

where M is a nonnegative constant independent_of ¢ and 1. Let us remark
that if y, y e D(B) then the function wv(f) = u(f, y) — ulf, y) is weuakly continuous
differentiable and ¢—»|o(f}] is lipschitz continuous on [0, oo). This follows from
Lemma 2.1 since o(f) is the limit of a sequence of functions wit these pro-
perties (see the proof of Lemma 2.1}, Then the applying again Lemma 1.4 we
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get
?A%Mm%gmﬂmwhwy—ﬂMWH

for almost all ¢ =0. Solving this differential inequality we get
(2.10) lut, ) — ult, Pl < 2]y —y|. £=0

for any A > o + p. In a similar way it follows

@.11) Jalt + 1, 3) — ult, )] < exp (— 24 [ulh, ) — u(0, y)]

for any y € D(B) and {=0. In particular the inequality (2.11) implies that the

strong limit % = lim u(¢, y) exists for any y e D(B). According to Lemma 1.2,
300

u e D(B) and

weak-lim Bu(l, y) = Bu

F=300
Since
weak-lim A—Yu(h, y) — u(0, 1)) < oo,
[N

from (2.11) we deduce

. d .
2.12) lim —(uft, ), %) =0, MYa*eX*

rec0 AF

Hence | Au(t)] is bounded on [0, oo). Then using again Lemma 1.2 it fol.
lows that u e D(4) and weak-lim Au(f) = Au. Passing to limit in (E,) and ta-

fas O

king account of (2,12) we obtain
(A —A4d—Blu=y
and from (2.10)
(2.13) [ — 4 — By <2, MA> 04+

and the proof is complete.

Proor oF THEOREM 2. - Let x,€ D(4) N D(B), yo€X and [ax,} be a se-
quence of D(4) N D(B) such that o,~>x and (4 4+ B)a, —y (— denotes the
weak convergence in X). From the continuity of duality mapping it follows

(o— (4 + B)w, Flwo— @) <0, % we D(4) N D(B)
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2.14) (Yo — u, Florg — x)) << O

for all xe DA + B) and for any ue A+ Bz. On the other hand it follows
from Lemma 2.1 that for any y € D(B) the mapping x—(4 4 Bje—y is the
generator of a contraction semigroup on D{4) N D(B). Denote by T, the exten-

sion of this semigroup on D(4) N D(B) and by L, its generator. Let {y.} be
a sequence of D{B) strongly convergenf to g, and let T, be the associafed
semigroups. Let o e D(4) N D(B). Noticing

d

T T, (ke =(4~+ BT, (f)x—y., ae. on {0, oo

and applying Lemma 1.4 to the function T, () — T,,(fjx, we get
(2.15) 17, — T, (] << ¢y — yu], for all {=0 and n,m=1, 2.

Therefore lim T, (fjx = T, {tjx exists for any xe D(4) N D\B) and {=0.

If L, denotes the generator of the semigroup T, then in virtue of Proposi-
tion 4, the inequality (2.15) implies D(L, )= D(L,,} for any n=1,2 and

| Lyt — Ly, e[ <[ yo — 9u]l, ¥ 2 € D(Ly,)

Hence L, = (44 Bjx — yo for all xe D{A)ND(B) C D{L,). Let us remark
that D(L,)C D(A-+ B) and L,xe(d+ B)x —y for all xe D(L,). Indeed for
any « € D(L,) and x e D(4)ND(B) we have obviously

(=1 (T, (t) e — ) — =4 T, (tje — x), Fle—x))<<0, ¢>0
Hence
(L, ~ (4 + B)x + 3o, Fle—x)) <0
Since 4 + B is the closure of 4+ B, the above inequality implies
(Lye — u, Fle —x)) <0

for all € D(4 + B) and ue A+ Bx—1yo. As the mapping x> 4 + Bz — %o
is hypermaximal dissipative it follows that &€ D(4 + B) and L,z € 4 -+ Bx—1o.

Then we may take in the inequality (2.14) @ = T, (fjx and w = L, T,(f)x
+ 4o for any xe D(L,) and for almost all {=0. Taking account that a.e. we
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have

d . .
di T, (o = L, T, ft)x,

as in the Proof of Proposition 3 from (2.14) we deduce
T, {t)xe = ao, for all ¢=0

Therefore L,x, = 0. Since x,€ DA}ND(B) this implies (4 4+ B)ao = 9o
and Theorem 2 is proved.

