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S u m m a r y .  - In  this paper the trace equations 
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0 

arising in the Hilbert-Schmidt theory o/ Fredholm integral e~uations are extended to certain 
classes o/ compact operators K(2) on Hilbert space ~ which are meromorphic ]unctions o/ 
the eigenvalue parameter 4. The operator K( t )  is the sum o/ an operator valued polyno- 
mial H(i )  plus an operator .P(~) which is a meromorphic ]unction o /~  and has/inite dimen- 
sional range/or each/ixed )~. The theory is constructed so that i / ~  = L~[0, 1] and i/ 

H(~) = ~ ~H~ 
i = 0  

where the Hi are integral operators derivable /tom corresponding Lebesgue square integrable 
kernels hi(x, y), then one can systematically take advantage o/ various regularity conditions 
that some o/ the kernels hi(x, y) may have in improving the results. 

I .  - I n t r o d u c t i o n .  

I f  k(x,  y) is ~ Lebesgue squ~re integruble kernel  on [0, 1] × [0, 1], then  the  formula  
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holds for integers p>~2, where k~(x, y) is the p-th iterate of k(x, y), and where (A~} 
is the sequence of eigenvalues of k(x, y), taken according to algebraic multiplicity 
as zeroes of the classical Fredholm function. The formula (1.1) holds for p ~-1 
under suitable further restrictions on k(x, y), as is well known (see C~A~G[1]~ 
C o c ~ A ~  [3; pp. 242, 251-266], DU1NFORD-Sc1TWAI~TZ [5; pp. 1116-9], HILLE~TA~AI~- 
~ [i0], ST~SP~I~ [23], SWA~ [24]). 

In this paper we generalize (1.1) to cover certain classes of compact operators 
(on a t t i lbert  space o%f), which are meromorphic functions of the eigenvalue para- 
meter ~. The case where the operator //()~) is a simple polynomial in ~ is covered 
in Par t  IV; in part  V, we consider eigenvalues of K ( , t ) ~ / / ( ~ )  + P(~), where P(,~) 
is a certain operator valued meromorphie function of ~ and has finite dimensional 
range for each fixed ).. Let  us suppose that  

(1.2) H(~) = ~ 2 / / i  
~=0  

where the H~ axe certain classes of compact operators (to be defined in Par t  II).  
If  it happens that  Jet ° ~-L~[0, 1] and that  the operators H, are integral operators 
derived from square integrable kerllels hi(x, y), then the theory developed wiU enable 
us systematically to take advantage of vaxious regularity conditions that  some of 
the kernels hi(x, y) may possess in order to improve our results. Such conditions 
are given in papers by CItAXG[1]~ COCHleA% [3;pp.  231-248], STI~ESPt~I~G[23], 
SWA~ [24]; one such well known condition in terms of existence of partial deriv- 
atives of hi(x, y) is briefly reviewed in part II .  

The results described in part I I  are a review of certain results in Du~ro~D- 
SOI~WAI~TZ [5; pp. 1088-1119]; we include them in order to make the paper as self- 
contained as possible, in order to facilitate referencing (since Du~-FOl~O and 
SCHWARTZ do not number their equations for the most part) ~nd in order to review 
briefly the rather specialized spaces of compact operators needed for this paper. 
The results in  part  I I I  comprise a review of well-known material which is inacces- 

sible in the literature. 
In par t  IV we treat  the eigenvalues of the operator valued polynomial //(2); 

in part  V we discuss the eigenvulues of the meromorphic operator K(2). Finally, 
certain practical aspects of-the uses of the formulas to be developed are treated 
in part  VI. The major theorems in this paper are Theorems V.6, V.7, and V.8. 

Our paper is a direct generalization of the work of }I~2LLnn [22], who considers 
operator-valued polynomials of degree two. The authors (see LAGINESTI~A-BOYCE [13]) 
have previously obtnined related results for certain boundary value problems for 
ordinary differential equations which are non-lineax in the eigenvalue pargmeter; 
their methods in the latter paper were strictly classical analysis. GooDwI~w [8] has 
also considered such problems. A few of our results apply to the case where the Hs 
are merely compact, namely the assertions of corollaries V.5-2 and V.6-1, where 
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we state t ha t  [ I -  2K(2)] -~ has poles at the poles of K(2) and at  the eigenvalues 
of the equation 

(1.3) 2 K ( 2 ) u =  u (uE~,~). 

These results are not  necessarily new; they  can be found in less general form in 
TA~ARKI~ [25; p. 148]. In addition, we construct Fredholm function(s) for K(2) 
in part  V and investigate their properties. 

Jus t  for the record, if K is any operator on J t  v, the eigenvalues ~ of K will satisfy 
the equation .~Ku = u throughout  this paper. 

I I .  - A review of  the spaces C(T) and of  the concept o f  trace. 

Let  A be any  compact linear operator defined on the complex Hilbert space JeF. 
Let ( A ' A )  ½ denote the nonnegative square root of A ' A ,  where A* is the adjoint 
of A. Then ( A ' A )  ~- is a compact self-adjoint operator on J@~; its eigenvalues 
{2i[(A*A)~]}, wri t ten according to geometric multiplicity, are called the singular 
values of A. I f  A * A  =/= O, i.e. if A ~ 0, the operator A will always have at  least 
one singular value. We write 

(2.~) re(A) = L[(A*A)~] = V#[(A*A)] 

and we note tha t  (Du~Fo~D-SCHWA~TZ [5; p. 1092]) 

(2.2) #,(A) = #,(A*). 

The numbers #~(A) are positive, and the sequence {#~(A)} has no finite limit point. 
The importance of the singular values of A in this paper partially follows from 

the inequali ty (Du~FORD-ScHwAg~Z [5; p. 1093]) 

(2.3) Z I~,(a)I-~< ~ [A~,(A)]-~ 
i i 

where p is any positive real number.  The eigenvalues of A (at most denumerable, 
since A is compact) are enumerated in the (possibly empty) sequence {2i(A)} ac- 
cording to (geometric) multiplicity (which will be defined); the summations in (2.3) 
are taken over all elements of the sequences {2i(A)} and {#~(A)}. Convergence 
of the series on the right in (2.3) wmfld obviously tell us something about the growth 
of the eigenvalues of A, provided, of course, tha t  such eigenvalues exist. Indeed, 
convergence of the series ~#~(A)-~ will enable us to (~ evaluate )) the series 

i 

~[),i(A)J -~ provided p is a positive integer. 
Let  us recall the meaning of the geometric multiplicity of the eigenvalue ).. = a 

of the operator A. Let  ~4Z(A) denote the null-space of A, i.e. let 

(2.4) ~ ( A )  = ( x e ~ :  A x =  0}. 



232 A . V .  LAGINESTEA - W .  E. :BOYCE: Convergence and evaluation, etc. 

Let  7 ~ a be an eigenvalue of the compact  operator  A. I f  A is compact ,  recall 
t ha t  there  is a positive integer i (depending on a) such tha t  

(2.5) JV'[ ( I  -- aA) ~] : ~'V[(I -- aA')~+~]. 

Fur thermore ,  the spaces in (2.5) are finite dimensional for compact  A (see Du~ro~D-  
Sc~wAlcTz [4; pp. 573, 579]). The space ~ [ ( I  - -  aA)~] is the j - th  generalized eigen- 
space of (I ~ aA) ; the  geometric mult ipl ici ty of the eigenvalue ~ ~ a is the maximal  
dimension of the  generalized eigenspaces of ( I ~ a A ) .  I f  A is a compact ,  self- 
adj0int  operator,  then  the  eigenvalue ~ = a of A is real and we can take  i ~ 1 
in (2.5). In  this case, equat ion (2.3) is trivial, since we ma y  set # ~ (A )=  IA~(A)t. 

Le t  p be any positive real number,  and let C(p) denote the collection of all compact  
linear operators A such tha t  ~#~(A)-~ converges. We write 

i 

Let  C(c~) be the collection of all linear operators A defined on J ~  with the norm 

(2.7) IAl = sup{lA l: and Ixl = 1 } <  + 

When it becomes necessary to refer to the Hilber t  space ~ on which A is defined, 
we shall f requent ly  write A ~  C ( p ; ~ }  instead of A ~  C(p). This need to refine 
the nota t ion obviously is impor t an t  in discussions where several Hilber t  spaces 
are under  consideration. I f  A is compact ,  then one can show (DuNFORD- 

SCEWA~TZ [5 ; p. 1089]) tha t  

(2.8) ]AI~ = rain {[/t~(A)] -~} ; 

hence if A ~ C(p) for all sufficiently large positive p, we have tha t  IAI~-> ]A[~ 
as p--> + c~. 

I f  l < p < c ~ ,  then C(p) is a Banach  space. I f  p satisfies 0 < p < l ,  then C(p) 
is not  a Banach  space because I I~ does not  generally satisfy a triangle inequali ty;  
however  I1~ does satisfy the << unor thodox  ~> triangle inequali ty 

(2.9) 1A + B[~<21AI~ 4- 21BI~ 

where the upper  p denotes a power;  the set C(p) is a linear manifold of 0 < p  < 1 
and does have the  proper ty  of completeness (DU~FORD-S0n-WARTZ [5; p. 1095]). 
I f  0 < p  < q<  c~, then  (Du~Po~D-Scn-wA~rz [5; p. 1093]) 

(2.1o) C(p) _c C(q) 
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and if A E C(p), then  

(2.11) IAI~< IAI~ 

if O ~ p ~ q < c ~ .  
If  A e C(p) and B ~ C(q), where 0 < p, q < c~, then  (Du~F0~D-Scn~VAZTZ [5; 

p. lo93]) 

(2.12) A B ~  C(r),  (r-~ = p-1 + q-l) .  

Fur the rmore  

(2.13) lAB I, < 2~/" IA~ lIBel • 

I f  we restr ict  p and q so tha t  l < p ,  q < z ~  then  we can improve (2.13) (DUNFORD- 
SCHWArTz [5 ; p. 1105]) 

(2.14) IABI,<IAbIBI~, (r-~=~-~+q-~). 

I f  A t e  C(pd, where 0 < p ~ < c ~  for each integer i in 1 4 i ~ n ,  then  

We shall need only the generalization of (2.14). I f  the p,  are subjected to the  ad- 
ditional restr ict ion tha t  l < p ~ < c ~ ,  then 

(2.14)' = ~ ~=1 

where r is defined in (2.12)'. 
I f  A e C(1) and if {~7~} is any  complete or thonormal  basis for J~', then 

(2.15) ~ [2~(A)] -1 = ~ < A ~ ,  %> 

where each of the series in (2.15) is absolutely convergent,  and where all bu t  a coun- 
table number  of terms on the right side of (2.15) vanish. The limit of the series on 
the right side of (2.15) is independent  of basis (DuNFORD-SCn~AnTZ [5; pp. 1097, 1104]). 
We shall denote  either of the quantit ies in (2.15) b y  v(A), i . e . ' the  t race of A. The 
operator  ~ is a linear funct ional  on C(1), and is continuous on C(1) with respect to 
the I I1 norm. I ts  cont inui ty  properties follow direct ly f rom the inequal i ty  

(2.16) Iv(A)l < IA]I 

which is a res ta tement  of inequali ty (2.3) (also see DU~FO~D-SC~WA~Z [5 ; p. 1104]). 
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If  q is any  positive integer then we may  write ).~(A ~) ----- [~(A)] q by the spectral 
mapping theorem (DuNF01~D-SCHWAI~TZ 4; p. 574), SO if AqE C(1), then 

(2.17) ~ [~(A)] -q = ~ <Aq~v~, qv~>. 

Let  ~¢C---- L~[0, 1] be the usual Hflbert space formed from the class of all complex- 
valued Lebesgue square-integrable functions defined on [0, 1]. Then (Du~Fon])- 
SCI~WA~¢Z [5 ; p. 1093]) A ~ C(2) if and only if there is a Lebesgue square integrable 
function a(x, y) defined on [0, 1]X[0, 1] such tha t  a(x, y) is the kernel of A. (The 
class C(2) is the class of all Hilbert-Schmidt operators on the arbi t rary Hilbert  
space .~.)  If  A e  C(1) then (see COCHICA'.N [3; p. 236]) if ~ f = L . . [ 0 ,  1], we have 

1 

(2.18) a(x, y)=fb(x, z)e(z, y)dz 
o 

where b(x, y) and c(x, y) are Lebesgue square integrablc on [0, 1IX[O, 1]. Hence 
a(x, x) can be defined via (2.18) almost everywhere on [0, 1], and is Lebesgue in- 
tegrable on [0, 1]. We have (see COC~RA~ [3; p. 243]) 

(2.19) 
1 

~:( A ) = f a(x,  x) dx  . 
O 

LV[ere existence of the integral in (2.19), indeed even mere continuity of a(x, y) on 
the uni t  square, does not  guarantee existence of v(A) (see COCI~RA~ [3; p. 51]). 

F rom what  has just been said, one can easily show tha t  the trace of A and the 
trace of the operator whose kernel is 

(2.20) 
1 

fc(x, z)b(z, y) dz 
o 

are equal. We shall discuss this more generally shortly. 
Let  JtC_-- L2[0, 1], and let A ~ C(2). Let  a(x, y) be the square-integrable kernel 

corresponding to the operator A. Sufficient conditions for A to be an element of C(p) 
for p < 2 are given in DU~Om)-Scn~VARmZ [5; p. 1117] in terms of existence of 
partial  derivatives of a(x, y), and also in terms of a H61der condition on a(x, y) 
(also, see C~A~<G [1]). Results can also be obtained if the variables x and y lie in a 
bounded region of a higher dimensional real Euclidean space (see D~FOR])- 
SCHWARTZ [5; p. 1119]). 

As a resul t .of  the considerations of DUN~OR])-ScEwARmZ [5; pp. 1116-1118]; if 

(2.21) 8yia(x, y) = b(x, y) 
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is square integrablc on [0, 1] × [0, 1], and if for some ~ in 0 < a < 1 and some con- 
s tan t  / ~>  0, we have  

(2.22) 
1 

o 

then it can b e  shown tha t  A e C(p) where p > 2/(1 -~ 2(k -~ ~)). As a consequence 
of (2.2), we may  replace a/Oy in (2.21) by  ~/3x, or a.ssume a HSlder condition (2.22) 
with respect  to the opposite variable. (See STI~F~SP~I~G [23], S W A ~  [24] for fur ther  
results). 

We re tu rn  to the general complex Hilber t  space 5~  in order to generalize some 
of the preceding. Firs t  we review a well known fnct ~bout the type  of operators 
being studied; this will prove most  useful in later  considerations. Let  p, q, and r 
be positive reals satisfying 

(2.23) 1/r-~ 1/p -~ 1/q 

and suppose tha t  D e C(r). We mainta in  tha t  there exist operators A e C(p) and 
BE C(q) such tha t  

(2.24) D :  A B .  

In  order to prove this, let {/~(D)} be the sequence of singular values of D, taken  
uccording to multiplicity,  and let #~ = #i(D) for convenience. Le t  W~ be an ortho- 
normal  sequence of eigenvectors of (D'D) ½ satisfying 

(2.25) /~. [(D*D)½j~f~ _~ ~f~. 

The sequence (%} defined by  

(2.26) q~-~ /~iDy)i 

is then an or thonormal  sequence of eigenvectors of (DD*) ~ as is well known 
(CocHRA~ [3; p. 213]). By  the Hilber t  theorem for compact  self-adjoint operators 
(DUNFOI~D-SCHWARTZ [5; p. 905]), the  vector  y given by  

( 2 . 2 7 )  y-u-X--~<X,y)i>~i, (X6~) 
i 

satisfies (D*D)½y ~ 0 or Dy----O. The series in (2.27) is taken  over the whole se- 
quence (~'i}. Hence by  (2.26) and by  the preceding we have 

(2.28) Dx = ~#~-l  <x, ~f~>~. 
i 
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Let  the operators U, V, and W be defined by 

i 

for arbi t rary zeg f f .  Then UeC(c~),  V~C(p)  and BeC(q) .  If  A-~ UV, then 
by (2.12), we have tha t  A t  C(p). Since 

(2.29) D = UVB = AB  

by  (2.23), (2.28), and by the definitions of U, V, A, and B, the equation (2.24) is 
verified. 

Le t  A~C(p)  and BeC(q) ,  where 0 < p ,  q~<oo and where 

(2 .30 )  lip + 1/q>1. 

Note tha t  A B E  C(1) and BA ~ C(1) by  (2.12) and by  the inclusion (2.10). 
(DuNFORD-SCHWARTZ [5; pp. 1098, 1104-1105]) 

(2.31) ~(AB) = v(BA).  

We have 

Strictly speaking, the proof in DUNFOI~D-SCHWARTZ (p. 1100) does not  cover the 
case where (say) q :  co, since they  use the fact tha t  B can be approximated (with 
respect to ]14) by operators of finite dimensional range; this is not  true if q = co. 
However, the minor difficulty can be overcome if we factor A into a product FG 
of two operators, each in the space C(2p) C_ C(2), where we have set q-~ co 
in (2.30). The latter faetorization is possible, of course, by  (2.24). We write 

(2.32) ~(AB) = ~(F(GB)) 

(2.33) = v((GB)F) 

(2.34) = ~(G(BF)) 

(2.35) = ~ ( ( B r ) ~ )  

(2.36) = -~(BA). 

In  order to obtain (2.33) and (2.35) we have used the fact  tha t  GB and BF are in 
C(2p) c C(2). By  induction, one can show tha t  if 

(2.37) As ~ C(p~), (i = 1 , . . . ,  n) 
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where 

(2.38) 

and where 

(2.a9) 

then  

Z 1/.P,> 1 

(2.40) T i ~ T  

where {_~,} is any permutat ion of {A,}. 

III. - Analytic functions and product spaces-A review. 

We continue to assume tha t  ~ f  is a complex Hilbert space. 
L e t p  be a fixed element in l < p <  oo, so tha t  ] 1~ is a true norm. Let  e be a fixed 

element in 0 < e <  ~ oo, and let A() d be a linear operator defined on all of ~ for 
each 2 in [41 < e .  We say the mapping (~) 2 -*A(2)  is analytic with respect to ]l~ 
for each 2 in 121<e if 

(i) A(2) eC{p;2ft ~} for each 2 in 12]<e; 

(ii) the mapping 2 --~A(2) is continuous with respect to I I~ for 2 in 12I < e; 

(iii) the limit (with respect to I I}) 

(3.1) lim A(2 + A2) -- A(2) 
~a--,o A2 

exists for each 2 in ]2] < e, where 14 ÷ A2] < e .  
The mapping 2 -*A(2)  is analytic with respect 

DUNFORD-SCHwARTZ [4; p. 228]) 

(3.2) A(;  0 = ~ 2~A~ 
i = 1  

to ]]~ in 141<e iff (see 

where A~ e C(p) and where the series in (3.2) is absolutely and uniformly convergent 
with respect to I]~ in 141 <e '  for each e' in 0 < e ' <  ~. The proofs involved here are 
similar to the proofs in the case where the functions are complex-valued. 

I f  l < p  < q<  0% then by the inclusion (2.10), by  the inequality (2.11), and by 
the definition of analyt iei ty,  the reader can show tha t  A(2) is analytic with respect 

(1) In the future, we will frequently say (somewhat inexactly) that A(2) is an analytic 
function or continuous function with respect to I1~. 
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to []~ in ]),] < ¢. The inequali ty (2.11) can be used to show tha t  

(3.3) ° 1 l im A(~) -- ~ ~ A ,  -+ 0 

uniformly in I~ l<~ '<e .  The absolute convergence of the series (3.2) with respect 
to I I~ implies its absolute convergence with respect to I[~ by (2.11). Obviously, 
al though A(~) is analytic here in two different senses, the ~iaclaurin coefficients At 
are norm invariant. 

I f  A(~) is analytic with respect to I1~ for each ~ in ]~] < s~ then, of course, 
all of the derivatives of A(~) (with respect to I I~) exist, and are analytic with 
respect to [t~ in 141 < s. 

I f  A(~) is the function previously described, then it is convenient to define the oper- 
ators m~ for k =  0, 1, ... by  the equations (see DUNFOaD-ScHwA~Z [4; pp. 228-229]) 

(3.4) m~(A(~)) = A~ 

(3.5) = (~/k ~)(d~A/a~*)(0) 

f A(~) d)~ (3.6) : (1/27d) -g~dY 
/ .  

where /7 is the positively oriented contour 

(3.7) ;~----- s' exp [i0],  0 < 0 < 2 ~ .  

The derivative in (3.5) and the integral in (3.6) are defined via the usual limiting 
processes with respect to I I~. The norm invariancc of the Maclaurin coefficients A~ 
yields the norm invariancc of the derivative and integral, considered as limits, 
in (3.5) and (3.6). I f  Ak~ C(1) for some fixed k, then we define the operator T~ by 

( 3 . s )  = 

(3.9) = ~(A~).  

The notation T~ will be used without  reference to the Hilbert space in question, 
since frequently several spaces will be discussed in the same proof. However, no 
confusion will arise due to this. 

I f  A(2) is analytic in ]~1 < ~ with respect to the I[1 norm, then we may  write 

(3.10) = 

since T is a continuous operator on C(1). 
Le t  p be a fixed element in l < p < c ¢ ,  and let b~(A)eC{p; 2/t ~) for each non- 

negative integer i and each % in 12I < e. Suppose, in addition, t ha t  the functions 
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b~(4) are unalytic in [4] < s with respect to [[~ and tha t  

(3.11) B(4) ---- ~ b,(4) 

uniformly in I~[<e' for each e' in 0 ~ e ~ s .  Then B().) is analytic  with respect 
to ]l~ in [2]<s ,  and the formula 

co 

(3.12) (d~/d4 ~) B(~) ~- ~ (a~/a)j) b~(4) 
i = l  

holds for 14] < e, since dJ/d4 j may  be expressed ~s an integral operator by  using the 
Cauchy formula (for fixed 4) 

(3.13) j~ ~-~B(4) ---- ~ ( # _  Z)j+ ~ d# 

r(~) 

where F(4) is the positively oriented contour 

(3.14) ~ = 4 + (~'--]41) exp [i0], ( 0 < 0 < 2 ~ )  

and where 4 satisfies the  condition 0 < 141< e ' ~ s .  The derivatives in (3.12) con- 
t inue to be norm invariant,  and the series in (3.12) converges uniformly with respect 
to []~ on the set ]~I~<e'<s as a direct result of (3.13) and of the uniform con- 
vergence of the series in (3.12). 

We may  write (3.12) as 

(3.15) m~(B(~)) = ~ -n(b~(4)). 
i = 0  

Furthermore,  if p ~ 1 in the preceding, then 

c o  

(3.16) ~(B(4)) : Z ~(b,(4)). 

