On perfect and multiply perfect numbers.

by P. Erpis (in Haifa, Israel).

Summary. - Denofe by Px) the number of infegers n<<g salisfying s(n)=0 (modn), and
by Py(w) the number of infegers n <<z satisfifing o{n)==2n. The author proves thai
Pz} < a8l&t+e and Pylx) < xll—0)2 for a certain ¢ > 0.

Denote by o(n) the sum of the divisors of n, on)= X d. A number n

is said to be perfect if o(n) = 2w, and it is said to be dgultiply perfect if
o(n) = kn for some infeger %. Perfect numbers have been siudied since
antiquity. 1t is contained in the books of EuonIp that every number of the
form 27—* (2?2 — 1) where both p and 27 — 1 are primes is perfect. EULER (')
proved that every even perfect number is of the above form. It is not known
if there are infinitely many even perfect numbers since it is not known if
there are infinitely many primes of the form 2? — 1. Recenily the electronic
computer of the Institute for Numerical Analysis the S,W.A.C. determined
all primes of the form 27 —1 for p < 2300. The largest prime found was
2:28t 1, which is the largest prime known at present.

It is not known if there are an odd perfect numbers. EULER (') proved
that all odd perfect numbers are of the form

1 pem?, p=o=1 (mod 4),

and SYLVESTER (') showed that an odd perfect number must have at least
five distinet prime factors.

Multiply perfect numbers are known for various values of % but it is
not known whether there are infinitely many multiply perfect numbers.
Recently KANOLD (?) proved that the density of multiply perfect numbers is 0.
(i. e. the number of multiply perfect numbers not exceeding x is o(x)), and
HorNrecK (*y proved that the number of perfect numbers not exceeding =
is less than x'/%,

Denote by P(r) the number of multiply perfect numbers not exceeding w,
and by P,x) the number of perfect numbers not exceeding «. In the present
note we are going to prove

(1) Dickson, History of the Theorie des Numbers, Vol. 1, Chapter 1,
(3} «Journsal fiir die reine und angew. Math.», 194 (1955), 218-220.
(3) « Archiv der Math.» 6 (1955), 442-443.
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THEOREM 1.
P(x) < i+t for every ¢ > 0 and x > x,e).
THEOREM 2. - There exists a constant ¢, > 0 so that for x > x,
P,(w( < aft—enf2,

These results are no doubt very far from being best possible. In fact it is
very likely true that P(x) = o(x*) for every ¢ > 0.

By more complicate arguments I can prove that for every constant c,
there exists a constant ¢, so that the number of integers » <<« for which

(a(n), n) > n=

is less than x'-% By still more complicated arguments I can prove
THEOREM 3. - Let fix) be an increasing funclion satisfying f(x) > (log )
for some ¢, > 0. Then the number of integers n < x satisfying

(s(n), n) > flx)

is less than c.x/(f(x)° for some ¢, >0 and ¢, > 0. The same result hold if
o(n) is replaced by Euler’ s ¢ function.

We are not going to give the proof of Theorem 3. It can further
be shown that Theorem 3 is best possible in the following sense: Let
fe) = o{(log x)*) for every & > 0. Then the number of integers n << a satisfying

{o(n), n) > f(x)

is greater than x/(f(a))s for every ¢, > 0, if x is sufficiently large.
Fuarther I can prove the following.
THEOREM 4. - The density of inlegers n salisfying

(a(n), n) < (loglog n)*

equals g(e) where g(x), 0 < o < oo is an increasing function satisfying g(0) =0,
g.00) =1. The same result holds if an) is replaced by ¢(n).

We sapress the proof of Theorem 4.

Proof of Theorem 1. First we prove two Lemmas.

LeMMA 1. - a(n) < 2nloglog n for all sufficiently large n.

Lemma 1 immediately follows from the result of LANDAU (') according
to which lim sup o(n)/n loglog n = e°, (where C = 0’677 ... is EULER’ s constant).

Hn=00

Put #» = a,+b,, where
an= 11 p* by= Il p
prln pin
a>1 p*in
ay is called the quadratic part of » and b, the squarefree part of =.

(4) Lianpau, Verteilung der Primszahlen, Vol. 1, p. 217. Lanpau states his result for
BuueR’ s ¢ funetion, but the result for 3(n) follows immediately.
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LEMMA 2. - Denote by gix, A the number of infegers n < x for which
tp > A. Then g(x, A) < cx/A'* where c, is an absolute constant independent
of © and A.

Clearly the quadratic part of n is the product of a square and a cube.
Thus

4 I 2 i o=l B o= 7i %E
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' 3\1)2
x 3 -1<.'2c 3 1(%—) +a'2

1 12
>4 B TpcaB\4 < ¢, /A" q. e. d.

>4 P
To prove Theorem 1 it will clearly be sufficient to show that

') Px) P(x/2) < xdlitefor & > x,(e).
To prove (2) we split the multiply perfect numbers y satisfying

x/2 < y < x into two classes. In the first class are the y's with a, = a'".
By Lemma 2 the number of the y's of the first class is less than cx®'.

For the y's of the second class we evidently have b,,>;ac-"*. Put

bl/ =q s qxy 4 << qs < oo < Qr
where the ¢'s are distinet primes. Define b,,’:q,,iq,,g e G where Qr, = G
and %, (1 =< i< 7) is the largest ¢ which does not divide o+ g, + 1)
(qx,_,+ 1). Put b, =b,’b,". By our construction :

3) by, olb,N=1, a(b,) =0 (mod b,”) or b,'s(b,’) = 0 (mod b,).

