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Summary. — In this paper the trace equations

1

> =fkp(w, x)dz
' 0

arising in the Hilbert-Schmidt theory of Fredholm integral equations are ewtended to certain

classes of compact operators K(A) on Hilbert space H which are meromorphic functions of

the eigenvalue parameter A. The operator K(1) is the sum of am operator valued polyno-

mial H(A) plus an operator P(1) which is a meromorphic function of 1 and has finite dimen-

sional range for each fived A. The theory is constructed so that if € = L,[0, 1] and if

H(3) = Z JH,
i=0

where the H, are integral operators derivable from corresponding Lebesgue square integrable
kernels hx.y), then one can systematically take advaniage of various regularity conditions
that some of the kernels h,(w, y) may have in improving the results.

I. — Introduction.

If k(x, y) is a Lebesgue square integrable kernel on [0, 11X [0, 1], then the formula

1
(1.1) S At = f (1, @) da
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holds for integers p>2, where k,(x, y) is the p-th iterate of E(x,y), and where {1,}
is the sequence of eigenvalues of k(x,y), taken according to algebraic multiplicity
as zeroes of the classical Fredholm function. The formula (1:1) holds for p=1
under suitable further restrictions on k(z,y), as is well known (see CHANG[1],
COCHRAN [3; pp. 242, 251-266], DUNFORD-SCHEWARTZ [5; pp. 1116-9], HILLE-TAMAR-
KIN [10], STINESPRING [23], SWANN [24]).

In this paper we generalize (1.1) to cover eertain classes of compact operators
(on a Hilbert space ), which are meromorphic functions of the eigenvalue para-
meter 4. The case where the operator H () is a simple polynomial in 1 is covered
in Part IV; in part V, we consider eigenvalues of K(1)= H() + P(4), where P(})
is a certain operator valued meromorphic function of 2 and has finite dimensional
range for each fixed A. Let us suppose that

(1.2) H) :_i VH,

=0

where the H, are certain classes of compact operators (to be defined in Part II).
If it happens that 3 = I,[0,1] and that the operators H, are integral operators
derived from square integrable kernels ,;(z, ), then the theory developed will enable
us systematically to take advantage of various regularity conditions that some of
the kernels h,(x, ¥) may possess in order to improve our results. Such conditions
are given in papers by CmaNa[1], COCHRAN [3;pp.231-248], STINESPRING [23],
SWANN [24]; one such well known condition in terms of exisfence of partial deriv-
atives of h,(x,y) is briefly reviewed in part II.

The results described in part IT are a review of certain results in DUNFORD-
SCEWARTZ [5; pp. 1088-1119]; we include them in order to make the paper as self-
contained as possible, in order to facilitate referencing (since DUNFORD and
ScHWARTZ do not number their equations for the most part) and in order to review
briefly the rather specialized spaces of compact operators needed for this paper.
The results in part III comprise a review of well-known material which is inacces-
sible in the literature.

In part IV we treat the eigenvalues of the operator valued polynomial H(4);
in part V we discuss the eigenvalues of the meromorphic operator K(1). Finally,
certain practical aspects of-the uses of the formulas to be developed are treated
in part VI. The major theorems in this paper are Theorems V.6, V.7, and V.8.

Our paper is a direct generalization of the work of MULLER[22], who considers
operator-valued polynomials of degree two. The authors (see LAGINESTRA-BOYCE [13])
have previously obtained related results for certain boundary value problems for
ordinary differential equations which are non-linear in the eigenvalue parameter;
their methods in the latter paper were strictly classical analysis. GoODWIN [8] bas
also considered such problems. A few of our results apply to the case where the H,
are merely compact, namely the assertions of corollaries V.5-2 and V.6-1, where
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we state that [I —AK(4)]~* has poles at the poles of K(A) and at the eigenvalues
of the equation

(1.3) AE(ADu=u (uciH).

These results are not necessarily new; they can be found in less general form in
TAMARKIN [25; p.148]. In addition, we construct Fredholm function(s) for K(4)
in part V and investigate their properties.

Just for the record, if K is any operator on 3#, the eigenvalues 1 of K will satisfy
the equation AKu = u throughout this paper.

II. — A review of the spaces O(p) and of the concept of trace.

Let A be any compact linear operator defined on the complex Hilbert space 37,
Let (A*A)* denote the nonnegative square root of A*A, where 4* iy the adjoint
of A. Then (A*A4)* is a compact self-adjoint operator on H#; its eigenvalues
{Jll-[(A*A)%]}, written according to geometric multiplicity, are called the singular
values of A, If A*A£0, i.e. if 440, the operator 4 will always have at least
one singular value. We write

(2.1) pA) = A(A* A)¥] = VI,[(4* 4)]
and we note that (DUNFORD-ScHWARTZ [5; p. 1092])
(2.2) pild) = p(4%).

The numbers u,(A4) are positive, and the sequence {u,(4)} has no finite limit point.
The importance of the singular values of A in this paper partially follows from
the inequality (DUNFORD-SCHWARTZ [5; p.1093])

(2.3) 3 )< S 4]

where p is any positive real number. The eigenvalues of A (at most denumerable,
since A is compact) are enumerated in the (possibly empty) sequence {2.(4)} ac-
cording to (geometric) multiplicity (which will be defined); the summations in (2.3)
are taken over all elements of the sequences {1,(4)} and {u;(4)}. Convergence
of the series on the right in (2.3) would obviously tell us something about the growth
of the eigenvalues of 4, provided, of course, that such eigenvalues exist. Indeed,
convergence of the series > u,(4)» will enable us to «evaluate» the series

> [A{(A)I* provided p is a positive integer.
* Let us recall the meaning of the geometric multiplicity of the eigenvalue 2= a
of the operator A. Let .#7(4) denote the null-space of A, i.e. let

(2.4) N(A)= {weH: An=0}.
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Let 1= 0 be an eigenvalue of the compact operator 4. If A is compact, recall
that there is a positive integer 7 (depending on 4) such that

(2.5) NI —ad)]=N[(I—ad)*].

Furthermore, the spaces in (2.5) are finite dimensional for compact 4 (see DUNFORD-
SCHWARTZ [4; pp. 573, 579]). The space # (I — aA)’] is the j-th generalized eigen-
space of (I — aAd); the geometric multiplicity of the eigenvalue 1=« is the maximal
dimension of the generalized eigenspaces of (I —ad). If A is a compact, self-
adjoint operator, then the eigenvalue A=a of A is real and we can take i=1
in (2.5). In this case, equation (2.3) is trivial, since we may set u.(4)= |A,(4)].

Let p be any positive real number, and let C(p) denote the collection of all compact
linear operators A such that > u,(4)-* converges. We write

(]

(2.6) 4], = [z‘u{(A)—p]up.

Let C(co) be the collection of all linear operators 4 defined on  with the norm
(2.7) |4|,,= sup{|A#|: e and |z|=1}< + oco.

When it becomes necessary to refer to the Hilbert space J# on which 4 is defined,
we shall frequently write 4 € C{p;3#} instead of A e C(p). This need to refine
the notation obviously is important in discussions where several Hilbert spaces
are under econsideration. If A is compact, then one can show (DUNFORD-
SCHWARTZ [5; p. 1089]) that

(2.8) 4] = min {[u(4)]7};

hence if A e C(p) for all sufficiently large positive p, we have that [A], — |4],
as p —> -+ oo,

If 1<p<oo, then C(p) is a Banach space. If p satisfies 0 <p <1, then C(p)
is not a Banach space because ||, does not generally satisfy a triangle inequality;
however ||, does satisfy the « unorthodox » triangle inequality

(2.9) |4+ B<2|Al; +2|B[;
where the upper p denotes a power; the set C(p) is a linear manifold of 0 <p <1
and does have the property of completeness (DUNFORD-SCHWARTZ [5; p.1095]).

If 0<p < g< oo, then (DUNFORD-SCHWARTZ [5; p. 1093])

(2.10) O(p) < Clg)
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and if A e C(p), then
(2.11) |4l <[4l

if 0<p<ggoo,
If AeC(p) and BeC(g), where 0<p, ¢< co, then (DUNFORD-SCHWARTZ[5;
p. 10931)

(2.12) ABeCO(r), (@ t=pt+q?).
Furthermore
(2'13) IABIT<21”[ADHBQI *

If we restrict p and ¢ so that 1<p, g<oco then we can improve (2.13) (DUNFORD-
ScHWARTZ [5; p. 1105])

(2.14) |AB|,<|A],|Bl,, (rt=pt+ g,

If A;e C(p;), where 0 < p;< oo for each integer ¢ in 1<i<mn, then

(2.12)’ [ilf[lA,.] e 0(r), [r—l :é(pi)—l] .

We shall need only the generalization of (2.14). If the p, are subjected to the ad-
ditional restriction that 1< p,< oo, then

rn

114,

i=1 i

n

(2.14)’ . <I_I1 | 4],

where # is defined in (2.12)".
If AeC(1) and if {¢,} is any complete orthonormal basis for 3, then

(2.13) 2 [A(A)] = 2 <Ay, ¢

where each of the series in (2.15) is absolutely convergent, and where all but a coun-
table number of terms on the right side of (2.15) vanish. The limit of the series on
the right side of (2.15) is independent of basis (DUNFORD-SCHWARTZ [5; pp. 1097,1104]).
We shall denote either of the quantities in (2.15) by 7(4), i.e."the trace of 4. The
operator z is a linear functional on C(1), and is continuous on C(1) with respect to
the ||, norm. Its continuity properties follow directly from the inequality

(2.16) lr(4)|<|4k

which is a restatement of inequality (2.3) (also see DUNFORD-SCHWARTZ [5; p. 1104]).
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If ¢ is any positive integer then we may write 2,(A%) = [4,(4)]° by the spectral
mapping theorem (DUNFORD-SCHWARTZ 4; p. 574), so if A°e (1), then

(2.17) STA] = 3 (A%, 0 -

Let # = L,[0, 1] be the usual Hilbert space formed from the class of all complex-
valued Lebesgue square-integrable functions defined on [0,1]. Then (DUNFORD-
ScEWARTZ[5; p. 1093]) A€ ((2) if and only if there is a Lebesgue square integrable
function a(x,y) defined on [0,1]x[0, 1] such that a(x,y) is the kernel of 4. (The
class C(2) is the clags of all Hilbert-Schmidt operators on the arbitrary Hilbert
space #.) If AeC(1) then (see COCHRAN [3; p. 236]) if o = L,[0, 1], we have

1
(2.18) a(, ) = [b(@, 2)olz, y) de

where b(x,y) and c(x,y) are Lebesgue square integrable on [0,1]x[0,1]. Hence
a(xz, ©) can be defined via (2.18) almost everywhere on [0, 1], and is Lebesgue in-
tegrable on [0,1]. We have (see COCHRAN [3; p. 243])

1
(2.19) T(4) =fa(o;, z)d .

0

Mere existence of the integral in (2.19), indeed even mere continuity of a(x, y) on
the unit square, does not guarantee existence of v(4) (see COCHRAN [3; p. 517).

From what has just been said, one can easily show that the trace of A and the
trace of the operator whose kernel is

1

- (2.20) ‘ f o(w, 2)b(z, y) de
0

are equal. We shall discuss this more generally shortly.

Let # = 1,[0,1], and let 4 €C(2). Let a(x,y) be the square-integrable kernel
corresponding to the operator 4. Sufficient conditions for 4 to be an element of C(p)
for p <2 are given in DUNFORD-SCHWARTZ [5; p.1117] in terms of existence of
partial derivatives of a(z,y), and also in terms of a Holder condition on a(z, y)
(also, see CHANG [1]). Results can also be obtained if the variables » and y lie in a
bounded region of a higher dimensional real Euclidean space (see DUNFORD-
ScHWARTZ [5; p. 1119]).