REMARES. 1° By an easy adaptation of the proof, Theorem 2 follows if
we merely assume that X is strictly convex and X* uniformly convex.

2°, In particular Theorem 2 asserts that 4 + Bx = (4 + B)a for all
x e D(A)ND(B). It then follows from a more generally result of R.T. Rocka-
feller [18] that if X is a Hilbert space then under hypotheses i) and ii) the
operator A+ B is demicontinuous on D(4)ND(B).

If 4 and B are linear we have a more precise result (see G. Da Prato

[15] [16]). Namely,

CorROLLARY 3. - Let X be a reflexive Banach space and 4, B be two
linear operators from X into itself. Assume

a) 4 and B are the generators of two linear semigroups of contraction
on X

b} There exist two non negative constants w and p such that (XA — 4)—?
D(B)C D(Bj and

(2.16) | B — 4A) w[ <[ Be| (A — @)~ + p(d —w)™9)
holds for any, A > w and xze D(B).

Then
{2.17) D(B)C (A — A — By{(D(4)ND(BY) for all A>w+p

the operator 4+ B is preclosed and its closure 4 - B is the generator of a
Co semigroup of contractions on X.

Proor. - As easily seen Lemma 2.1 remains valid in this case. Let T
be the linear contraction semigroup generated by 4 - B on D(4)ND(B) and
let L be its generator in X. As in the proof of Theorem 2 it follows that
LC A4+ B. Since L is maximal dissipative (see (19)) this implies L =44 B
completing the proof.
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THEOREM 3. - Let X be a real Banach space and 4, B be two hyperdis-
sipative nonlinear mappings from X into itself. Assume that X* is uniformly
convex and

a) For any bounded sequence {x,}C D{4)ND(B), |(4. 4+ B)a,| <M < oo,
implies that | 4dx.| is bounded as n - co.

b) There exists a subset Xo of X, XoD D(4) and a non negative cons-
tant @ such that (A — B! X, C D(4} for all A > w.

Then for al A >0,
(2.18) XoC(A — 4 — B)(D(A)ND(B))

and (A\ — A4 — B)~' is a well defined lipschitzian mapping from X, into X
Moreover for any ye X, and A >0 the equation (E) has a unique weak solu-
tion x e X.

Proor. - Consider the approximate equations
(2.19) A—A, —Br=y, yeX, n=12 ..
which are equivalent to
(2.20) e=h+n—BHy+nl—n'd4d "z

Notice that by assumption b) for any y € X the equation (2.19) (or (2.20))
has a unique solution x = B.(A)y € D(4)ND(B). It holds moreover

(2.21) | BNy — Bo My | <2~ [y — 9]

for any y, ye X and A > 0. If a, is an arbitrary point of D(4)ND(B) from
(2.19) one obtains

M Baf My — wo <[y + [ daco] + || Baro] 4 2 o |
for any A > w — n. From the inequality
(2.22) A—4.—B)R.MNy=y, n=12, ..

it follows in virtue of the assumption a) that AR,(A)y is bounded as n— oo
for each X>0. Since |A4.x]<|Ax| for all we D(4) this implies that also
4,R.(%) and BR.(A)y are bounded for any A > 0 and ye X,. On the other hand
from (2.22) we have

[ B2y — BalXyE < (4. BelMy — AnBulX)y, FIRANY — BolX)y)), m, m = 1.
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Using the dissipaftivity of 4 we get
| BNy — BuMy [ < [4n Bul)y — Au Bal Ny || F\BAA)y — Bufh)y) —
— Bl BaMy — Jn BaMy)]
Noticing
B.ANy—J. B(My =nt 4. R.A )y, n=1, 2,.
it follows from the continuity of the duality mapping F,
| Bu)y — Baldly || =eln, m)

where lim e(n, m) =0. Thus B{A)y = lim R.(A)y exists for any ye X, and X >0.

Ty M350 T (X3

As 4. R.\y and BE.A)y are bounded, according to Lemma 1.2, B{ljye
D(A)NDB), BR.(\y— BR(\y and A.R.(\)y — AR(y)y as n->oc. Hence

(—4—B)RMNy =y, yeXo, 1 >0.
It follows from (2.21)
[ Ry — Byl <2~ |y —y|

for any g, y€ X, and A >>0. Let us denote again by R(}) the extension of the
map y—>R(A)y on the set Xo. It is easily see that for any ye Xo, « =R}y is
the weak solution of the equation (K). Thus the last part of Theorem 3 fol-
lows.