Since ~ is continuous on C(1), equation (3.16) holds uniformly in [4]-~<s ~. We may  
~lso write 

(31 ) = 
i = 0  

if 1o = 1 in the preceding, since we may  apply rnk to both  sides of (3.16). 

CO~E~T.  - Strictly speaking, we should denote the m~pping (-----function) 
4 -~ A(4) by  A rather than  by A(~) ~nd we should use the notations rn~(A) and ~(A) .  
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However, the notations mk[A(4)] and ~[A(2)] are more convenient in this paper. 
In  this connection, we shall use boldface typing whenever an expression of the type  

O r  

• ~m~[A(~.)] 
j=(} 

J=0  

appears, in order to (( distinguish )) between the two <( variables ~. 
)Tote t ha t  we have preferred not  to ta lk about analyt ici ty with respect to I1~ 

0 < p  < 1, smce 11~ here does not  satisfy a triangle inequality. 

LEI~I:~A I I I .1 .  - Let  p and q satisfy 1 < p ,  q < oo and let 0 < e < ~- c<~. Suppose 
D(4) and E(4) are operator valued functions such tha t  D(2)E C{p, ~%f} and 
E(4)e  C { q , ~ }  for each complex 4 in 14f<e. Fur thermore  suppose t ha t  D(4) is 
analytic  with respect to [[~ for each 4 in 14[ < s, and tha t  E(4) is analytic with 
respect to []q for each 4 in 141 < s .  Then D(4)E(4) is analytic with respect to ]t7 
for each 4 in ]21 < s, where 

(3.18) ~ = max {1, (p-~ + q-~)-~}. 

We have 

(3.19) D(4)E(4) = Z 4~ Z Vmj(D(~'))] [m,_j(E().))] 
¢=0 5=0 

for each 4 in 14I < ~; the series in (3.19) converges uniformly and absolutely with 
respect to tl ;  for each 2 in ]4[<e', where e r is any number in 0 < e t < e .  

PROOF. - One can show from the definition of the derivative, from (2.14), and 

from the inequali ty 

(3.20) IA[~< IAI~, 

where r is defined in (2.14), tha t  D(4)E(4) is differentiable with respect to 

and tha t  

(3.21) (D(;~)E(4))'---- D'(4)E(),) + D(~)E'(~).  

Fur thermore  the continui ty of D(2)E(4) with respect to ][; follows from the con- 
t inui ty  of D(~) with respect to I I~, from the continui ty of E(4) with respect to [Iq, 
from (3.20), and from (2.14). Hence D(4)E(4) is analytic with respect to ][; in 

14t < ~. The series 

(3.22) D(2)E(4) ---- ~ 4'rn~VD(4)E(4)] 
i = 0  
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converges uniformly and absolutely with respect to 117 in 121 < ~', where 0 < ~ ' <  ~, 
by  DU~FO~D-ScrrWARTZ [4; p. 229]. The proof tha t  the coefficients of 2 ~ ia (3.19) 
and (3.22) are equal may  be carried out by  an appropriate generalization of (3.21). • 

COnOLLAgY II I .1 .  - I f  ](2) is a complex valued analytic function in 121 < e, and 
if D(2) satisfies the assumptions of lemma I I I .1 ,  then ](2)D(2) is analytic in 
[2]< e with respect to I1~. The Maelaurin series for /(2) D(2) about 2 =  0 may  
be computed by the usual Cauchy rule for products of Taylor series. 

PgooF. - Le t  E ( 2 ) = / ( Z ) I  and let q = c~ in lemma I I I .1 .  

L E ~ ,  I I I .2 .  - Le t  0 < e < +  oo, and let D(2) be an operator valued function 
such tha t  D(2)E C{1; ~ }  for each 2 in 12[ < e. I f  D(2) is analytic with respect to 
]11 for each 2 in 12[ < e, then the function ~(D(2)) is analytic (in the usual sense, 
i.e. with respect to the norm on the set of complex numbers) for each 2 in [21 < e. 
Fur thermore  the equation 

(3.23) (d/d2){T[D(2)]} = v{(a/a2)[D(2)]} 

holds for each 2 in 121 < e. 

P~oor .  - The assertion (3.23) follows directly from the inequality (see (2.16)) 

T[D(2 + A2)] -- r[D(2)] 
A2 

- ~{(a/a2)D(2)) !D(2 + A t ) - - D ( 2 )  < [ 32  -- (d/d2)D(2) ]1 

and from the fact tha t  the function D(A) is differentiable (with respect to ] [1), The 
cont inui ty  of the function ~[D(2)] follows similarly from (2.16) and from the con- 
t inu i ty  of D(2) with respect to 111. Hence the l emma is proved. • 

PRODUCT SPACES. -- The following is presented for review only, and is not  believed 
to be new. 

Le t  n be a positive integer. We define ~ft,3 to be the Hilbert space of all n X 1 
column vectors 

u =  (ul ,  . . . ,  u~) r 

where T indicates a transpose, and where u~cJct ° for each i in l < i < n .  The 
(standard) inner product  on ~t °t"3 is given by 

9t 

(3 .24)  < . ,  v> = ~: <~,, ~,> 
i=1 

where 

v =  (vl, . . . ,  v~) ~, ( v , e ~ ) .  

16 - A n n a l i  d¢ Malemat ica  
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The operat ions of addit ion and scalar mul t ip l icat ion on JcF r'~ are defined in the  

usual  way.  
Le t  a and b be fixed integers such t ha t  1 < a, b < n. Le t  A be any  opera tor  on J/t°, 

and  let ~ / b e  the  n × n ma t r ix  wi th  A as the  element  in the a - th  row, b-th column, 

and  wi th  the zero opera tor  ( o n e )  elsewhere. 57ore t ha t  ~ / i s  a compac t  opera tor  on 
~ ' ~  iff A is a compac t  opera tor  on ~ .  I f  ~ or A is compact ,  then  we m a y  write,  
as the reader  m a y  show, 

(3.25) #~(.s/) ~ - /~ (A)  

where #~(z¢) and u~(A) are the  (non-decreasing) sequences of singular values  of z¢ 
and A, t aken  according to mult ipl ici ty.  Hence  

(3 .26)  = IAI  

for p in 0 < p ~ < c ~  and for  compac t  .~¢ or A, where b o t h  sides of (3.26) m a y  pos- 
sibly equal + c¢. I f  ei ther g¢ or A is not  compact ,  bu t  has finite (< sup ~> norm 

(see (2.7)), then bo th  have  finite <( sup ~> norm,  and  (3.26) is valid wi th  p ---- c~ as 
the  reader  m a y  prove.  Since the space C(p) is a l inear manifold,  a m a t r i x  opera tor  
onJCF E~ is in C(p,g/g E~} if each of its e lements  (which are operators  on J/F) is in C(p ; ~ } .  

A converse to the  las t  s t a t e m e n t  holds. Le t  Jd/be an n X ~+ ma t r i x  of opera tors  
o n ~ .  Le t  M,.  be  the e lement  in the i - th  row, j - th  column of J~, where 1 < i ,  j < n .  
We  claim t h a t  ~ e  C(p;.~ :~) implies M ,  e C(p;~fF} for each i and  j sat isfying 
:1<i,  j < n .  Le t  a and  b be ]ixed integers such t h a t  1 < ¢ ,  b<~n. Let  ~ b  be the  nXn  
m a t r i x  with the  ident i ty  opera tor  on Jtt ° as the  e lement  in its a - th  row, b-th column, 

and wi th  zero elsewhere. Then  b y  (3.26), i t  suffices to show t h a t  the  m a t r i x  oper- 
a tor  ( M . b ~ b )  is in C{p;~E'a}. (The ma t r i x  M . ~  has Ma~ as the  e lement  in 
its a - th  row, b-th column, and  zero elsewhere; the mul t ip l icat ion here is, of course, 
similar to the  mult ipl icat ion of ~ ma t r i x  b y  a scalar.) Bu t  

(3.27) 

and 

Use of (2.12)' and  use of the  assumpt ion  t h a t  J / /~  C{p;J/F [~]} will t hen  yield the 

result  t h a t  M o b ~ b E  C{p;JIF c~1} and  hence t h a t  Mabe C{p;J~f}. I f  0 < p  < c~ we 
have,  a f o r t i o r i ,  the  compactness  of Ma~. I f  p ~ c~ and  if dg is compac t ,  then  
by  (3.27), the  m a t r i x  opera tor  M a ~ b  m u s t  be compac t ;  hence, b y  previous  com- 

ments ,  M~b mus t  be  compact .  We  have :  

I J E ~ A  I I I . 3 .  - Le t  M~j be  an opera tor  on J ~  for each integer  i and  each in- 
teger j satisfying 1 < i ,  j < n .  Le t  J /  be the  nXn mat r ix  with M,- in its i - th  row, 
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j - th  column fo r  each pair  of integers i and j in 1<i~ j < n .  Then J / e  C{p;J/C :~} 
if and  only if Mi~e C{p;a/g'} for each integer i and  each integer ~ in l< i ,  ~<n, 
where p is some fixed element in 0 < p < co. I f  p = 1 in the preceding, then 

q~ 

(3.28) z(///) = ~ z(M,) .  
~=1 

PROOF. - Clearly only the last assertion in the lemma needs to be proved.  Le t  
{9=} be a complete or thonormal  set in the space . ~ .  Le t  ~,~ be the n × 1 column 
vector  with ~0~ in its i - th  row (for ]ixed i) and with the zero vector  in ~ elsewhere. 
The set ~,= is a complete  or thonormal  set ina/g°E<; use of the analogue of (2.15) will 
easily yield (3.28). [] 

We wish to consider the case where the mat r ix  /2/, previously described, is 
dependent  on a pa ramete r  2. As before, we let n denote  a fixed positive integer, 
and we let  e denote  a fixed element in 0 < ~-<< q-co .  For  each pair  of integers i 
and j satisfying 1 <.i, j <% and each complex ~ in [~[ < ~, we assume tha t  the func- 
tion M~j(~) is defined and has values in C{co, ~ } .  Le t  d//(~) be the  nXn  matr ix  
with M~j(~) in its i - th  row, ]-th column, for each pair  of integers i and j in 
1 < i ,  ~<n .  

L~mvIA I I I .4 .  - Suppose the ma t r ix  valued funct ion/ /g(~)  is analyt ic  with respect  
to ]]~ in IZ]<e,  where 0 < e < + c o  and l < p < c o .  Le t  the ~ac lau r in  series for  
~¢[(~) be given by  

co 

(3.29) d¢'(2,) = ~ ~.h.Hd{~). 
h = O  

Then M~j(2) is also analyt ic  with respect to I [~ in 12I < e for each pair of integers i 
and j satisfying l< i ,  j<n; if the  Maclaurin series for M~j(~) is given b y  

co 

(3,30) M~.(~,) = ~ _  --i~ 
h=O 

then  M~ ) is the element in the i - th  row, j - th  column of the matr ix  ///(h) in (3.29). 
The series in (3.29) and (3.30) are uniformly and absolutely convergent  with re- 
spect to I]~ in !~]<e '  for  each e' in 0 < e ' < e .  

PROOF. - Le t  a and b be fixed integers in l<a,  b<n. As before, let ~'ab denote  
the ~ ×  q~ mat r ix  with the ident i ty  operator  on J/~ as the element in the a-th row, 
b-th column, and with the zero operator  (on ~ )  elsewhere. Le t  ~(h} denote the 

~'~ ab 

element in the a- th  row, b-th column of the mat r ix  //g(7~} in (3.29). l~irst we show 
co 

convergence with respect  to I [~ of the series x: ~h a,{h}, then  we shall show tha t  the 
h = 0  

la t te r  series is precisely the  element in the a-th row, b-th column of the mat r ix  ~ ( ~ ) .  
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Once these facts have been proved, the equality of M,~(2) and of the latter series 
would follow bY the very definition of M,~(2). ¢o 

In order to prove convergence of the series ~h~r(~} . . . .  a~, we first note the relation 
h = 0  

(3 .31)  = 
h = k  .~ 

l 

which is obtained by replacing Mab in (3.27) by ~ ~h r~r(h} . . . .  ~ and by replacing J [  
h = k  

in (3.27) by ~ 2~d4 (~}. We claim that  
h = k  

(3.32) 

l 
(3.33) <~ ~ ,~hJd(h} . 

h = b  

Z l 

The equality (3.32) follows from (3.26) with A~ ~ '  ,~h?l/f{h}-"-Lab replacing A and ~ ~h ~r{h} ~: 
-mL ab ~ ab 

h = k  h = b  

replacing ~¢. The assertion (3.33) follows from (3.31), from the fact that  [~,~1~ : 
c o  

: ]~-b~l~ = 1, and from (2.14)'. Since the series ~ ~hj/}h} is (uniformly) convergent 
h = 0  

with respect to ]l~ in ],~[<<.s'<s, the relations (3.32)-(3.33) show that  the sequence 
l 

{ 5 ~hM~}/ must be uniformly Cauchy convergent in I~l<~e'< s. Since C{p;24 "~} is 
~h=0 J 

complete, the latter sequence must converge uniformly with respect to I I, to its 
o o  

limit ~ ~h ~}h} . . . .  i n  
h ~ 0  

In  order to show that  ~a/r(h} - - " ~ a b  iS precisely the element in the a-th row 

b-th column of the matrix ~'(~), we set k = 0 and l----co in (3.31). The reader 
may show that  this is permissible. The ensuing relation, along with (3.29), proves 

c o  

that  ~ h  ~r{h}. "~ab is the element in the a-th row, b-th column of J/4(~); by definition 
h = 0  

of Mab(~), the equality (3.30) must follow. • 
For convenience in referencing only, we state the following lemma, which is a 

consequence of previous considerations. Recall the definition of the operator m~ 
in (3.4). 

L ~ r A  111.5. - Let J/(~) be an n X n  matrix of operators M~(2) 
J//(~) be analytic with respect to I ]~ about ). = 0. Then the functions 
also analytic with respect to l]~ about ~ ~--0. Suppose 

on ~¢g~. Let 
M~(2) are 

(3 .35)  e c ( p  
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for some fixed integer k > 0  and some fixed p in 0 < p  < c~. Then 

(3.36) 

for each i, j in 1<i ,  j < n. 

(3.37) 

If  p ~-1  in the preceding, then 

= • 

i = 1  

IV. - The eigenvalues of operator polynomials. 

We assume tha t  H(2) is given by  

$ 

(4.1) H(z) = 2 H ,  
i = 0  

where the H~ are compact  linear operators on the complex Hilbert  space 3~. Under  
additional assumptions, we will obtain results concerning the convergence of the 
sums ~ ,~-~ and its evaluation for integral values of p, where (~}  is the sequence 

of eigenvalues of the equat ion 

(4.2) ;d t ( )Ou= u ( u e ~ )  

t aken  according to multiplici ty in some sense yet  to be defined. I t  is not  clear 
ei ther tha t  this multiplicity is finite, or even  tha t  the eigeavalues of (4.2) are deuu- 
merable.  LA.~-CASTER[14] and KELDYSH[12] h a v e  obtained results in this area; 
we will short ly discuss a geometric definition of mult iplici ty given by  KELDYS~ [12]. 
Our approach will ul t imately yield a definition of mult iplici ty which is equivalent  
to tha t  of KELDYSI-I. Since the results on operators independent  of ~ are extensive,  
we will t ransform (4.2) into a finite sequence of ((equivalent)) mat r ix  opera tor  
systems, of which the  last system will involve an operator  independent  of ~. We 
can then ten ta t ive ly  define the mult ipl ici ty of an eigenvalue in the usual manner  
described in par t  I I  for operators independent  of ~; this definition can then  be 
related to the (more natural)  one of Keldysh,  and to the Fredho lm function(s) to 
be constructed.  Also, by  utilizing the propert ies of the  system whose operator  is 
independent  of ,~, we can initially set up a formula for the evaluat ion of the sums 
~ - ~  via  formula (2.17), and then  t ranslate  the results back in terms of the oper- 

a tor  H(~). Finally,  certain bounds will be obta ined on [ I - -2 H (A ) ]  -1 and on the 
Fredho lm funct ion;  these will assist us later  on when we consider operators which 
are meromorphic  functions of A. First ,  however,  we will briefly discuss the results 
of KELDYS~ [12]. 
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Under  the assumption tha t  the H~ are merely compact ,  ]{ELDYSH [12] states, 
wi thout  proof~ the proper  construct ion of a chain corresponding to the eigenvalue 
2 = a of (4.2). A chain is an appropriately chosen finite sequence (Yo, . . . ,  Ym) such tha t  

dJ ,~=a 
(4.3) y~ ---- ~ (1/j !) ~ (2H(2)) y~_j 

5=0 

for  k ~-0,  . . . ,  m. The integer m here is assumed to be maximal.  I f  H(2) is inde- 
pendent  of 2~, the vector  y~ is simply an element of the generalized eigenspace 
JV'{ ( I -  a l l )  ~+~} described by  (2.4). The y~ are not  assumed to be linearly independent ;  
if ~ e ~  and I~I----1, then  the operator  H(2) defined b y  the equation 

(4.4) 

has the proper ty  tha t  2 ~ 1 is an eigenvalue of (4.2), and m---- 1 with Yo= Yi = ~v. 
If  the length of the chain (yÜ, .. . ,  y~) is  defined to be ( m +  1), then  the 1Ed- 

dysh multiplicity M(a) of the eigeavalue 2----a is the sum of the lengths of all 
chains generated by  an appropria te  basis for the eigenspace. Keldysh implies tha t  
M ( a ) < +  oo. Le t  R(~) denote  the resotvent of H(2), i.e. let  R(2) satisfy 

(4.5) I + ~R().) = [I --2H(~)] -1 

(Keldysh calls 2R().) the  resolvent.) Keldysh asserts tha t  if 2 - -  a is an eigenvalue 
of (4.2), then 2 ~- a is a pole (5) of R(2). Le t  2~(a)R(2) denote the principal (i.e. sin- 
gular) par t  of R(2) near 2-----a; then  Keldysh states tha t  

(4.6) "c~(a)(,~H(]t))'(,~R(]~)) - -  M(a) 

Since there  are no proofs in the paper  of Keldysh,  we will develop our theory  
independent ly  of his; however,  it will be interesting to see how the (algebraic) mul- 
t iplicity of the Fredholm function(s) (to be constructed) at  the eigenvalue 2 - - a  
(considered as a zero of the Fredholm function(s)) is related to the geometric defi- 
nit ion of mult iplici ty given by  Keldysh.  

For  review and for future  reference, we state  a few well known results. Le t  zo 
be some arb i t rary  complex number.  Le t  us suppose tha t  [I--zoH(zo)] -1 exists 
i.e. t ha t  [I--zoH(zo)] is a one-to-one operator  or equivalently,  t ha t  )~--Zo is not  
an eigenvalue of (4.2). Then we maintain tha t  s > 0 exists such tha t  if 12--z01 < s, 
then  [I--2H(2)] -1 exists, is defined on all of J4 °, and the mapping 

(4.7) X -> [ I - -~H() t ) ]  -~ 

(2) This will be proved independently in theorem IV.3. 
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is analytic  with respect to ]1~. The lat ter  implies, of course, tha t  [ I - -2H(2 ) ]  -~ 
is an element of C(oo). First  of MI~ we maintain  tha t  )~-----Zo is not  an eigenvalue 
of (4.2) iff [I--zoH(zo)]  -~ exists, is defined on all of J~, and is an element of C(oo). 
These facts follow from the compactness of H(zo), and from standard theorems 
concerning the operator [I - - ,~H(%)]  -~ (see DV~FO~I)-Sc~wA~TZ [4; p. 579]). From 
t h e r e s u l t s  s tated in DV~OR~)-SCnWA~¢Z [4; p. 584], we have tha t  

(4.8) [~-  i ~ (~ ) ] -~  = U -  zoH(~0)]-~ ]~ { [~r(1)  - -  zoO(z0)] EZ-- ~0~(z0)]-l} j 
i=0 

for each complex 2 near the point zo. More specifically, if 0 < ~ < 1, then E ~ e(U ) 
exists such tha t  the condition f2--z0[< e implies tha t  

(4.9) ])'H(,~) - -  zoII(zo)],, < U ]I - -  zoIt(zo) -~ ]~1. 

Clearly (4.9) is a consequence of the analyt ic i ty  (and hence the continuity) of the 
mapping 2~-+H(2) wi th  respect to I I~. Using (2.14)' with P i =  r =  oo, we can 
verify the absolute and uniform convergence of the series in (4.8) with respect 
to 1 l~, provided I2 . -  z0I< e. The results previously stated concerning the operator 
[I--)~H(,~)] -1 follow immediately.  The reader should recall the definition of the 
trace operator r, and the operators rn~ and r~ given in (3.4) and (3.8). 

We would like to say a few words about the work we are about to do. One of 
our goals, of course, is to provide a formula (see (4.102)) for the evaluation of sums 
of reciprocal powers of the eigenvMues of (4.2). We will t ransform (4.2) into a suc- 
cessive (finite) sequence of ~ equivalent ~ matr ix  equations; each equation will in- 
volve an operator polynomial whose degree is one less than  the degree of its pre- 
decessor. The first ma t r ix  equation (~ equivalent )~ to (4.2) is given by (4.22) (see (4.12) 
and (4.15)}. In  the same way we constructed J(;~) from H(2),  we will continue the 
process of matr ix  construction in theorem IV.3 until  we arrive at  an equation 
(<~ equivalent  ,) to (4.1)) whose operator is independent of 2. Then we can apply (2.17), 
and translate the results in terms of H(A) in order to obtain (4.102). Equat ion (4.41) 
will play ~ key role for the latter purpose, as we will see. Equations (4.41) and (4.102) 
are to be proved for integers k > k o - - 1  (see (4.11) and (4.16)). :Note the <(invar- 
ianee ~) of ko by comparing (4.16) with (4.29) (see (4.24) through (4.28) for the de- 
finition of the numbers fi~). 

Several things are important  in this lemma: we must  prove existence and equality 
of both  sides of (4.41) for integers k>/~o--1,  and we must  prove the analyt ici ty 
of (4.42) with respect to []1, provided k > k 0 - - 1  and provided 2 is not an eigen- 
value of (4.2). The trace of (4.42) is related to the logarithmic derivatives of the 
Fredholm functions to be constructed in theorem IV.3 (see (4.97)), and so the 
analyt ic i ty  properties of (4.42) are essential. In  order to prove existence of the 
traces in (4.41) (see e.g. (4.38) in (v)), and in order to prove analyt ici ty of (4.42) 
with respect to I I~, we shall assume (4.17) and certain anMytici ty properties of (4.19). 



