Spaces of germs and jets.

Nicolae Teleman (Romania) (*)

Summary. - In this paper we present some results on the theory of jets and germs concerning the paralel transport and the linear structure.

0 . - Let M be a C_{-}^{∞} manifold and $E \xrightarrow{p} M$ a real, or complex, vector bundle over M.

Let $T_{x_{0}}(M)$ denote the space of tangent vectors to M in the point $x_{0} \in M$.
Let $s \in C^{\propto}(M, E)$ a section. I denote by $j_{x_{0}}^{k} s$ the k-jet of s in the point x_{0}, and by $g_{x}{ }^{\circ} s$ the germ of this section.

Then $J^{k}(E)=\bigcup_{x_{0} \in M} j_{x_{0}}^{k} s$ admits in a natural way a C^{∞}-vector bundlestructure. $\quad s \in C^{\infty}(M, E)$

I introduce in the space $\mathcal{G}(E)=\underset{\substack{x_{0} \in M \\ s \in C_{\infty}(M, E)}}{\bigcup} g_{x_{0}} s$ a structure of vector bundle with fiber, a locally-convex space. I suppose that M has a Riemannian structure Γ and let L be a linear connection in E.

For $0<r$, sufficiently small, let $B\left(r, x_{0}\right) \subset M$ be the ball centered in the point $x_{0} \in M$ with radius r. The space $C^{\infty}\left(B\left(r, x_{0}\right), E\right)$ is a Fréchét-space. Then $\mathfrak{G}_{x_{0}}(E)=\lim _{r \rightarrow 0} C^{\circ o}\left(B\left(r, x_{0}\right), E\right)$ is a locally-convex space; this is the fiber of the space $\mathcal{G}(E)$. Let $\pi^{k}: \mathcal{G}_{x_{0}}(E) \rightarrow J_{x}^{k}(E)$ be the natural epimorphism.

We will prove in this paper:

Theorem 1.

If M is a Riemannian manifold and $E \xrightarrow{P} M$ is a vector bundle with a linear connection L, then there exists a linear connection \mathfrak{L} in the space of germs of sections $\mathcal{G}(E)$ which prolongates L. The connection \mathcal{L} is compatible with the connection in $J^{k}(E)[5]$.

Theorem 2.

Let M and N be Riemannian manifolds. Let $\mathcal{G}(M, N)$ be the space of germs of maps from M to N, and $J^{k}(M, N)$ the space of the k-jets of maps.

Then $\mathcal{G}(M, N)$ and $J^{k}(M, N)$ admit a vector bundle structure on $M \times N$.
(*) Entrata in Redazione l'11 febbraio 1970.

Corollary 2.1.

$$
J^{k}(M, N) \simeq\left[S^{1}\left(T^{*} M\right) \oplus S^{2}\left(T^{*} M\right) \oplus \ldots \oplus S^{k}\left(T^{*} M\right)\right] \otimes T N
$$

($S^{\prime}\left(T^{*} M\right)$ denotes the l-simetric tensorial product).

1. - We will represent the germs and the k-jets in a different manner. Let $\gamma: I \rightarrow M$ be a C^{00}-path in $M, \gamma(0)=x_{0}, \gamma(1)=x_{1}$.
The connections Γ and L determine two isomorphisms:

$$
\begin{gathered}
\mathscr{G}^{\mathrm{T}}(\gamma): T_{x_{0}}(M) \rightarrow T_{x_{1}}(M) \\
\mathscr{\sigma}^{L}(\gamma): E_{x_{0}} \rightarrow E_{x_{1}} .
\end{gathered}
$$

If $s \in \mathcal{G}_{x_{0}}(M, E)$, we associate an element $\tilde{s} \in \mathcal{G}_{\alpha_{0}}\left(T_{x_{0}}(M), E_{x_{0}}\right)$ in the following manner:

$$
\tilde{s}(\theta)=\left(\widetilde{G}^{L}\left(\gamma^{\Gamma}(\theta)\right)\right)\left(s\left(\exp _{x_{0}} \theta\right)\right), \quad \text { for }
$$

$\theta \in T_{x_{0}}(M)$, and $\gamma^{\mathrm{T}}(\underset{\sim}{\theta})$ is the geodesic from $\exp _{x_{0}}(\theta)$ to x_{0}.
The element \tilde{s} is well defined because exp is a local diffeomorphism.
The application $\sim: s \rightarrow \tilde{s}$ is an isomorphism.
From this moment we will identify the germs s with \tilde{s}.
Now we can define what we mean by a C^{x}-section in $\mathcal{G}(E)$.
Let (1) be the projection $\omega: T(M) \rightarrow M$, and $U \subset M$ a open set in M.
Let $V,\left.W \subset T(M)\right|_{u}$ be two open neighborhoods of the zero-section in $T(M)$ over U.

