Spaces of germs and jets.

NICOLAE TELEMAN (Romania) (*)

Summary. - In this paper we present some results on the theory of jets and germs concerning the paralel transport and the linear structure.

0. - Let M be a C_{-}^{∞} manifold and $E \xrightarrow{p} M$ a real, or complex, vector bundle over M.

Let $T_{x_0}(M)$ denote the space of tangent vectors to M in the point $x_0 \in M$. Let $s \in C^{\infty}(M, E)$ a section. I denote by $j_{x_0}^k s$ the k-jet of s in the point x_0 , and by $g_{x^0}s$ the germ of this section.

Then $J^k(E) = \bigcup_{\substack{x_0 \in M \\ s \in C^{\infty}(M, E)}} j_{x_0}^k s$ admits in a natural way a C^{∞} -vector bundle-

I introduce in the space $\mathfrak{G}(E) = \bigcup_{\substack{x_0 \in M \\ s \in C_{\infty}(M, E)}} g_{x_0}s$ a structure of vector bundle

with fiber, a locally-convex space. I suppose that M has a Riemannian structure Γ and let L be a linear connection in E.

For 0 < r, sufficiently small, let $B(r, x_0) \subset M$ be the ball centered in the point $x_0 \in M$ with radius r. The space $C^{\infty}(B(r, x_0), E)$ is a Fréchét-space. Then $\mathcal{G}_{x_0}(E) = \lim_{r \to 0} C^{\infty}(B(r, x_0), E)$ is a locally-convex space; this is the fiber

of the space $\mathcal{G}(E)$. Let $\pi^k : \mathcal{G}_{x_0}(E) \to J^k_x(E)$ be the natural epimorphism.

We will prove in this paper:

THEOREM 1.

If M is a Riemannian manifold and $E \xrightarrow{P} M$ is a vector bundle with a linear connection L, then there exists a linear connection \mathfrak{L} in the space of germs of sections $\mathfrak{S}(E)$ which prolongates L. The connection \mathfrak{L} is compatible with the connection in $J^{k}(E)$ [5].

THEOREM 2.

Let M and N be Riemannian manifolds. Let $\mathcal{G}(M, N)$ be the space of germs of maps from M to N, and $J^k(M, N)$ the space of the k-jets of maps. Then $\mathcal{G}(M, N)$ and $J^k(M, N)$ admit a vector bundle structure on $M \times N$.

^(*) Entrata in Redazione l'11 febbraio 1970.

COROLLARY 2.1.

 $J^{k}(M, N) \simeq [S^{1}(T^{*}M) \oplus S^{2}(T^{*}M) \oplus \dots \oplus S^{k}(T^{*}M)] \otimes TN$

 $(S^{l}(T^{*}M)$ denotes the *l*-simetric tensorial product).

1. - We will represent the germs and the *k*-jets in a different manner. Let $\gamma : I \to M$ be a C^{∞} -path in M, $\gamma(0) = x_0$, $\gamma(1) = x_1$. The connections Γ and L determine two isomorphisms:

$$\mathcal{T}^{\Gamma}(\gamma) : T_{x_0}(M) \to T_{x_1}(M)$$

 $\mathcal{T}^{L}(\gamma) : E_{x_0} \to E_{x_1}.$

If $s \in \mathcal{G}_{x_0}(M, E)$, we associate an element $\tilde{s} \in \mathcal{G}_{0x_0}(T_{x^0}(M), E_{x_0})$ in the following manner:

$$\tilde{s}(\theta) = (\mathcal{C}^{L}(\gamma^{\Gamma}(\theta)))(s(\exp_{x_{0}}\theta)), \text{ for}$$

 $\theta \in T_{x_0}(M)$, and $\gamma^{\Gamma}(\theta)$ is the geodesic from $\exp_{x_0}(\theta)$ to x_0 .

The element \tilde{s} is well defined because exp is a local diffeomorphism. The application $\sim : s \rightarrow \tilde{s}$ is an isomorphism.