248 A . V .  LAGI~ESTI~± - W. E. ]3OYCE: Convergence and evaluation, etc. 

These assumptions are to be considered as induction assumptions;  their  analogues will 
be easy to prove for the  last operator  (i.e. the  operator  which is independent  of 4) 
in the sequence of operators to be constructed.  We show here tha t  if (4.17) holds, 
~nd if (4.19) h~s certain analyt ic i ty  propert ies,  then their  analogues (see (iii)) hold 
for the  predecessor H(2) of J(~). Wi th  the aid of (iv), we can then  relate (4.30) 
with (4.38) and prove (4.41). Wi th  the aid of (iv), we can also relate the ~n~lyticity 
properties of (4.31) with the an~lyt ici ty of (4.42). 

The inequal i ty  (4.44) will help us l~ter on to establish a bound on [ I - - t H ( 2 ) ]  -~, 
which will be necessary when we add a certain type  of meromorphie  operator  to H(~) 
in par t  V in order to generalize our results. In  par t  VI,  we will show how (4.102) 
can be used to obtain more explicit expressions for the sums ~ ).~-(~+~) in terms of 
the operators H~. 

The conclusions (i), (ii), and (viii) of lemma IV.1 do not  depend on acceptance 
of (4.17) and acceptance of the analyt ici ty  of (4.19). We remark  tha t  (4.17) and the 
analyt ici ty  of (4.19), along with (iii), can be proved in a direct way  which is, per- 
haps, more computation~]ly involved than  the methods we have  chosen here. 

L ~ ,  IV.1. - Le t  H(~) be given b y  (4.1), where s is an integer such tha t  s > l ,  
where ~ is a complex p~rameter  and where the H ,  are linear operators on the complex 
t I i lber t  space ~ .  Le t  us assume tha t  

(4.11) ~ ,  e c { ~ , ; ~ }  

for each integer i in 0 < i  < s, where :¢~ is a positive real for each integer i in 0 < i < s. 
There are linear operators A, and B, on ~ such tha t  

(4.12) 

where 

(4.13) 

and 

(~.14) 

H ,  -~ A , B ,  

A, e C{((~ + ~)/s)~} 

We define the 2 × 2  matr ix  J ( t )  by  

i=O ) 

and we regard J(,~) as an operator on the Hflbert  space ~a[21=~Xff/°. Let  

(4.16) G = m a x ( ( . / +  1)a~: 0 < i < s }  
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and let us suppose tha t  

(4.~7) , m { [ J  - ~J(~)]-~} e C{ko/k;~ E~} 

for each non-negat ive  (8) integer k, where J is the ident i ty  operator  on ~E21. Le t  
y(k) be defined by  

(4.18) y(k) = m a x { k o / k ,  1} 

and let us fur ther  suppose tha t  
k - - 1  

(4.19) [ J  - -  ~J(2)] -~ - -  ~ 2J ~n,{[~¢ - -  ~,J(X)] -~} 

is an unalytic function with respect to I Iy(k) for each positive integer  k~ and for 
each ~ which is not  an eigenvalue of the equat ion 

~J(2)~= ~ (~e~:2~). 

The  following results are then  valid. 

(i) Let 

(~.2o) ~ = (u~) u~ 

where u ~  for i = 1 , 2  We have  

(4.21) ~H(I)  u = u 

if and only if 

(4.22) ~J(~) ~ = 

provided 

(4.23) ul  -~ u ,  u2 -~ ~ B ~ u .  

Hence ~ is an eigenvMne of (4.21) iff 2 is an eigenvMue of (4.22). 

(ii) We may  write 
S--1 

(4.24) J(~) _-- ~ ,~J~ 
i = O  

where the J~ are independent  of 4. I f  

(4.25) fl~_~ = (i/s) max{s~,_x, (s + 1)x,} 

(4.26) flo : max{no, (s + 1)~,} 

(3) We shall assume that ko/k = ~ if k = O. I t  is clear that m o ( [ f l -  2J(~)] -1} = ~¢ 
so (4.17) is correct if k = O. 
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and 

(4.27) fl~ = ~ ,  l < i < s - - 2  

then 

(4.2s) J,  e c{fl,; ~C :~} 

for each i in 0 < i  < s - -  1. Fur thermore 

(4.29) ko : max{( / -b  l)fl~: 0 < i  < s - -  1}. 

(iii) We have 

(4.30) 

if k is a non-negative integer and if (4.17) is accepted. Fur thermore  if the assumption 
about  the analyt ici ty of (4.19) is also accepted, then 

k - - 1  

(4.31) [ I  - -  ~H(~ ) ]  -~ - -  Z ~J m j { [ l  - -  ~ H ( X ) ]  - I }  
J=o 

is an analytic function with respect (~) to [ It(k) at  all points ~ which are not  eigen- 
values of (4.2), where y(k) is given by (4.18). 

(iv) Le t  i be a fixed integer satisfying O < i < s .  Let  A and B be operators 
on ~ such tha t  

(4.32) 

and 

(4.33) 

where 

(4.34) 

Then 

(4.35) 

(4.36) 

and 

(4.37) 

A e C{p; ~ }  

0 < p ,  q < o o  and where 

lip + Z/q > 1/~. 

if k is any integer such tha t  k > ko--1, we have tha t  

m k { ) j A B [ I  - -  ZH(A)] -z} e C{1, J~} 

~k{2~AB[I - -  ),H().)] -1} = v~{Z~B[I - -  ;~H().)]-IA} 

provided (4.17) is accepted. 

(~) In particular, if k > ko-- 1, then (4.31) is analytic (where defined) with respeot to [ [1. 
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I f  (4.17) is accepted, then the previous results continue to be valid if the space 
is replaced by J4°I21~ if H(k) and I are replaced by J(k) a n d J  respectively, if ~ in (4.34) 
is replaced by fl~, and if i is now restricted so tha t  O<i<s--1.  

(v) If  k is an integer such tha t  k>ko--1, and if (4.17) is accepted, then  we hava 

(4.38) 

(4.39) 

and 

m~{[kH(~)]'[Z-- ~n(k)]-'} e C{~,~} 

m k { [ I  - -  An(k)]-~[kH(k)] '} e C{1,~} 

(4.4o) ~:~{[kH(k)]'[I-- kH(k)]-~} = ~ { [ 1 -  kH(k)]-~[k~(k)]'} 

where the derivatives in (4.38)-(4.40) are taken with respect to (say) I]~. 
I f  (4.17) is accepted, then the previous results continue to be valid if the space ~ '  

in (4.38) and (4.39) is replaced by ~g~E2j, if H(2) and I are replaced by J(k) and J ,  
and if k continues to be restricted so tha t  k~>ko--1. 

(vi) We have tha t  

(~.4~) ~:~{[kJ(k)]'[X-- kJ(k)]-~} = ~{[;~H(k)]'[/-- kH(k)]-~} 

pr6vided k is an integer such tha t  k>~ko--1, and provided (4.17) is accepted. 

(vii) The functions (5) 

k--1 

[~(k)]'[z - kH(k)]-~ --  ~ 2 m j { [ X ~ ( X ) ] ' [ ~  - -  X H ( X ) ]  - 1 }  
J ~ 0  

(4.42) 

and 

(4.43) 
k--1 

[kJ(k)] '[J-- ~g(k)]-l_ Z 2 mjf [xJ (x ) ] ' [ J -  xJ(X)]-l} 
5=0 

are analytic with respect to I I1~ provided k is an integer such tha t  k~ko--1, 
provided ,i is not  an eigenvalue of (4.21) (or equivalently of (4.22)), and provided (4.17) 
and the assumption ~bout (4.19) are accepted. 

I f  the factors [kH(k)]' and [ I - -kH(~) ]  -1 in (4.42) are commuted,  the conclusions 
of this part  remain valid. A similar s ta tement  holds for (4.43). 

(viii) The inequality 

(4.44) 

(5) If we may ~ake l~ = 0 in (4.42) and (4.43), the series in (4.42) and (4.43) are assumed 
to vanish. 
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holds at  all points ~ which are not  eigenvalues of (4.21) (or equivalently,  of (4.22)). 
P~ooF.  - Assertion (i) is easy to show; hence the verification is left  to  the  reader.  
Note  tha t  the faetorizat ion (4.12) (which is not  unique) is possible because of (4.11) 

and because of the discussion concerning equation (2.24). 
~or  the proof of (4.28), note  tha t  

(4.45) 
\B, ~t.o 0 / 

for 0 < i < s - - 1 ,  where 5 ,  is the Kronecker  delta. Use of (4.11), (4.13), (4.14), (2.10) 
and of lemma I I I .3 ,  yields the result  (4.28). Note tha t  the special case where 
i --~ 0 ~ s - -  1 must  be handled separately,  al though the basic formulas (4.25) and (4.26) 
are still consistent. The  complication here is tha t  the mat r ix  J ,  will have  three non- 
zero components  if i----0 ~ s - - l ,  whereas J~ will have  one or two non-zero com- 
ponents  if i >  0 or s >  1. 

The rest  of the assertions in (if) can be proved  by  the reader. 
In  order not  to break up the cont inui ty  of the proof, we will assume (for the 

t ime being) tha t  

( [I-~H(~)]-~ ~[I--~H(~)]-~A~ I 

Assertion (4.30) follows from (4.17) and from lemma I I I . 5  since (by (4.46)) the 
operator  [ I - - 2 H ( ~ ) ]  -1 is the element in the first row, first column, of the mat r ix  
[ J - - 2 J ( ) 0 ]  -~. Similarly, the assertion about  the analyt ie i ty  of (4.31) is a conse- 
quence of the analyt ic i ty  of (4.19) and of lemma I I I .4 ,  since, by  (4.46) and l emmaI I I . 4 ,  
the operator  (4.31) is the element in the first row, first column of the mat r ix  

operator  (4.19). 
We shall prove (iv) only in the case where A and B are operators on ~tg ~, and 

not  onJ ( f  ml. We shall prove only (4.35), since the proof of (4.36) is essentially iden- 
tical. The  only case of interest  in the proof of (4.35) is the case where k>i,  since 

if k < i, we have  tha t  

(4.47) m~{,~AB[I -- ) j / (~)]- l}  ----- 0 

by  the analyt ic i ty  of [ I - - ~ H ( 2 ) ]  -1 with respect to [ l~ about  2 ~ 0 (see (4.8)). We 

have tha t  

(4.48) mk{2~AB[I -- 2H()0] -1} ~-- ABm~{~[I  --  2H(~)] -1} 

since A and B are independent  of ).. By  (4.30), we see tha t  

(~.49) .,~o{ ~[z- ~H(~)]-q = m~_~{[z- ~s(~)]-~} ~ Ciko/(k-- i);~} 



A. V. LAGINESTRA - W. E. BOYCE: Convergence and evaluation, etc. 253 

provided k >i.  Hence 

(4.50) -n{~'~B[Z--  ~H(~)]-~} e C{t; ~ } ,  

where by (4.32), (4.33), (4.49), and (2.12)' 

(4.51) 

By (4.16), we see that 

(4.52) 

1/t = z/p + 1/q + ( k - i ) / & .  

1/~,> (i + ~)/&. 

Hence by (4.34), (4.51), ~nd (4.52), if k > k 0 - - 1 ,  and k>i,  the inequalities 

(4.53) 1/t > 1/~, + ( k -  i)/~o 

(4.54) > (k + ~)/ko 

(4.55) > 1  

hold. Thus by the preceding and by the inclusion (2.10), the operator on the right 
(and hence the left) side of (4.48) is an element of C(1, ~ }  and does indeed have 
a trace. The same conclusions, of course apply to the operator m~{A~B[I~H(~)]-IA} 
in (4.36). 

In  order to prove (4.37), we apply the trace operator z to both  sides of (4.48), 
and note tha t  if k>i,  then 

(4.56) 

(4.57) 

(4.5S) 

Tk{2'AB[I -- AH(A)] -1} = z{ABm~{2'[I-- ,~H(2)]-1)} 

= ~ { 2 ' B [ I - -  ~H(2)]-IA}. 

Equat ion (4.56) follows from (4.48) and (3.8). Equat ion (4.57) follows from (2.40); 
the requirement (2.39) for use of (2.40) follows from (4.51)-(4.55). Equat ion (4.58) 
is proved in a manner  similar to the proof of (4.56). Hence (4.37) follows. 

The other assertions in (iv) are similarly proved because of the (~ invariance 
of ko (see (4.16) and (4.29)). 

In  order to prove assertion (4.38), it suffices to show tha t  

(4.59) mk{2'H,[I -- 2H(~)] -1} e C{I; ~ }  

for each integer i in O<i<s and each integer k > k o - - 1 ,  since rn~ is a linear oper- 
ator. The lat ter  follows immediately by  setting 

(4.60) A = H~ B = I 
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in (4.35). By  making the identification (4.60) in (4.36) and (4.37), it  is thus clear 
tha t  (4.39) and (4.40) also follow. Similarly, the remaining assertions in (v) can 
be demonstrated;  the symmetrical  relations (4.!6) ~nd (4.29) come into play here. 

In  order to prove (4.41), note tha t  the elements in the first row, first column 
and second row, second column of the matr ix  [£J (~) ] ' [ I - -2J (2) ]  -~ are (see (4.15) 
and (4.46)) 

(4.61) 

and 

(4.6~) 

s--1 

~=0 

~'B~[I-- ~(Z)]-IA. 

respectively. By  (v), we have tha t  

(4.63) 

provided k>~ko--1. Hence by (3.37), if k>~ko--l, we have 

(4 .64)  v~{[~J(~)] ' [~  ¢ - -  ~J (~ ) ] -~ }  ~- 

S--1 1 ~k{ ~ (i + 1)2'H,[1--~H(~)] -~ + s2*H~[I--2H(~)] -~ + ~k{2~B,[I--2H()O]-~A,}. 

By (4.12), (4.]3), (4.14), and by  the results of assertion (iv) with 

(4.65) 

we have~ if k>~ko--1, 

A ~ A, B ~ B8 

(4.66) 

Hence (4.41) follows from (4.64) and (4.66). Note tha t  the assertion (4.59) guarantees 
existence of each term in (4.64) and (4.66) of the form 

(4.67) ~{(i + 1)~,/~,[~-ZH(~)]-I} 

provided k >~ ko --  1. 
We will prove the analyt ici ty of (4.42) with respect to I11, provided k~>ko--1 

and provided 2 is not  an eigenvalue of (4.2). I t  suffices to prove analyt ici ty (with 

respect tol l , )  of 
k--1 

(4.68) ~,H,[z- ~(~)]-1 ~:2m~{x,H,[z_x~(x)]-l} 
5=0 
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for each integer i in 0 < i  <s ,  subject of course, to the restrictions just  imposed on 2 
and  k. We may  write (4.68) as the sum of 

k + i - - 1  

( 4 . 6 9 ) ) J H ( [ I  - -  2H(Jl)] -~ - -  Z 4' r n , { ; U H , [ I  - -  ~.H(~,)] -z} 
5~i) 

and of 
k+/--I 

(4.701 ~E Z m,{x,~,[z-  xH(x)]-,}. 

Iqow (4.70) is a polynomial in 4, since the coefficient of 2 j in (4.70) is an operator 
independent of 4. By  (4.59), it is clear tha t  (4.70) is an entire function of 2 wi th  
respect to 1[~, provided k > k o - - 1 .  I t  suffices to show, therefore, tha t  (4.69) is an 
analytic function with respect to I]~, provided k > k o - - 1  and 2 is not  an eigen- 
value of (4.2). We note tha t  

(4.71) , . ~ {2 ,H ,Ez-  2H(2)]-1} = 0 

for each integer j in O < j < i - - 1 ,  by the analyt ic i ty  of [ I - - 2 H ( 2 ) ]  -~ with respect 
to ]]~ about  ~-----0 (see (4.8)). We m a y  rewrite (4.69) as 

k+t--1 

(4.72/ Z 'HU--  XH(2)] - 1 -  Z 2 m~_,{ZL[Z-- X~(X)]-~}. 

Setting h ~ j - - i  in (4.72), and eliminating j, we obtain equivalence of (4.69) and of 

k--1 

(4 . ;3)  Z , H , { [ Z  - -  ~H(Z) ] : - I  - -  Z ~ m~[Z  - -  X B ( X ) I - ' } .  
h=0 

From (4.16), (4.]8), and (2.10), we see tha t  

(4.74) R, e c{~,} c C{ko}_~ c{7(1)} 

so tha t  ~H~ is an entire function with respect to ] It(l). Since (4.31) is analytic 
with respect to I It(k), an easy application of lemma I I I .1  suffices to prove analy- 
t ici ty of (4.73) with respect to I[1, since (see (3.18) and (4.18)) 

provided k > k0 --  1. 
I n  a similar manner,  the other assertions in (vii) can be proved. 
I n  order to prove (4.44) we first have to define the matr ix  ~11 by 
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We maintain that  

(4.77) 

(4.78) 

(4.79) < l[J-- ;.j(X)]-,I=. 

The 2×2  matrix [I--AH(t)]-~,~'~ has [I--~H(A)] -~ in its first row, first column~ 
and the zero operator (on ~ )  elsewhere. Hence (4.77) follows from (3.26); equa- 
tion (4.78) follows from (4.46) and from (3.27) with a--~ b----1, J/d----[~¢--iJ(1)] -~ 
and M I ~ - [ I - - t H ( 1 ) ] - L  Inequality (4.79) follows from (2.14)', since t ~ n l ~ =  1. 

I t  remains only to prove (4.46) in order to complete the proof. Let 

and 
~ = (w,) w, 

7=#,I V,] 

where w ~ e ~  und /~e~tt~ for i =  1, 2. The ¢ solution, to the equation 

(4.8o) 

is 

(4.81) = [~¢- xj(1)]-17 . 

Rewriting (4.80) in (( scalar )> terms, we obtain 

s - - 1  

(4.82) wl- -  ~ ~ ~'H, w i - -  ~,A,w, = 1~ 

and 

(4.83) w~ --  tB~wl ~ /2 . 

Solving (4.83) for w, and substituting the result into (4.82), we obtain 

(4.84) 

o r  

(4.85) 

[z--~H(~)]wl = 11 + ~'A,18 

Substituting (4.85) into (4.83), we have 

(4.86) w2= 2B,[I--~tH(t)]-I]I  • {I  + 2"+IB~[I--iH().)]-IA,}]2. 
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Compar ing  (4.81) wi th  (4.85) and (4.86), we easily obta in  (4.46). [] 

CO~OLLi~¥ IV.1.  - I f  [ j _ ~ j ( i ) ] - i  h~s a pole a t  2 ~ - a  of mul t ip l ic i ty  v~ 
(i.e. (~ - - a )~ [~c - - ) . J (2 ) ]  -~ has a removable  singulari ty a t  ~ : a while ( ~ - - a )  ~-l-  
• [ J - - ~  J(~)]-~ does not) ,  where v is a posi t ive integer,  then  so does [ I ~ 2 H ( ~ ) ]  -~. 
Convergence of the  Lauren t  series involved here is assumed to be  wi th  respect  to I I®. 

PR00F. -- The  proof  follows easily f rom (4.46), f rom the fact  t h a t  ( ~ - - a )  ~. 

• [ J - - ~ J ( 2 ) ] - ~  has  a r emovab le  singulari ty a t  ~ :  a, and  f rom l e m m a  I I I . 4 .  [] 

C O ~ E ~ T .  - The reader  is again reminded t h a t  the  conclusions (iii) th rough  (vii) 
of l e m m a  IV.1 have  been proved  under  the  assumpt ion  (4.17), and  under  the  assump- 
t ion abou t  the  ana ly t ic i ty  of (4.19). We  will p rove  these assumpt ions  in theorem IV.3  
b y  induction.  

LEM]~± IV.2 .  - Le t  ~ be any  complex Hf lber t  space, and  let N be a compac t  
l inear opera tor  on ~ .  Le t  f l >  0, and  let  

(4.s7) iv e o{~, ~}. 

I f  I is the ident i ty  opera tor  on J t  ~, then  

(4.8s) , r e { I t -  ~N]-~} e c{~/~; ~ }  

for  each non-negat ive  integer  k. Le t  

e(k) = max{~/k; 1}. (4.s9) 

Then  

(4.90) 
k--1 

[± - ~N] - ,  - Z z mg[1  - X~Vl-,} 
j~O 

is analyt ic  wi th  respect  to I lq(k) abou t  all points  ). which are not  eigenvalues of the  
equat ion  

(4.91) ~N~e ~ u (u ~ J C ) .  

P~ooF.  - Since N is compact ,  the  (distinct) eigenvalues of (4.91) m a y  be wri t ten 
in a (possibly finite or empty)  sequence {~o~}, which m a y  have  only c~ as a l imit  point .  

I f  141 is sufficiently small, we have  

(4.92) [ I  - -  ~N] -1 = ~ ~J~V j , 
j=O 

17 - A n n a U  d i  M a t e m a l i c a  
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where convergence of the series in (4.92) is uniform with respect to I]~ near t = 0. 
The assertion (4.88) follows trivially from (4.87) and from (4.92). We obtain from (4.92) 
the equality of (4.90) and of 

(4.93) ; t ~ [ I  - -  IN]  - 1 

provided [4[ is small. Since the sequence {o~} is composed of isolated points (i.e. the 
sequence cannot have a finite limit point), we may  appeal to analytic continuation 
to establish the equality of (4.90) and of (4.93) for all complex 2 which are not  
elements of the sequence {co~}. 

I f  zo is no t  ~n element of {co~}, then  [ I - -~ /V]  -~ is analytic with respect to ].I~ 
for all ~ near Zo, by  the analogue of (4.8). Fur thermore  iVT:e C(fl/k), so tha t  iklV k is 
an entire function with respect to [ Iq(k). Hence an easy application of lemma I I I .1  
guarantees ~nalyticity of (4.93) (and hence of (4.90)) with respect to ] [~(~), provided, 
of course, tha t  ~ is not  an element of the sequence {w~}. • 

DE~I~IwIo~. - Le t  {~} be a (possibly finite) sequence of complex numbers having 
no finite limit point. We shall say tha t  {$~} is ordered if {~} satisfies (a) and (b) 

below: 

a) {[$~[} is a non-decreasing sequence. 

b) 

for some positive integer i, then 

0 < arg $~ < arg ~+~ < 2~.  

T H E O ~  IV.3. - Let  H(~) be given by  (4.1) where s is a non-negative integer, 
where 2 is a complex p~rameter, and where the H~ are operators on the complex 

Hilbert  space 3~f. Le t  

(4.96) e 

for each integer i in O<~i<s, where ~ is a positive real for each integer i in 
O<i<s.  Let ko be given by (4.16). The following conclusions are valid. 