As a result.of the considerations of DUNFORD-SCHWARTZ [5; pp. 1116-1118]; if

L

(2-21) a—yka’(wy ?/) = b(wa Y)
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is square integrable on [0, 11x[0, 1], and if for some « in 0 <z <1 and some con-
stant I'> 0, we have

1

(2.22) { [p@, 9 —b@, o paaf <Iy -2

]

then it can be shown that 4 e C(p) where p>2/(1 + 2(k -+ «)). As a consequence
of (2.2), we may replace /0y in (2.21) by 9/d.x, or assume a Hoélder condition (2.22)
with respect to the opposite variable. (See STINESPRING [23], SWANN [24] for further
results).

We return to the general complex Hilbert space # in order to generalize some
of the preceding. First we review a well known fact about the type of operators
being studied; this will prove most useful in later considerations. Let p, ¢, and r
be positive reals satisfying

(2.23) r=1/p +1/q

and suppose that De CO(r). We maintain that there exist operators 4 e C(p) and
Be O(g) such that

(2.24) D= AB.

In order to prove this, let {y,-(D)} be the sequence of singular values of D, taken
according to multiplicity, and let u, = u,(D) for convenience. Let ¢, be an ortho-
normal sequence of eigenvectors of (D* D) satisfying

(2.25) pe [(D* DY Ty =y, .

The sequence {p,} defined by

(2.26) ;= p; Dy,

is then an orthonormal sequence of eigenvectors of (DD*)! as is well known

(CocHRAN [3;p.213]). By the Hilbert theorem for compact self-adjoint operators
(DUNFORD-SCHWARTZ [5; p. 905]), the vector y given by

(2.27) y=o—230, 9>y, (veH)

satisfies (D* D)ty =0 or Dy=10. The series in (2.27) is taken over the whole se-
quence {y;}. Hence by (2.26) and by the preceding we have

(2.28) D=2 47 K@, 9@, -
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Let the operators U, V, and W be defined by
U= 12% Yo P
Vi= Zui vy,
Bz =3 ui "G v vs
for arbitrary ze . Then Ue C(o0), Ve O(p) and Be C(q). If A= UV, then
by (2.12), we have that A e C(p). Since
(2.29) D= UVB=AB

by (2.23), (2.28), and by the definitions of U, V, 4, and B, the equation (2.24) is
verified.
Let Ae C(p) and Be C(q), where 0 <p, ¢< co and where

(2.30) 1/p+1/g>1.

Note that ABe (1) and B4 € C(1) by (2.12) and by the inclusion (2.10). We have
(DUNFORD-SOHWARTZ [5; pp. 1098, 1104-1105])

(2.31) 2(AB) = v(BA).

Strietly speaking, the proof in DUNFORD-SCHWARTZ (p. 1100) does not cover the
case where (say) g== co, since they use the fact that B can be approximated (with
respect to | |,) by operators of finite dimensional range; this is not true if g = co.
However, the minor difficulty can be overcome if we factor A into a product FG
of two operators, each in the space ((2p)C C(2), where we have set g= co
in (2.30). The latter factorization is possible, of course, by (2.24). We write

(2.32) 7(AB) = ©(F(GB))
(2.33) = 7({(GB)F)
(2.34) = ¢(G(BF))
(2.35) = t{{BF)G)
(2.36) = 7(B4) .

In order to obfain (2.33) and (2.35) we have used the fact that GB and BF are in
C(2p)c C(2). By induction, one can show that if

(2.37) 4;€0(py), @G=1,...,n)



A. V. LAGINESTRA - W. E. Bovor: Convergence and evaluation, efc. 237

where

(2.38) 0<p; o0
and where

(2.39) % 1/p.>1
then o

n

(2.40) T[ili[lAi] = T[EL]

where {4,} is any permutation of {4,}.

III. — Analytic functions and product spaces-A review.

We continue to assume that 3# is a complex Hilbert space.

Let p be a fized element in 1 <p < oo, so that | |, is a true norm. Let ¢ be a fixed
element in 0 <e< + oo, and let A(1) be a linear operator defined on all of 3# for
each 1 in |1|<e. We say the mapping (}) 1 - A(4) is analytic with respect to ||,
for each 1 in |[A|<<e if

(i) A(A)eC{p;3#} for each A in |A|<e;
(ii) the mapping A — A(4) is continuous with respect to ||, for 1 in |1] < ¢;
(iii) the limit (with respeet to | [,)

. AA+ AL — AN
(3.1) 411}.1—90 A4

exigts for each 4 in 4| <e, where |1+ 41| <e.
The mapping 71— A(4) is analytic with respect to ||, in |1] <e iff (see
DUNFORD-SCHWARTZ [4; p. 228])

(=]

(3.2) A= 3 24,

i=1

where 4,e O(p) and where the series in (3.2) is absolutely and uniformly convergent
with respect to ||, in |A|<¢' for each & in 0 < ¢'<<e. The proofs involved here are
similar to the proofs in the case where the functions are complex-valued.

If 1<p <g< oo, then by the inclusion (2.10), by the inequality (2.11), and by
the definition of analyticity, the reader can show that A(A) is analytic with respect

(*) In the future, we will frequently say (somewhat inexactly) that A(4) is an analytic
function or continuous function with respect to | |,.
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to ||, in || <e. The inequality (2.11) can be used to show that

(3.3) lim ]A(/l) —éomAfjﬁ 0

n—>od

uniformly in |ij<¢'<<e. The absolute convergence of the series (3.2) with respect
to ||, implies its absolute convergence with respeect to ||, by (2.11). Obviously,
although A(A) is analytic here in two different senses, the Maclaurin coefficients 4,
are norm tnvariant.

If A(A) is analytic with respect to ||, for each 4 in |i|<e, then, of course,
all of the derivatives of A(4) (with respect to |[,) exist, and are analytic with
respect to ||, in |A] <e.

If A(Z) is the function previously described, then it is convenient to define the oper-
ators m,, for k=0, 1,... by the equations (see DUNFORD-SCHWARTZ [4; Dp. 228-229])

(3.4) m,(A(1) = 4,

(3.5) = (1/k!)(d*A[di¥)(0)
A4

(3.6) — (j2mi) [ 22 a2
r

where I' is the positively oriented contour

(3.7 A=¢exp[il], 0<0<2n.

The derivative in (3.5) and the integral in (3.6) are defined via the usnal limiting
processes with respect to | |,. The norm invariance of the Maclaurin coefficients A,
yields the norm invariance of the derivative and integral, considered as limits,
in (3.5) and (3.6). If A,e C(1) for some fixed %, then we define the operator 7, by

(3.8) T A(2)) = v{mu(4A(2))}

{3.9) = 7{4).

The notation 7, will be used without reference to the Hilbert space in question,
since frequently several spaces will be discussed in the same proof. However, no

confusion will arise due to this.
If A(A) is analytic in |A| <& with respect to the ||, norm, then we may write

(3.10) 7 A(2)) = m,T(A(4))
since 7 is a continuous operator on C(1).

Let p be a fized element in 1<p<oo, and let by(1)e C{p; #} for each non-
negative integer i and each 1 in |A|<<e. Suppose, in addition, that the functions -
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b;(4) are analytic in || < e with respect to ||, and that
(3.11) B(4)= 2 bi(4)

uniformly in |A]<¢’ for each ¢ in 0<e'<<e. Then B(1) is analybic with respect
to ||, in |4] <&, and the formula

(3.12) (@] B(A) = 3 (dA)b,(A)

i=1

holds for |A]<Ce, since d’/dA’ may be expressed as an integral operator by using the
Cauchy formula (for fixed 1)

1 (& _ 1 [ B
)

where I'(1) is the positively oriented contour
(3.14) p= A+ (g'—|a]) exp[ib], (0<b<2m)

and where 1 satisfies the condition 0 < |A|<<e'<<e. The derivatives in (3.12) con-
tinue to be norm invariant, and the series in (3.12) converges uniformly with respect
to ||, on the set |Al<e'<<e as a direct result of (3.13) and of the uniform con-
vergence of the series in (3.12).

We may write (3.12) ag

(3.15) m,(B(J)) = =zom,‘.(b,.(z)) .

(3.16) t(B(A)) = it(bi(l)) .

Since 7 is continuous on C(1), equation (3.16) holds uniformly in |A|<e¢’. We may
algo write

(3.17) 7(B(A)) = § (ba(A))

if p=1 in the preceding, since we may apply m, to both sides of (3.16).

ComMmENT. — Strictly speaking, we should denote the mapping (= function)
4 — A(2) by A rather than by A(4) and we should use the notations m,(A4) and 7,(4).
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However, the notations m,[A(4)] and 7,[A(4)] are more convenient in this paper.
In this connection, we shall use boldface typing whenever an expression of the type

S FmAM)]
i=0

bl

or

Z V T,[A(A)]

i=0

appears, in order to «distinguish» between the two « variables ».
Note that we have preferred not to talk about analyticity with respect to ||,
if 0<p<1, since ||, here does not satisfy a triangle inequality.

Levuma IIT.1. — Let p and ¢ satisfy 1<p, g< oo and let 0 <e< + oo. Suppose
D(2) and E(A) are operator valued functions such that D(1)e C{p, #} and
B(A)e 0{q,#} for each complex A in |A|<e. Furthermore suppose that D(4) is
analytic with respect to ||, for each i in |A|<e, and that E(A) is analytic with
respect to ||, for each 1 in || <e. Then D(A)E(4) is analytic with respect to | |;
for each 4 in |i]<Ce, where

(3.18) F=max {1, (p~* + ¢ 1)}.

We have .

(3.19) DA EG) =3 ¥ 3 [m(D@)][m._(EQ))]
i=0 =0

for each A in |A|<<e; the series in (3.19) converges uniformly and absolutely with
respect to | |. for each 4 in |A|<e&', where ¢ is any number in 0 <g'<e.

PROOF. — One can show from the definition of the derivative, from (2.14), and
from the inequality

(3.20) |4l <|4],,

where r is defined in (2.14), that D(4)E(4) is differentiable with respect to ||,
and that

(3.21) (D(AE(4))'= D'(A) B(A) + DA E'(A) .

Furthermore the continuity of D(A)E(4) with respect to | |. follows from the con-
tinuity of D(4) with respect to | |,, from the continuity of E(A) with respect to ||,
from (3.20), and from (2.14). Hence D(4) E(4) is analytic with respect to || in
|A|<e. The series

(3.22) D) BE() :.w Am DA EGR)]

=0
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eonverges uniformly and absolutely with respect to | |. in [A]<&', where 0 <¢'<e,
by DUNFORD-SCHWARTZ [4; p. 229]. The proof that the coefficients of A’ in (3.19)
and (3.22) are equal may be carried out by an appropriate generalization of (3.21). m

CoroLLARY ITI.1. — If f(A) is a complex valued analytic function in |i| <e, and
if D(A) satisfies the assumptions of lemma IIL1.1, then f(A)D(A) is analytic in
|A| < e with respect to ||,. The Maclaurin series for f(1) D(1) about A= 0 may
be computed by the usual Cauchy rule for products of Taylor series.

ProoF. — Let E{A)= f(A}] and let ¢ = co in lemma III.1.