CoROLLARY 3. - Let 4 and B be two hyperdissipative mappings defined
in a real Banach space X with the dual X* uniformly convex If D{B)C D(4)
and the assumption a) of Theorem 3 is satisfied then the operator 4 4+ B is
hyperdissipative. If in addition we suppose X uniformly convex and

o) [{4 4+ B)x| —co as as [x|->o0, e D(B)

then the range R(4 -+ B) of 44 B is the whole space X.

Proor. - Since the hypothesis b) is implied by D{B)CD(4), we refer to
Theorem 3 to conclude that BA — A4 — B)=X for all A>0. To prove the
second part consider y an arbitrary point of X and denote by w, the solution
of the equation

(R—A——B)()(}:y, A>0



V. Barsu: Weak solutions for monlinear functional equations, etc. 101

Let x, be an arbitrary point of D(B). In virtue of the dissipativity of
A -+ B we obtain

|2 — aco| <[ haeo]| +- [ Ao | +[ Beeo | + [ 9]

According to ¢) {xr} is bounded as A —0. We may assume y =0 without
loss of generality. Hence we have

(2.23) lim (4 + B)a, =0

10

Let T be the contraction semigroup generated by 44 B on the convex

set D{B). Using a standard argument we deduce
| T, — 2| < t)(A + By, 3, ¢>0.

We may suppose that @, is weakly convergent to xeX. Since for any
t >0, Tit)e, — x, is strongly convergent to 0 and X is uniformly convex, ac-
cording to a well know result of Browder [7] we heve T{)x —x =0 for all
t>0. Hence (4 4 Bjx =0 which completes the proof.

In particular we have (see [5] and [7]).

CoroLLARY 4. - Liet 4 and B be hyperdissipative operators defined in a
Banach space X with its dual X* uniformly convex. Assume that D(B)CD(4)
and that for every » > 0 there exist constants b{r} <1 and o¢{r)>>0 such that

(2.24) | Ax| << b(r)| Bx| + cfr), for we D(B), |x|<<r

Then the operator 4 4 B is hyperdissipative. Moreover if the condition
e} is satisfied then R(4 4 B)= X.

CoroLLARY 5. - Let X be a real Banach space with dual space unifor-
mly convex and let A, B be two nonlinear dissipative operators with domain
and range in X, Assume that

i) D{4)=4X, 4 is demicontinuous and maps bounded sets into bounded
sets .
ii) B is hyperdissipative.
Then the operator A+B is hyperdissipative. If in addition the condition
c) is verified then R{A -} B)=X.
Let A be a nonlinear operator with the domain and range in X and let
8=1.

DerINITION. ~ 4 is said to be 3-quasilinear if D(4) is a linear subspace
of X and the following two conditions
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i) |Afe+ 0[P < | Aufl® + JAv[®
i) AQu)i=| Au] 2P
hold for any real A and u, ve D(4).

THEOREM 4. - Assume that X* is uniformly convex and let 4, B be hy-
perdissipative operators in X. Suppose that 4 is S-quasilinear and that there
exist nonnegative constants w, w such that (A — Bj~! D(4)C D{4} and

(2.25) LAQ— B ] < | w] (2 — o) + plh— o))

hold for any x e D{4) and 2 > w.
Then for each A > w -+ ¥, (A — 4 — B{D(4)ND(B))D D{4). Moreover for

each 2 >0 and ye D{4} the equation (E} has a unique weak solution xe X.

Proor. - As above consider the approximate equations
(2.26) A—4,—Bjx=y, ye D(4), n=1, 2,.

and denote by R.(\)y the corresponding solutions. It is easy to see that for
any >, R.MyeD(A)ND(B). Recalling that |4, B} y|<|AR.Ay|, from
(2.25) we get the estimate

(2.27) ARyl < (1 4y[® + n] ABNy ) (A + 1 — )7 + p!PA 40 — 0]~
which implies
(2.28) | ARy < M| Ag[, %> 0+ pio

where M(}) is independent of n. Then following essentially the proof of The-
orem 3 one deduces that for any X > w4 p'S E,jA)y is strongly convergent
to @ = R(Ajy whic satisfies the equation (E) for any y e D(4) and A > o - plfd,
The last statement of Theorem follows by the same argument as in the proof
of Corollary 2.