(i) The (distinct) eigenvalues of (4.2) form a denumerable (or possibly empty) 

set of isolated points. 

(if) The function (4.42) is analytic with respect to [ [1, provided k is an integer 
such tha t  k~ko- -1  and provided i is not  an eigenvalue of (4.2). 

(iii) For  each integer k>~ko--1, there exists a unique entire function A(~; k) 

satisfying A(0, k) = 1 such tha t  

(4.97) - - Y ( 1 ;  k)/z](1; k ) =  v[[~H(~)]'[I--iH(;~)] -1 

]} - -  ~ ,  iJ rn~[[XH (X ) ]'[ I - -  ;kH(~,)] -1 
j = 0  
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holds for each integer £ > k o - - 1  and for each .1 which is not  an eigenvalue of (4.2). 
(The derivative of .1H(.1) in (4.97) is taken with respect to (say) 1[~.) 

(iv) The (possibly finite or empty) ordered sequence of zeroes of LI(*1; k), 
taken according to multiplicity, is independent o f /q  where /~ is an integer satisfying 
k > k 0 - - 1 .  This sequence will be denoted by {.1~} in the sequel. The sequence {4~}, 
if infinite, can have no finite limit point;  furthermore, .1 = a is an e igenvahe of (4.2) 
if and only if a = 4~ for some positive integer i. 

(v) The equation 

(4.9s) A'(~; c o  

A(*1; k) ~=~ 

holds for each integer k > k0--1 and for each complex 2 such tha t  

(4.99) 

(4.100) 

t.11 < oo if there are no eigenvalues of equat ion (4.2) 

I41< ].1,] if {4~} is not  void,  

where [.111 > 0 in (4.100). The series in (4.98) converges uniformly and absolutely 
on all compact  subsets of the applicable set described in (4.99)-(4.100). 

(vi) We have 

(4.101) 

~n4 

(4.1o2) 

(4ao3) 

]4 , I -ko< + oo 
i 

4V (~÷~) = ,~{ [dH(~)] ' [Z - -  .1H(4)] -1} 

= ~k{[I-- ~H(*1)]-l[).H(*1)]~}, 

where k is an integer such tha t  k>ko--1 in (4.102)-(4.103), and where the sum- 
mations in (4.101) and (4.102) are taken over the whole sequence {.1~}; the left side 
of (4.102) is understood to be zero if there are no eigenvalues of equation (4.2). 

(vii) The function [I--.1H(.1)] -I is analytic with respect to I I~ at  all points .1 
not  in the sequence {.1~}. The function [I--.1H(.1)] -1 has poles at  the points .1----- .1~. 
The function 4(.1; k)[I-- ~H(*1)] -1 has removable singularities at the points ,t ---- .1~, 
and hence its appropriate extension will be an entire function with respect to [l~. 

(viii) Le t  kl be the smallest integer such tha t  k~>ko--l. There exists a con- 
s tant  F >  0 such tha t  

(4. X04) IA (.1; k , ) l< exp [ r id  I ~'] 

(4.105) 14 (4; k~)[z-  4~(.1)]-, L < exp [214 I~°]. 
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(ix) The mult ipl ici ty of the eigenvalue 2 =- a in the sequence (2~} is precisely 
the Keldysh mult ipl ici ty M(a) of the eigenvalue 2----a. 

C O ~ E ~ T .  - The order of the  proofs of the  various assertions of this theorem 
will not  be the same as the order in which the assertions have been stated.  The 
reason for this is tha t  we wish to avoid reference in the s ta tement  of the theorem 
to the auxihary  systems (4.119)~ to be constructed in the proof. 

I f  J~----Z2[0,1] and ff 0 < ~ < 2  for each integer i in O<i<s, then it turns 
out  t ha t  the  functions A(A; k) const ructed in this theorem are closely rela~ed to 
the classical Fredholm de terminant  of the square-integrable kernel h(x, y, 2) of 
H(2), where we assume tha t  h(x, x, 2) is Lebesgue integrable on [0, 1] so tha t  the 
classical ]~redholm de terminant  exists. The  reason for this close relation is t ha t  the 
classical Fredholm determinant  satisfies an equat ion closely related to (4.97) (see 
~ n ~ o ~  [6; p. 380]). We shall not ,  however ,  pursue the ma t t e r  further ,  since 
the actual  relat ion is not  useful for our purposes here. 

PROOF. - The Hi lber t  space ~t ~{~} are defined as follows; 

(4.106) ~{s }  = ~ f ,  

(4.107) ~ { m - i }  ~ j~,{v} X J~'~{~'}, 

where p is an integer such tha t  l<~p<s in (4.107). The superscripts {s}, { p - - l } ,  
and {p} are indices here;  the space J4 °{2}, for example, is not  generally the same as 
~f~21 = j ~  × ~t~. We define the numbers  fl~} for integers i and p such tha t  0 < i < p  < s 

by  the  equations 

(4A08) 

(4.109) 

(4.iio) 

#~g:= max{(j + i ) ~ :  j = 0 or p + l < j < s }  

1 
fl{,~} --  ma x  {(j-k 1)a~:p<j<s} 

p ~ - i  

~ } ~  cq, l < i < p - - l < s ~ l .  

Let  

(4.111) J{'}(2) ---- H(2) 

(4.112) j{s-1}(~) ~-- J(2) 

where J(2)  is given by  the  mat r ix  (4.15). We assume, roughly speaking, t ha t  the 
mat r ix  operator  J{~-l}(A) is defined induct ively from J{~}(2) in the same manner  tha t  
j{s-1}(2) was defined from J{S}(2). More precisely, let p be any fixed integer such tha t  
l < p < s - - 1 ,  and let  us assume tha t  for each integer q in l < p < q < s ,  there  exist 
operators J(q}(2) on ~{q} with the following properties:  
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(a)~ We have for each integer q in l<.<p<q<s 

q 

i=O 

where J~q) is independent of .~; furthermore, we have (see (4.108)-(4.110)) 

J? e 

for each pair of integers i and q such tha t  1 <p  < q < s  and 0 < i < q .  

(b)~ For  e~ch integer q in 1 < p  < q<s ,  the operator J{qq} m~y be factored so tha t  

j~a} ~ A{q}B{a} q - - q  (4.115) 

where 

(4:.116) 

and where 

(4.117) 

c{((q + 

where fl~q} is given by (4.109). 

(c)~ 

(4.118) J{~}(~) = 
Riq+ 1} 

for integers q satisfying 1 < p  < q < s --  1. 

(d)~ The complex number  ~ is either an eigenvMue of 

(4:.119)q ,~J{q}()~) u {q} = u {q} (u {q} e~ft °{q)) 

We assume tha t  J{~}().) is defined by (4.111) for q ~ s and tha t  

(4.~2o) 

we f~ctor J~} by writing 

(4.121) - -  A~ B~ 

for each integer q in l < p < q < s  or for no integer q in l ~ < p < q < s .  
Note tha t  (a)~, (b)~, (c)~, (d)~ hold for p---- s - - 1  by lemma IV.1. This enables 

us to start  the inductions. Having defined J{~}()~), J{~-I}(A), .. . ,  J{~}(~), we proceed 
to define j{v-1)(A). Since (see (4.114)) 
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with 

(4.122) 

(4.1 3) 

c{((p + 

This is possible by (2.24). We define J{V-~}(;t) by  setting q =  p - - 1  in (4.118). Note 
tha t  J{V-~}(2) assumes the form (4.113) with q = p - - 1 ,  and with 

(4.124) j ~ - l ) :  t 'i£;;:::_ __ ~"  ................ 2i,~-1) 

where d~; is the Ka'oneeker delta. 
For  i :  0 and for each integer p in 2 < p < s - - 1 ,  the result 

(4.125) 

follows from (4.114) with i =  0 and q ~ p ,  from (4.123), from (4.124) with i :  0, 
from (2.10), from lemma II I .3 ,  and from the relation 

(4.126) = max{Z{o (p + n¢,')}. 

The restriction 2 < p  <<s--1 enables us to set the entry in the first row, second 
column of J(o ~-~} equal  to the zero operator (on ~¢t°{~}). 

For  i = p - - 1  and 2 < p < s - - 1 ,  the matr ix  j ~ - l }  again has (at most) two non- 
zero elements; in this ease, the relation (4.125) follows in similar fashion if we note tha t  

(4.127) fl{~--~}-= max  {~-}~ p @ I  } ~  - 7  fl~} • 

The case where i - - 0  = p - - 1  in (4.125) needs separate t rea tment ,  since the 
matr ix  J~o °} will have three non-zero components;  however, the basic formalas (4.126) 
and (4.127) are valid and consistent if i =  0 = p - - 1 .  

The proof of (4.125) for integers p and i such tha t  3<p<s- -1 ,  and l < i < p - - 2  
is easy, and is left to the reader. This exhausts all possibilities. 

Finally, the fact tha t  A is an eigenvalue of (4.119),_1 iff 2 is an eigenvalue of (4.119)~ 
is similar to assertion (i) of lemma IV. l ,  and is left to the reader. 

Note tha t  J{°}(2) is independent of 2; for brevity, we shall sometimes write j<0} 
instead of j{o}(~). Fur thermore  ~ is an eigenvalue of (4.119), for all q in O<q<s 
or for no vMue of q in 0 < q < s .  Hence equation (4.2) is <~ equivalent ,) to (4.119)~ 
with  q = 0 in the sense described. Also, we may  see tha t  

(4.128) j{o} = ~o'r{°} ~ = CrR{oh, yo , = C(ko) 
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where k0 is defined by  (t.16). A fo r t i o r i ,  we have  the compactness of j(0}. Hence 
the (distinct) eigenvalues of (4.119)~ with q - - 0  or of (4.2) must  form a denumer- 
able (or possibly empty)  set. We denote the sequence of e igenvahes  of (4.119)~ 
with q = 0 by  {2~}, where each eigenvalue 2 = a of (4.119)~ with q = 0 appears in 
the sequence (2~} according to its geometric multiplicity,  which is the m~ximum 

dimension of the null spaces 

(4.129) JV'{[I{°i--aJ{°}] j} (~ -~ 1, 2, . . . ) .  

The operator  I(~)(O<~p<s) here denotes the ident i ty  operator  on ~{~). We assume 
tha t  the sequence {).~} satisfies the ordering previously described. Of course, we 
mus t  show tha t  the sequence {2~} so defined is precisely the sequence described in 
the  s ta tement  of this theorem. The result  t ha t  the eigenv~lues of (4.2) form a de- 
numerable  set is not  new; it has been proven in t h e  case where the H~ are merely 
compact  (see K~L1)Ys~[12]). Clearly the sequence {)~} has no finite limit point,  
since j(0} is compact .  I t  is also clear t ha t  t2~1> 0 for each applicable i. 

By  (4.128) and (2.3), we have  the inequali ty (~.101). For  integers k>~ko--1, 
we define A(2; k) ~- 1 if no eigenvalues of (4.2) exist;  if eigenvalues of (4.2) do exist, 
then  we define 

f k 

=i ) 

where the product  in (4.130) is taken  over the entire sequence {)~}. The product  
so defined converges uniformly on bounded subsets of the complex plane as a direct 
resul t  of (4.101), as we shall show. (Obviously, the only case of interest  here is if 
the  sequence {2~} is infinite). Le t  

k 

(4.1a ) b(o; [(1 + o)exp 1. 
J = l  

Now there  exists / ~>  0 such tha t  if k > k o J l ,  then  

(4.132) 15(o; k)l</~lolk÷l<~l~l k~ 

for all complex a in l a I < l ;  here P depends only on k (see DU~FORD-SCtt'WAlCTZ 
[5; p. 1107, inequal i ty  no. 4]). I f  we let 

(4.133) a~(~; k )=  b(-- ~/L; k) 

then we can use (4.101), (4.132), (4.133) to apply  theorem 7.3, LEVI~SO~- 
I~E])HE~rE~ [15; p. 385], tO obtain uniform convergence of the product  

(4.134) ]-I[1 + a~(~; k)]= A(;.; k) 
i 
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on bounded subsets of the complex plane; furthermore,  by  the theorem quoted in 
Levinson-Redheffer,  the product  in (4.134) or (4.130) is zero if and only if at  least 
one of its factors is zero. Hence the product  in (4.130) defines an entire function 
d(~;  k) whose zeroes, taken according to algebraic multiplicity, form precisely the  
sequence {~}. Thus it is clear tha t  assertions (i), (iv), and inequali ty (4.101) of as- 
sertion(vi) are proved b y  the preceding considerations. 

In  order to prove (4.102), we note tha t  if k > k o - - 1 ,  then 

(4.135) Z ~V (~+') = ~{(J~°})~+~} 
i 

(4.136) = r~{[2j(o}],[/(0}_ 2j{o}]-~} 

where the left side of (4.135) is zero if (4.2) has no eigenvalues. 
follows from (2.17) and from the fact  tha t  (see (4.128)) 

(4.137) [j(o}]k+~ e C{ko/(k q- 1);~{o}}. 

Equat ion  (4.135) 

Equat ion  (4.136) is obtained by  left multfplying the relation 

oa 

(4.138) [i{o}_ ~j{o}]-i ~ ~ A~[j{0}]~ 
J = O  

through b y  [~j(o}],. I t  is clear tha t  the right side of (4.138) is convergent with 
respect to t[~, provided A is small. 

lqoting (4.135)-(4.136), we see that  the proof of (4.102) can be established if we 
can prove tha t  the relation 

(4.139)4 rk{[;tJ{q-~}(;t)] ' [ l~q- ~}--  ~J{q-~}(2) ] -  ~} = r~{[d,J{q}(2)] ' [ l{q} - -  )~J{q}(;t)l - x }  

holds for all integers q such tha t  1 G q K s and all integers k > k o -  l .  The derivatives 
in (4.139)4 are taken with respect to (say) [l~. 

B y  (4.137) and by  (4.138), we have that  

(4.140)~ rnk{ [1 {~} - -  2j{~}(i)]- 1} e C{ko/k ; ~ } }  

for p = 0 and for all non-negative integers k. Also, by  (4.128) and by  lemma IV.2, 
the  function 

k - - 1  

(4.141)~ [i{~}__ kj(~}(k)]-l__ ~ kjm~{[i(~} Xj{,}(X)]-I} 
J = 0  

is analytic with respect to I Jr(k) (see (4.18)) provided p ~ 0 in (4.141) and pro- 
vided ~ is not  an eigenvalue of (4.2). Note  tha t  if ko is given by  (4.16), then the 
relation 

(4.142) ko---- max{( /q -  1)fl~}: 0 <i<p} 
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holds for each fixed integer p in 0 <p<~s. Hence if we replace H(,:~) and J(2) in 
lemma IV.1 by j~l}().) and j(o)(~) respectively and if we make ether necessary nota- 
tional changes in lemma IV. l ,  then by the val idi ty of (4.114) for integers i and q 
i n 0 < i < q ~ < l ,  by  (4.118) with q =  0, by  the validi ty of (4.142) for p---- 0 and p ~  1, 
by the val idi ty of (4.140)~ for p ~-- 0, and by the analyt ici ty of (4.141)~ with re- 
spect to t I~(k), provided p ~-0 in (4.141)~, the conclusions (1)~, (2)~, and (3)~ listed 
below are valid for p ~-1.  

(1)~ The assertion (4.140)~ is valid for all nonnegative integers k. 

(2)~ The function (4.141)~ is analytic with respect to ] ],(~) for each non-negative 
integer k and each ~ which is not  an element of the sequence (~,}. 

(3)~ The relation (4.139)~ holds for each integer q in l < q < p  and each integer k 
such tha t  k > k0 - -  1. 

By  induction, and by appropriate use of lemma IV. l ,  we can show tha t  the state- 
ments (1)~, (2)~, and (3)~ are valid for each integer p in 0 ~<p ~< s. In  particular, (1),_~ is 
equivalent to (4.17) by (4.112), and (2)~_~ yields the analyt ici ty of (4.19) (where 
defined) with respect to [ It(k). Hence (4.17) and the analyt ici ty of (4.19) can be 
unconditionally verified (i.e. they  do not  have to be assumed). Assertion (vii) of 
lemma IV.1 implies the validi ty of assertion (if) in the s ta tement  of this theorem, 
while (4.135), (4.136), and (3)~ imply equation (4.102). Finally (4.112) and (1)~_~ 
imply (4.103) by the results of assertion (v) of lemma IV.1. At  this point, assertions 
(i), (if), (iv), and (vi) in the s ta tement  of this theorem are established. 

In  order to prove (4.98), we note tha t  (see LEW~SO~-REDHEFFE~ [10; p. 392]) 
if k ~ k. - -  1, then 

(4.143) zJ'(,~; k) _ ~, a:(2; k) 
A(),; k) ~" 1 + a~(~; k) 

where the summation in (4.143) is taken over all i for which a~(~; k) is defined 
(see 4.t33)). Convergence of the series in (4.143) is uniform for ~ on compact sub- 
sets of the complex plane which do not  contain any points of the sequence {)~i}. 
In  particular, convergence of the series in (4.143) is uniform for ~ on compact sub- 
sets of the set described in (4.100) (here, we assume tha t  there do exist eigenvMues 
of (4.2)). Since 

(4.144) a:(,~; ~) _ 

for A satisfying (4.100), we have for integers k ~ k o - - 1  

[ 1 ={ ifj > k 
(4.145) ~n~ LI-~ a~(2; k)J 0 if j <  k 
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Since the operator rnj is an integral operator,  and since the series in (4.143) converges 
uniformly for (say) [4]<(½)1~1], we have 

A'(2; k) [--~AF(~+1) if j > k 
(4.146) rn~ zJ()~; k) 0 if j <  k 

where the summation in (4.146) is over the whole sequence {~}. Hence 

o o  

(4.147) Z](~; k) ~=k 

Equat ion  (4.147) follows immediately from (4.146) and is valid for ~ satisfying (4.100). 
Hence (4.98) follows from (4.102) and from (4.147), at  least in the case where (4.2) 
has eigenvalues. I f  (4.2) has no eigenvalues, then (4.98) follows from (4.102) and from 
the fact  tha t  A(4; k ) ~  1. 

We continue to assume that  equation (4.2) has eigenvalues. If  we use the result (if) 
of this theorem, Mong with (3.8) and the fact  tha t  ~ is a continnous linear functional 
on C(1) (see (2.16)), then (4.97) follows (*) immediately from (4.98), provided ~ sat- 
isfies the restriction (4.100). Since the sequence {~} may  have only A= c~ as a (pos- 
sible) limit point,  we may  use analytic continuation arguments to establish (4.97) for 
all ~ not  in the sequence {~}. The analyt ici ty of the right side of (4.97) follows 
from lemma I I I .2  provided ). =~ 2~ for any i. Hence assertions (i) through (vi) in- 
clusive are verified. 

In  (vii), we note  tha t  the fact  tha t  [ I - -AH(2) ]  -1 has a pole at  the points 
= )~ follows from the fact  tha t  [I(°}--).J{°}] -~ has a pole at  the points ~ = 2~ 

(see DU~F0~D-ScRwA~TZ [4; p. 579]) and from appropriate  use of Corollary IV. 1. 
In  order to prove (4.104), we shall verify the inequali ty (see (4.131)) 

(4.148) Ib(a; k,) + l t<  exp (/~[al ~°} 

where k~ is the integer described in (viii), where /~ is a positive constant  which 
depends only on ko, and where a is any complex number.  The inequali ty (4.148) 
is a res ta tement  of inequali ty (2), page 1107 in DUNFORD-ScRwAI~TZ[5]. Their 
quantities 4, F, p, and k are  our a, /O, ko, and (1 ~-/q) respectively. Their condi- 
tion (in our notation) l~k~>ko>~k l  is necessary for the  val idi ty of (4.148),and 
follows easily from the definition of k~. I f  we set a------)~/~ in (4.148), and 
use (4.133) and (4.134), the inequality (4.104) follows immediately,  with 

(4.149) r >  ? ~ [~,]-~'. 
{ 

~ o w  the function 

(4.15o) A (~; k)U ~ -  ;~J~(~)]-  1 

(*) The MaoLaurin coefficients ol (4.42) are norm invariant w.r.t 111 and I I~. 
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is clearly analytic with respect to I ]~, provided ~ is not  an element of the sequence {,~}, 
~nd  has (at worst) poles at  the points )~= ~ .  

In  order to establish (4.105), let us assame for the time being tha t  there exists 
a positive constant  /~' (which as we shall see, depends only on ko, and not  on j(o,~ 
or on the operators H~) such tha t  

(4.151) 

We assume, of course, tha t  A is not  an element of the sequence {A~} in (4.151). 
The superscript on the right side of (4.151) refers to a power; the subscript refers 
to the norm I]~o on the space C{ko; Jtt°(°~}. If  (4.151) is temporari ly accepted, and 
if F >  0 satisfies the inequalities (4.149) and 

(4.152) 

then we h~ve 

(4.153) 

r~>r IJ t~°>r 2 I~l -~° 

for p = 0, and for ). not  in the sequence {~}. If  we replace H(~) and J(~) in 
inequality (4.44) of lemma IV.1 by J(~}(),) and J(~-~}()~) respectively, and make other 
appropriate notat ional  substitutions, then we have 

(4.154) I[ I ~  - -  ~ , J ~ ] -  ~1 ~ < l[ g ~ -  ~ - -  ~.J~"- ~ ( ~ ) ] -  ~l 

for integers p in l<~p<s and for complex ~ not  an element of the sequence (~}. 
Hence (4.153) is valid for all p in 0 < p  < s; the inequality (4.105) follows immediately 
from (4.153) with p ~ s. 

The inequality (4.151) follows from corollary 25, page 1112, from theorem 26, 
p. 1113, and from lemma 22(]), p. 1106 in D~S~'~ORD-SC~WA~Z [5]. Their quanti- 
ties /7, k, and p are equal to our F ' ,  (1 -t- kl), and ko respectively; their operator T 
is r e p l a c e d b y  our operator (_~j(o}), their function det10(I+ T) is to be replaced 
by our function d (2; kl). Also their eigenvalues {~} in the definition of their  func- 
tion detk (I  + T) on page 1106 would have to be replaced by  our quant i ty  (-- ~t~), 
since the analogue of their equation T u :  Aiu would be --AJ(°}u-~--(),/2~)u in 
our notation. Hence (4.151) ~nd therefore (4.105) are established. 

We have already noted tha t  (4.150) has (at worst) a pole at  the points )~--~ 2~. 
If  (4.150) had a pole at  A =  A~, then the left side of (4.153) would tend to 
as 2~-~ A~. Hence (4.150) must  have only a removable singularity at  2 ~ 2~. 

