
On perfect and multiply perfect numbers. 

by P. ERDtiS (in Haifa, Israel). 

.~ummary. - Denqte by P(x) the number of integers n ~: x satisfying ~(n) --~ 0 (rood n), and 
by P~(x) the number of integers n ~_x satisfying a(n)~---2n. The author proves that 
P(0a) ~xaf4+~ and P2(o~) ~x(t-c)12 for a certain c :> O. 

Denote by a(n) the sum of 

is said to be perfect  if ¢~(n)-- 
~ ( n ) - - k n  for some integer k. 
antiquity.  It  is contained in the 

the divisors of n, a ( n ) ~  E d. A number  n 
dl# 

2n, and it is said to be mult iply perfect  if 
Per fec t  numbers  have been studied since 
books of EUCLID that every number  of the 

form 2 ~- '  (2 ~' - - i )  where both p and 2 z' - - 1  are primes is perfect.  EULER (') 
proved that every even perfect  number  is of the above form. It  is not known 
if there are infinitely many even perfect  numbers  since it is not known if 
there are infinitely many primes of the form 2 p - - 1 .  Recent ly  the electronic 
computer  of the Inst i tute  for Numer ica l  Analysis the S.W.A.C. determined 
all primes of the form 2 ~ -  1 for p ~ 2300. The largest prime found was 
2 ~2~ - 1 ,  which is the largest prime known at present.  

It  is not known if there are an odd perfect  numbers.  EULER (~) proved 
that all odd perfect  numbers  are of the form 

(1) p ~ m  ~, p - ~ : ¢ ~ l  (rood 4), 

and SYLVESTER (~) showed that an odd perfect  number  must have at least 
five dist inct  prime factors. 

Multiply perfect  numbers  are known for various values of k but  it is 
not known whether  there are infinitely many mult iply perfect  numbers .  
Recent ly  KANOLD (~)proved that the densi ty of multiply perfect  numbers  is 0. 
(i. e. the number  of mult iply perfect  numbers  not exceeding a~ is o(a~)), and 
HOaN~'ECK (3) proved that the number  of perfect  numbers  not exceeding x. 
is less than xlJL 

Denote by P ( x )  t h e  number  of mult iply perfect numbers  not exceeding x, 
and by P~(w) the number  of perfect  numbers  not exceeding ~. In the present  
note we are going to prove 

(i) DICKSON, History of  the Theorie des Numbers, Vol. 1, Chapter i. 
(2) ,, Journal ftir die reine und angew. Math. ,, 194 (1955), 218-220. 
(a) • Archly der Math., 6 (1955), 4~:2-443. 
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THEOREM 1. 

P(x) ~ ~.m+~ for every ~ ~ 0 and  x ~ Xo(S). 

THEOa~M 2. - There exists a constant c, ::> 0 so that for ~ ~ xo 

These results  are no doubt  very far from being best possible. In fact it is 
very  likely true that P(~)---o(~¢~) for every • ~ 0 .  

By more complicate arguments  I can prove that for every constant  c, 
there exists a constant  c 3 so that the number  of integers n ( x  for which 

(a(n), n) ~> n ~~ 

is less than a~l-% By still more complicated arguments  I can prove 
THEORE~I 3 . -  Let f (x)  be an  increasing function sat is fy ing f(x,) ~ (log ~)~, 

for some c, 2> O. Then the number of  integers n ~ ~ sat is fy ing 

(a(n), n) > f(~) 

is less than e~x,/(f(~)) c. for some c 5 ~ 0 and  c~ ~ O. The same result  hold i f  
a(n) is replaced by Euler' s ¢~ function. 

W e  are not going to give the proof of Theorem 3. It  can fur ther  
be shown that Theorem 3 is best possible in the following sense :  Let  
f(x,) ~ o((log ~)~) for every ¢ ~ 0. Then the number  of integers n ~ x satisfying 

(a(n), n) > f(x) 

is greater  than :v/(f(x)) ~ for every c~ ~ 0, if x is suff icient ly large. 
Fur the r  I can prove the following. 
THEOREM 4. - The density o f  integers n sa t i s fy ing  

(a(n), n) ~ (loglog n) ~ 

equals g(a) wkere g(a), 0 ~ a ~ c~ is an  increasing function sat i s fy ing  g(O) - -  O, 
g , : , o ) - -1 .  The same result  holds i f  sin) is replaced by ¢p(n). 