§ 3. - Nonlinear initial value problems.
In this section we consider the evolution equation

du

(3.1) gng(t)u{t)—Amt;:f{é}; 0=ti<=T<oo

in a real Banach Y of norm || |, where B(f) is a family of linear operators
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from Y into itself and A belongs to a certain class of nonlinear dissipative
operators in Y. Assume that the dual space Y* is uniformly convex and de-
note by (,) the pairing between Y and Y*. About B(f) we make the following
assumptions

i) For any ¢te[0, T], B{f) is a densely defined closed operator of domain
D(B()). The resolvent of B(f) satisfies

(3.2) [(x — Bt)~'j<<Ar—*, x>0, te[0, T]
jjl D(B(s)CD(B() for all t=s and
(3.3) | Bit)e — B(s)w|< Mt — s)| B(sjx|, Vx e D(B)

where M is a nonnegative constant independent of ¢ and x.
Let X=1L70, T; ¥) be the space of all Y-valued measurable functions
defined on (0, T} normed by

July=| f et 1=p<oo

and

Whe0, T, Y= 3ueLP\O, T; Y) such that % e Ln0, T; Y)

where d% is considered in the sense of Y-valued vectorial distributions on

{0, T). Let us introduce the linear operator B defined in X as follows

Bu(f) = B(tju() a.e. on (0, T) for ue D(B)

where
D(B)={ue L0, T; Y) such that u{f)e D(B(!)) a.e and B(¢)u(t)e L*0, T; Y}}

It follows (see G. Da Prato [16]) that D(B) is dense in X and j) implies
that B generates a linear contraction semigroup on X. Denote by A the ope-

rafor --—%i with the domain

DAy={ue W20, T; Y), u(0)=0}

We see easily that for any A >0 and fe L?0, T; Y),
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¢

(lMA}—lf(t)zJexp(—— ME—s)fisids,  te[0, T]

0

In particular the preceding formula implies that is the generator of a
linear contraction semigroup on X. Finally let L, be the operator defined by

(3.4) Low = Au + Bu, ue D{B)ND(A).

According to Corollary 3, L, is a densely defined preclosed operator and
its closure L: D(L)->X generates a linear contraction gemigroup on the space X.

In what follows we denote by F the duality mapping between Y and Y*
and by C(0, T; Y) the space of all continuous Y-valued fanctions defined on
[0, 7.

Lemma 3.1. - DIL)C C{0, T; Y) and the following inequality

3.5) Jutle = —p [ (L), Flafs) (s r—ds, ¢e[0, 17

0

holds for all uwe D{L}.

Proor. - Firstly we assume that uwe C40, 7; Y) and «{0)=0. Here CY{0,
T; Y) denotes the space of all Y-valued differentiable functions on [0, 7.
Thus by Lemma 1.4 we have

t

(3.7) fulfp = — fcfi_?/;’ Flu(s)) |uls)|r—2ds, tel0, T]
0
Since the mapping wu(f) —> F(u(t))| u(t}jr—2 is demicontinuous from L#0, T; Y)
in its dual, the equality (3.7) may be extended oubviously for all e D{A). In
particular this implies that D(A)C C(0, T; ¥). On the other hand because B(f)
is dissipative for any ¢e([0, T}, from (3.7) we get

13

3.8) ludl < —p f (Lou(s), Flu(s))]u(s)l—ds

0

for all e D(Lo). Hence

(8.9) |t < pl9 Loul Jul; ™, ueD(Ld), tel0, T]
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where o, deotes the characteristic fanction of the interval [0, {] with O0<é<T.

Let w be a point of D{L). By definition there exists a sequence {u,]C
D(LoyC G0, T} Y} snch that wu,-—>u and Lou,—> Lu in the strong topology of
Lr0, T; Y). It follows from (3.9) that {eu.({)] converges uniformly to u(f) on
[0, T). In this way it follows that we C(0, T; Y| and (3.6) holds for all u € D(L).