In  order to prove assertion (ix), let M(a) be the Keldysh multiplicity of the 
eigenvalue ~ - - a  of (4.2), and let re(a) be the algebraic multiplicity of ~ :  a as 
a zero of the functions 2(A; k). Le t  ~(a)g(A) denote the principal (or singular) par t  
of any  complex or operator-valued function g(2) about  2 - - a .  We fl'eely use the 
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fact  tha t  ~(a)g()~) is zero if g(2) is analytic at  ~ - a  with respect to an ~ppro- 
priate norm. As before, R(A) will denote the rcsolvent of H(2) (see (4.5)). By  (4.6), 
we have tha t  

(4.155) 

(4.~56) 

(4.~57) 

(4.~58) 

(4.159) 

M(a) 
: ~(a){[2H(~)]'[2R(~)]} 

= r ~ ( a ) { [ ~ ( ~ ) ] ' [ X -  ~(~)]-~} 
f k - 1  

~'(~; 
k)l 

[ 

m(a)/(a-~). 

Equat ion (4.158) follows from (4.97) and from the fact  tha t  r~(a)g(,~): @(a)~g(2) 
if g(2) is an operator valued function analytic with respect to [ I~ in a deleted neigh- 
borhood about  ~----a. The equation (4.159) is easily proved using Laurent  series, 
so M(a)-~ re(a), and assertion (ix) is proved. 

We remark tha t  KELDYSH[7] states tha t  R(~) has a pole at  ~----~, and tha t  
he chax~cterizes the coefficients of the negative powers of ( 4 - - ~ )  in the Lauren t  
expansion of (2R(~)) about ~ = ~ as being operators whose range is contained in 
the space generated by the set of vectors y~ described in (4.3). • 

CO~0LLARY IV.3. - Let  H(,~) be given by (4.1), with s>l,  and let s' be any  
integer satisfying O<s'<<s--1. Let  ~ be a positive real for each integer i in 
O<i<s', and let (4.96) hold for each integer in O<i<.s'. Furthermore,  for each 
integer i in s '+l<i<s ,  let H~eC{oo;~,vf) be an operator of finite dimensional 
range. Then H~ ~ C{p ;J/f} for each p > 0 and each integer i in s' ~-1 < i  < s; hence, 
the number  ko in (4.16) is equal to 

(4.160) m a x ( ( / ÷  1 )~ :  O<i<<s'}. 

C O ~ . N T .  - Loosely speaking, under the assumptions of this corollary, the 
higher order terms in H(~) do not substantially affect the convergence of the series 

)~-~ and our ability to evaluate the lat ter  series for integral p. 
The conclusion tha t  H~C{p;~,vf} for each p > 0  and each i in s1÷l<i<s  

, * ½ 
comes from the fact  t ha t  H~ H~ and hence (H~ Hi) are also operators with finite 

• ½ 
dimensional range; hence the singular values of H~, i.e. the eigenvalues of (H~H~) , 
are finite in number.  This is weU-known. 

The reader can make various modifications of this corollary. 

EX~.~PLE. -- Let  the complex t tf lbert  space 34 ° be infinite dimensional, and let 

(4.161) {~.~: i -~ 0, . . . ,  s and j ~- 1, 2, ...} 
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be any  infinite orthonormal set in Jcg'. Le t  bj be any  positive sequence such tha t  

(4.162) ~b~ ' 

converges for real e if and only if e > 1. Let  ~ ,  .. . ,  ~, be any collection of positive 
reals, and let the operator H~ be defined by 

(4.163) Hiu = ~ b[(~')%,j<n, opt,j>. 
: J= l  

The eigenvalues and singular values of H~ are given by the sequence {b(~7 '), b(2~7~), ...}. 
Hence H~EC{a~; J~f} for each i in 0 < i < s .  The positive eigenvalues of (4.2) are 
given by  the multiple sequence {b~(~+l)~a-~}, where i and j vary  as in (4.1.61.); this 
follows since (4.161) is an orthonormal set. Hence ~ 2~ -q converges absolutely for 
real q iff q>ko, where ko is given by  (4.16). 

CO~E~TS.  - Let  D e  C{c~; ~ }  and suppose tha t  [I--D]-le C{c~; J~}. Let  us 
fur ther  suppose tha t  s, H(2)~ and H~ satisfy the assumptions of theorem IV.3. We 
assume tha t  H~ is not  the zero operator for some value of i in 0 < i < s .  Le t  

(4.1.64) /l(,,'t) = D + 2H(2) . 

We wish to consider briefly the eigenvalues of the equation 

(4.1.65) /-1(2.) u = u (u e , ~ ) .  

I t  turns out tha t  equation (4.165) has eigenvalues which share all of the properties 
t ha t  the eigenvalues {2~} of (4.2) enjoyed. We write (4.165) as 

(4.1.66) 

wi th  

(4.167) 

since 

(4.168) 

2 ( I - -  D) -~H( , t )u  = u 

$ 

(I-- D)-IH().) = ~ U(I-- D)-IH, 
~ 0  

(I--D)-~H, e C{:q; ~ } .  

We may  apply theorem IV.3 to the operator (I--D)-IH(2) instead of to H(2). 
For  each integer k>ko--1, where ko is given by (4.16)7 there exists an entire func- 
tion J (2 ;  k) satisfying the analogue of (4.97) obtained by  replacing H(2) in (4.97) 
by  (I--D)-IH(2). However this analogue can be wri t ten in the more (( natural  ~ 
form 

J ' ( 2 ;  k) k-1 ~ 
-- r {[/~(2)] ' [I- /~(2)]  - 1 -  ~ 2~rn~[[H(X)]'[I-/~(X)]-x]} (4.169) ~(2.; k) ~=o 
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if we observe that  

(4.170) [A(/-- D ) - I H ( A ) ] ' [ I  - -  A ( I  - -  D ) - ~ H ( ) , ) ]  -~  

= ( i -  D)-,[/I(A)]'[/--/7(,~)]-I(Z-- D), 

where the derivatives in (4.170) are with respect to ][~. We point out that  the ex- 
pression whose trace is being taken in (4.169) is indeed an analytic function with 
respect to I I1, except at the eigenvalues of (4.165), of course. The justification of 
the latter statement is this: if we replace H(2) in (4.42) by  (I--D)-~H().), the 
ensuing expression is analytic (where defined) with respect to ]I~, provided k> ko--1. 
By (4.170), we c~n show analyticity of the expression whose trace is being taken 
in (4.169) with respect to ] I1, provided 2 is not an eigenvalue of (4.165) and provided 

k~>ko--1. 
The ordered sequence of zeroes of ZT()~; k), taken according to algebraic multi- 

plicity, continues to be independent of It, ~nd is denoted by {~}. We h~ve that 

(4.171) Z IS, l -*°< ÷ oo 
i 

and 

(4.172) ~ IF  (k+~) : ~:k{ [ /~(a l ] ' [ l - - /1(A)] -~} ,  
i 

where the latter is valid for integers k>k0--1 .  While (4.172) is, perhaps, more ap- 
pealing in form than the equation obtained by replacing 24 by ~ and H(~) by 
(I--D)-IH(A) in (4.102), it turns out thut (4.172) is somewhat less practical for 
actual computational purposes. We will pursue evaluation of the right side of (4.102) 
in part  V. 

V. - The eigenvalues of certain operators which are meromorphic functions of the 
eigenvalue parameter. 

The symbols ~f ,  C(p), H(~), H~, s, ~ ,  ~ ,  A(~; k), rnk, ~, T~, ko, and kl of the 
previous section will continue to have the same meaning. We shall continue to 
suppose that  H(A) satisfies the assumptions of theorem IV.3. 

Let f(A) be an entire complex-valued function such that ] (0 )¢  0. Let l be a 
positive integer; for each integer j in 1 <~j<l, and for each complex ),, let xj(~) and 
yj(~) be elements of ~ .  We assume that the mappings ~--~x~(~) and ~-~yj(A) 
are entire functions with respect to the norm [I of the ttflbert space 340. Let the 
operator K(2) be defined for each fixed complex ,~ such that ](~) ¢ 0 by the equation 

(5.1) 
1 l 
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where u e J ~  f .  The reason for writing (u,  yj(2)~ is tha t  the mapping 2 - * ( u ,  yj(2)) 
is an analytic (complex-valued) function of 2 for each fixed u e J~f, while the 
mapping 2 - *  (u,  yj(2)~ is not  analytic for each fixed u e ~ t  ~. We will s tudy the 
eigenvalues of the equation 

(5.2) 2 K ( 2 ) u  = u 

in this section; one difficulty will, of course, be the fact tha t  K(2) has possible poles 
at  the zeroes of ](2). La ter  on, we will have to place more restrictions on xj (2), 
yj(2), and ](4). 

Let  the operator P(2) be defined by 

(5.3) ~0(2) u = K(2)u--l~(,~)u 
1 

(5.4) = (1/](2)) Z x~(2)<u, y~(~)~. 
i = l '  

We will have to show tha t  P(2) is an opera tor-vahed function analytic with respect 
to I]1 about  all points 2 such t h a t  ] ( 4 ) ~  0. For  this purpose, we first perform an 
auxiliary computation.  Let  the operator A be defined on ~ by  the equation 

(5.5) Au = x(u,  y> 

where x and y are fixed elements of J~f. Note tha t  if A* is the adjoint  of A, then 

A ' v =  y (v, x~ (5.6) 

for each v ~ ~ .  

(5.7) 

Hence 

A* Au  = y (u,  y}  (x,  x}  . 

Hence if {/~(A)} are the singular values of A, we have from (5.7) 

(5.8) IAI~ = [~#,(A)-~] lz" 

( 5 . 9 )  ~-- [ # , ( A ) ]  -1 

(5.10) = Ixliyl. 

The analyt ici ty of 20(2) with respect to II1 about points 2 such tha t  ] ( 4 ) ~  O fol- 
lows directly from the next  1emma, and from corollary I I I .1 .  

L ~ , ~ A  V.1. - Le t  a be a fixed complex number,  and let e > O. Let  x(2)~Jct ° 
for each complex 2 in the set 

(5.11) {~: I ~ - a l < ~ }  
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and let y(A)e ~ for each complex A in the set 

(5.12) {~: I t - ~ l  < ~}. 

Furthermore, let x(~) be analytic with respect to the norm ] [ of the tIilbert space 
for each ~ in the set (5.11), and let y(~) be analytic with respect to the norm I [ for 
each ). in (5.12). For each 2 in (5.11), let the operator A(2) be defined by 

(5.13) A() . )u  = x(2) (u ,  y(~)} 

where u~J~f. Then A(,~) is analytic with respect to [11 for each 2 in (5.11). 

PROOF. -- Let vo be a fixed element of J~  such that  

(5.14) I%1 = 1 

and let the operators D(~) and E(2) be defined by the equations 

(5.15) 9(~)u = x(~) <u, %} 

(5.16) .E()~) u = vo<u, y(~)} 

for each u EJt  ~ and for each ~ in the set (5.11). Note that  

(5.17) D(2)E(~) ----- A(~). 

I t  suffices by 1emma III .1 to show that  D(~) and E(2) are each analytic with respect 
to ] 11 for ~ in the set (5.11). We shall do this for the function E(~); indeed, we shM1 
prove that  

(5.1s) ~ ' (~ )u  = %<u, y'(~.)> 

for each 2 in (5.11). l~or now, let the operator F(2) be defined by the equation 

(5.19) F (~ )u  = vo<u, y'(~)) 

for ~ in (5.11) and u ~ .  Let 2 be in (5.11), and let A~ be a non-zero complex 
number such that  (2 ~-A2) is in (5.11). We set 

(5.20) e = ~, 

Clearly @ and (@ ~-A~) are in (5.12). 

(5.21) 

Ae : AZ. 

We have 

[F(~ + LI~) - -  E(~)]u = %<u, [y(e + zle) - -y(e)]> 
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so tha t  by  (5.8)-(5.10) and by (5.14), the relation 

(5.22) IE(£ ~- d ~ ) -  E(~,)I, = lY(q + Ae)--Y(q)I 

holds. We have assumed tha t  if 9 is in the set (5.12), then  y(~) is analytic (and 
hence continuous) with respect to the norm II of W .  Thus the continui ty of E(2) 
with respect to ]ll follows from (5.22), provided tha t  2 is in (5.11). 

The proof of the relation 

(5.23) ] E(2 -[- A2)A,~ -- E(2) F(Z)1 1~[!Y(9 ~ AO)A9 --Y(q))--Y'(O)ii 
is similar to tha t  of (5.22); by arguments of the previous type,  the relation (5.23) 
proves the analyt ici ty of E(2) with respect to [[1 and the relation (5.18). [] 

The numbers 2, and/c0 in the next  lemma are the same numbers defined in par t  IV. 

LEM]~± V.2. - ~¢Ve shall always assume here tha t  ~ is an element of the open set 

(5.24) 

where the union in (5.24) is taken over all elements of the sequence {2,}. 
Let  the operator G(2) be defined by 

(5.25) a(~) -=- [ I - -  2H(2)]-lP(~) 

for each 2 in the set (5.24). The function G(2) is analytic with respect to ]1 for 
each 2 in (5.24). 

Suppose oither [I--bG(b)] -~ or [I--bK(b)] -1 exists for some fixed b in (5.24). 
Then there exists e >  O such tha t  the disc {2: 12--hi ~ s} is a subset of the set (5.24) 
with the following properties 

(i) The inverses [ I - -2K(2 ) ]  -~ and [ I - -2G(2)]  -1 both  exist and are both de- 
fined on all of J t  ~, provided 2 satisfies 1 4 -  b[ ~ s. 

(ii) The inverses [ I - - 2 K ( 2 ) ]  -~ and [ I - -2G(2)]  -1 are analytic functions of 
with respect to []~, provided I~--b]<e. 

For each 2 in (5.24) such tha t  either [ I - -~K(~) ]  -1 or [I--2G(A)] -1 exists, we 
have the relation 

(5.26) [),K(2)]'[I -- 2K(~)] -1 : [~H(2)]'[I - -  2H(2)] -1 -k 

+ [z - -  z~ (~ ) ] [~a (z ) ] 'U-  ~a(~)]-,[z - ~ (~ ) ] -~ .  

18 - .Annali  di Matemat ica  
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The function 
/c--1 

(5.27)~ [ h E ( h ) ] ' [ / - -  hE(A)] -~ - -  ~ h~m~{[kg(k)] ' [ I  - -  ~,K(~,)] -1} 
#=0 

is analyt ic  with respect to I[~ on the open set of all points ~ in (5.2~) such tha t  
[ I - - h K ( ~ ) ]  -~ exists, provided k is an integer such tha t  k > k o - - 1 .  

C O ~ E ~ S .  - I t  is clear tha t  the tr~ce of (5.27) can be expected to play a role 
similar to  the  quant i ty  on the right side of (4.97). In  effect, we will eventual ly 
(( solve ~) a differential equat ion similar to (4.97) and obtain a funct ion 2 (h ;  k) which 
is ve ry  roughly ~nalogous to the  funct ion ~(h;  k) of the  previous section. The 
equali ty (5.26) will play an impor tan t  role in the construct ion of the funct ion 
~(2 ;  k), and will be impor tunt  in the establishment of certain inequalities which 
will yield an analogue of (4.102). 

~ o t e  tha t  the operator  G(~) has a finite dimensional range for each fixed h. This 
fac t  ~long with equat ion (5.26) will aid us greatly, since at  this point,  we know 

much about  H(h) and [ I - - ~ H ( 2 ) ] -  ~. 
We have  an inherent  disadvantage in the construct ion of G(2) in tha t  G(A) is 

not  defined at  points ~----~; consequently we cannot  (in this lemma) prove tha t  (5.27) 
is analyt ic  with respect  to [l~ about  the points ~ ~ ~ .  We will eusily overcome 

this in lemm~ V.3, however.  

P~ooF.  - We shall continue to assume t h a t  h is an element  of the set (5.24). 
The analyt ic i ty  of G(~) with respect  to I I~ follows immediately from lemma I I I . 1  
and f rom the analyt ic i ty  of [ I - - ~ H ( ~ ) ]  -~ with respect to I[~ and the  analyt ic i ty  
of _P(~) with respect  to I I~. Another  approach,  which yields some useful minor  
results~ will be given later. 

For  each ~ in (5.24), we can show tha t  

(5 .2s)  [ f -  h/I(h)][~-- hG(~)] == [ I - -  hK(~)]. 

For  each h in (5.24), the existence of [ I - - ~ H ( ~ ) ]  -1 is assured. Hence we see 
f rom (5.28) tha t  [/7--hG(h)] -~ exists if and only if [ I - - ~ K ( ~ ) ]  -1 exists, provided ~ is 
in (5.24). The assertions (i) and (ii) immediately follow from the discussion 
concerning (4.8), since the la t ter  is valid if G()~) or K(~) replaces H(h). Clearly, if 
either [ I - -~G(~) ]  -1 or [ I - - h K ( ~ ) ]  -1 exist for some ~ in (5.24), then  we have 

(5.29) [~ _ ~ K ( ~ ) ] - I  = [ I - -  ~ 0 ( ~ ) ] - ~ [ ~ - -  ~ H ( h ) p  1 . 

In  order to prove (5.26), we note  tha t  

(5.30) P(h)  = [ I  - -  )~H().)]G(~) 
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so tha t  we have 

(5.31) [)~P(2)]'= - -  [AH(A)]'[AG(A)] + [ I  - -  ~H(A)][AG(~)]'. 

I f  we add [2H(2)] '  to both  sides of (5.31), we obtain from (5.3) 

(5.~2) [z~:(~)],_- [~H(A)]'[Z--;.a(Z)] + [Z--;~H(~)][Z(~(~)]'. 

Equat ion  (5.26) then follows from (5.29) and (5.32). 
In  order to prove the analyt ic i ty  of (5.27)~ with respect  to I I1, we first note  tha t  

the functions 

(5.33) [~G(~)]~[I - -  JIG().)] -1 

and 

(5.34) [ I  - -  J I H ( ~ ) ] [ A G ( ~ , ) ] ' [ I  - -  A G ( ) ~ ) ] - I [ I  - -  AH(2.)] - I  

are analytic (where defined) with respect to [[1 by  lemma I I I .1 .  I t  is thus clear 
from (5.26), from the analyt ici ty of (4.42) with respect to ][1 (provided k > k o - - 1  
and provided A-~ ~ for any i), and from the preceding, tha t  

(5.35) 
k--1 

[~.K(~.)]I [£~ - -  )~K(~ ) ]  - I  - -  ~ ~.# I']'I,j{[~I.JT~T(~I~.)]I [ I  - -  ~ i . /~(X)]-- I  } 
~=0 

is analytic with respect to [ 11 for )~ in (5.24) such that  [ I -  ~K().)] -1 exists, provided 
k>ko- -1 .  ~rom the analyt ici ty of (5.3¢) with respect  to Ill, it is clear tha t  

(5.36) 
k--1 
~: 2 m~{[z- XH(X)][;~a(X)]'[Z-- XG(X)]-I[Z-- X~(X)]-'} 

~=0 

is an operator-valued polynomial  which is an entire function with respect to 111. 
I f  we subt rac t  (5.36) from (5.35), we obtain precisely the expression (5.27)~; this 
follows from (5.26) and from the l inearity of mj .  Hence  (5.27)~ is analytic (where 
defined) with respect to t11, provided ~ is in (5.24) and provided k > k o - - 1 .  

An alternate proof of the analyt iei ty of G(~) with respect to []1 can be given 
here. We have 

1 ~=~oZ~(~ )<u, yj(~,)> (5.37) a(;.) ~ = ~ : 

where 

(5.3s) z~().) = [ I - - , t / / (~ ) ] - '  xj(~). 

Now [ I - -~H(A) ]  -I is analytic with respect  to [ [~ for t in (5.24). This fact,  along 
with the anMytici ty of x~(l) with respect  to the  norm [t of the t t i lber t  space ~%P 
guarantees tha t  z~().) is also analytic (where defined) with respect to the norm I I of 9ft. 
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The proof of this is similar to t ha t  of lemma I I I .1 ,  and is done by proving an 
analogue of (3.2]); the inequality [Axl<lA[c~[x [ where x E3(f and A ~  C ( c ~ ; ~ }  
would replace (2.14) in the proof. Since zj(2) is analytic  (where defined) with respect 
to the norm I1 of ~ f ,  we have analyt ic i ty  of G(2)with respect to 11~ by lemma V.1 
and by corollary I I I .1 .  • 

I ~ E ~ A  V.3. - Let  2m be an element of the sequence {2~}, where m henceforth 
denotes a fixed positive integer. There exists a compact linear operator Q~} on 3¢t¢ 
of finite dimensional range such tha t  if 

(5.39) 

then the equation 

(5.40) 

H(m)() 0 = B(;~) + Q~'~) 

2H~}(2)v = v 

has no eigenvalues in the region [2--2~ I < e~ where e~ is a small positive number.  
We have 

(5.4~) 

with 

(5.42) 

$ 

~(m~(~) = ~ 2 ~  ~ 

H~ ~ = H, + ~,oQ ~ e C { ~ , , ~ }  

where ~¢ is the Kronecker delta. Hence for each integer k>~ko--l, we may  define 
an entire function A{~}(2; k) by  replacing H(2) in (4.97) by H(~}(2). Let  {21 ~}} be the 
(possibly void or finite) ordered sequence of zeroes of A~}(2; k), taken according 
to algebraic multiplicity. We shall always assume tha t  2 is an element of the open set 

(5.43)~ 

where the union in (5.43)~ is taken over the whole sequence {2~ "}} for fixed m. 
Let  the operators P(~}(2) and G(~}(2) be defined by  the equations 

(5.44) 

(5.45) 

for each 2 in the set (5.43)~. The operator p~m}(~) is analytic  with respect to Iil 
about  each point 2 such tha t  ] (R)# 0; the operator G(~}(~) is analytic with respect 
to I[1 for each 2 in the open set (5.43)m. 

Suppose either [I--bK(b)] -1 or [I--bG(m}(b)] -~ exists for some fixed b in (5.43)~. 
Then there exists e >  0 such tha t  the disc {2:12 --  b] < e} is a subset of the set (5.43)~ 
with the following properties: 
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(i) The inverses [ I - -AK(2) ]  -1 and [ I -  ).G('~}(~)] -~ both  exist and are bo th  de- 
fined on all of o~, provided 2 satisfies I)~- b[ < e; 

(ii) The inverses [ I - - A K ( 2 ) ]  -~ and [ I  - -  2G(~}(2)] -~ ~re analytic  functions of 
with respect to I1~, provided 2 satisfies I).--b[<e. 