The application $\sim . s \rightarrow s$ is an isomorphism.

From this moment we will identify the germs s with s.

Now we can define what we mean by a C^{∞} -section in $\mathfrak{S}(E)$.

Let ω be the projection $\omega: T(M) \rightarrow M$, and $U \subseteq M$ a open set in M.

Let $V, W \subset T(M)|_u$ be two open neighborhoods of the zero-section in T(M) over U.

If $\Sigma_{v} \in C^{\infty}(V, \omega^{*}E)$, then $g(\Sigma_{v})|_{T_{x}(M)}$, $(x \in U)$ is a germ in $\mathcal{G}_{x_{0}}(T_{x}, E_{x})$.

We say that $\Sigma \in \Gamma(U, \mathfrak{S}(M, E))$ is a C^{∞} -section on U with values in $\mathfrak{S}(M, E)$, if there exists an open set V as above, and $\Sigma_{\nu} \in C^{\infty}(V, \omega^*E)$ such that

$$\Sigma(x) = g_{0_x}(\Sigma_v |_{T_x}).$$

Clearly, two C^{∞} sections Σ_{V} , Σ_{W} determine the same section in $\mathcal{G}(M, E)$ over U, if and only if, there exists an open set R as V and W, $R \subseteq V \cap W$, such that $(E_{V})|_{R} = (\Sigma_{W})|_{R}$.

Now, we can define the paralel transport $\mathcal{T}^{\mathcal{L}}$ in $\mathcal{G}(M, E)$ and the corresponding covariant derivative $\nabla^{\mathcal{L}}$.

If $\gamma: I \to M$ is a C^{∞} -path in M, then $\mathcal{T}_{(\gamma)}^{\mathcal{L}}: \mathcal{G}_{\gamma(0)}(M, E) \to \mathcal{G}_{\gamma(1)}(M, E)$ is defined in the following manner:

(1)
$$(\mathcal{T}^{\mathfrak{L}}_{(\gamma)}\tilde{s})(\theta) = \mathcal{T}^{\mathfrak{L}}(\gamma) \{ \tilde{s}[\mathcal{T}^{\Gamma}(\gamma^{-1})(\theta)] \}, \ \theta \in T_{\gamma(1)}(M), \ s \in \mathcal{G}_{\gamma(0)}(M, E).$$

If X is a C^{∞} -section in T(M) and $\Sigma \in C^{\infty}(M, \mathcal{G}(M, E))$, we will define $\nabla_x^{\Omega}\Sigma$. Let $x \in M$, and $\gamma : I \to M$, $\gamma(0) = x$, $\gamma(0) = X(x)$.

Then, by definition:

(2)
$$(\nabla_X^{\Omega} \Sigma)(x) = \frac{d}{dt} \Big\{ [\mathcal{T}^{\Omega}(\gamma(t)^{-1})](\Sigma(\gamma(t)) \Big\}_{t=0}.$$

We will prove that the definition (2) is correct. To verify this affermation, we will calculate in a local chart.

Let U be a local chart of coordinates, $(x^1, ..., x^n)$ in M and $(x^1, ..., x^n, \xi^1, ..., \xi^n)$ a local chart of coordinates in T(M) (if $t \in T(M)$, $t = \sum_{i=1}^n \xi_i \frac{\partial}{\partial x^i}$).

By (2), and (1), for $\theta \in T_x(M)$, we have:

(3)
$$[(\nabla_{X}^{\mathcal{L}}\Sigma)(x)](\theta) = \frac{d}{dt} \left\{ \mathcal{C}^{L}(\gamma(t)^{-1}[\Sigma(\mathcal{C}^{\Gamma}(\gamma(t))(\theta))] \right\}_{t=0}^{t=0} dt$$

We suppose that $E|_{u} \simeq U \times \mathbb{R}^{m}$ (or $E|_{u} \simeq U \times \mathbb{C}^{m}$), and we identify $E|_{u}$, via this isomorphism, with $U \times \mathbb{R}^{m}$ (or $U \times \mathbb{C}^{m}$).