ExeMPLE 1. - Let {4(f)}igp,ry be a family of nonlinear operators from
Y into itself with DiA(#)= Y for all {e[0, T]. Assume

jij) For any te[0, T], Alt) is demicontinuous and dissipative on the
space Y.

jv) For any ue Y the function {— A(fju is continuous and there exist
nonnegative constants a, b and « such that

(3.10) |l <aluf+ +b

for all ue Y and €0, T].
Let A be the nonlinear operator defined in L#(0, T; Y) as follows

Di4) = Le0+20, T3 Y), p>1
Ault) = A(t)ult), a.e. on (0, T, ue D(4)

Let us notice that 4 is hyperdissipative in X =Lr0, T; Y}. Indeed as
we have remarked above (see F. Browder [8]) the condition jjj} together (3.10)
imply that A(f) is hyperdissipative for all {e[0, 7). Hence for any fe L0,
T; Y), ult)=(A—A{f)~ f(}) is well defined for almost all t€(0, 7) and from
jv) it follows that it is measurable on (0, T). Since for each ¢, (A — A(f))~" is
lipschitzian, this implies that we Lx0, T; Y). Hence (A — 4}~ is well defined
on X for all >0 and we have obviously (A — 4}~ <1 .

THEOREM b. - Assume that the hypotheses j) ~ jv} are satisfied. Then for
any fe Lr0, T; ¥), p>1 and 1> 0 the evolution equation

ault) + 24— Bityuit) + A ult) = fip), 0<t<T
(3.11) a

has a unique weak solution ue Lr0, T; Y) i.e. there exists a sequence {u,}|C
W0, T, Y)N D(B), u.{0) = 0 such that u,—wu and

Xur(t) + %’f — B{t) u,{t) — Au,(t) — (8

Annali di Matematica 14
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in the strong topology of Lr(0, T; Y). Moreover the solution w(f) is continuous
on {0, T}, u(0) =0 and the mapping f—s u is lipschitzian on the space L7(0, T; Y).

Proor. - We shall verify the hypotheses of Theorem 3 where X = L2(0,
T, Y), Xo=D(d4) and B= L. Since D(L)C C{0, T; Y) the condition jjj) implies
D(L)C D{4). In order to verify a) consider a bounded requence {u,]CD(L)
such that |(L -+ 4,) u.|<<M < oo as n—>oco. We may assume 40=0 without
loos of generality. Then taking account that 4 is dissipative we get from (3.6)

(3.12 It < p (L + Al Juse=, O<t=T, n=1,2,.

Combining jjj) and (3.12) it follows that |Au.|, is bounded and so the
condition a) of Theorem 3 is verified. Therefore for any fe L,0, T, Y) and
x>0 the equation

(3.13) Y — Lo — du =

has a unique weak solution u e L?0, T; Y), i.e. there exists {u,]CD(L) such
that u,~—>wu and wu,— Lu,— Au,—f in L#0, T; Y). Using again Lemma 3.1
and the dissipativity of 4 we get

(3.14)  Jouolt) — un(t)fp < p(4 + Ljttn — (4 + Ljstn |t — wap ™, m, =1, 2...

Therefore {u,(f)} converges uniformly to u(f) which implies ue C(0, T; Y)
and #(0) =0. In particular (3.14) implies [[Au.},<<M < co. Aceording to Lem-
ma (1.2) it follows that we D(A)ND(L), Au,—Au and Lu,—Lu as n—> co.
This shows that » is an ordinary solution of equation (3.13) and the conclusi.
sion of Theorem 5 follows from the definition of the operator L repeating
the above argument.

ExempLE 2. - We take Y= L9Q) where @ is an open bounded subset
of B* and ¢=1. Let « be a nonnegative number and let 4 be the operator
defined by

(3.15) Ault,) =y |ult,-)

*uft,-}, a.e. on {0, 7}

for all ue D(4) = L:0+2(0, T; LsO+2(Q)). Here y is a nonnegative constant. In
what follows we denote by |u,, the norm

nunp,q:( f dt( f Ll m)]?dm)P/q>l/P, we L0, T; T4Q))
Q
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Since the duality mapping of L0, T} Y) into its dual is given by K{u)=
ult, @) |ult, o)1 ult, ) [ixhy Julpy it is easily seen that — .{ is dissipative.

Let us show that if p, g ={x42j(x 4 1)~ then — 4 is hyperdissipative
in L?0, T; Y). Denote by 4, the operator Au- Au. Wee see easily that for
any A >0, 4, is monotone, demicontinuous and coercive from L0, T; Lo+2
(Q)) into its dual Lr+%ety0, Ty L*+22+4Q)). Thus according to a well known
result (see F. Browder [9]), AX is surjective. Hence for any fe L0, T; L/(Q))
C L2140, T L2+ (Q)) the equation

At Au=f

has a unique solution e L*+%0, T; L*t%(Q)). But actually = e Le(0, T; L1(Q))
because a.e. on (0, 7)><(RQ) we have |u(t, )| <<|f{¢, x)|/X + 1| u(t, x)[*

Let { B(t)} be a set of linear operators in L?(Q) satisfyng to assumptions
jt and jj). Denote by Bif) the restrictions of B(f) at the space Lr0+9(Q). Assume

jji’} For any tel0, 71, g{é} is the generafor of a linear semigroup of
contractions on L(+2(Q) satisfyng to condition jj) in this space.