LeEMMA I11.2, — Let 0 <e< + o0, and let D(1) be an operator valued function
such that D(4) e C{1; #} for each A in || <e. If D(2) is analytic with respect to
||, for each A in |A| <, then the function 7(D(2)) is analytic (in the usnal sense,
i.e. with respect to the norm on the set of complex numbers) for each 1 in |1| <e.
Furthermore the equation

(3.23) (d/aA){=[D(4)]} = v{(d/d2)[D(A)]}
holds for each A in |A|<e.
PROOF. — The assertion (3.23) follows directly from the inequality (see (2.16))

T[D(A+ 44)]—7[D(4A)]
A4

— t{(d/an D} | < !‘D(l + zi]a; — DY)

— (@d2) D(R) “

and from the fact that the function D(1) is differentiable (with respect to | ;). The
continuity of the function [D(4)] follows similarly from (2.16) and from the con-
tinuity of D(4) with respect to ||,. Hence the lemma is proved. m

Propuct Spaces. — The following is presented for review only, and is not believed
to be new.
Let n be a positive integer. We define 3#°™ to be the Hilbert space of all n X1

column vectors
T
U= (Ugy ..., Uy)

where T indicates a transpose, and where u,c5 for each 7 in 1<i<n. The
(standard) inner product on ™ is given by

n
(3.24) {u, vy =2 {usy v
§=1
where

v= (01, ..., )T, (v;€).

16 — Adnnali di Matematica
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The operations of addition and scalar multiplication on #™ are defined in the
usual way.

Let a and b be fized integers such that 1<a, b<<n. Let 4 be any operator on 3,
and let &7 be the nX#n matrix with 4 as the element in the a-th row, b-th column,
and with the zero operator (on3#) elsewhere. Note that .o/ is a compact operator on
™ iff A is a compact operator on 3. If of or 4 is compact, then we may write,
as the reader may show,

(3.25) pi( ) = pi(4)

where p,{o) and u,(A) are the (non-decreasing) sequences of singular values of &/
and A, taken according to multiplieity. Hence

(3.26) ||, = |4],

for p in 0 <p< oo and for compact o or A, where both sides of (3.26) may pos-
sibly equal -+ co. If either & or A is not compact, but has finite « sup» norm
(see (2.7)), then both have finite « sup » norm, and (3.26) is valid with p = co as
the reader may prove. Since the space C(p) is a linear manifold, a matrix operator
ond#™ is in O{p, ™} if each of its elements (which are operators on3#) isin C{p;#}.

A converse to the last statement holds. Let .# be an nX» mafrix of operators
on. Let M, be the element in the i-th row, j-th column of .#, where 1<%, j<n.
We claim that %€ C{p; ™} implies M,;€ C{p;#} for each i and j satisfying
1<i, j<n. Let a and b be fized integers such that 1<a, b<n. Let #,, be the nXn
matrix with the identity operator on # as the element in its a-th row, b-th column,
and with zero elsewhere. Then by (3.28), it suffices to show that the matrix oper-
ator (M, F ) I8 In C{p;é’f["]}. (The matrix M,, F,, has M, as the element in
its a-th row, b-th column, and zero elsewhere; the multiplication here is, of course,
similar to the multiplication of a matrix by a scalar.) But

(3.27) Mabfl}-ub: ggaa'ﬂg—bb
and

| Z ale=|Fnle=1.

Use of (2.12) and use of the assumption that .# e C{p;#™} will then yield the
result that M, %€ C{p;#™} and hence that M, e C{p;a#}. If 0<p<oo we
have, a fortiori, the compactness of M,. If p= oo and if .# is compact, then
by (3.27), the matrix operator M, %, must be compact; hence, by previous com-
ments, M, must be compact. We have:

LemmA I11.8. — Let M,; be an operator on 3# for each integer ¢ and each in-
teger j satisfying 1<, j<n. Let .# be the nxn matrix with M,; in its i-th row,
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j-th column for each pair of integers ¢ and j in 1<%, j<n. Then .# € C{p;#™}
if and only if M, e C{p;#} for each integer i and each integer j in 1<1, j<n,
where p is some fixed element in 0 <p<oo. If p=1 in the preceding, then

(3.28) (M) = _ﬁlz(Mﬁ) .

Proor. — Clearly only the last assertion in the lemma needs to be proved. Let
{@.} be a complete orthonormal set in the space #. Let D, be the nX1 column
veetor with g, in its i-th row (for fized ¢) and with the zero vector in S elsewhere.
The set @, , is a complete orthonormal set in 3# ™. yse of the analogue of (2.15) will
easily yield (3.28). m

We wish to consider the case where the matrix ., previously described, is
dependent on a parameter 2. As before, we let #n denote a fixed positive integer,
and we let ¢ denote a fixed element in 0 <<e< -+ oco. For each pair of integers 4
and j satisfying 1<¢, j<n, and each eomplex 1 in |4| < &, we assume that the func-
tion M ,;(A) is defined and has values in C{co, #°}. Let .#(A) be the nXn matrix
with M,,(A) in its ¢-th row, j-th column, for each pair of integers ¢ and ; in
1<, j<n.

Lemwma I11.4. - Suppose the matrix valued function .#(1) is analytic with respect
to ||, in jA|<e, where 0 <e< +co and 1<p<oo. Let the Maclaurin series for
A (4) be given by

o]

(3.29) MA) =3 ",

h=0

Then M,(4) is also analytic with respect to ||, in 1] < & for each pair of integers 4
and j satisfying 1<i, j<n; if the Maclaurin series for M (1) is given by

(3.30) My(3)=3 2 M

h=0

then M{” is the element in the i-th row, j-th column of the matrix .#™ in (3.29).
The series in (3.29) and (3.30) are uniformly and absolutely convergent with re-
spect to ||, in |Aj<e’ for each &' in 0 <e'<e.

PrOOF. — Let @ and b be fixed integers in 1<a, b<n. As before, let F,, denote
the nXn matrix with the identity operator on # as the element in the a-th row,
b-th column, and with the zero operator (on 5#) elsewhere. Let MY denote the
element in the a-th row, b-th column of the matrix .#™ in (3.29). First we show

convergence with respect to | |, of the series > 2* M®; then we shall show that the
h=0
latter series is precisely the element in the a-th row, b-th column of the matrix .#(4).
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Once these facts have been proved, the equality of M,(4) and of the latter series
would follow by the very definition of M,(1). .,
In order to prove convergence of the series > A* M, we first note the relation

=0
! 1
(3.31) [hgkzh Mf,’;}] Fp= F., [hgkzw{h}] Fn

1
which is obtained by replacing M, in (3.27) by 3 A* M¥ and by replacing .
! hek
in (3.27) by > 4™, We claim that

h=k
1 ]
(3.32) > ru)=|[ 3 rup] 7,
h=k h=k
l
(3.33) <| > ™
K=k »

1 1
The equality (3.32) follows from (3.26) with > 2* M replacing 4 and 3 " MB &,
h=F& h=k

replacing /. The assertion (3.33) follows from (3.31), from the fact that |F o0

|

= |#wl,=1, and from (2.14)". Since the series > A*.#™ iy (uniformly) convergent
h=0
with respect to | [, in |i|<e&'<e, the relations (3.32)-(3.33) show that the sequence

13
{ ZZ"ME,';}} must be uniformly Cauchy convergent in |A|<e'<e. Since C{p;#} is
h=0

complete, the latter sequence must converge uniformly with respect to | |» to its

limit Y 2* M% in O{p; #).
h=0

In order to show that > A"M® is precisely the element in the a-th row
n=0
b-th column of the matrix .#(1), we set k=0 and |= oo in (3.31). The reader

may show that this is permissible. The ensuing relation, along with (3.29), proves
that 3> A" M} is the element in the a-th row, b-th column of .#(3); by definition
h=0

of M, (A), the equality (3.30) must follow. m

For convenience in referencing only, we state the following lemma, which is a
consequence of previous considerations. Recall the definition of the operator m;
in (3.4).

LemMA II1.5. — Let .#(4) be an nxXn matrix of operators M,(1) on 3% Let
(1) be analytic with respect to | |, about 2= 0. Then the functions M (i) are

also analytic with respeet to ||, about 1= 0. Suppose

(3.35) my (M (2)) € C{p; ™}
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for some fixed integer k>0 and some fixed p in 0 <p<oco. Then
(3.36) m, (M ;,(2)) € O{p, 5}

for each i, j in 1<i, jgn. If p=1 in the preceding, then

(3.37) T M) = D T Mis(A)) -

e

k3

IV. — The eigenvalues of operator polynomials.

We agsume that H(A) is given by

(4.1) H()= iziﬂi
i=0

K

where the H, are compact linear operators on the complex Hilbert space S#. Under
additional assumptions, we will obtain results concerning the convergence of the
sums > A7” and its evaluation for integral values of p, where {4,} is the sequence

i3

of eigenvalues of the equation
(4.2) AHDu=u (uec)

taken according to multiplicity in some sense yet to be defined. It is not clear
either that this multiplicity is finite, or even that the eigenvalues of (4.2) are denu-
merable. LANCASTER[14] and KrLDYSH[12] have obtained results in this area;
we will shortly discuss a geometric definition of multiplicity given by Kerpysu[12].
Our approach will ultimately yield a definition of multiplicity which is equivalent
to that of KELDYSH. Since the results on operators independent of 1 are extensive,
we will transform (4.2) into a finite sequence of «equivalent» matrix operator
systems, of which the last system will involve an operator independent of 4. We
can then tentatively define the multiplicity of an eigenvalue in the usual manner
described in part II for operators independent of A; this definition can then be
related to the (more natural) one of Keldysh, and to the Fredholm function(s) to
be constructed. Also, by utilizing the properties of the system whose operator is
independent of 2, we can initially set up a formula for the evaluation of the sums
> 2;7? via formula (2.17), and then translate the results back in terms of the oper-

ator H(1). Finally, certain bounds will be obtained on [I —AH(4)]-* and on the
Fredholm function; these will assist us later on when we consider operators which
are meromorphic functions of 1. First, however, we will briefly discuss the results
of KELDYSH[12].
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Under the assumption that the H, are merely compact, KrLDYSH[12] states,
without proof, the proper construction of a chain corresponding to the eigenvalue
A==a of (4.2). A chain is an appropriately chosen finite sequence (%, ..., ¥,) such that

k E]
(4.3) yo= 3 W3 T (AHW) | ey
i=0

A=qa

for k= 0,..., m. The integer m here is assumed to be maximal. If H(1) is inde-
pendent of A, the vector y, is simply an element of the generalized eigenspace
N {(I —aH)¥*1} described by (2.4). The ¥, are not assumed to be linearly independent;
if ped and |p|=1, then the operator H(A) defined by the equation

(4.4) H(A)v= 20w, ¢>— /'“P <, >

has the property that 4==1 is an eigenvalue of (4.2), and m =1 with y,= ¥, = ¢.

If the length of the chain (v, ..., ¥,) is defined to be (m --1), then the Kel-
dysh multiplicity M(a) of the eigenvalue 4= ¢ is the sum of the lengths of all
chains generated by an appropriate basis for the eigenspace. Keldysh implies that
M(a) <<+ oco. Let B(A) denote the resolvent of H(1), i.e. let R(A) satisfy

(4.5) I+ AR()) =[I—AHA)]*

(Keldysh calls AR(4) the resolvent.) Keldysh asserts that if 1=: a is an eigenvalue
of (4.2), then A= a is a pole (?) of R(1). Let P(a)R(A) denote the principal (i.e. sin-
gular) part of R(A) near 1= a; then Keldysh states that

Ma)

(4.6) TP (a)(AH (D) (AR(A) = ——.

Since there are no proofs in the paper of Keldysh, we will develop our theory
independently of his; howeéver, it will be interesting to see how the (algebraic) muil-
tiplicity of the Fredholm funection(s) (to be constructed) at the eigenvalue A==qa
(considered as a zero of the Fredholm function(s)) is related to the geometric defi-
nition of multiplicity given by Keldysh.