If $\unlhd_{v} \in C^{\infty}\left(V, \omega^{*} E\right)$, then $\left.g\left(\Sigma_{x}\right)\right|_{T_{x}(M)},(x \in U)$ is a germ in $\mathfrak{G}_{x_{0}}\left(T_{x}, E_{x}\right)$.
We say that $\Sigma \in \mathrm{T}\left(U, \mathcal{G}(M, E)\right.$) is a C^{∞}-section on U with values in $\mathcal{G}(M, E)$, if there exists an open set V as above, and $\Sigma_{v} \in C^{\infty}\left(V, \omega^{*} E\right)$ such that

$$
\Sigma(x)=g_{0_{x}}\left(\Sigma_{v} \mid T_{x}\right) .
$$

Clearly, iwo C^{∞} sections Σ_{V}, Σ_{W} determine the same section in $\mathcal{G}(M, E)$ over U, if and only if, there exists an open set R as V and $W, R \subset V \cap W$, such that $\left.\left(E_{V}\right)\right|_{R}=\left.\left(\Sigma_{W}\right)\right|_{R}$.

Now, we can define the paralel transport $\mathscr{G}^{\mathfrak{Z}}$ in $\mathcal{G}(M, E)$ and the corresponding covariant derivative ∇^{2}.

If $\gamma: I \rightarrow M$ is a C^{∞}-path in M, then $\mathfrak{T}_{(\gamma)}^{\mathfrak{Q}}: \mathcal{G}_{\gamma(0)}(M, E) \rightarrow \mathcal{G}_{\gamma(1)}(M, E)$ is defined in the following manner:

$$
\begin{equation*}
\left.\left(\mathcal{F}_{(\gamma)}^{\mathcal{R}} \tilde{s}\right)(\theta)=\mathcal{G}^{I}(\gamma) ; \tilde{s}\left[\mathscr{\sigma}^{\mathrm{T}}\left(\gamma^{-1}\right)(\theta)\right]\right\}, \theta \in T_{\gamma(0)}(M), s \in \mathcal{G}_{\gamma(0)}(M, E) . \tag{1}
\end{equation*}
$$

If X is a C^{∞}-section in $T(M)$ and $\Sigma \in C^{\infty}(M, \mathcal{G}(M, E))$, we will define $\nabla_{X}^{\mathcal{L}} \mathbf{\Sigma}$. Let $x \in M$, and $\gamma: I \rightarrow M, \gamma(0)=x, \gamma(0)=X(x)$.

Then, by definition:

$$
\begin{equation*}
\left(\nabla_{X}^{\mathcal{L}} \Sigma\right)(x)=\frac{d}{d t}\left\{\left[\mathcal{G}^{\mathcal{Q}}\left(\gamma(t)^{-1}\right)\right](\Sigma(\gamma(t))\}_{t=0} .\right. \tag{2}
\end{equation*}
$$

We will prove that the definition (2) is correct. To verify this affermation, we will calculate in a local chart.

Let U be a local chart of coordinates, $\left(x^{1}, \ldots, x^{n}\right)$ in M and (x^{1}, \ldots, x^{n}, $\left.\xi^{1}, . ., \xi^{n}\right)$ a local chart of coordinates in $T(M)\left(\right.$ if $\left.t \in T(M), t=\sum_{i=1}^{n} \xi^{i} \frac{\partial}{\partial x^{i}}\right)$.

By (2), and (1), for $\theta \in T_{x}(M)$, we have:

$$
\begin{equation*}
\left[\left(\nabla_{X}^{\mathcal{Z}} \mathbf{\Sigma}\right)(x)\right](\theta)=\frac{d}{d t}\left\{\sigma^{L}\left(\gamma(t)^{-1}\left[\Sigma\left(\sigma^{\mathrm{I}}(\gamma(t))(\theta)\right)\right]\right\} t=0 .\right. \tag{3}
\end{equation*}
$$

We suppose that $\left.E\right|_{u} \simeq U \times \mathbb{R}^{m}$ (or $\left.E\right|_{u} \simeq U \times \mathbb{C}^{m}$), and we identify $\left.E\right|_{u}$, via this isomorphism, with $U \times \mathbb{R}^{m}$ (or $U \times \mathbb{C}^{m}$).