Then as above we may define Bu(t) = B(f)u(f) a.e. on [0, 7] with D(B)=
= {u; u € LrA+9(0, T; LeO+2(Q)), u(t) € D|B(t) a.e. and B(t)u(t) e Lr0+(0, T; LeO+a
(2)}. Similarly we consider

Lou = —%—I—Eu, u € D(Lo)

where D(Lo)= D(B)N{u e Wh»t+a(0, T: L0+2Q)); u(0)=0} and % is taken in

the sense of L+a)(Q)-valued distributions on (0, 7). Let L be the closure of
Fq in the space Le0+0(0, T; Ls0+=4Q)). It follows easily that LcrL.
In particular this implies

(}. o L)—ILP(H"O‘)(O} T Lqil—!—a){g)} C LPU'!'OO(O, T; LQ(H—a)(Q))

and
(3.16) 10— Ly Floay, a0a) < A7 | Flotay, 4+
for any A >0 and fe LrU+a)((, T; LeA+2)(Q)). Noticing

14f .o = | o, a0

it follows from (3.16) that | A(A — Ly flereo, o vy < A= OF D Af ler0, v: 1y«
Since A is obviously « - l-quasilinear we reffer to Theorem 4 to dedu-
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ce that for any feIL?0, T; L9Q)) and X >0 there exists a sequence {u,]C
DILyN Lre+a(0, T; Le0+a)Q)) such that u,—»>wu and

H

Atoft, o) — Ltalt, «) — Y| thalt,+ ) [ walt, ) — [(t,+)

in L?0, T; L4Q)}-norm. As in Exemple [ it follows that [u.{f})} is uniformly
convergent to u(f} on [0, 7'} which implies that we C0, T; L7(Q)) and #(0)=0.
In this sense u{f} may be considered as a weak solution of the equation

S ku{t") +duc(li’)~B(t)%(t7') +Y%u(t!')idu(tﬁ):f(t;'): O<tel

(3.17)
Z (0,-) =0

Summarising all there results we get

THEoOREM 6. - Let {B{f}}iepn,r7 be a family of linear operators in L¢(Q)
satisfyng the assumptions j), jj) and jjj’). Suppose p, g=(a+ 2)(x 4+ 1)~*. Then
for each A >0 and fe L20, T; Ly(Q)) the equation (3.17) has a unique solution
ue L0, T; LYRQ)). Moreover u belongs to C0 T; L9(2Q)) and u(0) =0.

REMARKS 1°, — In particular the hypotheses of Theorem 6 are satisfied
for {B(#)} defined as follows (see G. Da Prato [16]).

Suppose that the boundary of the open domain Q is sufficiently smooth
and denote by b(f, «#, v) the bilinear form

i, jm=i

bif, u, v) = — & fbij(m, tou/dr; dv/dx;de
0

Assume that there exists u>0 such that p—E*<C > bz, )85, <<plE|* and
i,j=1
consider V a closed subspace of HYQ) such tht HyQ)C VC HYQ) and the fol-
lowing conditions are satisfied

) If u,veC@)NV then |ujey and uve V
II) There exist 3€ B and K€ B, such that b(u, u) + |u]i = K|u|’.

Then the variational problem
(w, ) — b, w, v): = (f, v), veV

has a unique solution u = B{f)fe LYQ) for any fe LYQ) ¢ >1. Moreover the
operator B(f) is for every fe([0, T] the generator of a C, contraction semi-
group on L9Q) (for the proof see the paper above mentioned).
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Thus under suitable regularity assumption about b;(f, ®) the condition jj)
yelds on every L#(Q) with ¢ > 1. Hence the hypotheses of Theorem 6 are
satisfied ;

20, - For the applicability of Theorem 3 and 4 we must notice that
the duality mapping of L»(0, T; Y) into its dual space is uniformly continuous
on every bounded set of L?(0, T} Y}. Indeed this mapping may be expressed
in the following form

where F is the duality mepping of Y into Y*. Since ¥* is uniformly convex
F is continuous uniformly on the bounded set of Y which implies the conti-
nuity of K.
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