For  each )~ in (5.43)~ such tha t  either [ I - - )~K(2)]  -~ or [I--~GO~}(2)] -~ exists, 
we have the relation 

(5A6) [~K(A)]'[Z-- ~K(~)]- '  = [~B~:(A)] ' [ I - -  ~H~'~(~)] - '  

+ [ I  - -  ) ~ H ( ~ } ( ~ ) ] [ 2 G ( ~ } ( ) O ] ' [ I  - -  ~ G { m } ( ) O ] - ' [ l  - -  ~ H { ~ } ( ) , ) ]  - ~  . 

The funct ion (5.27)~ is analyt ic  with respect to [[~ on the open set of all points A 
in (5.43)m such that [I--AK(A)] -~ exists, provided k is an integer such that k >/co--1. 

PlCOOF. - In  order to prove existence of Q<"}, we let  ~ ,  . . . ,  $~ be an or thonormal  
basis for the space W { [ I - - 2 ~ H ( l ~ ) ] } ,  which is finite dimensional, since H(2~) is 
compact .  I t  goes wi thout  saying tha t  the la t ter  sp~ce, and its dimension q, are 
dependent  on ~ .  Note  tha t  ~ is ~n eigenvalue of the equation 

~[ / / ( ) .m) ]*w= w ( w e ~ ) ;  

also note  tha t  JV{[I - -2~H(2~)]}  and ~ 4 r { [ I - - ~ ( H ( ~ ) ) * ] }  have  the same dimen- 
sion (see exercise 35, p. 584, in DUN:FORD-SCHWARTZ [4]). Hence we ma y  let ~ ,  . . . , ~  
denote  any  or thonormal  basis for the la t ter  space. 

Le t  the operator  Q(m} be defined by  

q 
(5.47) Q(~}u = ~. v~<u, ~s; . 

i~1 

Let  us suppose tha t  v e J ~  satisfies (5.40) with A= 2.~. Then we have 

(5.48) [I  - -  ~ H ( ~ ) J v  = ).mQ("}v. 

I f  we take the inner p roduc t  of bo th  sides of (5.48) with ~j, and if we note  tha t  
~m¢ 0, then  we see tha t  

(5.49) (Q{'~iv, ~/j) = 0, (j --  1, ..., q). 

Bu t  (5.47) and (5.49) yield 

o = <@m~v, ~j~>= <v, ~,> ( j -  1, . . . ,  q) 

since ~ ,  . . . ,  ~]~ is an or thonormal  set. Hence Q(m}v= 0 and hence v satisfies 
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Since v ~ d z { [ I - - ~ H ( ~ ) ] }  and since ~1,..., ~ is an or thonormal  basis for the la t ter  
space, we m~y write 

j = l  

and so ~ = 2~ is not  an eigenvalue of (5.40). 
We note  (see corollary IV.3) tha t  Q("}e C { p ; ~ }  for each real p > 0; hence (5.42) 

holds for i ~- 0 since C(~o) is ~ linear manifold. Since (5.42) holds for each integer i 
in O<ids,  we may  conclude by  assertion (ii) of theorem IV.3 tha t  

(5.5o) 
k--1  

[~H~,,~(~)],[I_ ~H~,,,:(~)]- 1 _ Z 2 m~{ [ZH~(Z)] ' [~ -- ~H~'.~(~)]- ~} 
~=0 

is analyt ic  with respect to [[1, provided /~>ko--1  and provided tha t  ;t is not  an 
eigenvalue of (5.40). Hence  the functions A("}(~;/c) described in the s ta tement  of 
the lemma may  be constructed;  the ordered sequence of zeroes of A~}(),; k), where 
each zero is taken uecording to algebraic multiplicity~ is independent  of k for k >~ ko--1. 

Note  t ha t  we may  write 

where, since q depends on m, we write 

(5.52) 

and where 

(5.53) 
[ -  ](;~)nJ-~ 

y~(~) = IY ,(~) 

j = l ,  ...~ 1 

j = l g - l ~ . . . , l - ~ q  

j =  l, ...,1 
j = l q - 1 , . . . , l q - q  

Hence P(m}(~t) is analyt ic  with respect  to I11 about  each point  ~ such tha t  ] ( 2 ) ¢  0 
by  the same arguments  tha t  we used to prove the analyt ie i ty  of P(X). I t  is easy 
to see tha t  x~'~}(~) and y~m}(~) are entire functions with respect to the norm of the 
space 5~.  The rest  of the proof follows as before. • 

In  the next  lemma we state a few well-known facts for future  reference. 

L E n A  V.4. - We will always a s s u m e  henceforth t h a t  2 is an element of the 
set (5.24). Le t  d(X) be the l×l determinant  with (see (5.1) and (5.38)) 

(5.54) ~ .  - ~ (z~(~), y~(~)> 
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in its i-th row, j-th column, where 6~j is the Kronecker delta. Then 

(i) Let  a be an element of the set (5.24). The following assertions are equivalent: 

(1) d ( a ) :  0; 

(2) 2 ~  a is an eigenvMue of (5.2); 

(3) 2----a is an eigenvMue of the equation (5.55); 

(5.55) 2G(2)w-  w (wE:ft°). 

I f  b is an element of the set (5.24) then the following are equivMent: 

(4) d(b) ¢ 0; 

(5) the inverse [I--bK(b)] -~ exists and is defined on all of 3~. 

(6) the inverse [I--bG(b)] -~ exists and is defined on all of ~ .  

(if) Le t  Dj(2) be the transformation (from W onto the set of complex numbers) 
such tha t  D¢(2)u is the determinant  obtained by replacing the j - th  column of d(2) by 

(5.56) ( (u, yl(~)), ..., (u, y~(~)) )~ 

where T indicates a transpose. The equation 

2 ~ D~(2)u 
(5.57) i x -  ;~ (~)1-~=  u +  ~ ~:~ z~(;') a(;~ 

holds at  all points )~ in the set (5.24) such tha t  d(2)ve O. 

(iii) The equation 
d'(2) 

(5.58) 
d(,~) 

holds at  all points A in the set (5.24) such tha t  d ( 2 ) ¢  0. 

P~OOF. -- The proofs of (i) and (if) for the most par t  involve s tandard results, 
and will not  be done here. :Note t ha t  the results of Lemma V.2 and equation (5.28) 
are useful in the proof of (i). 

I n  order to establish (5.58), it  will be helpful to generalize slightly the functions 
d(2) and Dj(2). (We shall always assume tha t  2 is an element of the set (5.24) in 
the following.) Let  d(a; 2) be the l×l  determinant  with 

(5.59) di~-  ]~) (zj().), YdX)) 

in its i- th row, j- th column. Of course, we have tha t  d(A; 2 ) =  d(2). Clearly, the 
function d(a; 2) is continuous (where defined) in (r and 2 together, and is analytic 
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(where defined) in Z for fixed a and vice versa (the reader may  verify tha t  
<zj(~), y~(~)) is analytic (where defined) with respect to the norm on the set of complex 
numbers;  here the analyt ici ty of zj(~) and y~(~), where defined, are needed). Le t  the 
transformation D,(a, 4) (from ~t ~ onto the set of complex numbers) be defined so 
tha t  D~(a, ~)u is the l×l determinant  in which the  ~-th column of d(a; ~) has been 
replaced by (5.56). The solution of the equation 

(5.60) (I--6G(~))w-~- h (heJft ~) 

is 

z D , ( a ;  4)h 
(5.611 w = ] ~  ~=1 ~zj(4)  d(a; Z) + h 

provided, of course tha t  d(a; 4) =fi 0 for fixed a and ,~. Let  V(a; 4) be the resolvent 
defined by  the equation 

(5.62) I + aV(a; 4)= [I  ~ ~G(4)] -~ 

and let the operator E~(a; 4) (on J ~  to 3¢t ~) be defined by 

(5.63) E~(a; Z)u = zj(~)D~(a; ),)u. 

From (5.61)-(5.63) we note tha t  

(5.64) V((~; 4) d(~; ~)/(~) ~=~/L.(a; ~). 

If  z j (X)#0 for some fixed j and 4, and if we extend the set Izj(4)/lzA~)ll (where j 
and 4 are fixed) into an orthonormal basis for Ji¢~, then we see tha t  

(5.65) T[Ej(a; 4)] = <E¢(a; )Jz,(~), z+(4)> =D~(a; ~)zi(~) 
lz~(~) 1 ~ 

from (5.63) and from the definition of trace (see the right side of (2.15)). I f  
z¢(4) ~ ~ for some fixed ] and 4, the equation 

(5.66) ~[E~(a; 4)] = Dj(a; 4)zj(4) 

still holds, as both  sides are zero. From the usual ~ rule ~> (using columns) of taking 
the derivative of a determinant,  we obtain 

- -  ~Dj(a ;  ~)zj(4). (5.67) ~d(~;  ) , )= 
I(,~) j=l 
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From (5.64), (5.66), and (5.67), we obtain 

(5.68) d(o-; 4) ~a d(`r; 4) = -~[V(a; 4)] 

which holds at  all points (a, 4) such tha t  d(a, 4)=/= O. _Note tha t  

¢ o  

(5.69) V(a; 4) = ~ o~[G(4)] TM 
J~0 

where the Neumann series (5.69) for V(a; 2) converges uniformly and absolutely 
with respect to ] I1 for I2] + ]a] < e, where e is a small positive number (recall tha t  
G(4) is in the space C ( 1 ; ~ }  and is analytic where defined with respect to []1). 
We claim, therefore, t ha t  

(r 

(5.70) ~-~ J ~:o j + 1 d-)~ ~t[G(4)]'+ } 
0 

where the pa th  of integration is inside the region [8] + 12] < e. In  order to ob- 
ta in  (5.70), we first note tha t  ~ and ~he summation in (5.69) m a y  be interchanged, 
since by  (2.16) the operator ~ is ~ continuous linear function on C(1). As a result 
of (2.16) and of the uniform convergence of the series (5.69) with respect to [11, the 
series obtained by interchanging ~ with the summution in the series in (5.69) continues 
to converge uniformly (with respect to the norm on the set of complex numbers) 
for 141 -b la] < e, and the lat ter  series with ~ replacing a may  integrated in term 
by term fashion with respect to ~ to obtain 

ff  

f Gj+1 (5.71) T[V(~; 2)] d5 ---- , ,  j - ~  z{[G(2)]J+l}. 
J=0 

0 

The series in (5.71) continues to be uniformly convergent in the region ]a[ + [21< e, 
and hence uniformly convergent with respect to 2 in 11] < s --  Ial for small fixed a. 
By lemma I I I .2 ,  each term in the series in (5.71) is an analytic,  complex-valued 
function of A for each fixed a, and each 4 in (5.24). Hence the series in (5.71) may  
be differentiated with respect to 4 in term-by-term fashion, since, by  Cauchy's for- 
mula, ~/3A can be expressed as an integral operator. Therefore (5.70) is justified. 

By  lemma I I I .2 ,  we may  interchange v and d/d4 in (5.70) so 

(5.73) ~-- T ~ [G(4)]~G'(4)[G(2)] ~-~ 
i=0 

(5.74) = (j ~- 1)~{G'(4)[G(4)]'} 
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where (5.73) follows from (3.21) and from the fact tha t  G(4) ~ C(1) and G'(4) E C(1). 
Clearly (5.74) follows from (2.40). By (5.69) and (5.70) and by (5.72)-(5.74), we have 

(5.75) f~{v(~; 4)} d~ T{aa'(4) + a*o'(4) v(a;4) } 02. 
0 

provided I@l ÷ I4t < s along a suitable pa th  connecting ~ -- 0 with 5-~ a. In  order 
t6 obtain (5.75), one must  prove the validity of an interchange of z with the sum- 
marion of a certain series; the justification is again obtained by  noting tha t  the 
series in (5.69) converges with respect to l l~ for [al ~-141<e, and by using the 
fact t ha t  ~ is a bounded linear functional on the space C(1). 

Integrat ing (5.68), we obtain for I~l + 14t < e 

(5.76) 
0 

since d(0, 4 ) =  1. From (5.75) and (5.76) we obtain 

1 0 
(5.77) d(a; ~) 0)~ d(a; '~) = ~{aG'(4) ~- a~G'(4)V(a, ~)} 

for ]a[ + 12~1 < e. Hence (5.58) follows for ]~1 < s/2 from (5.68), from (5.77), and from 
the equations 

and (see (5.62)) 

(5.79) [4~(4)]'[I--4~(4)]-~= v(4; 4) + ~a'(4) + ~ ' (4 )v(4 ;  4). 

The reader may  verify the cont inui ty  of (3/Oa)d(a, 2.) and (0/~4)d(~, 4) in both 
variables together which is necessary for the validity of (5.78). 

Up to now, (5.58) is established only for ~ such tha t  I)~1 is small. We wish to 
establish (5.58) for all complex 4 such tha t  4 is in the complement of the set (5.80) 

[yl ,l] = u = 

where the left most  union in (5.80) is over the whole sequence {4~}. We may  appeal 
to analytic  continuation in order to establish (5.58) for all 4 not  in the set (5.80), 
provided we show tha t  the set (5.80) is countable, and can have only 4 ~  c~ as 
an accumulation point. To show the latter,  it suffices to show tha t  the zeroes of d(4) 
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are countable,  and m~y accumula te  only a t  2 = c~. Note  t ha t  the  funct ion 

(5.8~) [ s  (,1; k) 1(2)] * 4(2) 

has only r emovab le  singulgrities (and so its appropr ia te  analyt ic  extension is an 
entire function).  This follows f rom the definition of d(2), and  f rom pa r t  (vii) of 
theorem IV.3.  The set of zeroes of d(k) is a subset  of the  set of zeroes of the  extension 
of (5.81), which is gn entire function. Hence  the  set of zeroes of the  extension of (5.81), 

and thus of d(k), are countable,  and  m a y  accumula te  only a t  2---- c~. Thus  the  
set (5.80) has  the  required propert ies .  (*) [] 

COt~OLLAI~Y V.4-1. - -  Suppose a is a complex n u m b e r  such t h a t  

(5.82) :+ y/2,1. 
I f  ] ( a ) =  0, then  each of the  funct ions d(~t), G(2), [ I  - -  ,1G(k)] -~, [ I - - k K ( k ) ]  -~ has 

(at worst) a pole a t  2 = a. 

P~ooF.  - The  assert ion abou t  d().) follows f rom the  fact  t ha t  (5.81) has only 
removable  singularit ies;  the  assert ion a b o r t  G(2) follows f rom (5.37) and  (5.38); 

the assert ion abou t  [t-- ,1G(2)] -~ follows f rom (5.57) and  f rom the fac t  t h a t  

(5.83) 

and 

(5.84) 

[](2)]~-~[A (2; k)]Z-~Dj(k) 

A(k; k)zAk) -= zi(k; k ) [ I - -  kH(k)]-Ix~(k) 

have  0nly removable  singularities. The  assertion abou t  [ / - - k K ( k ) ]  -~ follows 
f rom (5.29) a.nd f rom the  assertion abou t  [ I - - k G ( k ) ]  -~. [] 

COrOLLArY VA-2.  - The equat ion 

(5.85) 

A'().; k) d'(k) k-~ 
- -  z] (+t; k) d(k) J=o~ 2JTJ{[XG(X)]'[I - -  XG(X)]-~} 

holds for all integers k > k 0 - - 1  and for all ,1 in the  set (5.24) such t ha t  d ( ) . ) 5 0 .  

PROOF. - No te  t ha t  equat ion (2.31) yields 

(5.86) ~{[z-  kH(,1)][kG(k)]'[I-- ke(k)]- l [ I_  kH(k)]-~} = ~{[20(,1)]'[~-- 2e(,1)]-~} 

(*) Note that  (5.81) is non-vanishing at k = 0. 
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since the maps ~ -~ G(~) ~nd ~ --> [AG(Z)] ~ are anulytic with respect to ] I1 for each 2 
in (5.24)~ and hence G()~) e C(1) and [AG(~)]'e C(1) for ~ in (5.24). The other oper- 
ators in (5.86) are evidently in C(oo) for )~ in (5.24) such tha t  d(A)¢ 0. Note tha t  
the restriction on Z tha t  d (Z)¢  0, along with the condition tha t  Z be in (5.24) 
guurantees existence of the inverses in (5.86) (see assertion (i) of lemma V.4). Also 
note tha t  the equation (3.10) holds if A(Z) in (3.10) is ~nalytic with respect to I I~; 
multiplying (5.86) through by m~ we obtain the ret~tion 

(5.s;) ~ { [ z -  ;~(,~)][;~e(,~)]'[z- ,~(;~)l-1[z- ~H(~)]-I} = ~{[~e(;.)]'[Z-- ;~(~)]-i} 

which is valid for each non-negative integer j, since (5.86) is valid for eueh ~ in (5.24) 
such tha t  d ( ~ ) ¢  0. The existence of the polynomial on the right side of (5.85) 
follows. 

Existence of the trace on the left side of (5.85) follows from the results of lemmaV.2;  
the restrictions imposed on A for the validity of (5.85) guarantee existence of 
[ I - -~K(~) ]  -~ (see assertion (i), lemma V.4). 

F rom (5.26)~ (5.86)~ (5.87), ~nd from the linearity of rn~, we have 

(5.ss) 
i = 0  

= • [~g( )~) ] ' [z -  ).z~(~)]-~ - ~ ~J m,[[Xg().)]'[Z -XH(X)]-~  
J = 0  

k--1 

÷ T{[ZG(~)]'[X - -  Z~(Z)]-~} - -  Z Z'~,{[X~(X)]'[Z - -  ZV(X)] -~} 
5=0 

provided ~ and k satisfy the restrictions imposed in the s ta tement  of the corollary. 
Hence (5.85) follows from (4.97), (5.58)~ and (5.88). • 

We can now state the analogue of lemma V.4 for the function H{~}()Q. 

LE~MA V.5. - Let  )~ be an element of the sequence {).~}, where m henceforth 
denotes ~ fixed positive integer. 

We shall always assume tha t  Z is an element of the set (5.43)~. Let  d{'~}().) be 
the 1}~}X 1 (~ determinant  with (see (5.51)-(5.53)) 

(5.89) 

in its i - th  row, j - th  column, where (see (5.53)) 

(5.90) z~'~(~) = [ z -  ~ ) ( ~ ) ] - l x ~ , . ) ( ~ ) .  
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Then: 

(i) Le t  a be a point of the set (5.43)~. The following assertions are equivalent: 

1) d~(a)---- 0; 

2) 4----a is an eigenvalue of (5.2); 

3) ~ ~--a is an eigenvalue of the equation (5.91); 

(5.9]) 2G{m}(2)z ~ - z (z e ~ f ) .  

Le t  b be a point  of the set (5.43)~ The following assertions are equivalent:  

4) d~}(b) =/= 0 ; 

5) the inverse [ I - -bK(b)]  -1 exists and is defined on all of J ~ ;  

6) the inverse [I--bG("}(b)] -1 exists and is defined on all of Jtt% 

(ii) Le t  D~}(2) be the transformation (from J ~  onto the set of complex numbers) 
such tha t  /)~}(2)u is the determinant  obtained by replacing the j - th  column of 
d(~}(2) by  (see (5.53)) 

(<~, y~ (~ ) ) ,  ... ,  ;~,  y~gl(~))) • ( u e ~ ) .  
The equation 

(5.92) [ I - -  2Gi~}(2)]-~u ---- u + ] ~  ~ z~'}(2) 
J=z d{~}(2) 

holds at  all points ~ in the set (5.43)~ such tha t  d{~}(2)~ 0. 

(iii) The equation 

(5.93) -- [d{'}(2) ]' a~(~} - r{EZG~(~) ] 'U-  ~(~(~)]-~} 

holds at  all points 2 in the set (5.43)~ such tha t  d(~'}(2):/= 0. 

COROLLARY V.5-1. - Le t  2 and a be complex numbers satisfying [2--g~[ < s ~  
and l a - - 2 ~ l < s ~ ,  where s~ is the number defined in lemma V.3. I f  ] ( a ) =  0, then 
each of the functions 

d~}(2), V~}(2), [ I  - -  2G(~}(2)] -1, and [I  - -  ~K(2)] -1 

has at  worst a pole a t  ,~ ~--a. 
F rom corollaries V.4-1 and V.5-1, we are able to state the following result. 

COROLLARY V.5-2. - I f  a is any  complex number  such tha t  f ( a ) =  O, then 
[ I - - 2 K ( 2 ) ]  -~ has (at worst) a pole at  2 = a. Furthermore,  the function (5.27)~ is 
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analytic with respect to ][~ on the open set of all points 2 such tha t  ~ is not  an 
eigenvalue of (5.2), and such tha t  1()~)¢0, provided k > / % - - i  in (5.27)~. 

CO~0LLh~Y V.5-3. - The formula 

k--1 

[A{~(~; k)]' [d~'~(A)] ' *-~ 
A{m}(~.;/~) d{m}(it) ~=o 

holds for integers k > k 0 - - 1  and for each A in (5.43)~ such tha t  d{~}(/)¢0. 

P~ooF. - Use (5.46), (5.93), and (4.97) with A{~}(~; k) and H{'~}(2)replacing 
A(2; k) and H(2) respectively. [] 

A complex valued function q(~) is said to be a meromorphic function of maximal " 
domain if there exists a (non-empty) countable set ¢ of isolated points such tha t  
q(~) is defined and analytic for all complex )~ ~ ~b, and if q(A) has a pole of posi- 
tive multiplicity at  each point ~ ~ ~b (i.e. q(~) m a y  not  have a removable or es- 
sential singularity at  points ~ e ~) .  

T~EO~E~ V.6. - Le t  H(~) be given by (4.1), and let the operators H~ satisfy the 
assumption (4.96) for each integer i in O<i<<s, where the  numbers ~.~ ar6 real and 
positive. Let  ](4) be an entire, complex-valued function such tha t  ] ( 0 ) ¢  0. Le t  
xj()Oe~ and y ~ ( ~ ) ~ f  for each complex ~ and each integer j in l < j < l ,  where l 
is some fixed positive integer. We suppose tha t  the mappings ~ -+ x~(~) and ). -+ y,(2) 
arc entire functions with respect to the norm I I of the Hflbert space ~ for each 
integer j in l < j < l .  Let  the function K(~) be given by (5.1). 

(i) The (distinct) eigenvalues of (5.2) from a denumerable (or possibly empty) 
set of isolated points. 

(ii) For  each fixed integer k > k o - - 1 ,  there exists a unique entire or mero- 
morphie function 9 (2 ;  k) of maximul domain such tha t  

(5.95) {~[](~) ~= 0} g domain (9(2;  k)) 

~nd such tha t  the equation 

~ ' (~ ;  k) 
(5.96) ~(~;  k) k-1 1 -- T [~K(~)]'[I -- 2K(Z)1-1 -- ~ 2~m~[[kg(k)] '[I  -- XK(X) -1] 

j=0 

holds for each integer k > k o - - 1  and each complex ~ which is not  an eigenvalue 
of (5.2) and which is not  a zero of the function ]. 