Then $\Sigma\left(\mathcal{G}^{\mathrm{T}}(\gamma(t))(\theta)\right)=s(t, \theta)$ is a C^{∞}-section on $\gamma(t)$ with values in \mathbb{R}^{m} (or \mathbb{C}^{m}). By (3)

$$
\begin{gathered}
{\left[\left(\nabla_{X}^{\ell}\right)(x)\right](\theta)=\frac{d}{d t}\left\{\sigma^{L}\left(\gamma(t)^{-1} s(t, \theta)\right\}_{t=0}=\right.} \\
=\nabla^{L} s(t, \theta)= \\
=(X s(t, \theta))_{x}+L_{u}(X)(s(t, \theta))_{t=0}
\end{gathered}
$$

where L_{u} is a linear, omogen, operator determined by L and U.
Let $X(x)=\xi^{1} \frac{\partial}{\partial x^{1}}+\ldots+\xi^{n} \frac{\partial}{\partial x^{n}}, \tilde{\theta}(t)=\mathscr{\sigma}^{\Gamma}(\gamma(t))(\theta) ;$ then $s(t, \theta)=\Sigma(\gamma(t), \tilde{\theta}(t))$.
We have:

$$
\begin{gather*}
\left(\nabla_{X}^{\mathcal{R}} \Sigma\right)(x)(\theta)=(X \Sigma(\gamma(t), \tilde{\theta}(t)))_{x}+L_{u}(X)(\Sigma(x, \theta))= \\
=\frac{\partial \Sigma}{\partial x^{1}} \xi^{1}+\ldots+\frac{\partial \Sigma}{\partial x^{n}} \xi^{n}+\frac{\partial \Sigma}{\partial \tilde{\theta}^{1}}\left(\frac{d \tilde{\theta}^{1}}{d t}\right)_{t=0}+\ldots \frac{d \Sigma}{\partial \theta^{n}}\left(\frac{d \tilde{\theta}^{n}}{d t}\right)_{t=0}+ \tag{4}\\
+L_{u}(x)(\Sigma(x, \theta))=\sum_{i=1}^{n} \frac{\partial \Sigma}{\partial x^{2}} \xi^{i}+\sum_{\substack{i, k=1 . n \\
j=1 . . m}}^{n} \frac{\hat{c} \Sigma}{\partial \theta^{i}} \Gamma_{j k}^{i} \theta \dot{j} \xi^{k}+L_{u}(x)(\Sigma(x, \theta))
\end{gather*}
$$

$\Gamma_{j k}^{i}$ being the connection coefficients of the Riemannian connection in the chart U.

The last formula allows us to conclude that $\nabla_{x}^{\mathcal{R}}$ is well defined.

We must verify the relations:

$$
\begin{aligned}
\text { io. } & \nabla_{f X+Y}^{\mathcal{L}}=f \Delta_{X}^{\mathcal{Q}}+\nabla_{Y}^{\mathcal{L}} \quad f \in C^{\infty}(M), X, Y \in C^{\infty}(M, T(M)) \\
\text { iio. } & \nabla_{X}^{\mathcal{Q}}\left(\Sigma_{1}+\Sigma_{2}\right)=\nabla_{X}^{\mathcal{L}} \Sigma_{1}+\nabla_{X}^{\mathcal{Q}} \Sigma_{2}, \Sigma_{1}, \Sigma_{2} \in C^{\infty}(M, \mathcal{G}(M, E)) \\
\text { iiio. } & \nabla_{X}^{\mathcal{S}}\left(f \Sigma_{1}\right)=(X f) \Sigma_{1}+f \nabla_{X} \Sigma_{1} .
\end{aligned}
$$

But these properties of V_{X} follows easy from (4).
This proof allows us to affirme that the assertion of the Theorem 1 relative to $\mathfrak{G}(M, E)$ is established.