Also since b, > %w“f we have by (3) and Lemma 1

%w'” < b, < b,a(b,’) < 2b,*loglog x
or

4 b,/ > %w‘l*/‘loglog x.

Now o(y) =0 (mod y) and o(y) =0 (mod o(b,)) (since o(y)= a(a,)-ab, a(b,")).
Thus by (3)
oiy) = 0 (mod b,/s(b,))).
Now by Lemma 1 o(y)= ky < 2y loglog «. Thus

B) yB, = 0 mod (o(y)) = 0 mod (b,/0\d,’)) where B, = [loglogx]!.
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Hence by (4) and (5) if y belongs to the second class yB, is divisible by an
integer of the form ao(a) with a > 2m‘f*/loglog «. Thus the number of inte-
gers of the second class is less than (2’ indicates that ¢ > %m*i‘ (loglog )

xB,X c?cl{_a) <wB, ¥ ?1; < 2B,«*!* loglog @ < x®/4+=,
which completes the proof of Theorem 1.

Proor or THEOREM 2. - The proof will be very similar to that of Theo-
rem 1. Since by EULER’s resulf the number of even perfect numbers not
exceeding « is less than logx, it suffices to consider odd perfect numbers.
To prove Theorem 2 it will be sufficient to prove that

6) P,@)— P, (g) < a0

where P, (x) denotes the number of odd perfect numbers not exceeding .
By (1) the odd perfect numbers are all of the form

y=pm?, p=a=1 (mod4)

We now split the odd perfect numbers y satisfying /2 <y <« into three
classes. In the first class are the y's for which p* > x%. Thus if y is in
the first class we have m < w(-%)2, A simple argument shows that to each
m there is at most one p* so that p*m? is perfect (*). Hence the number of
"y's of the first class is less than x0-<)2, For the ys of the second class
we have a,, > . By Lemma 2 we obtain that the number of y's of the
second class is less than c¢,x(1—*)2 For the y's of the third class we have

pPr<at, a, <z, Thus b, > ém‘l"‘s%)ﬂ. Put

b:n z:q:Q: oo Q;’u 7, << ..<q,

where the ¢'s are distinet prime. Define b;’;:q;iq;z - gg, Where ¢, =g,
and g, (1 <i<r) is the largest ¢ which does not divide

”

(7) (@5, + @, + DGR, + oy + 1 o (@G, + T, )
and for which

&) e X (L, 4+ gg) for 1<j=<i—1).
It follows from our construction that

(9) (b, O(bm) =1

(5) This follows immediately from the faet that O(I’L;a)zi:c—(qq;—), HORNFECK’ s proof is also

based on this idea.
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and that if ¢|b,, ¢ qx;, 1=<j<r then either (if (7) does not hold)

(10) q| o),
or (if (8) does not hold)

(11) 14 q+ ¢ =s(q*) =0 (mod Q) for some 1<<j<<r and ¢ < Q-

Put now by, = bubnb, where b, is the product of the g¢'s satisfying (10).
Clearly Lemma 1

(12) b < 6(bm) < 20, loglog .

Each prime factor of b,, satisfies (11). Thus for every q|by, (1 -+ ¢ + ¢, bm) > ¢.
Now (bubwmbn i8 squarefree)

" e

(18) oY) = 24 == 20N Ambrbbm)? = 6(%)5(0s)5(B)Brrt )5 b’ )-

Thus for each qkjlb'm, !l;ch(b;Z). Hence

e ’

(O(bm), by =1 I (1 +q + @, b)) > ' (%),
qlb,’,,','

or

(14) b < bom.
Thus from (12) and (14)
bw < 20} loglog .

Thus since y belongs to the third class
, 1
(15) b > i a(1-5e)10/]oglog 2.

Now by (13), (9) and since 7 is odd
o(b;:)

<2

y = 0[mod (b, + o(bm))] or m = 0 (mod b,,) and (m?, o(bD)) =

or by (15) (p* < x%)

2
(16) m = 0 (mod b,) and (m, o(bm) = (E(—l?’['))”2

. > i m(1~1009)llﬂ/loglog .

() To see this observe that if g¢|#, there can be at most two prime factors q, and g,
of b",, satistying o(q,?) =oa(gs?) =0 (mod q), also if ¢ |b",, (o(@¥), b)) > q-
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The number of integer m <<x'* satisfying (16) for a fixed b, is clearly

less than (the dash indicates that ¢{ > i a1~ 10e)10/]oglog )

(17)

2
xile , 1 < xil® d(o(b:,z,)) «4loglogax _ x5 +eo-te
b;” to(b b b;n a1~ 10e0)110 b:n

19Dy

where d(n) denotes the number of divisors of #. Thas from (17) we obtain
that the number of integers m << x'/* which satisfy (16) is less than

2 1 2
= +cg+e £ ey +2¢
X < .

x5
b, < bm

Thus the number of y, s of the third class is less than s+t < ge)
for sufficiently small ¢,, which completes the proof of Theorem 2.
Added in proof: Denote by @ x) the number of odd integers »n <z
1

satisfying o(n) = 2%. WOLKMANN proved that Qx)=0 (@ %9, (Journal
tiir reine ung angew Math. 195 (1955), 154).