For review and for future reference, we state a few well known results. Let 2,
be some arbitrary complex number. Let us suppose that [I—z,H(z)1! exists
i.e. that [I —zH(z)] is a one-to-one operator or equivalently, that 4=z, is not
an eigenvalue of (4.2). Then we maintain that ¢ > 0 exists such that if [1—z| <e,
then [T —AH(2)]* exists, is defined on all of &, and the mapping

(4.7) A—[IT—AH(A)]*

(2) This will be proved independently in theorem IV.3.
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is analytic with respect to ||,. The latter implies, of course, that [I —AH(4)]-*
is an element of C{oco). First of all, we maintain that 2 =z, is not an eigenvalue
of (4.2) iff [ —2,H(2,)1 exists, is defined on all of 5, and is an element of (/(c0).
These facts follow from the compactness of H(z,), and from standard theorems
concerning the operator [I — AH(z,)]* (see DUNFORD-SCHWARTZ [4; p. 579]). From
the - results stated in DUNFORD-SCHWARTZ [4; p. 584], we have that

(4.8) —AHQA) = [I—ZOH(ZO)]_I. {HH(/‘L) — 2o H (2,)] [I_ZOH(ZO)]_l}j

i=0

for each complex Z near the point z,. More specifically, if 0 <7 <1, then ¢= e(n)
exists such that the condition |1—z,|< ¢ implies that

(4.9) JAH () — 2o H (%) |0 < T — 2 H (20)7| 21 .

Clearly (4.9) is a consequence of the analyticity (and hence the continuity) of the
mapping A — H(i) with respect to ||,. Using (2.14)" with p,=7r= co, we can
verify the absolute and uniform cohvergence of the series in (4.8) with respect
to ||,, provided |1 —z|<e. The results previously stated concerning the operator
[ —AH(A)]* follow immediately. The reader should recall the definition of the
trace operator 7, and the operators m, and 7, given in (3.4) and (3.8).

We would like to say a few words about the work we are about to do. One of
our goals, of course, is to provide a formula (see (4.102)) for the evaluation of sums
of reciprocal powers of the eigenvalues of (4.2). We will transform (4.2) into a suc-
cessive (finite) sequence of « equivalent» matrix equations; each equation will in-
volve an operator polynomial whose degree is one less than the degree of its pre-
decessor. The first matrix equation « equivalent » to (4.2) is given by (4.22) (see (4.12)
and (4.15)). In the same way we constructed J (2) from H(1), we will continue the
process of matrix construetion in theorem IV.3 until we arrive at an equation
(« equivalent » to (4.1)) whose operator is independent of 4. Then we can apply (2.17),
and translate the results in terms of H(2) in order to obtain (4.102). Equation (4.41)
will play a key role for the latter purpose, as we will see. Equations (4.41) and (4.102)
are to be proved for integers k>k,—1 (see (4.11) and (4.16)). Note the «invar-
iance » of k, by comparing (4.16) with (4.29) (see (4.24) through (4.28) for the de-
finition of the numbers §,).

Several things are important in this lemma: we must prove existence and equality
of both sides of (4.41) for integers k>%,—1, and we must prove the analyticity
of (4.42) with respect to ||, provided k>k,—1 and provided i is not an eigen-
value of (4.2). The trace of (4.42) is related to the logarithmic derivatives of the
Fredholm functions to be constructed in theorem IV.3 (see (4.97)), and so the
analyticity properties of (4.42) are essential. In order to prove existence of the
traces in (4.41) (see e.g. (4.38) in (v)), and in order to prove analyticity of (4.42)
with respect to | |;, we shall assume (4.17) and certain analyticity properties of (4.19).
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These assumptions are to be considered as induction assumptions; their analogues will
be easy to prove for the last operator (i.e. the operator which is independent of 1)
in the sequence of operators to be constructed. We show here that if (4.17) holds,
and if (4.19) has certain analyticity properties, then their analogues (see (iii)) hold
for the predecessor H(A) of J(4). With fthe aid of (iv), we can then relate (4.30)
with (4.38) and prove (4.41). With the aid of (iv), we can also relate the analyticity
properties of (4.31) with the analyticity of (4.42).

The inequality (4.44) will help us later on to establish a bound on [I—AH(A)]3,
which will be necessary when we add a certain type of meromorphic operator to H(A)
in part V in order to generalize our results. In part VI, we will show how (4.102)
can be used to obtain more explicit expressions for the sums > 27 **Y in terms of
the operators H,. i

The conclusions (i), (ii), and (viil) of lemma IV.1 do not depend on acceptance
of (4.17) and acceptance of the analyticity of (4.19). We remark that (4.17) and the
analyticity of (4.19), along with (iii), can be proved in a direct way which is, per-
haps, more computationally involved than the methods we have chosen here.

LemmA IV.1. — Let H(A) be given by (4.1), where s is an integer such that s>1,
where A is a complex parameter and where the H; are linear operators on the complex
Hilbert space . Let us assume that

(4.11) HiEO{O(i;%}

for each integer ¢ in 0 <i<s, where «; is a pogitive real for each integer 7 in 0<i<s.
There are linear operators A, and B, on 3# such that

(4.12) H,— A,B,
where

(4.13) A, e C{((s 4 1)/s)a,}
and

(4.14) B,e O{(s +1)a}.

We define the 22 matrix J(4) by

(4.15) J(3) = .............

and we regard J(1) as an operator on the Hilbert space #'H =X . Let

(4.16) o= max{(i + 1)a;: 0<i< s}
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and let us suppose that

(4.17) m{[F — AT (A)] 2} € C{ky/k; ™)

for each non-negative (3) integer k, where .# is the identity operator on #'®. Let
y(k) be defined by

(4.18) y(k) = max {k/k, 1}

and let us further suppose that

(4.19) [F — AT — 3 ML F —AT )]
j=0

§=

is an analytic function with respect to ||, for each positive integer k, and for
each 4 which is not an eigenvalue of the equation

MAd=14 (Fei?).

The following results are then valid.

(i) Let
(4.20) = (Z;)
where u,€ 3 for i=1,2 We have
(4.21) AH{(ADu=1u
if and only if
(4.22) WA E=T
provided
(4.23) Uy=1U, Uy== AB,u.

Hence A is an eigenvalue of (4.21) iff A is an eigenvalue of (4.22).

(ii) We may write

(4.24) J(A) :sillfJ,-

where the J, are independent of i. If -

(4.25) Bsor= (1/s) max {so,_y, (s + 1)a,}
(4.26) fo = max{«y, (s + 1)}

(*) We shall assume that ko/k = oo if k= 0. It iz clear that my{[f — AJ(A)]"} = 7
80 (4.17) is correct if ¥ = 0.
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and

(4.27) Bi=oy, 1<i<g<s—2
then

(4.28) Jie O{f; A

for each ¢ in 0<i<s—1. Furthermore

(4.29) ko=max{( + 1), 0<i<s—1}.
(iii) We have

(4.30) mi{[1 — AH(A)]"*} € C{ky/k; H}

if % is a non-negative integer and if (4.17) is accepted. Furthermore if the assumption
about the analyticity of (4.19) is also accepted, then

(4.31) [ — AH()] — 3 Fm gl — AT )
i=0

is an analytic function with respect (*) to | |, at all points A which are not eigen-
values of (4.2), where p(k) is given by (4.18).

(iv) Let ¢ be a fixed integer satisfying 0<i<s. Let A and B be operators
on ¥ such that

(4.32) AeC{p; #}
and
(4.33) Be 0{q; #}

where 0 < p, g< oo and where
(4.34) 1/p +1/g>1/x,.

Then if ¥ is any integer such that k>%k,—1, we have that

(4.35) m{A* AB[I — JH(A)] "} e 01, #}

(4.36) m {1 B[I —JH(A)T*4}e 0{1, #}

and

(4.37) t{ A AB[I — AH(A)} = 1. {A* B[ — AH(2)] 4}

provided (4.17) is accepted.

(Y In particular, if % >k,— 1, then (4.31) is analytic (where defined) with respect to | |;.
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If (4.17) is aceepted, then the previous results continue to be valid if the space #°
is replaced by ', if H(A) and I are replaced by J(1) and .# respectively, if «; in (4.34)
is replaced by f;, and if i is now restricted so that 0 <i<s—1.

(v) If k is an integer such that k> ky—1, and if (4.17) is accepted, then we have

(4.38) m{[AH(A)])[I—AH ()]} e C{1,¢}

(4.39) m{[I—H(A){AH(A)]}e C{1,#}

and

(4.40) Tl [AHW VT — AHW) ) = vl [ — AHA)P{AE(3)]'}

where the derivatives in (4.38)-(4.40) are taken with respect to (say) ||..-

If (4.17) is accepted, then the previous results continue to be valid if the space #
in (4.38) and (4.39) is replaced by ™, if H(A) and I are replaced by J(A) and .#,
and if ¥ continues to be restricted so that k>k,—1.

(vi) We have that
(4.41) t{[AJ (D] — AT (D]} = v [AH (DI — 2H (3)]}

provided % is an integer such that %k>k,—1, and provided (4.17) is accepted.

(vii) The functions (5)

k-1

(4.42) [AHAYI —AHAM)] =3 ¥m{[NHMNT T —AH(M)]
i=0

and
kE—1

(4.43) (AT I — AT ()] — 3 Vm{[A (W] [SF — AT (N)]}
i=0

are analytic with respect to ||,, provided %k is an integer such that k>k, —1,
provided 4 is not an eigenvalue of (4.21) (or equivalently of (4.22)), and pfovided (4.17)
and the assumption about (4.19) are accepted.

1f the factors [AH(A)} and [I —AH(1)]- in (4.42) are commuted, the conclusions
of this part remain valid. A similar statement holds for (4.43).

(vili) The inequality

(4.44) I —2H(A)] < |[£ — 2T,

(®) If we may take k=0 in (4.42) and (4.43), the series in (4.42) and (4.43) are assumed
to vanish.
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holds at all points 4 which are not eigenvalues of (4.21) (or equivalently, of (4.22)).
Proor. — Assertion (i) is easy to show; hence the verification is left to the reader.
Note that the factorization (4.12) (which is not unique) is possible because of (4.11)

and because of the discussion concerning equation (2.24).

For the proof of (4.28), note that

Hi Aséi.s—l
(4.45) = ( ................ )

for 0 <i<s—1, where J,; is the Kronecker delta. Use of (4.11), (4.13), (4.14), (2.10)
and of lemma IIT.3, yields the result (4.28). Note that the special case where
i == 0 == ¢ — 1 must be handled separately, although the basic formulas (4.25) and (4.26)
are still consistent. The complication here is that the matrix J, will have three non-
zero components if ¢= 0= s—1, whereas J,; will have one or two non-zero com-
ponents if 1>0 or s> 1.

The rest of the assertions in (ii) can be proved by the reader.

In order not to break up the continuity of the proof, we will assume (for the
time being) that

(I—AH(A)T M[I—AH(A)] A,
(4.46)  [F—AJD] = ( )

ABI—AH(A) | I+ 2 BI—AH(A)T4,)

Assertion (4.30) follows from (4.17) and from lemma II1.5 since (by (4.46)) the
operator [I —AH(A)]-* is the element in the first row, first column, of the matrix
[F —AJ(A)]-'. Similarly, the assertion about the analyticity of (4.31) is a conse-
quence of the analyticity of (4.19) and of lemma ITI.4, since, by (4.46) and lemmaIII.4,
the operator (4.31) is the element in the first row, first column of the matrix
operator (4.19).