W e  supress  the proof of Theorem 4. 
Proof  of Theorem 1. First  we prove two Lemmas.  
L~,MMx I. - a(n) ( 2 n  loglog n for all sufficiently large n. 
Lemma 1 immediately follows from the result  of LAZCDAU t ~) according 

to which lim sup a(n):'n loglog n - -  e ~, (where C --" 0"577 ... is Eu[,m~' s constant). 
i,$ ~ O 0  

Put  n - -  a n . b ,  where 

a,~--  H p~, b , , ~  H p 
p ~ l n  p i ~  
~.'~1 p~Xn 

aa is called the quadrat ic  part  of n and b, the squarefree  part  of n. 

{4) [AANDAU, Verteilung de~ Primzahlen, Vol. 1, t ). 217. LAm)AU states his result for 
E U L ~ ' s  ~ function, but the result for :0Q follows immediately. 
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L~MM~ 2. - Denote by g(oc, A)  the number  of  integers n < ~ for which 
a~, ~ A. Then g(~, A) ~ v7x/A ~ " where v~ is an  absolute constant independent 
o f  ~, and  A. 

Clearly the quadra t ic  part  of n is the p roduc t  of a square  and a cube. 
Thus  

_ ~ 1  ~ 1 
g(~, A~ < 

~>.~ ~ < ~<_,~Y' 0 + ~,>AY" < g~/A'l~ q" e. d. 

To prove Theorem 1 it will clearly be suff icient  to show that 

(2) 

To prove (2) we split  t h e  mul t ip ly  perfect  numbers  y - s a t i s f y i n g  
~/2 ~ y ~  into two classes. In  the first class are the y's with a v ~ t ~ .  
By L e m m a  2 the n u m b e r  of the y's of the first  class is less than  cT,~l '. 

1 x~l~. P u t  For  the y's of the second class we evident ly  have by > 2  

by = q,q~ ... qa , q, < q,. ~ ... ~ qk 

where the q's are dis t inct  primes.  Define b y ' - - q , ~ q ~ . . . q ,  
and q*t (1 ~ i_~  r) is the largest  q which does not divide ~qk, 
~ q , . ,  + l). Pu t  b v = bv'b~". By our  cons t ruc t ion  

where  qA, ~ q,  
+ 1)(q,. + 1 ) .. 

~3) ~b~', a(bv'))= 1, a(bv' ) ~ 0 (modb~") or bv' a(bv') ~ 0 (modb~). 

1 a~l  ~ 
Also since by ~ ~ we have by (3) and L e m m a  1 

1 I "2 2 ~  / < b v <:  bv'a(bv') < 2 b y  ',~ loglog 

o r  

(4~ 1 ~14 b~' > 2 ~ /loglog ~. 

Now a(y) -~0 (mod y) and z(y) ~ 0 (rood a(bv')) (since a(y)= a(a~.).a~bv')a(bv")). 
Thus  by (3) 

aly) ~ 0 (mod bv%(bv')). 

Now by L e m m a  1 a(y) - -  ky ~. 2y loglog ~. Thus  

(5) yBx -~ 0 rood (a(y)) ~ 0 rood (b~%~bv')) where B~ = [loglog ~] ~. 
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Hence  by (4) and (5) if V belongs to the second class yB~ is divisible by an  

1 a~l~/loglog~. Thus  the n u m b e r  of lute. in teger  of the form an(a) with a > 2  

I ~ti, (loglog ~:) gers of the second class is less than  (~' indicates  that  a > 

, 1 ~2' 1 zB~Y. a--~) < a~B~ -~ < 2B~314 loglog x < ~31,+~. 

which completes  the proof  of Theorem 1. 
PROOF OF THSOR~[ 2. - The  proof will be very s imilar  to that  of Theo- 

rem 1. S ince  by EULER'S resul t  the n u m b e r  of even perfect  number s  not 
exceeding  ~ is less  than log ~, it suff ices  to consider odd perfect numbers.  
To prove Theorem 2 it wil l  be suff ic ient  to prove that 

(6) P , ' ( x ) -  P~'(2)  < x'l~-% 

where Pt'(x) denotes  the number  of odd perfect  numbers  not exceeding  x. 
By (1) the odd perfect  numbers  are all of the form 

y = ~ff'm ~, p m ~t ~- 1 (mod 4). 