Then $\Sigma(\mathcal{T}(\gamma(t))(\theta)) = s(t, \theta)$ is a C^{∞} -section on $\gamma(t)$ with values in \mathbb{R}^m (or \mathbb{C}^m). By (3)

$$\begin{split} [(\nabla_{X}^{\mathfrak{L}})(x)](\theta) &= \frac{d}{dt} \Big\{ \mathfrak{T}^{L}(\gamma(t)^{-1}s(t, \theta)) \Big\}_{t=0} = \\ &= \nabla_{X}^{L}s(t, \theta) = \\ &= (X \ s(t, \theta))_{x} + L_{u}(X)(s(t, \theta))_{t=0}, \end{split}$$

where L_u is a linear, omogen, operator determined by L and U.

Let $X(x) = \xi^1 \frac{\partial}{\partial x^1} + \dots + \xi^n \frac{\partial}{\partial x^n}$, $\tilde{\theta}(t) = \mathcal{T}^{\Gamma}(\gamma(t))(\theta)$; then $s(t, \theta) = \Sigma(\gamma(t), \tilde{\theta}(t))$. We have:

$$(\nabla_{X}^{\mathcal{Q}}\Sigma)(x)(\theta) = (X\Sigma(\gamma(t), \tilde{\theta}(t)))_{x} + L_{u}(X)(\Sigma(x, \theta)) =$$

(4)
$$= \frac{\partial \Sigma}{\partial x^{1}} \xi^{1} + \dots + \frac{\partial \Sigma}{\partial x^{n}} \xi^{n} + \frac{\partial \Sigma}{\partial \tilde{\theta}^{1}} \left(\frac{d \tilde{\theta}^{1}}{dt} \right)_{t=0} + \dots \frac{d \Sigma}{\partial \theta^{n}} \left(\frac{d \tilde{\theta}^{n}}{dt} \right)_{t=0} +$$

$$+ L_u(x)(\Sigma(x, \theta)) = \sum_{i=1}^n \frac{\partial \Sigma}{\partial x^i} \xi^i + \sum_{\substack{i, \ k=1 \ \dots \ m}}^n \frac{\partial \Sigma}{\partial \theta^i} \Gamma^i_{jk} \theta^j \xi^k + L_u(x)(\Sigma(x, \theta))$$

 Γ_{jk}^{\prime} being the connection coefficients of the Riemannian connection in the chart U.

The last formula allows us to conclude that $\nabla_x^{\mathcal{L}}$ is well defined.

Annali di Matematica

We must verify the relations:

io.
$$\nabla_{f_{X+Y}}^{\mathcal{L}} = f \Delta_{X}^{\mathcal{L}} + \nabla_{Y}^{\mathcal{L}}$$
 $f \in C^{\infty}(M), X, Y \in C^{\infty}(M, T(M))$
iio. $\nabla_{X}^{\mathcal{L}}(\Sigma_{1} + \Sigma_{2}) = \nabla_{X}^{\mathcal{L}}\Sigma_{1} + \nabla_{X}^{\mathcal{L}}\Sigma_{2}, \Sigma_{1}, \Sigma_{2} \in C^{\infty}(M, \mathcal{G}(M, E))$

iiio.
$$\nabla_X^{\mathcal{L}}(f\Sigma_1) = (Xf)\Sigma_1 + f\nabla_X\Sigma_1$$
.

But these properties of V_X follows easy from (4).

This proof allows us to affirme that the assertion of the Theorem 1 relative to $\mathcal{G}(M, E)$ is established.

We have considered the projection $\pi^k : \mathcal{G}(M, E) \to J^k(M, E)$. But we can constract a smoth monomorphism:

$$i^k: J^k(M, E) \to \mathcal{G}(M, E)$$

such that $\pi^k i^k = 1$.