We shall prove (iv) only in the case where 4 and B are operators on 5, and
not on ™. We shall prove only (4.35), since the proof of (4.36) is essentially iden-
tical. The only case of interest in the proof of (4.35) is the case where k>, since
if k<4, we have that

(4.47) my {1 AB[I — AH(A)T*} =0

by the analyticity of [I — AH(4)]-* with respect to | |, about =0 (see (4.8)). We
have that

(4.48) m,{A AB[I — AH(A)]'} = ABm,{A'[I — AH(A)]7'}
since A and B are independent of 1. By (4.30), we see that

(4.49)  m AT —AH(A)] )= me_ ([T — AH(A)] '} & Ok (b —1); 56}
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provided k>¢. Hence
(4.50) mk{A‘AB[I— ZH(A)}*} S C{t; Hy,

where by (4.32), (4.33), (4.49), and (2.12)’

(4.51) 1/t=1/p +1/q + (k—1)/ko.
By (4.16), we see that
(4.52) 1oty > (i + 1)/Ko «

Hence by (4.34), (4.51), and (4.52), if k>k,—1, and % >4, the inequalities

(4.53) 1/t 1o+ (b —1)/ko
(4.54) > (k + 1)k
(4.55) >1

hold. Thus by the preceding and by the inclusion (2.10), the operator on the right
(and hence the left) side of (4.48) is an element of C{1,2#} and does indeed have
a trace. The same conclusions, of course apply to the operator m,{A‘B[I—1H(1)]-*4}
in (4.36).

In order to prove (4.37), we apply the trace operator = to both sides of (4.48),
and note that if k>4, then

(4.56) v{ A AB[I — AH() "} = { ABm, {31 — zH(z)]—l}}
(4.57) — T{B{mk [#11 — A () }4}
(4.58) = 7 {AB[I — AH(A)]A}.

Equation (4.56) follows from (4.48) and (3.8). Equation (4.57) follows from (2.40);
the requirement (2.39) for use of (2.40) follows from (4.51)-(4.55). Equation (4.58)
is proved in a manner similar to the proof of (4.56). Hence (4.37) follows.

The other assertions in (iv) are similarly proved because of the « invariance»
of k, (see (4.16) and (4.29)).

In order to prove assertion (4.38), it suffices to show that

(4.59) m A H [T — AH(3)]}e C{1; o}

for each integer ¢ in 0 <i<s and each integer k> k,—1, since m; is a linear oper-
ator. The latter follows immediately by setting

(4.60) A=H, B=I
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in (4.85). By making the identification (4.60) in (4.36) and (4.37), it is thus clear
that (4.39) and (4.40) also follow. Similarly, the remaining assertions in (v) can
be demonstrated; the symmetrical relations (4.16) and (4.29) come into play here.

In order to prove (4.41), note that the elements in the first row, first column
and second row, second column of the matrix [AJ(A)][I— AJ(4)]"* are (see (4.15)
and (4.46))

(4.61) S (i + VHH I — AHW + s2H I — AH ()]
i=0

and

(4.62) 2B —AH(A)] 4,

respectively. By (v), we have that
(4.63) mu{[2J()]TF — AT ()]} e Of1; o™}
provided k>k,—1. Henece by (3.37), if k>k,—1, we have
#.64)  T{AJAIL—AD)]}=

rk{sf(i + VOAHI—AH) + sAH [T — ZH(Z)]—l} + v {2 BT — AH(A)]A4,}.

i=0
By (4.12), (4.13), (4.14), and by the results of assertion (iv) with
(4.65) A—4, B=B,
we have, if k>k —1,

(4.66) 1A B,[I —AH(M) 4.} = v 2 H[T— AH(A)] 7}

Hence (4.41) follows from (4.64) and (4.66). Note that the assertion (4.59) guarantees
existence of each term in (4.64) and (4.66) of the form

(4.67) (6 + A H I —AH(A)]}

provided k> k,—1.

We will prove the analyticity of (4.42) with respect to ||y, provided k>k,—1
and provided A is not an eigenvalue of (4.2). It suffices to prove analyticity (with
respect to ||.) of

E—
(4.68) MHJI—AH()] 21 P NH [T —AHA)] )
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for each integer ¢ in 0 <i<s, subject of course, to the restrictions just imposed on A
and k. We may write (4.68) as the sum of

(4.69) MH[I—AH(A] —k +§1}? m{NH[I—AH(A)]}
i=0
and of
kE+i—1 .
(4.70) > ¥ m{NH,[I—AH(A)]}.
=k

Now (4.70) is a polynomial in A, since the coefficient of A’ in (4.70) is an operator
independent of 1. By (4.59), it is clear that (4.70) is an entire function of i with
respect to ||, provided k>k,—1. It suffices to show, therefore, that (4.69) is an
analytic function with respect to ||, provided k>k,—1 and A is not an eigen-
value of (4.2). We note that

(4.71) m{ i H[I—AH(A)]}=0
for each integer j in 0<j<i~—1, by the analyticity of [ — AH(A)]-* with respect
to ||, about 2 =0 (see (4.8)). We may rewrite (4.69) as

kti—1

(4.72) MHII—AHMW]— 3 Fm,_{H[I—AHM]}.

i=i

Setting h = j —17 in (4.72), and eliminating j, we obtain equivalence of (4.69) and of

k—1

(4.73) BFH{I—AHM — 3 #mu[I—AHA) ).
h=0

From (4.16), (4.18), and (2.10), we see that
(4.74) H,e O{a;} € O{ko} C C{y (1)}

so that A‘H, is an entire function with respect to ||,,. Since (4.31) is analytic
with respect to ||, an easy application of lemma III.1 suffices to prove analy-
ticity of (4.73) with respect to | |,, since (see (3.18) and (4.18))

(4.75) max{[(y(1))~* + (p(k))1]-% 1} =1

provided k>k,—1.
In a similar manner, the other agsertions in (vii) can be proved.
In order to prove (4.44) we first have to define the matrix #y; by

I 0
(4.76) Fpy = (O 0).
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We maintain that

(£.77) T — AHW o= (I — 2HO) T Fal,
(4.78) = |[Fulf — ()] Fule
(4.79) < |[F— AW -

The 2X2 matrix [I —AH(A)]* &1, has [I—AH(A)]™* in its first row, first column,

and the zero operator (on 3#) elsewhere. Hence (4.77) follows from (3.26); equa-

tion (4.78) follows from (4.46) and from (3.27) with a=b=1, A =[F —AJ(A)]*

and M, =[I—AH(A)]" Inequality (4.79) follows from (2.14), since }%y|,=1.
It remains only to prove (4.46) in order to complete the proof. Let

and

where w, e3¢ and f,c3¢ for i=1,2. The ¢solution» to the equation

(4.80) [ — AT (W) =TF
is
(4.81) B=[F— AT (ATF.

Rewriting (4.80) in « scalar » terms, we obtain

8—1

(4.82) wy— A > AH,w— A Aw,=f,
i=0

and

(4.83) wy— AByw0, = f, .

Solving (4.83) for w, and substituting the result into (4.82), we obtain

(4.84) [I—AH(A)Jwi=f+ 2 A.f,
or
(4.85) wy=[I—AHMNO fi + AT —AH(A)TA.fp.

Substituting (4.85) into (4.83), we have

(4.86) w,= ABJI—AHMW T+ {I -+ MBI — AH(AT 4} , .
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Comparing (4.81) with (4.85) and (4.86), we easily obtain (4.46). m
CorOLLARY IV.1., — If [F—2J(4)]-* has a pole at A=a of multiplicity »,
(i.e. (A—a)[#£—2J(1)]* has a removable singularity at A= a while (A1 —a)’~*-

[F — A J(A)]* does not), where » is a positive integer, then so does [I — AH(1)]*.
Convergence of the Laurent series involved here is assumed to be with respect to | |.

Proor. — The proof follows easily from (4.46), from the fact that (1—a)’-
[ F — AJ(A)]™* has a removable singularity at 1 =a, and from lemma I1I.4. @

CoMMENT. — The reader is again reminded that the conclusions (iii) through (vii)
of lemma IV.1 have been proved under the assumption (4.17), and under the assump-
tion about the analyticity of (4.19). We will prove these assumptions in theorem IV.3

by induetion.

LeMmA IV.2. — Let o be any complex Hilbert space, and let N be a compact
linear operator on S#. Let >0, and let

(4.87) Nec{p o}
If I is the identity operator on 3#, then
(4.88) my{[I—ANT "} e C{B/k; H#}

for each non-negative integer k. Let

(4.89) o(k) = max {f/k; 1}.

Then

(4.90) [1— zN]—l-kilz" m{[I —ANT}
j=0

is analytic with respect to | | ;) about all points 2 which are not eigenvalues of the
equation

(4.91) ANu=wu (uecdt).

PROOF. — Since ¥ is compact, the (distinct) eigenvalues of (4.91) may be written
in & (possibly finite or empty) sequence {w,}, which may have only oo as a limit point.
If |4] is sufficiently small, we have

(4.92) [I—ANJ1= %/‘L"N“' ,
j=0

i

17 ~ Annali di Matemalica
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where convergence of the series in (4.92) is uniform with respect to | |, near A= 0.
The assertion (4.88) follows trivially from (4.87) and from (4.92). We obtain from (4.92)
the equality of (4.90) and of

(4.93) AENMI—ANT?

provided || is small. Since the sequence {w} is composed of isolated points (i.e. the
sequence cannot have a finite limit point), we may appeal to analytic continuation
to establish the equality of (4.90) and of (4.93) for all complex A which are not
elements of the sequence {w.}.

If 2, is not an element of {w,}, then [I—ANT* is analytic with respect to ||,
for all ] near z,, by the analogue of (4.8). Furthermore N*e C(B/k), so that A*N* is
an entire function with respect to | |,;. Hence an easy application of lemma IIT.1
guarantees analyticity of (4.93) (and hence of (4.90)) with respect to | loey» Provided,
of course, that A is not an element of the sequence {w;}. m

DEFINITION. — Let {{;} be a (possibly finite) sequence of complex numbers having
no finite limit point. We shall say that {(;} is ordered if {{,} satisfies (a) and (b)
below:
a) {|¢:|} is & non-decreasing sequence.
b) If
1l = [ina]

for some positive integer ¢, then

O<arg{;<argl, . <2x.

THEOREM 1V.3. — Let H(A) be given by (4.1) where s is a non-negative integer,
where 1 is a complex parameter, and where the H, are operators on the complex
Hilbert space #. Let

{4.96) H, e 0{a,;; 3
for each integer ¢ in 0<i<s, where o, is a positive real for each integer ¢ in
0<i<s. Let k, be given by (4.16). The following conclusions are valid.

(i) The (distinet) eigenvalues of (4.2) form a denumerable (or possibly empty)
set of isolated points.

(ii) The function (4.42) is analytic with respect to | |;, provided % is an integer
such that k>%k,—1 and provided 1 is not an eigenvalue of (4.2).

(iii)y For each integer k>k,—1, there exists a unique entire function A4(4; k)
satisfying 4(0, k) =1 such that

(4.97)  —A'(A; kYA k) = 1{[11{(,1)]'[1_111(2)]—1
k-1
—3 Fm,[AEQ—AHO]]]
i=0
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holds for each integer k>%,—1 and for each A which is not an eigenvalue of (4.2).
(The derivative of AH(A) in (4.97) is taken with respect to (say) ||..)

(iv) The (possibly finite or empty) ordered sequence of zeroes of A(4; k),
taken according to multiplicity, is independent of k, where k is an integer satisfying
k>k,—1. This sequence will be denoted by {4,} in the sequel. The sequence {4},
if infinite, can have no finite limit point; furthermore, 1 =« is an eigenvalue of (4.2)
if and only if a= 4, for some positive integer :.