(iii) I f  a is a complex number  such tha t  ](a)~=O, and if A = a  is an ei- 
genvalue of (5.2), then ~ (a ;  k ) =  0 for each integer k satisfying k > ~ o - - L  
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(iv) I f  b is a complex number  such tha t  2 ( b ;  k ) :  0 for some integer k 
satisfying k>~G--1, then exact ly one of the  following occur. 

(1) ](b)=# 0 ~nd 2 =  b is an e igenvahe  of (5.2); 

(2) ] ( b ) :  0. 

(v) The (possibly finite or empty)  ordered sequences of zeroes and poles of 
~(~;  k)~ wri t ten according to multiplicity, are independent of k, provided k >~ k0--1.  
Hence the domain of ~ (2 ;  k) is independent  of ]c for k~ko--1 .  The ordered 
sequences of zeroes and poles of 2 (~ ;  k), taken according to algebraic multiplicity, 
will be denoted by  {v~} and {~,} respectively. The sequences {vi} and {Q,} have no 
finite limit points. 

(vi) The equation 

oo 
~'(,~; k) _ ~ ,U%-{[XK(X)]'[I- XK(X)] -~} (5.97) ~(~;  k) ;=~ 

holds for each integer k>~ko--1 and each ~ such tha t  I~.1< oo if ~(),; k) h~s no 
zeroes or poles, or such tha t  

(5.98) 

if ~(~;  k) has zeroes or poles. The minimum on the right side of (5.98) is a positive 
number.  

(vii) Let  the polynomial  p(~; k) be defined by  

(5.99) 
k--1 ~Y+1 

p(~; k) =~o J ~  ~{[xG(x)]'[i- xa(x)]-~}. 

Furthermore,  let y()~; k) be the l×l determinant  with 

(5.100) Gd(~) d(~; k) - {fl(~; k)U-- ~H(;.)]-lxj(~), yj(X)} 

in its i- th row, j- th column for each complex 2 ¢ Ul2,1, where the lat ter  union is 

taken over the  whole sequence {2~}. The function f~(~; k) has removable singularities 
at  the  points ~ = 2,~, and hence has an extension g(2; k) which is an entire function. 
The equation 

(5.101) ~().; k ) =  g(~; k) [](~t)]~[A(~; k)~_ 1 exp p(~; k) 

holds for each ~ in the set (5.24). 
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C0~WE~S. - The reader will note tha t  the Yredholm function 2 (4 ;  k) of the 
operator K(A) is asserted to be defined and analytic (at least) for points 4 such tha t  
](4) v a 0. In  addition, the function ~(4;  k) either will have poles or will actually 
be analyt ic  a t  points such tha t  ] (A)~ 0. In  parts (i) through (vi), we did not  wish 
to make reference to the auxiliary functions G(4), d(4), etc. ; hence the assertions (i) 
through (vi) will not  necessarily be proved in the order in which they  are stated. 

We will begin by constructing 2 (4 ;  k) in terms of the functions A (A; k) and d(4) 
(see (5.102)), which is s generalization of a classical (( multiplication ~ theorem of 
Fredholm. In  using the definition (5.102), we shall restrict 4 to the set (5.24); the 
restriction of ~(4;  k) to the set (5.24) is called ~(4;  k). The function ~(4 ;  k) has all 
of the properties we want  it  to have at  points of the set (5.24), i.e. it  is analytic on (5.24) 
and the eigenvalues of (5.2) which occur in the set (5.24) are also the zeroes of ~ (4 ;  k). 
Bu t  we claim tha t  the functions ~(4;  k) should not  really be badly behaved about  
the points A : Am unless~ of course, it should happen tha t  f(4~) = 0. As we pointed 
out earlier, the problem with G(4) and d(4) (and hence with ~(3.; k)) is tha t  they  
were constructed by using the operator [I--4H(A)]-~;  hence these functions are not  
defined at  the points A = 4m. So we look at  the function ~(~}(4; k) constructed 
from A(~}(4; k) and d{~}(4) (see (5.103)). Heuristically, ~(~}(4; k) has all the proper- 
ties we want  it to have about the point 4 =  4~ (provided ](4~)v~ 0), i.e. it  is 
analytic  about  4-----4~ and it vanishes at  the eigenvalues of (5.2) which are near 
the point 4~. Bu t  we will show tha t  ~(4 ;  k) and ~{m}(A; k) are equal on their domains 
of definition (which, as we indicated comprise all but  a countable number  of points, 
possibly accumulating at  4--~ oo). Hence ~(~;  k) has a removable singularity at  
4 ~ 4~ if f(2~)=/: 0, and we may  extend the definition of ~(4;  k) to the largest set 
on which it will be analytic.  The resulting function is, of course, 2(4,  k), which 
now has the properties we want,  i.e. it is analytic on its domain of definition, and it 
vanishes if 4 is an eigenvalue of (5.2). One shortcoming about  ~{4; k) is tha t  it 
m a y  also have zeroes at  some points 4 such tha t  1(4)-----0; aside from this, and 
one other critical property, ~(4 ;  ~z) shares many  of the properties t ha t  A(4; k) has. 
The other one property  we refer to is tha t  up to now, we cannot guarantee (at least 
yet) tha t  the sums of reciprocal powers of the eigenvalues of (5.2) (or of the zeroes 
of ~(A; k)) arc convergent, or, if convergent, can be evaluated. For  this, certain 
additional assumptions are needed on the growth of the functions ]x~.(2), [yj(2)] and 
[](4)[; this will be pursued later on. The relation (5.101) will be important  for the 
establishment of the analogue of (4.102); it expresses ~(4;  k) as a quotient of two 
entire functions. 

PRoof.  - Le t  p(4; k) be the polynomial defined in (5.99), and let 

(5.1o2) ~(,~; k ) =  A(4; k)d(A)expp(4; k) 

for each integer k>~ko--1 and for each A in the open set (5.24). (The set (5.24) 
coincides with the domain of definition of the function d(4)). 



A. V. LAG~ESTR~ - W. :E. BoYoE: Convergence and evaluation~ etc. 289 

Let ~ be an element of the sequence (~}, where m is a fixed positive integer, 
and let p(~}(~; k) be the polynomial obtained by  replacing G(2) by G(~}(2) in (5.99). 
We define 

(5.103) ~(~().; k) = A(~)(~; It) d~}(2) exp p(~}(~; k) 

for each integer k~ko--1 and each complex ~ in the set (5.43)~; here/J~}(~; k) is the 
function defined in lemma V.3. (The set (5.43)~ is precisely the domain of definition 
of the function d(m)(~).) If ] (~ )  =~ 0, then ~ is an dement  of the open set (5.43)~ by 
the results of lemma V.3; hence if ] (~ )ve  0, then the function ~ } ( ~ ;  k) is defined 
and ~nalytic for each integer k>~ko--1 and for each ~ in a small open disc (which 
does not depend on k) about the point )~. 

For convenience, let ~ and 9 ~('~} denote the sets (5.24) and (5.43)~ respectively. 
Let ] (~-(~}) denote the set of all points ~ in 9~(5 ~{m}} such that d ( 2 ) ¢ 0  

(d(~)(~) ve 0). By  the definition of 9~(:7("}), we have that A(~; k) ve 0 (A(~)(~; k) ¢ 0) 
for each integer k>ko - -1  and each ~ in 5~(~'~}). Hence ~(,~; k)=fi 0 (~(~}(,~; k)=~ 0) 
for each ~ in ](~-(~}). 

Note that the set ~ is precisely the complement of the set described in (5.80); 
hence ~ consists of all points in the plane except possibly for a countable number of 
points which are isolated, i.e. which may accumulate only at ~----c~. Hence 9 ~ 
is a connected open subset of the complex plane. The same conclusions evidently ap- 
ply to the set ff-(~}, and hence to ~ - n  ~-(~}. 

By (5.85), (5.9~), (5.102), and (5.103), we have 

(5.~04) ~'(~; k) (~(~(;~; k))' 
~(~; ~) ~(.~(;.; k) 

for each 2 e f f - ¢ ~ J  -('*} and each k~>1¢o--1. But  0 ~ f f ' ( ~  "~), and 

(5.~05) 

so that for each integer k ) ~ 0 - - 1 ,  we have 

(5.106) 

provided ~ ~ ~ ( ~  ~(~'~, since the latter set is a connected open set. By  continuity, 
the equation (5.106) is valid for each ,~ ~9~(~ ~(m}; in order to show this, the reader 
will recall that  the complement of J - n  ~-(~ consists of a denumerable number of 
isolated points, so that  if 2 e ( ~ n  5~(~))--(ff-n ~-(~}), then there is a punctured disc 
centered about ~ consisting entirely of points in ~ ( ~ - ( ~ .  Equation (5.106) is 
then established for ~ ~ (5 ~ n J(~'}) - -  ( ]  n ~ (~ )  by continuity arguments. 

Note that  the points in the complement of ~ n 9  ~(~} are isolated; hence there 
exists a small punctured open disc O~ centered about ,~ such that O~ c 5 ~ (~ 5~(~}. 

1 9  - .dnnali  di Matemat ica  
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If / (2~)# 0, then ~. ,E~ ~}, as we have already seen. Thus if /()~)=fi 0, the func- 
tion ~ } ( ~ ;  k) is analytic for each ), e O~ W/2~1 and each integer k > ko--1 ; also 
~(~; k) is analytic for each ~ ~ O~ and each k>k0--1.  Furthermore, (5.106) holds 
for each 2~O~ and each integer k>ko- -1 ;  hence if ](2~)# 0, the function ~(2; k) 
has a removable singularity at the point 2 =  )~. If  ](2~)= 0, then by corol- 
lary V.5-1 and by (5.103), we conclude that  ~ } ( 2 ;  k) has (at worst) a pole at the 
point 2~; since (5.106) is valid for each ~ ~ O~, we conclude that  the function ~(2; k) 
has (at worst) a pole at the point ).~. By the preceding, and by the results of corol- 
lary ¥.4-1, we may conclude that  the complement of 57 consists of a denumerable 
number of isolated points at which ~(2; k) has, at worst, poles; hence there exists 
an entire or meromorphic function ~(~;/~) of maximal domain 3~ such that  ~()~; k) 
is an analytic extension of ~(,~; It). In fact, we will now show that  ~ is independent 
of k; at this point, it is clear that  (5.95) holds. 

Since ~(~; k ) =  ~(~; k) for each ~ 5 7 ,  and hence for ench ~ e ] ,  we c~n show 
that  the equation (5.96) follows from (5.85) and (5.102), provided ~ ~ ] and k > ko--1. 
(The validity of (5.96) in part (ii) is asserted for all 2 belonging to a set somewhat 
different th~n ~-; at this point, we cannot consider the proof of (5.96) ~s being 
complete). 

Let ]¢ and k ~ be integers such that  k t> k>ko--1 .  We claim that  

2 '(~;  k) 2 '(~;  k') k'-~jz~{[XK(X)],[I_XK(X)]_~ } (5.1o7) 2().; k) ~(~; k') -~=~ 

for each ~ ~ ~ .  :First we show that  right side of (5.107) is well defined. Since (5.27)~ 
is analytic with respect to I ll for (say) ~ near the point zero, provided k>ko- - l ,  
the difference (5.108)~ 

(5.108)j )d' mj{[XK(X)]~[I -- XK(X)] -1} 

of (5.27)j+1 and (5.27)j is analytic with respect to [ [1 for 2 near zero and for integers 
j>k0- -1 ;  a fortiori, the operator (5.108L-, and hence the operator 

m;{[~K(~,)] '[/ - -  ~K(~)] -~} 

is an element of the space C{1;~4 °} for integers j>ko- -1 .  Hence the right side of 
(5.107) is well defined. Equation (5.107) is then established for ). ~ J -  by subtra- 
cting the relation (5.96)~, from the relation (5.96)~. Since ~ is a connected open 
set, we may conclude from (5.107) that  

(5.109) 
k'--i )fi+l 

.@fit; k) ----- -@(2.; k') exp ~ - -  T~{[XK(X)]'[I -- XK(X)] -~} 

provided ) ~ Y  und k '>  k>ko--1.  But  the complement of Y is a denumerable set 
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of isolated points;  since ~ (2 ;  k) and 2 (2 ;  k') are either entire functions or mero- 
morphic  functions o¢ maximal  domain, we ma y  conclude (by arguments  of the type  
previously employed) f rom (5.109) tha t  Y ~ : 5 ~ , , .  In  the sequel, we shall denote 
Y~ or 5f~. by  the  symbol  Sf. Note  tha t  the zeroes and  poles of an entire or mero- 
morphie  funct ion of maximal  domain must  be countable  and isolated. The results 
of assertion (v) in the  s ta tement  of this theorem are therefore proved.  

The proofs of parts  (iii) and (iv) are related; since the proof of (iv) is a bit  more 
difficult, we shall prove (iv) and leave the proof of (iii) to the reader. 

Suppose b s ~  and ~(b ;  k)----0 for  some integer k>ko--1.  I f  f(b)----0, we are 
finished, so let  us suppose hencefor th  tha t  f(b) =~ 0. We consider two subcases: either 
b ¢ ).m for any positive integer m or b ~ ).~ for some positive integer m. 

Suppose b : 2~ for some positive integer m. Since we have assumed tha t  
/(b) v~ O, by  the results of lemma V.3, we ma y  conclude tha t  b s57(~  and t h a t  
A('~}(b, k )~O.  B u t  ~(2 ;  k) is an analytic extension of ~ } ( 2 ;  k), and ~(~;  k ) =  
= ~ } ( 2 ;  k) for 2 ~ f f  ~'~}. Hence ~(~}(b, k)--~ ~(b;  k ) =  0; by  (5.103), we have tha t  
d('~)(b) = 0 since ~(~}(b, k ) -  0 and since A(~}(b, k) % O. Hence by  assertion (i) of 
lemma V.5, we may  conclude tha t  2 = b is an eigenvalue of (5.2). 

I f  b ~ 2~ for any  positive integer m, we m a y  prove (iv) in a similar fashion, b y  
using the  results of lemma V.4. The result (i) is an immediate  consequence of parts  (iii), 
(iv), and (v). 

Up to now, the relation (5.96)~: has been established for each ~ ~ if'. Le t  3-- denote 
the set of all points ~ 5  p such tha t  ~ (2 ;  k)/(2)v~0. We wish to establish (5.96)~: 
for each 2. ~3-. (Using the  results of parts  (iii) and (iv), the  reader  ma y  show tha t  3-  
is precisely the set of all 2 such tha t  2 is not  an eigenvalue of (5.2) and 2 is not  a 
zero of the funct ion 1). We note  by  the definitions of 3-  and if- tha t  ~_ c 3 - ;  since 
the complement  of Y is a set of isolated points, each point  2 in Y - - . ~  is ~t the 
center of a punc tured  open disc comprised entirely of points in if ' .  The val idi ty 
of (5.96)~ for each 2 in ~ - - - ~  may  be established by  cont inui ty  arguments.  

Assertion (vi) in the s ta tement  of this theorem follows directly from the results 
of assertion (ii). 

The  fact  t ha t  the funct ion ~(2; k) has an extension g(2; k) which is an entire 
funct ion follows from the fact  t ha t  A (2; k )~I - -2H(~) ]  -x has removable singularities 
at  the points ). ~ 2~. 

We note  tha t  g(2; k) is precisely the expression (5.81), provided 2 ~  (i.e. 2 is an  
element of the set (5.24)). Hence (5.101) follows dh~ectly from (5.102) for ~ ~ f t .  [] 

The situation (2) described in par t  (iv) of theorem V.6 occasionally does occur, 
as i l lustrated in the following example. The computa t ion  of 9 (2 ;  0) for the operator  
K(2) described in the  example ma y  be done in many  different ways. 

EXAI~IPLE. -- Le t  {cf~, ~p,, %} be any or thonormal  set in the space ~ .  Le t  

1 
K(~)u = ~<u ,  %) + ~<u,  ~ )  + ~ % < u ,  %). 

t/~-- ±) 
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We set H(2) : 0, -P(4) = K(2), 1 : 3, and 

1(4) = ( 4 - ~ )  

x , (4 )=  ( 4 - 1 ) ~ ,  ( i =  1,2) 

y,(4) = ~, (i = ~, 2, 3).  

Since H(2) = 0, we have /1(4; 0) ~ 1 and p(4, 0) ~- 0. Hence ~(2 ;  0) and d(4) are 
defined for all 4 ¢ 1 ,  and ~(2 ;  0)---- d(4) for 4 ¢ 1 .  Sett ing z~(4)= xj(4) in (5.54), 
we have  tha t  d ( 2 ) =  1 - - 4 .  Hence ~ ( 4 ; 0 )  is defined for all complex 4, and 
~(~;  0 ) =  ( 1 - - 4 ) .  We see tha t  ~ ( 4 ; 0 )  has a zero at  4----1, bu t  2 = 1  is not  an 
eigenvalue of (5.2), because 4 = 1 is a pole of K(4). [] 

The first result  of corollary V.5-2 and the  results of the  next  corollary are es- 
sentially contained in TA~AgKI~ [14; p. 148] for the special case J ~ f =  L2[O, 1] and 

CO~OLLAXY V.6-1. - Le t  a be a complex number  such tha t  ](a) ¢ 0. I f  2 : a is 
an eigenvalue of (5.2), then 2 =  a is a pole of [I--4K(4)] -~, (where the Lauren t  
series for the la t te r  is convergent  with respect to I I~ in a punctured  disc centered 

about  2 = a). 

PI~OOF. - Suppose a ~ UI2~I. Since f (a)¢ O, we conclude tha t  a is an element  of 

the set (5.24). B y  assertion (i) of lemma VA, we have tha t  d(a)= O. By  (5.57), 
we conclude tha t  [ I - - ~ G ( 4 ) ]  -1 has, a t  worst,  a pole a t  4 =  a. Hence by  (5.29), 
we conclude tha t  [ I - - 2 K ( 2 ) ]  -1 has, at  worst, a pole at  4 = a. I f  [ I - - 4 K ( X ) ]  -~ has 
a removable  singularity at  2-----a, then  it  is easy to show tha t  ~im [ I - - 2 K ( X ) ]  -1 

provides an inverse to [1--aK(a)], contradict ing the  fact  t ha t  2 =  a is an eigen- 

value of (5.2). 
I f  a = 4~ for some m, then  similar arguments apply. Here  one would use par t  (i) 

of lemma V.5, equat ion (5.92), and the relation obtained by  replacing H(2) and G(2) 
in (5.29) by  H(~}(2) and G(~}(2) respectively. The lat ter  relation, i.e. the  analogue 

of (5.29), is valid because of (5.44)-(5.45). [] 
We have arrived at the  point  where we will be able to establish an analogue 

of (4.102) for the function K(4).  The equat ion (5.10]) will be a key result  here, since 
we have the meromorphic  funct ion ~(~;  k) expressed as a quot ient  of entire functions.  

We will briefly recall a few facts about  entire functions of finite order. Le t  
W(4) ~ 0 be an entire complex valued function. Le t  ~>0 .  We recall t ha t  W(2) 
is said to be a funct ion of order ~ if, for each s~> 0, there  exists A ( d ) >  0 such 
tha t  the inequali ty 

(5.110) IW(4)I <A(s ' )  exp [i2I ~÷'] 
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holds for all complex 4, and if ~ is the smallest nonnegative real number  with the 
property (5.110). I f  W~(2) has order ~ for i = 1, 2, then the functions WI(~) + W2()~) 
and Wl(~)W2(2) have orders not exceeding max{61, ~2}. If  W(2) has order 8~>0, 
and if {(o~} is the sequence of non-zero roots of the equat ion W ( ~ ) =  0, taken ac- 
cording to algebraic multiplicity, then 

(5.111) W()~) = B2~e ~(A) IT  1 - - |  exp ~ = 
• ~ d  5 = 1 )  

where B is some non-zero constant,  where n is some non-negative integer, where 
(h ~-1) is the smullest integer larger thun (~, and where q(~) is a certain polynomial 
whose degree does not exceed h. The product  appearing in (5.111) is taken over 
the whole sequence (~o~}, and is uniformly convergent on compact subsets of the 
complex plane. The product in (5.111) is not  quite the same as the canonical product  
discussed in TITCn~A~SH [15 ; p. 250] ; however, we will not  need this concept here. 
The inequali ty 

(5.112) ~ I~1-(~+~)< + 
i 

holds for each s ~ 0; furthermore, a computat ion similar to the one needed to ob- 
ruin (4.147) will yield (*) 

(5.113) w'(~) 
W(~) i=h  j 

Since q'(~) is a polynomial of degree ( h - - l )  or less, we note tha t  the relation 

(5.114) -- m~ ~ -  = ~ co~ -(~+1) 

holds for each integer i > 5 - -1 .  We can now state the analogue of (4.102). 

TttEORE~ V.7. - Suppose H(Z), K(~), xj(~), yj(,~), and f(Z) satisfy the assump- 
tions of theorem V.6. 

Le t  z>~0 and let A ( e ' ) ~  0 for each e ' ~  0. Suppose tha t  the inequality 

1 

(5.115) If()~)] + ~ Ixs()~)l + IYJ(~)I<A(~ ') exp [I)~] ~+~'] 
J = 0  

holds for each e ' >  0 and for each complex 4. Let  

(5.116) ~ =  max (~0, ~} 

and let {us} und {~} be the ordered sequences of zeroes and poles of the function 
~(2;  k) (for k>k0- -1 ) ,  taken according to multiplicity. Then: 

(*) ~¥e assume W(0)-~0 in (5.I13) and (5.114). 
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(i) We have 

(5.117) 

and 

(5.118) 

i 

i 

for each s > 0, where the  sums (5.117) and (5.118) are t aken  over the whole se- 
quences {vi} and {~} respectively. 

(if) The formula 

(5.119) ~ ~-(~+1) - -  ~ e~-(k+l) = T k { [ ~ K ( ) ~ ) ] I [ I  - -  ) ,K()~)]_I} 
i i 

holds for each integer k such tha t  k > k~- - l .  

:NO~E. - The series in (5.117) and (5.118) are not  necessarily asserted to converge 
if e ~-0.  Consequently, if k~ is an integer, the formul~ (5.119) is not  necessarily 
valid for k--~ k 2 - 1 .  This contrasts somewhat  with the results obtained in par t  (vi) 
of theorem IV.3. In  this respect, it ma y  be tha t  this theorem can be slightly refined 
if ~ < ko (see theorem V.8). 