We have considered the projectiou $\pi^{k}: \mathcal{G}(M, E) \rightarrow J^{k}(M, E)$. But we can constract a smoth monomorphism:

$$
i^{k}: J^{k}(M, E) \rightarrow \mathcal{G}(M, E)
$$

such that $\pi^{k} i^{k}=1$.
If $x \in J_{x_{0}}^{k}(M, E)$, let $\tilde{s} \in \mathcal{G}_{x_{0}}(M, E)$ such that $j_{x_{0}}^{k} \tilde{s}=\alpha$.
Then, by definition:
$i^{k} \alpha=$ the k-order polinomial approximation of \tilde{s} in $\theta_{x} \in T(x)$ by Taylor formula.

It is easy to verify that i^{k} is well defined.
From this moment a k-jet in E is a k-order polinomial on $T_{x}(M)$ with values in E_{x}.

It is easy to see that σ^{2} invariantes $J^{k}(M, E)$ and the formula (4) proves that $\nabla^{\mathfrak{R}}$ induces an operator ∇^{k} on $J^{k}(M, E)$.

The proof the Theorem 1 is complete.
2. - It is known that $\mathcal{G}(M, N)$ is a bundle on $M \times N$, [1].

It remains only to define a linear structure on $\mathfrak{G}_{\{x, y)}(M, N)$.
Let $s \in \mathcal{G}_{(x, y)}(M, N)$; we define $\tilde{s} \in \mathcal{G}_{\left(0_{x^{\prime}} 0_{y)}\right)}\left(T_{x}(M), T_{y}(M)\right)$

$$
\tilde{s}(\theta)=\exp _{y}^{-1}\left[s\left(\exp _{x}(\theta)\right] .\right.
$$

The function $\sim: s \rightarrow \tilde{s}$,

$$
\sim: \mathfrak{G}_{(x, y)}(M, N) \rightarrow \mathcal{G}_{\left(0_{x^{\prime}}, y_{y}\right)}\left(T_{x}(M), T_{y}(N)\right)
$$

is clearly bijective.
$\mathcal{G}_{\left(0_{x^{\prime}}, y_{y}\right)}\left(T_{x}(M), T_{y}(N)\right)$ has a natural structure of real vector space. Then we can introduce a real vector structure in $\mathcal{G}_{(x, y)}(M, N)$ by \sim. From this moment we will identify $\mathcal{G}_{(x, y)}(M, N)$ with $\mathcal{G}_{\left(0_{x^{\prime}}{ }^{\circ} y\right.}\left(T_{x}(M), T_{y}(N)\right)$.

If $\alpha \in J_{(x, y)}^{k}(M, N)$, then let $\tilde{s} \in \mathcal{G}_{\left(0_{x^{\prime}} 0_{y}\right)}\left(T_{x}(M), T_{y}(N)\right)$ be an element such that $j^{\varepsilon_{s}}=\alpha$.

We construct the monomorphism

$$
i^{k}: J^{k}(M, N) \rightarrow \mathfrak{G}(M, N)
$$

by the definition:
$\boldsymbol{i}^{k} \alpha=$ the k-order polinomial approximation of \tilde{s} in 0_{x} (by Taylor formula).
It is an easy consequence from the definition that $j^{k} i^{k}=1$, and that the operations of the linear structure in $\mathfrak{G}(M, N)$ invariantes $\left.i^{k} J^{k} \cdot M, N\right) \subset(M, N)$. We must verify that operations of the linear structure in $\mathcal{G}(M, N)$ and $J^{k}(M, N)$ are continuous and smooht. This is standard.

The theorem 2 is proved.
As a corollary, we can deduce the structure of $J^{k}(M, N)$.
If V and W are two real vectos spaces, then the space of the k-order polinomials P on V, with values in W, such that $P(0)=0$, is naturally isomorphic to

$$
\left(\sum_{l=1}^{k} S^{l} V^{*}\right) \otimes W .
$$

REFERENCES

[1] S. Lang, Introduction to Differentiable Manifola with appendix by.
R. Abraham, Lectures of Smale on differential topology (Russian), Moskow 1967.
[2] K. Nomizu and S. Kobayaser, Foundations of Differential Geometry, Interscience Publishers, 1963.
[3] R. Palais, Seminar on the Atiyah-Singer Index, Theorem Annals of Math. Study 57, Princeton.
[4] W. Poнг, Differential geometry of higher order, Topology 1, 1962.
[5] - -, Comections in differential geometry of higher order, Trans. Amer. Math. Soc. 125, 2 (1966).