(v) The equation

TR S e o - AT

(4.98) i

holds for each integer k>k,—1 and for each complex A such that

(4.99) |A] << co if there are no eigenvalues of equation- (4.2)
(4.100) A< |4] it {4;} is not void,
where |2;|> 0 in (4.100). The series in (4.98) converges uniformly and absolutely
on all compaet subsets of the applicable set described in (4.99)-(4.100).
(vi) We have

(4.101) 2T < + o0

and

(4.102) 27 = o {[ZH(W] I — 2H(A)]
(4.103) = t{[{ —AH(W)]{AH(A)]'},

where & is an integer such that k>k,—1 in (4.102)-(4.103), and where the sum-
mations in (4.101) and (4.102) are taken over the whole sequence {4,}; the left side
of (4.102) is understood to be zero if there are no eigenvalues of equation (4.2).

(vii) The function [I—AH(A)]* is analytic with respect to ||, at all points A
not in the sequence {A,}. The function (7 — AH(1)]* has poles at the points 1= 1,.
The function A(A; k)[I — AH(4)]-* has removable singularities at the points A = 4,,
and hence its appropriate extension will be an entire function with respect to ||.

(viii) Let k, be the smallest integer such that %;>%,—1. There exists a con-
stant "> 0 such that

(4.104) |4(2; k)| <exp [T|A[*]
(4.105) |A(2; k) [I— AH(A) ] <exp [L[A[].
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(ix) The multiplicity of the eigenvalue 2 = « in the sequence {1,} is precisely
the Keldysh multiplicity M(e) of the eigenvalue 4= a.

CoMMENT., — The order of the proofs of the various assertions of this theorem
will not be the same as the order in which the assertions have been stated. The
reason for this is that we wish to avoid reference in the statement of the theorem
to the auxiliary systems (4.119), to be constructed in the proof.

If SF=L,[0,1] and if 0 <a,;<2 for each integer ¢ in 0<i<s, then it turns
out that the functions A(A; k) constructed in this theorem are closely related to
the classical Fredholm determinant of the square-integrable kernel h(x,y, 4) of
H(2), where we assume that h(x, 2, 1) is Lebesgue integrable on [0, 1] so that the
classical Fredholm determinant exists. The reason for this close relation is that the
classical Fredholm determinant satisfies an equation closely related to (4.97) (see
FREDHOLM [6; p. 380]). We shall not, however, pursue the matter further, since
the actual relation is not useful for our purposes here.

ProoF. — The Hilbert space #® are defined as follows;

(4.106) %{s} — '#,
(4.107) Y — P AP,

where p is an integer such that 1<p<s in (4.107). The superscripts {s}, {p —1},
and {p} are indices here; the space '3, for example, is not generally the same as
HD A XH. We define the numbers S for integers ¢ and p such that 0 <i<p<s
by the equations

(4.108) B = max {(j + 1)oy: j=0 or p +1<j<s}
(4.109) By = g max (i ot p<ji<e)

(4.110) P =, 1<i<p—1<s—1.

Let

(4.111) JE) = H(4)

(4.112) JEH() = J(A)

where J(1) is given by the matrix (4.15). We assume, roughly speaking, that the
matrix operator J®~Y(1) is defined inductively from J®(1) in the same manner that
JE1X(2) was defined from J®}(1). More precisely, let p be any fized integer such that
l1<p<s—1, and let us assume that for each integer q in 1<p<qg<s, there exist
operators J@(1) on #¢ with the following properties:
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(a), We have for each infeger ¢ in 1<p<g<s

q
(4.113) JEB() =Y i

=0

where Ji¥ is independent of 1; furthermore, we have (see (4.108)-(4.110))
(4.114) Ji% e 0{p2; 4%}

for each pair of integers ¢ and ¢ such that 1<p<g<s and 0<i<q.

(&), For each integer ¢ in 1 <p < ¢< s, the operator Jf,“} may be factored so that

(4.115) Jfla) —_ A{qq}sza}
where

(4.116) AP e O{((q + 1)/q) 5 )
and where

(4.117) Bf,“}e C{(g + 1),3?};%{:1}}

where B is given by (4.109).
(¢), We assume that J'9(i) is defined by (4.111) for ¢= s and that

i A J{‘gz+1} Yo A{ﬁl}

(4.118) JW(A) =i ‘
B 0

for integers ¢ satisfying 1<p<g<s—1.

(d), The complex number A is either an eigenvalue of
(4.119), W) u? =4l (u? el

for each integer ¢ in 1<p<g<s or for no integer ¢ in 1 <p<g<s.

Note that (a),, (b),, (¢),, (d), hold for p=s—1 by lemma IV.1. This enables
us to start the inductions. Having defined J®(4), JE~H(A), ..., J¥ (1), we proceed
to define J?~Y(1). Since (see (4.114))

(4.120) Ji’m)e C{ﬂﬁf’}; %{p)}
we factor J by writing

(4.121) J;v}: A;”}B;”}
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with
(4.122) AP e O{((p + 1)/p) B7; W
(4.123) Bﬁf} e 0{(p + 1)&@}; %{n}}.

This is possible by (2.24). We define J*~ (1) by setting ¢ = p —1 in (4.118). Note
that J® (1) assumes the form (4.118) with ¢=p —1, and with

(4.124) JPY =

(J{ip} A;ﬂ} 61',17—1)

where &, is the Kronecker delta.
For i=0 and for each integer p in 2<p<s—1, the result

(4.125) Jiv—l}e O{ﬁgﬂ—l}; %{p~1}}

follows from (4.114) with ¢= 0 and ¢==p, from (4.123), from (4.124) with {=0,
from (2.10), from lemma III.3, and from the relation

(4.126) p=8 = max {7 (p + 1)}

The restriction 2<p <s—1 enables us to set the entry in the first row, second
column of J¥ U equal to the zero operator (on ™).

. For i=p—1 and 2<p<s—1, the matrix J{"~¥ again has (at most) two non-
zero elements; in this case, the relation (4.125) follows in similar fashion if we note that

(4.127) p'ff}:max{ 7} p+15§ap}}.

=1y
VY

The case where ¢==0=p—1 in (4.125) needs separate treatment, since the
matrix J§ will have three non-zero components; however, the basic formulas (4.126)
and (4.127) are valid and consistent if i =0=p—1.

The proof of (4.125) for integers p and 7 such that 3<p<s—1, and I<i<p—2
is easy, and is left to the reader. This exhausts all possibilities.

Finally, the fact that 1 is an eigenvalue of (4.119),_, iff 1 is an eigenvalue of (4.119),
is similar to assertion (i) of lemma IV.1, and is left to the reader.

Note that JO(1) is independent of A; for brevity, we shall sometimes write J'*
ingtead of J®(4). Furthermore A is an eigenvalue of (4.119), for all g in 0<g<s
or for no value of ¢ in 0<g<s. Hence equation (4.2) is « equivalent» to (4.119),
with ¢ = 0 in the sense described. Also, we may see that

(4.128) JO = JO% e OB = C(k,)
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where k, is defined by (4.16). A fortiori, we have the compactness of J©. Hence
the (distinet) eigenvalues of (4.119), with ¢=0 or of (4.2) must form a denumer-
able (or possibly empty) set. We denote the sequence of eigenvalues of (4.119),
with ¢ =0 by {2,}, where each eigenvalue 1= o of (4.119), with ¢ = 0 appears in
the sequence {4;} according to its geometric multiplicity, which is the maximum
dimension of the null spaces

(4.129) NI —aJ 9T} (j=1,2,...).

The operator I”}(0 <p<s) here denotes the identity operator on #"). We assume
that the sequence {A;} satisfies the ordering previously described. Of course, we
must show that the sequence {1,} so defined is precisely the sequence described in
the statement of this theorem. The resnlt that the eigenvalues of (4.2) form a de-
numerable set is not new; it has been proven in the case where the H, are merely
compact (see KrLpYsH[12]). Clearly the sequence {A;} has no finite limit point,
since J'% is compact. It is also clear that |A;|> 0 for each applicable i.

By (4.128) and (2.3), we have the inequality (4.101). For integers k>k,—1,
we define A(4; k) =1 if no eigenvalues of (4.2) exist; if eigenvalues of (4.2) do exist,
then we define

k
(4.130) A %) = TT (1 — 4/2) exp{z (L/§) (Afs) }

i §=1

where the product in (4.130) is taken over the entire sequence {4,}. The product
so defined converges uniformly on bounded subsets of the complex plane as a direct
result of (4.101), as we shall show. (Obviously, the only case of interest here is if
the sequence {4;} is infinite). Let

ke
(4.131) b(a;k):[ 7)exp ¥ ((~1)%) a’]—rl
Now there exists /"> 0 such that if k>k,—1, then
(4.132) b(o; k)| < Lo < Flof

for all complex ¢ in |o|<1; here I" depends only on % (see DUNFORD-SCHWARTZ
[8; p. 1107, inequality no. 41). If we let

(4.133) (A3 ) = b(— A/As; k)

then we can use (4.101), (4.132), (4.133) to apply theorem 7.3, LEVINSON-
REDHEFFER [15; p. 3851, to obtain uniform convergence of the product

(4.134) TTL+ aids )] = (s k)
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on bounded subsets of the complex plane; furthermore, by the theorem quoted in
Levinson-Redheffer, the product in (4.134) or (4.130) is zero if and only if at least
one of its factors is zero. Hence the product in (4.130) defines an entire function
A(A; k) whose zeroes, taken according to algebraic multiplicity, form precisely the
sequence {1;}. Thus it is clear that assertions (i), (iv), and inequality (4.101) of as-
gertion(vi) are proved by the preceding considerations.

In order to prove (4.102), we note that if k>k,—1, then

(4.135) Zﬂi_(kﬂ) = {(JO
(4.136) ' — TR{HJ{O}]'[I{O}— ZJ{O}]—I}

where the left side of (4.135) is zero if (4.2) has no eigenvalues. Equation (4.135)
follows from (2.17) and from the fact that (see (4.128))

(4.137) [JO e Cfko/(k + 1) ;521 .

Equation (4.136) is obtained by left multiplying the relation
(4.138) [1{0}_;“]{0}]—1 - ZAi[J{O}]j
i=0

through by [AJ®]. It is clear that the right side of (4.138) is convergent with
respect to ||, provided A is small.

Noting (4.135)-(4.136), we see that the proof of (4.102) can be established if we
can prove that the relation

(4.139),  TA[AJCIAT I — ATV = w{ A9 [IT9 — 29T

holds for all integers g such that 1 <g<s and all integers k>¥%, —1. The derivatives
in (4.139), are taken with respect to (say) ||..
By (4.137) and by (4.138), we have that

(4.140), my{ [ 1 — 2T ()T} e Ofko/l; ™)
for p =0 and for all non-negative integers k. Also, by (4.128) and by lemma IV.2,
the function
k—1
(4.141), (1% — AT — 3 Hm{ (1P — AT ()T
i=0
is analytic with respect to ||, (see (4.18)) provided p =0 in (4.141) and pro-

vided A is not an eigenvalue of (4.2). Note that if &, is given by (4.16), then the
relation

(4.142) ko= max{(i + 1) 0<i<p}
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holds for each fixed integer p in 0<p<s. Hence if we replace H(i) and J(1) in
lemma IV.1 by J(1) and J%(4) respectively and if we make other necessary nota-
tional changes in lemma IV.1, then by the validity of (4.114) for infegers ¢ and ¢
in0<i<g<l, by (4.118) with ¢ = 0, by the validity of (4.142) for p=0 and p=1,
by the validity of (4.140), for p = 0, and by the analyticity of (4.141), with re-
spect to ||, provided p =0 in (4.141),, the conclusions (1},, (2),, and (3}, listed
below are valid for p=1.