Pxoo]~. - As we have previously done, we let k~ be the smallest integer such tha t  
k~>ko--1. We let k-~ k~ in (5.99), (5.100)~ and (5.101). Recall tha t  any  de terminant  
can be expressed in terms of sums and differences of products  of its component  
entries. F r o m  the results of assertion (viii) of theorem IV.3, and f rom (5.115), we 
are able to obtain estimates on the expression (5.100) and hence on the funct ion 
g(~; k). Hence there  exists a function / ~ ( d ) >  0 defined for d >  0 such tha t  
the inequali ty 

(5.1~0) Ig(~; kl)i <~(~') exp LI~I ~+~'] 

holds for each complex ~ and each s ' >  0. Since p(A; k~) in (5.99) is a complex 
valued polynomiM of degree k~ or less, we have 

(5.121) lexpp(~; k~)l <$(~') exp [I~i ~+~'] 

w h e r e / ~ ( d ) > 0  for each d > 0 .  By  definition of kl, we can show tha t  k l <  ko; 
hence from (5.116), (5.120), and (5.121), we obtain 

(5.122) [g(~; k l )expp(~ ;  k~)[<B(d)exp [l~] ~+~'] 

where B ( e ' ) >  0 for each e ' >  0. Finally,  (4.104) and (5.115) yield the  inequal i ty  

(5.123) IE?(~)]'E~()~; ~l)JZ-ll <D(~ ') exp EI~I~÷~'J 
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where D ( s ' ) >  0 for each s ' >  0. 
Le t  {g~} be the ordered sequence of zeroes of the function r(~), taken according 

to multiplicity~ where 

(5.124) r(,~) --~ g(~; k~) expp(~;  l~). 

Le t  {~,} be the ordered sequence of zeroes of the function t(~), taken according to 
multiplicity, where 

(5.125) t(z) = [?(~d],[~(~;  k~)],-~. 

From (5.122), (5.123), and (5.112), we have 

(5.126) 

and 

(5.127) 

for each e >  0. 

(5.128) 

and 

(5.129) 

i 

i 

~'urthermore, by  (5.122), (5.123)~ and by (5.114), the equations 

holds for integers k > l ~ - - l .  Now by (5.101), (5.124), and (5.125), we have 

(5.130) ~(2.; k~) = r(2)/t(2) 

so tha t  the ordered sequences {~.<} a n d  {~i} are subsequences of the ordered sequences 
{~i} and {5~} respectively. Hence (5.117) and (5.118) follow from (5.126) and (5.127) 
respectively. The equation 

follows from (5.130) if k ~  k2--1 by  arguments of an algebraic sort. Also we have 
from (5.130). 

(5.152) - m,~L~; ~ ~ m,~t~(~)j + m ~ [ t ~  ] 
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Equa t ion  (5.119) follows from (5.97), (5.128), (5.129), (5.131), and (5.132). [] 
The next  theorem represents a slight ref inement of theorem V.7. I f  the functions 

x~(~), y~(~), and ](~), are all polynomials in 4, then  (5.115) holds with ~ ~--0. Here  
k~---- ko, bu t  the series in (5.117)~(5.118) are actual ly convergent if s---- 0. I f  ko is 
an integer, then  it turns out  tha t  we have val idi ty  of (5.119) for k-~ k 0 -  1, and 
not  just  for k > ko--1.  

THEOI~E:~ V.8. Le t  K(A) be given by  (5.1), and let M1 the assumptions of the- 
orem V.6 be satisfied. In  addition, let us suppose tha t  xdA) and Yi()~) are ~t~-vMued 
polynomials in ~ for each integer i satisfying 1 <~i<~l, and let  us ~ssume tha t  ](A) 
is a complex-vMued polynomial  in ,% with ] ( 0 ) ¢  0. Then (5.117) and (5.118) with 
k2-----ko hold for e =  0 ~nd (5.119) holds for each integer k~ko--1.  

PROOF. -- We assume tha t  ](0)----1 and tha t  x~(0)----~ for j =  1, . . . ,  l, where 
is the zero-vector in $F.  To see tha t  the la t ter  is really no restriction, let  us first 

define the polynomiM g(~) by  

(5.133) { g(Z) = ~ -~[1 -1 (2 ) ] ,  

g(o)~- - 1 ' ( 0 ) .  

~ 0  

Let  the operator  /~(~) be defined by  

l 

j = l  

(v e ~t ~ ) 

and let 

(5.135) &i(~) ~- 2g(2) xj(2) • 

Using the  relation 

1 ~.q(~) 
(5.136) f (~=  f(~--~ + 1 

we see tha t  

(5.137) K(~)v = ft(2)v+ ~$~(~)(v, yj(~)} 

for each v eJtt °. We note  tha t  / t(2) is an operator-vMued polynomial, and tha t  
&j(~) is an 3~-valued polynomial. Fur thermore ,  ~ j (O)--~  for j~--1, . . . ,  l. I f  ko is 
the number  defined in (4.16), we shall temporar i ly  write ko(H) instead of ko. B y  
the remarks made in Corollary IV.3, we ma y  write ko(H)-~ ko(I~). We shall hence- 
for th  drop the carats in (5.137), and we shall henceforth assume tha t  

(5.138) x,(2) = ~w~(~) ( i =  1, . . . ,  t ) ,  
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where  Wi(~ ) iS an  ~ v a l u e d  polynomial in ~. 
W e  will r ewr i t e  (5.2) as a m a t r i x  sy s t em.  L e t  h b e  a f ixed e l e m e n t  in ~ w i th  

Ihl = 1. W e  shall  see t h a t  (5.2) can  be  w r i t t e n  in t he  (( e q u i v a l e n t  ~> fo rm,  

(5.139) 

(5.140) 

i= l  

u~---- ~g(~)<u~, h}h ÷ A<uo, y~(~))h ( i =  1, . . . ,  l) 

w h e r e  u ~ e J ~ .  More  precisely ,  let  a be  a c o m p l e x  n u m b e r  such t h a t  ](a)V= O. 
T h e n  if ~ = a and  (uo, u~, . . . ,  u~) is a non - t r i v i a l  so lu t ion  of (5.139)-(5.140),  we c la im 
t h a t  ~ = a a n d  u = uo m u s t  be  a non - t r i v i a l  so lu t ion  of (5.2).  F o r  we  m u s t  h ~ v e  

a 
(5.141) u ~ =  ]~-) <uo, y~(~)}h (i ---- 1, . . . ,  l) 

f r o m  (5.133), a n d  f r o m  (5.140). H e n c e t h e  r e q u i r e m e n t  t h a t  u ~ ¢ O  for  some  i im-  

plies t h a t  Uo=~-~. Us ing  (5.139) a n d  (5.141), we see t h a t  4-- - -a  a n d  u =  uo is a 
so lu t ion  of (5.2). Converse ly ,  if ). = a a n d  u is a so lu t ion  of (5.2), t h e n  if n o = - u  

a n d  if u~ is g iven  b y  (5.141), we  can  show t h a t  (u0, u l ,  . . . ,  u~) is a non - t r i v i a l  solu- 
t ion  of (5.139)-(5.140) w i t h  2--~ a . .  

I f  ](a) ~- O, a n d  if ,% ~- a in (5.139)-(5.140),  t h e n  (5.139)-(5.140) m a y  poss ib ly  h a v e  
a n o n - t r i v i a l  so lu t ion;  howeve r ,  th is  is of no consequence  here.  

W e  define the  o p e r a t o r s  A~(2), Bi(2), a n d  D~(2) for  i--~ 1, . . . ,  I b y  t h e  equa-  
t ions  ( the  Be are  subsc r ip t ed  for  conven ience) :  

(5.142) 

(5.143) 

(5.144) 

A~(;t)v = w~().)<v, h} 

B~()~) v -~  g()~) <v,  h } h 

D~(2)v =- <v, y~(~)}h, 

where  v ~ .  L e t  H(~)  be  t he  (1 -~ 1) × (1 ÷ 1) squa re  m a t r i x  of ope ra to r s  g iven  b y  

(5.145) H(2)  --~ d iag  (H(2) ,  B1(2), . . . ,  B,()~)) 

a n d  let  P(~)  deno te  t he  (1 ~ - 1 ) ×  (1 ~-1)  m a t r i x  of o p e r a t o r s  g iven  b y  

(5.146) 

L e t  

(5.147) 

0 AI(~) 
p(~)=  DI(~) 0 

\Dz}~)  0 

K(2) ---- H(2) ~- P(2) 
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and let 

(5.148) (uo, u~, ..., u ~ ) r :  u ( u t e ~ )  

where u is an element of the product space j~E~+~1. 
alent to 

(5.149) ~K(2) u = u .  

Clearly (5.139)-(5.140) is equiv- 

The simplification here is tha t  K(2), P(X) and H(~) are polynomial operators; the 
theory tha t  we developed for H(X) is applicable to the operators K(~) and H(~), 
since 

(5.150) ko(K) = ko(H) 

(5.151) = ~o(H) 

by the results of Corollary IV.3 and lemma I I I .3 .  We shall continue to denote the 
quantities in (5.150)-(5.151) by ko for simplicity. 

I f  we did not  assume tha t  x j ( 0 ) =  ]~, we would not  have been able to trans- 
form (5.2) into a system of the form (5.149); the appearance of 2 as a coefficient 
in (5.149) is most  convenient here, since it enables us to use the results of the- 
orem IV.3 easily. 

We recall t ha t  K(2) is an operator-valued polynomial in ,t, and tha t  (5.150) holds. 
Le t  I denote the identi ty operator on jZg~r~+11. For  each integer k>~ko--1, let g(),; k) 
denote the entire function satisfying 4~(0 ; k) = 1 and the equation obtained by re- 
placing ~( ; t ;  k), K(2), and I in (5.96)k by ~(),; k), K(~) and I respectively. The func- 
tion g~(~; k) exists by  the results of theorem IV.3; its zeroes are independent of k 
and coincide with the eigenvalues of (5.149). We seek to develop a relation between 
~(~;  k) and ~(~; k); using the analogue of (5.97), we could theoretically, at  least, 
compute o~(),;/c) ; however, the computat ion of [ I - -  ~K(~)] -1 is simply too involved 
because of the presence of off-diagonal terms in the matr ix  K(X). Instead,  we will 
employ an appropriate analogue of (5.102) with the tilde removed. 

Le t  x~(X) be the (1 + 1 )×1  column vector given by 

(5.152) 

(5.153) 

xi(;,) = (wi(;,),6, . . . , 6 )T  ( i =  1, ..., ~) 

xi(x) = (6, . . . ,6 ,  %6, . . . ,6) T ( i =  t + 1, . . . ,2~) 

where h is the element in the (i ÷ 1 - - l ) - t h  row of Xi(~ ) in (5.153). Le t  yi(2) be 
the (l -k 1 )×1  column vectors given by 

(5.154) 

and 

(5.155) 

y,.(~) = x{+~(~) 

y~(x)= (yi_~(~),-% ...-~)T 

( i =  1, . . . ,  l) 

(i=/~-l,..., 2/). 
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:Note tha t  the zero vector (in ~t ~) is the element in the first row of x~(~) and y~-().) 
for l ÷ l < i < ~ 2 1  and for l~<j~<l. 

We may  write (see (5.146)) 

(5.~56) 

where v ~J~[t+~] and where 

(5.157) ~=2~.  

A simple calculation shows tha t  the (1 ~-1)X (l-[-1) matr ix  [ I -  ,~H(~)] -1 is given by 

(5.158) [ I - - ,~H(Z)]- l=diag [ I - -  ~.H(2)]-~, I + f ( ~  B~(2), ..., l + i-~) ) . 

We write 

(5.159) G(,~) = [X-- ,~H(,~)]-IP(,~) 

and we define 

(5.160) z~(~)-- [I--~H(,~)]-~xi(Z) (i~- 1, ..., 1). 

The Fredholm function d(~) of G(~) (see the s ta tement  of lemma V.4) is the deter- 
minant  of the 1X [ matr ix  containing 

(5.161) ~, - -  ), < z ~ ( ~ ) ,  y ~ ( ~ ) >  

in its i-th row, j-th column. From (5.152), (5.153), (5.154), (5.155), (5.138), and (5.158), 
we have for i~ j - -  1, . . . ,  I: 

(5.162) <z~(2), y~(~)> = o 

(5.163) <zj+~(~t), y~+~().)) = 0 

(5.164) <zj(;~), y~+~(~)> = ~-~<z~-()~), y~(~)> 

(5.165) <z~+~(~), y~(~)> = ~/ / (~) .  

We write a~- instead of <zj(~), y~(~)) for brevity.  The function d(~) is thus equal to 

(5.166) d(.~) = det  ~A 

where J z  is the l × 1 ident i ty  matr ix  over the set of complex numbers, and A is the 
l× l  matr ix  of elements a , .  By  elementary operations on determinants,  it can be 
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seen that  

(5.167) d().) ~-- det 

(5.168) -~ det 

(5.169 

l(~) / 

~¢~-- ]-~) A O~ 

___ ( _  1)Zdet[ O ~  J ~ /  

where O~ is the zero matrix of size ~ X I. By writing out the last determinant in (5.169), 
and repeatedly expanding along elements of the last column, we obtain 

(5.170) d(Z) ~ det [ J~--  ]~)  A] 

(5.171) = d(~). 

The next step is to compute a relation between A(~; k) and /~(g; k) for integers 
k ~ k o - - 1 ;  according to the conventions observed, the latter function satisfies the 
analogue of (4.97) with A(g; k), H(~) a~nd I replaced by A(g; k), H(g), and I 
respectively, and is assumed to have value of one at ~-~ 0. The existence of 
A(2; k)~ of course, follows from the fact that  H(~) is an operator-valued polynomial, 
from (5.151), und from theorem IV.3. A simple computation shows that  

(5.172) 

where 

(5.173) 

[~H(~)]'[I--  ~H(~)]-] 
r(z) ---- diag [gH(~)]'[I-- ).H(~)] -1 , ]()~) 

E i v ~ - ( v ~ h } h ,  rebuff, i ~ - l , . . . , l .  

I'(,~) ) 

The relation (5.136) is useful here. Extending lh / to  an orthonormM basis for ~f ,  
and using the definition of trace, we obtain 

(5.174) Tk Ei : rnk k = 0 ~ l , . . . ; i  = 1 ~ . . . ~ .  

Hence by (5.172), (5.174), and (3.37), we obtain the relation 

(5.175) ~{[~n(~)]'[I-- ~H(~)]-I} = ~{[; ,H(~)] ' [Z--  ~H(~)]-I} -- ~m~ t l ( ~ J  
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valid for integers k~>ko--1. 
of (4.98), we have 

Using (5.175), (4.98), and the appropriate analogue 

(5.176) A'(2; k ) z ~ l ( 2 ; k ) , ~ ] t ( l ~ )  k-1 {~} 
a(a; k} - d(2; k~ ± 7 ~  - z:~ 2'''~,=o " 

Hence 

(5.177) A(2; k) = A (2; k)[](~)]~ exp -- l ~ - -  rnj 
j=oj -t- 1 

which is valid for each complex 2 and for each integer k~ko--1. Let  p(2;  k) be 
the polynomial obtained by replacing G and I in (5.99) by  G and I respectively. 
From (5.170)-(5.171), from (5.102) (without the tilde), from the analogue of (5.102) 
obtained by replacing ~ ,  p, A, and d by ~, p, A, and d, and from (5.177), we can 
state the relation 

(5.178) 

where 

(5.179) 

g(2; k ) =  ~(2; k)[/(2)]' exp q(2; k) 

{i}] q(2; k) = expp(~;  ~) - -p(2;  k) -- 1 ~ rnj . 

The relation (5.178) is valid for each integer k~>ko--1 and each 2 which is not  
a pole of ~(2 ;  k). I t  is important to note here t ha t  q(2; k) is a polynomial of degree k 
or less. 

Le t  ( ~ )  and (r~) be the ordered sequences of zeroes of ~(2;  k) and ](4) respec- 
tively, where each zero is taken according to algebraic multiplicity. Then since 
K(2) is an operator-valued polynomial, and since (5.150) holds, we may  apply the 
results of theorem IV.3 to conclude tha t  

(5.180) ~ Iv,l-~o< + 
i 

and tha t  

(5.181) Z ~7 (~+1) = ~{E2K(~)]'Et- 2K(~)]-1} 
i 

provided k is an integer such tha t  k>~ko--1 in (5.181). Le t  (ri) and (~i) be the 
ordered sequences defined in assertion (v) of theorem V.6. By  (5.178), we see tha t  (r~} 
is a subsequence of the sequence (~) .  Hence, by  (5.180), the relation (5.117) with 
k2--~/Co holds for ~---- 0. The sequences (e~) and (r~} are finite sequences, since ](2) 
is a polynomial. Hence by  (5.178), we have by  arguments of an algebraic sort: 

(5,182) ~-(k+l)__~ ~ - ( k + l ) _ _ ~ - ( k + l )  + l ~ r i  -(k+l) 
i 4 4 i 
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valid for integers k>~ko--1. If  k~ is the smallest integer such tha t  k~>ko--1 then  
we have from (5.178) 

(5.1S3) m~ L~()~; k~)j m~ L~(~; ~i ]  -~ lrnk + m~,[q'(~; k~)] 

which is valid for integers ]¢>/%--1, tha t  is for integers k>~k~. But  the degree 
of the polynomial q'(~; k~) is smaller than  k~, so 

(5.184) m~Eq'(~; k~)] = 0 

if k>~ko--1. From the analogue of (5.97) with k z  I~ and with ~ ,  K,  and I re- 
placing 9 ,  K,  and I respectively, and from (5.181), we conclude tha t  if k>~ko--1, 
then 

(5.185) ~ ~;(k+~) = _ m~ 
kl)J" 

Since ](4) is a polynomial,  we have 

(5.186) ~ r~  -(k+l)--- -- m k [ ~ ]  

for each non-negative integer k. Hence by (5.182)-(5.186), and by (5.97) with 
k----kl~ we have 

(5.187) 

(5.188) 

valid for integers k ~> ko-- 1. 

Y. ~r ( k + l ) -  2~ er  ('~+1) = - m,~ P ' ( ~ ;  @.1 
, , L2(~; kl) ] 

= T~{E).K(~)]'[I - -  g(~)]  -1} 

VI. - We wish to evaluate the quantities appearing on the right sides of equa- 
tions (4.102) and (5.119). 
recursion formula. Le t  

(6.1) 

We have from (6.1) 

(6.2) 

Let  us assume tha t  

(6.3) 

We shall do this for the operator K() 0 by  means of a 

L(;.) = [~K(~)] ' [ I - -  ~K(~)]- i .  

~(~) = ~L(;~)K(~) + [~K()0]' .  

K(~) = ~ 2~Kj 
j = D  
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and tha t  
oo 

(6.4) L(),) : ~ )JZ~ 
~ = 0  

where convergence of (6.3) and (6.4) is with respect to (say) I I~. From (6.2)-(6.4), 
and from (3.19), we obtain 

k - - 1  

(6.5) L ~ :  (k -- 1)K~ ~- ~Z~Kk_,_~. 
i = 0  

Hence we have 

(6.6)  2~o : Ko 

(6.7) L~ ~- 2K~ -[- K~ 

(6.8) .L 2 = 3K 2 -~ (KoK 1 -~ 2KIKo) ~- K~ 

(6.9) L~ : 4Ka ~- (KoK2 4- 3K2K0) 

~- 2K~ ~ (K~K, -~ KoK~K o ~- 2K, Ko) ~ K~. 

~vYe write 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

Z*7 ~ -  Z e;  ~ = ,{Ko} 

~7~ - 2 e:  ~ = ~{~K~ + Ko ~} 

2 ~ - ~ -  ~ ~;-~= ~{3K~ + 3K~K0 + Ko ~} 
i i 

:Equation (6.10) is valid if k o ~ l  and u ~ l  (see (5.115)). :Equation (6.11) is 
valid if ko ~ 2 and ff ~ -< 2, etc. 

I f  K(2) satisfies the conditions of theorem V.8 (here the functions x~(~), yj(,~), 
and f(~) are polynomials), then equations (6.10) is valid if ko<l, equation (6.11) 
is valid if ko <~ 2, etc. 

In  order to obtain (say) equation (6.12) from (6.8), we would have to show tha t  
if ko~3, then 

(6.14:) v{gog,}-~ ~{g,go} .  

We will prove (say) equation (6.14) in more general form. Each term in the expres- 
sion for Z~ is of the form 

(6.15) K~ 1,, ... K~: 

where ],, . . . ,  ], denote powers. Here q is some integer such tha t  q < k ~ - 1 ;  also, 
we have O < i ~ k  and l < j ~ < k ~ - i  for each integer r in l < r < q .  Furthermore,  
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we ha, re that 

q 

(6.16) ~ (i, ~- 1 ) ~ , =  k + 1 

as the reader will note by examining (6.6) through (6.9). These facts may  be proved 
by induction if one uses (6.5). Equat ion (6.16) states tha t  the sum on the left side 
of (6.16) is invariant  for each term (6.15) which appears in the expression for L~. 

If  i~>  s for some r (see (4.1)), then (see (4.1) and (5.1)) K,, is precisely the 
coefficient of ~" in the ~ac laur in  expansion of P(~) in (5.3); since P(~) is analytic 
(with respect to ]]~ about 4 =  0, we have tha t  K # e  C ( 1 ; ~ }  if 4 >  s, so tha t  (2.40) 
yields the fact tha t  the trace of (6.15) is equal to the trace of any  permutat ion of (6.15). 

I f  i~Ks for each r in l < , r K q ,  then (6.15) is ia C(p), where 

(6.17) - ----- - - .  

The condition k > k o - - 1  implies tha t  (see 4.16) 

(6.18) (i~ + 1)~#<k + 1.  

F rom (6.16)-(6.18), we obtain 

(6.19) - -> = 1 
p ~o k + l  

provided k>~ko--1. Hence if k ~ k o - - 1 ,  the trace of (6.15) is equal to the trace 
of any  of its permutations by (6.19) and (2.40). F rom these results, incidentally, 
we can see tha t  [~K(~)]' and [ I - -~K(~) ]  -~ may  be commuted  in (5.119), provided 
the condition k>~ko--1 is sutisfied. 

I f  K ( ~ ) =  H(~), then we observe tha t  equation (4.2) has an eigenvalue if and 
only if T ( ~ ) ~ 0  for some integer k ~ k o - - 1 .  This follows directly from (4.98) 
and (4.102). I f  ](~) has only positive zeroes, and if T(L~)> 0 for some integer 
k > k ~ - - i  (see (5.116)) (or some integer k >  ko--1 if the  assumptions of theorem V.8 
are satisfied), then we can guurantee tha t  (5.2) has ut least one eigenvalue. 
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