If $\alpha \in J_{x_0}^k(M, E)$, let $\tilde{s} \in \mathfrak{S}_{x_0}(M, E)$ such that $j_{x_0}^k \tilde{s} = \alpha$. Then, by definition:

 $i^k \alpha$ = the k-order polinomial approximation of \tilde{s} in $\theta_x \in T(x)$ by TAYLOR formula.

It is easy to verify that i^k is well defined.

From this moment a k-jet in E is a k-order polynomial on $T_x(M)$ with values in E_x .

It is easy to see that $\mathcal{T}^{\mathcal{L}}$ invariantes $J^{k}(M, E)$ and the formula (4) proves that $\nabla^{\mathcal{L}}$ induces an operator ∇^{k} on $J^{k}(M, E)$.

The proof the Theorem 1 is complete.

2. - It is known that $\mathcal{G}(M, N)$ is a bundle on $M \times N$, [1].

It remains only to define a linear structure on $\mathcal{G}_{(x,y)}(M, N)$. Let $s \in \mathcal{G}_{(x,y)}(M, N)$; we define $s \in \mathcal{G}_{(0_x, 0_y)}(T_x(M), T_y(M))$

$$\bar{s}(\theta) = \exp_{\gamma}^{-1}[s(\exp_{x}(\theta))].$$

The function $\sim : s \rightarrow \tilde{s}$,

$$\sim : \mathcal{G}_{(x, y)}(M, N) \to \mathcal{G}_{(0_x, 0_y)}(T_x(M), T_y(N))$$

is clearly bijective.

 $\mathcal{G}_{(0_x, 0_y)}(T_x(M), T_y(N))$ has a natural structure of real vector space. Then we can introduce a real vector structure in $\mathcal{G}_{(x, y)}(M, N)$ by ~. From this moment we will identify $\mathcal{G}_{(x, y)}(M, N)$ with $\mathcal{G}_{(0_x, 0_y)}(T_x(M), T_y(N))$. If $\alpha \in J^k_{(x,y)}(M, N)$, then let $\tilde{s} \in \mathcal{G}_{(0_x, 0_y)}(T_x(M), T_y(N))$ be an element such that $j^k \tilde{s} = \alpha$.

We construct the monomorphism

$$i^k: J^k(M, N) \to \mathfrak{S}(M, N)$$

by the definition:

 $i^k \alpha$ = the k-order polynomial approximation of \tilde{s} in O_x (by TAYLOR formula).

It is an easy consequence from the definition that $j^{k}i^{k} = 1$, and that the operations of the linear structure in $\mathcal{G}(M, N)$ invariantes $i^{k}J^{k}(M, N) \subset (M, N)$. We must verify that operations of the linear structure in $\mathcal{G}(M, N)$ and $J^{k}(M, N)$ are continuous and smooht. This is standard.

The theorem 2 is proved.

As a corollary, we can deduce the structure of $J^{k}(M, N)$.

If V and W are two real vectos spaces, then the space of the k-order polynomials P on V, with values in W, such that P(0) = 0, is naturally isomorphic to

$$\left(\sum_{l=1}^{k} S^{l} V^{*}\right) \otimes W.$$

REFERENCES

- [1] S. LANG, Introduction to Differentiable Manifold with appendix by.
- R. ABRAHAM, Lectures of Smale on differential topology (Russian), Moskow 1967.
 [2] K. NOMIZU and S. KOBAYASHI, Foundations of Differential Geometry, Interscience
- Publishers, 1963.
 [3] R. PALAIS, Seminar on the Atiyah-Singer Index, Theorem Annals of Math. Study 57,
- [5] R. FALAIS, Seminar on the Atiyan-Singer Index, Theorem Annals of Math. Study 57, Princeton.
- [4] W. POHL, Differential geometry of higher order, Topology 1, 1962.
- [5] —, Connections in differential geometry of higher order, Trans. Amer. Math. Soc. 125, 2 (1966).