(1), The assertion (4.140), is valid for all nonnegative integers k.

(2), The function (4.141), is analytic with respect to | |, for each non-negative
integer k¥ and each A which is not an element of the sequence {1.}.

(3), The relation (4.139), holds for each integer ¢ in 1 < g < p and each integer %
such that k>k,—1.

By induection, and by appropriate use of lemma IV.1, we can show that the state-
ments (1),, (2),, and (3), are valid for each integer p in 0 <p <s. In particular, (1),_, is
equivalent to (4.17) by (4.112), and (2),_, yields the analyticity of (4.19) (where
defined) with respect to ||,,,. Hence (4.17) and the analyticity of (4.19) can be
unconditionally verified (i.e. they do not have to be assumed). Assertion (vii) of
lemma IV.1 implies the validity of assertion (ii) in the statement of this theorem,
while (4.135), (4.136), and (3), imply equation (4.102). Finally (4.112) and (1),_,
imply (4.103) by the results of assertion (v) of lemma IV.1. At this point, assertions
(i), (ii), (iv), and (vi) in the statement of this theorem are established.

In order to prove (4.98), we note that (see LEVINSON-REDHEFFER [10; p. 392])
if #>k,—1, then

A'(4; k) a,(4; k)

(4.143) A H) — 21+ ad; B

where the summation in (4.143) is taken over all ¢ for which a;(4; k) is defined
(see 4.133)). Convergence of the series in (4.143) is uniform for A on compact sub-
sets of the complex plane which do not contain any points of the sequence {4}.
In particular, convergence of the series in (4.143) is uniform for 4 on compact sub-
sets of the set described in (4.100) (here, we assume that there do exist eigenvalues
of (4.2)). Since

a;(2; k)

(4.144) T el _jgk,p'/,uﬂ

for A satisfying (4.100), we have for integers k>k,—1

al (A3 ) —AGD i sk
4.14 B il Sk R R i
(4.145) m; [1—{—6@,-(1; k)] { 0 it j<k
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Since the operator m; is an integral operator, and since the series in (4.143) converges
uniformly for (say) |A|<($)|4:], we have

K

if j<k
where the summation in (4.146) is over the whole sequence {1,}. Hence

__A,(@ RSy —(i+1)
(4.147) A B *,gkl izli( .
Bquation (4.147) follows immediately from (4.146) and is valid for 1 satisfying (4.100).
Hence (4.98) follows from (4.102) and from (4.147), at least in the case where (4.2)
has eigenvalues. If (4.2) has no eigenvalues, then (4.98) follows from (4.102) and from
the fact that A(4;k)=1.

We continue to assume that equation (4.2) has eigenvalues. If we use the result (ii)
of this theorem, along with (3.8) and the fact that v is a continuous linear functional
on C(1) (see (2.16)), then (4.97) follows (*) immediately from (4.98), provided 4 sat-
isfies the restriction (4.100). Since the sequence {4,} may have only A=oco as a (pos-
sible) limit point, we may use analytic continuation arguments to establish (4.97) for
all 1 not in the sequence {,}. The analyticity of the right side of (4.97) follows
from lemma III.2 provided A A, for any ¢. Hence assertions (i) through (vi) in-
clugive are verified.

In (vii), we note that the fact that [I—AH(A)]~* has a pole at the points
i = 4; follows from the fact that [I—27'”]-* has a pole at the points A= 1,
(see DUNFORD-SCHWARTZ [4; p. 57 9]) and from appropriate use of Corollary I'V.1.

In order to prove (4.104), we shall verify the inequality (see (4.131))

(4.148) lb(0; k1) + 1] < exp {o]™}

where %, is the integer described in (viii), where I is a positive constant which
depends only on k,, and where ¢ is any complex number. The inequality (4.148)
is a restatement of inequality (2), page 1107 in DUNFORD-SCHEWARTZ[5]. Their
quantities A, I, p, and %k are our o, P, %y, and (1-+%,) respectively. Their condi-
tion (in our notation) 1-+k;>k,>k, is necessary for the validity of (4.148),and
follows easily from the definition of k. If we set o=—A/A; in (4.148), and
use (4.133) and (4.134), the inequality (4.104) follows immediately, with

(4.149) I>P3 3.
Now the function
(4.150) A B)[I® — TP

(*) The MacLaurin coefficients of {4.42) are norm invariant w.rt {|; and ||
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is clearly analytic with respect to | |, provided 7 is not an element of the sequence {1},
and has {at worst) poles at the points A= 4,.

In order to establish (4.105), let us assume for the time being that there exists
a positive constant I (which as we shall see, depends only on k,, and not on J®
or on the operators H,) such that

(4.151) |A(h; ) [T — 2T < exp {T7]J O [Ee] 4|}

We assume, of course, that 1 is not an element of the sequence {1,} in (4.151).
The superscript on the right side of (4.151) refers to a power; the subscript refers
to the norm ||, on the space C{ky; #'”}. If (4.151) is temporarily accepted, and
if I'> 0 satisfies the inequalities (4.149) and

(4.152) T>TIOR=T" 3 |3,

then we have

(4.153) AR By) (1% — 279172 < exp [L]2}]

for p=0, and for A not in the sequence {A,}. If we replace H(A) and J(1) in
inequality (4.44) of lemma IV.1 by J(J) and J?~Y(4) respectively, and make other
appropriate notational substitutions, then we have

(4.154) 1% — A%~ < LI~ Y — AT D)7,

for integers p in 1<p<s and for complex 4 not an element of the sequence {1}.
Hence (4.153) is valid for all p in 0 <p <s; the inequality (4.105) follows immediately
from (4.153) with p =s. '

The inequality (4.151) follows from corollary 25, page 1112, from theorem 26,
p. 1113, and from lemma 22(f), p. 1166 in DUNFORD-SCHWARTZ [5]. Their quanti-
ties I, k, and p are equal to our I, (1 4+ k), and %, respectively; their operator 7'
is replaced by our operator (— AJ'%), their function det, (I -- T) is to be replaced
by our function A4(4; k). Also their eigenvalues {4} in the definition of their func-
tion dety ({ 4 T') on page 1106 would have to be replaced by our quantity (— A/1,),
since the analogue of their equation Tu = i,u would be — AJ'%u= —(A/i,)u in
our notation. Hence (4.151) and therefore (4.105) are established.

We have already noted that (4.150) has (at worst) a pole at the points A= A,.
If (4.150) had a pole at 4= A;, then the left side of (4.153) would tend to oo
as 4 —>A;. Hence (4.150) must have only a removable singularity at A= 4,.

In order to prove assertion (ix), let M(a) be the Keldysh multiplicity of the
eigenvalue 1==a of (4.2), and let m(a) be the algebraic multiplicity of A= a as
a zero of the functions A(4; k). Let #(a)g(L) denote the principal (or singular) part
of any complex or operator-valued funection g(1) about 1= a. We freely use the
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fact that Z(a)g() is zero if g{A) is analytic at A= e with respect to an appro-
priate norm. As before, R(4) will denote the resolvent of H(A) (see (4.5)). By (4.6),
we have that

(4.155) i"_(“; = tP(@){AHMNTARD]

(4.156) = v P(a){[AH(A)]' [ — AH(A) T}

(4.157) = P H) T — AH(A)]*——E Jm [NV — AE) ]}
. A'(2; k)

(4.158) = P(a) [_A(l; k)]

(4.159) = m(a)/(a— 1) .

Equation (4.158) follows from (4.97) and from the fact that 1#(a)g(1) = P(a)1g(A)
if g(1) is an operator valued function analytic with respect to ||, in a deleted neigh-
borhood about A= a. The equation (4.159) is easily proved using Laurent series,
80 M(a)=m(a), and assertion (ix) is proved.

We remark that KELDYSH[7] states that R(1) has a pole at A= 4,, and that
he characterizes the coefficients of the negative powers of (A—1,) in the Laurent
expansion of (AR(1)) about A= 2, as being operators whose range is contained in
the space generated by the set of vectors y, described in (4.3). =

COROLLARY IV.3. — Let H(A) be given by (4.1), with s>1, and let s’ be any
integer satisfying 0<s'<s—1. Let «, be a positive real for each integer i in
0<i<s’, and let (4.96) hold for each integer in 0<i<s’. Furthermore, for each
integer 4 in ¢ +1<i<s, let H,e C{co;#} be an operator of finite dimensional
range. Then H,e O{p;5#} for each p > 0 and each integer ¢ in s'41<i<s; hence,
the number %, in (4.16) is equal to

(4.160) max{(i + 1)e;: 0<i<s'}.

CoMMENT. — Loosely speaking, under the assumptions of this corollary, the

higher order terms in H(A) do not substantially affect the convergence of the series
> 277 and our ability to evaluate the latter series for integral p.
* The conclusion that H,e O{p;#} for each p>0 and each i in s'+1<i<s
comes from the fact that H; H, and hence (H; H,)* are also operators with finite
dimensional range; hence the singular values of H,, i.e. the eigenvalues of (H’:Hi)*,
are finite in number. This is well-known.

The reader can make various modifications of this corollary.

ExXAMPLE. — Let the complex Hilbert space 5# be infinite dimensional, and let

(4.161) {@isii=0,...,5 and j=1,2,..}
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be any infinite orthonormal set in 3#°. Let b; be any positive sequence such that
(4.162) >b;e
i=1

converges for real ¢ if and only if eé>1. Let o,..., o, be any collection of positive
reals, and let the operator H, be defined by

(4.163) Hou= 307 1,<0 91

P
The eigenvalues and singular values of H, are given by the sequence {b%, s, ...}.
Hence H, e ({a;; #} for each ¢ in 0<i<s. The positive eigenvalues of (4.2) are
given by the multiple sequence {b\**V*™1 where ¢ and § vary as in (4.161); this
follows since (4.161) is an orthonormal set. Hence > A7 ¢ converges absolutely for
real ¢ iff ¢>k,, where k, is given by (4.16). ¢

CommenTs. — Let De C{oo; #} and suppose that [I —D]-'e C{co; #}. Let us
further suppose that s, H(A), and H, satisfy the assumptions of theorem IV.3. We
assume that H, is not the zero operator for some value of i in 0<i<s. Let

(4.164) Hi)=D+ AH().
We wish to consider briefly the eigenvalues of the equation

(4.165) HAu=u (uecif).

It turns out that equation (4.165) has eigenvalues which share all of the properties
that the eigenvalues {/,} of (4.2) enjoyed. We write (4.165) ag

(4.166) M —D)y*H(ADu=u

with

(4.167) (I—D)y*H())= i JMI—D)yH,
gince o

(4.168) (I —D)H,e O{a; H#}.

We may apply theorem IV.3 to the operator (I —D)-*H(A) instead of to H(1).
For each integer k>%,—1, where k, is given by (4.16), there exists an entire func-
tion A(A; k) satisfying the analogue of (4.97) obtained by replacing H{A) in (4.97)
by (I —D)-*H(A). However this analogue can be written in the more « natural »
form

A5k

(4.169) T =

« (AW~ AT —'“i B, [N — BT}
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if we observe that

(4.170)  [AJ—D)y*HMWVII —AI —D)yH(W)T?
= (I—D)"[HM[I—HM]I-D),

where the derivatives in (4.170) are with respect to | |,. We point out that the ex-
pression whose trace is being taken in (4.169) is indeed an analytic function with
respect to ||, except at the eigenvalues of (4.165), of course. The justification of
the latter statement is this: if we replace H(1) in (4.42) by (I —D)*H(JA), the
ensuing expression is analytic (where defined) with respect to | |,, provided k> k,—1.
By (4.170), we can show analyticity of the expression whose trace is being taken
in (4.169) with respeet to | |,, provided A is not an eigenvalue of (4.165) and provided
k>k,—1.