We now spli t  the odd perfect  numbers  y sat isfying a:/2 < y ~ a ~  into three 
classes. In  the first class are the y's for which  p ~ >  z c0. Thus  if y is in 
the first  class we have m < ~o-c~)t~. A s imple a rgumen t  shows that  to each 
,m there  is a t  most  one p~ so that  p~m t is perfect  (~). Hence  the n u m b e r  of 

y ' s  of the first  class is less than a:( 1-c~)12. For  the y's of the second class 
we have am > z ~°. By L e m m a  2 we obtain that  the n u m b e r  of y's of the 
second class is less than  c~tv( t-~.)t2. For  the ?is of the third class we have 

1 xO-~)lg. Pu t  p~ ~ ~ ° ,  a,n < x ~'  • Thus  b,n > 

q, < q ,  < ... < 

where the q's are d is t inc t  pr ime.  Define b ~ - - ~ , q ~ ,  ... ~ ,  where  q~, = q ~  
and  %~ (1 < i ~ r )  is the largest  q which does not divide 

' 1~ ... (q~,~_, + .q~,~_,) (q~ + q~  4-. 1)(q~ + q~  + (7) 

and  for which 

t8) for (l ~ j ~ i  t). q~,j X (t + qk~ + q~) 

It follows from our  const ruct ion that  

~9) (bL, ,(b~)ffi 1 

{5} ~his follows immediately from tile fact flint v(pa)=l a(q~ HORN~a¢'s proof is also pa 7- qf~ , 
based on this idea. 
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and that  if qlbm, q=~=qk~, l ~ j ~ _ r  then  ei ther  (if (7) does not hold) 

(10) q J a(b~), 

or (if (8) does not hold) 

(11) 1 q-qq-q~.----~(q~)~--O(modqky) for some l ~ _ j ~ _ r  and q < q ~ j .  

Put  now b~,--b'~b:b~ where  b~ is the product  of the q's sat isfying (10). 
Clearly L e m m a  1 

12 

(12) b',~ ~ (~(b',,z,) < 2b,,, loglog a~. 

Each pr ime factor of b~: satisfies (11). Thus  for every q]b~ (I + q-+-q~, b~) ~ q. 
Now (b'~b"b'~ is squarefree)  

t tt  ItP O; 2 12 ! I2  t t t 2  (13) z(y) - -  2y := 2p~( amb~b~b~) ~ -- z(l~ )z(a~)z(b~)a(b~ )z(bm ). 

Thus  for each q~lb'~, q~j X a(b:). Hence  

(a(b~), b:,,) ~ [ I I  (1 d- q + q", b'~)] ~/" > b: '1' (e), 
qlb~ ~ 

o r  

(14) 

Thus  from (12) and (14) 

b2 < 

b,,, ~ 2b~ loglog x. 

Thus  since y belongs to the third class 

, I x(l_r,~)lm/loglog x. (15) 5 .  ~ 7~ 

Now by (13), (9) and since y is odd 

y --  0 [mod (b~ .2 , ,, • a(b~))] or m m 0 (mod b,~) and (m ~, a(b,,,)) ~ - -  

or by (15) (p~ ~ w~) 

(16) 

o(b2) 
p~ 

m ~- 0 (mod b,,,) and (m, ~(b~)) ~ -p  a-- 1 a~(,_10c,)ll0/loglog t~ 
4 

F (6) To see th is  o b s e r v e  t ha t  if  q jb,,~ t he re  can  be  a t  mos t  two p r i m e  factors  qt and  q~ 
of b'11,, m t t i s fy ing  a(qi2 ) ~_ ~(q~2)~-0 (mod q), also if  q ] b" , ,  (a(q~), b'm) ~ q. 
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The number  of integer m_~_~ lit satisfying (16) for a fixed b',, is clearly 
1 

less than (the dash indicates that t > ~  ~(1-1°~,)ll°/loglog~) 

~1~ d(a(b,~}, 4 loglog z 
(17) $~1~ ~' 1 <  ~(1-1o~,)no ~ . . . .  

 jo(b :)t b'., b:,, 
where d(n) denotes the number  of divisors of n. Thus from (17) we obtain 
that the number  of integers n ~ $ t l ~  which satisfy (16) is less than 

2 

b~m<~x bm " 

Thus the number  of y, s o~ the third class is less than '.v~+~'+2' ~ ~v(1-~,)l ~ 
for sufficiently small vg, which completes the proof of Theorem 2. 

Added in proof: Denote by Q~(~) the number  of odd integers n < ~  
1 

satisfying a(n) = 2ix. WOLKMA~ proved that Q~(~) = 0 ( ~  2(~+2)). (3ournal 
far reine ung angew Math. 195 (1955), 154). 