The ordered sequence of zeroes of A(A; k), taken according to algebraic multi-
plicity, continues to be independent of k, and is denoted by {Zi} We have that

(4.171) )3 |2 B < + oo
and 1
(4.172) S = AW — AN,

4

where the latter is valid for integers k>k,—1. While (4.172) is, perhaps, more ap-
pealing in form than the equation obtained by replacing 1, by X, and H(1) by
(I—D)*H(2) in (4.102), it turns out that (4.172) is somewhat less practical for
actual computational purposes. We will pursue evaluation of the right side of (4.102)
in part V.

V. — The eigenvalues of certain operators which are meromorphic functions of the
eigenvalue parameter.

The symbols o, C(p), H(A), H,, s, Ay osy A{A5 k), my, T, 7y, ko, and k, of the
previous section will continue to have the same meaning. We shall continue to
suppose that H(A) satisfies the assumptions of theorem IV.3.

Let f(/) be an entire complex-valued function such that f(0)7 0. Let I be a
positive integer; for each integer j in 1<j<!, and for each complex 1, let #,(1) and
¥;(1) be elements of #. We assume that the mappings A —x;(4) and A —y,(4)
are entire functions with respect to the norm || of the Hilbert space #. Let the
operator K (1) be defined for each fixed complex A such that f(1) # 0 by the equation

i
5.1) R(@yu=H@u+ 75 alh) < v
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where we . The reason for writing {u, y,(1)> is that the mapping A — (u, y,(1)>
is an analytic (complex-valued) function of A for each fixed e, while the
mapping 4 — {u, y;(1)> is not analytic for each fixed ue . We will study the
eigenvalues of the equation

(5.2) AK(ADuw=u

in this section; one difficulty will, of course, be the fact that K(4) has possible poles
at the zeroes of f(1). Later on, we will have to place more restrictions on z; (1),
¥5(4), and f(4).

Let the operator P(1) be defined by
{5.3) PAyu=EK{lNu—H(Nu

12
(5.4) = (1/1‘(2)),_21?95(1)@, VAP

We will have to show that P(4) is an operator-valued function analytic with respect
to ||, about all points A such that f(1)# 0. For this purpose, we first perform an
auxiliary computation. Let the operator A be defined on S by the equation
(5.5) Au = xlu,y>

where z and y are fized elements of S#. Note that if A* is the adjoint of /A, then

(5.6) A*p=ylv, 2>
for each ve#. Hence

(5.7) A Au = ylu, y>{w, x> .

Hence if {x.,(A1)} are the singular values of /4, we have from (5.7)

(5.8) Al =[Sy
(5.9) = [ ()]
(5.10) — laliy.

The analyticity of P(4) with respect to ||, about points A1 such that f(1)= 0 fol-
lows directly from the next lemma, and from corollary IIT.1,

LeMmA V.1, — Let a be a fixed complex number, and let ¢> 0. Let z(1) e
for each complex 4 in the set

(8.11) {2: |i—a| <&}
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and let y(1) e # for each complex A in the set

(5.12) {d: |l—a|<e}.

Furthermore, let #(4) be analytic with respect to the norm | | of the Hilbert space 3#

for each A in the set (5.11), and let y(4) be analytic with respect to the norm || for

each A in (5.12). For each 4 in (5.11), let the operator A(1) be defined by

(5.13) AQ)yuw = 2(2){u, y(A)>

where wc3. Then A(2) is analytic with respect to ||, for each A in (5.11).
Proor. — Let v, be a fixed element of # such that

(5.14) o] = 1

and let the operators D(4) and E(4) be defined by the equations
(5.15) DA u= z(A){u, v>

(5.16) B(2)u=v,<u, y(2)>

for each uwed¥ and for each 1 in the set (5.11). Note that

(5.17) DMEQ) = A(}).

It suffices by lenma IT1.1 to show that D(4) and E(1) are each analytic with respect
to ||, for 2 in the set (5.11). We shall do this for the function E(4); indeed, we shall
prove that

(5.18) B (yu=v<u,y'(A)
for each A in (5.11). For now, let the operator F(1) be defined by the equation
(5.19) F(A)u=v,(u, y'(4))

for A in (5.11) and e 3. Let A be in (5.11), and let 44 be a non-zero complex
number such that (1 + 44) is in (5.11). We set

(5.20) o=17%, do=Ai.
Clearly ¢ and (p + 4p) are in (5.12). We have

(6.21) LE(A + 42) — E(A)]w= ve{u, [y(e + 40) —y(e)]
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so that by (5.8)-(5.10) and by (5.14), the relation

(5.22) \B(A + A4) — B(3)

1= Yo + 40) —y(o)]

holds. We have assumed that if p is in the set (5.12), then y(p) is analytic (and
hence continuous) with respect to the norm || of #°. Thus the continuity of E(1)
with respect to ||, follows from (5.22), provided that 4 is in (5.11).

The proof of the relation

E(A+ A2 —E() —Fw| = Lyl + A0) —ylg)

b
(5.23) Wy = Ao Yy (9)3

is similar to that of (5.22); by arguments of the previous type, the relation (5.23)
proves the analyticity of E(A) with respect to ||, and the relation (5.18). m
The numbers A; and k, in the next lemma are the same numbers defined in part IV.

LeMMA V.2, — We shall always assume here that A is an element of the open set
(5.24) {2: f(i);éo}—Li) $hs

where the union in (5.24) is taken over all elements of the sequence {1.}.
Let the operator G(4) be defined by

(5.25) G = [I—AH(A)]P(A)

for each A in the set (5.24). The function G(4) is analytic with respect to ||, for
each A4 in (5.24).

Suppose either [I —bG(b)]~* or [I —bK(b)|~* exists for some fixed b in (5.24).
Then there exists ¢ > 0 such that the dise {A: |2 —b] <&} is a subset of the set (5.24)
with the following properties

(i) The inverses [I—AK(A)]™* and [I —AG(A)]~* both exist and are both de-
fined on all of 3¢, provided 4 satisfies |1 —b|<e.

(i) The inverses [I —AK(A)} and [I —AG(A)T* are analytic functions of 1
with respect to ||, provided |1 —b]<e.

For each 1 in (5.24) such that either [I —AK(A)]* or [I—AG(A)]* exists, we
have the relation

(5.26) [AEWYII —AK(2)]7 = [AHMYI — AHR)] +
+ [T — AHW)AGMYIT — A6 — AH (R

18 - Annali di Matematica
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The function
k—1
(5.27) DEMI— KM — 3 A m{[AE0)] [T —AE ()]}

i=0

is analytic with respect to ||, on the open set of all points A in (5.24) such that
[I—AK(2)]* exists, provided & is an integer such that k>%k,—1.

CoMMENTS. ~ It is clear that the trace of (5.27) can be expected to play a role
similar to the quantity on the right side of (4.97). In effect, we will eventually
« solve » a differential equation similar to (4.97) and obtain a function £(4; k) which
is very roughly analogous to the function A(A; k) of the previous section. The
equality (5.26) will play an important role in the construction of the function
2(2; k), and will be important in the establishment of certain inequalities which
will yield an analogue of (4.102).

Note that the operator G(1) has a finite dimensional range for each fixed 1. This
fact along with equation (5.26) will aid us greatly, since at this point, we know
much about H(4) and [T —AH(A)]™

We have an inherent disadvantage in the construetion of G(A) in that G(4) is
not defined at points A= 1,; consequently we cannot (in this lemma) prove that (5.27)
is analytic with respect to ||, about the points A= 1,. We will easily overcome
this in lemma V.3, however.

Proor. — We ghall continue to assume that 4 is an element of the set (5.24).
The analyticity of G(1) with respect to | [, follows immediately from lemma III.1
and from the analyticity of [1 —AH(A)]~* with respect to ||, and the analyticity
of P(4) with respect to ||,. Another approach, which yields some useful minor
results, will be given later.

For each A in (5.24), we can show that

(5.28) [I—AH(MI—+G(A)]=[I—AK(4)].

For each 1 in (5.24), the existence of [I —AH(A)]"* is assured. Hence we see
from (5.28) that [I — AG(A)]* exists if and only if [T — AK(A)]~* exists, provided 4 is
in (5.24). The assertions (i) and (ii) immediately follow from the discussion
concerning (4.8), since the latter is valid if G(2) or K(4) replaces H(J). Clearly, if
either [I —AG(A)]* or [T —AK(A)]™ exist for some 4 in (5.24), then we have
(5.29) [I—-AKA)] =TI —AGFAI{I—AHA)]*.

In order to prove (5.26), we note that

(5.30) P(}) = [I—AH ()G
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so that we have

(6.31) [AP(A)Y = —[AHW)][AGA)] + [T — AH(AH)]AGA)].
If we add [AH(4)] to both sides of (5.31), we obtain from (5.3)
(5.32) [AK(A)] = [AHAD]T —A6(A)] + [I—AH(A)[AGA)] .

Equation (5.26) then follows from (5.29) and (5.32).
In order to prove the analyticity of (5.27), with respect to ||;, we first note that
the functions

(5.33) AGA]I — G
and
(5.34) L —2AHMAGAVI — AG(A)]I — AH (A)]

are analytic (where defined) with respect to ||, by lemma IIT.1. It is thus clear
from (5.26), from the analyticity of (4.42) with respect to ||, (provided k>k,—1
and provided As# 4, for any 4), and from the preceding, that

k—1
(5.35) [AEMYI — 2K M) — 3 ¥ m{AH N T —AHE )]}

j=0

iz analytic with respect to | |; for A in (5.24) such that [I — AK(A)]? exists, provided
k>k,—1. From the analyticity of (5.34) with respect to ||, it is clear that

k-1
(5.36) 3 Pm{[I—AHMNAGA)T T —AFMNIT —AHQ)]

i=0

is an operator-valued polynomial which is an entire function with respect to | |;.
If we subtract (5.36) from (5.35), we obtain precizely the expression (5.27),; this
follows from (5.26) and from the linearity of m;. Hence (5.27), is analytic (where
defined) with respect to ||,, provided A is in (5.24) and provided k>k,—1.

An alternate proof of the analyticity of G{4) with respect to ||, can be given
here. We have

(5.37) G u :—1[ i 2) < 4ol A)>
where
(5.38) #(3) = [T — AH(A)T12,(4) .

Now [I-—AH ()] is analytic with respect to | |, for A in (5.24). This fact, along
with the analyticity of x,(A) with respect to the norm || of the Hilbert space 3#
guarantees that z,(1) is also analytic (where defined) with respect to the norm | | of 7.
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The proof of this is similar to that of lemma III.1, and is done by proving an
analogue of (3.21); the inequality |[Az|<|4|,|r| where xec# and A e ({oco;#}
would replace (2.14) in the proof. Since z;(4) is analytic (where defined) with respect
to the norm || of 3, we have analyticity of G(A) with respect to | |; by lemma V.1
and by corollary ITI.1. m

LeMMA V.3. — Let 4, be an element of the sequence {1,}, where m henceforth
denotes a fixed positive integer. There exists a compact linear operator Q'™ on
of finite dimensional range such that if
(5.39) H™(3) = H(3) + @™
then the equation
(5.40) AH™Aw=w

has no eigenvalues in the region |4 — A,|<Cé&, where g, is a small positive number.
We have

(5.41) H™(3) =Y AH™
i=0
with
(5.42) H™ =H; +6,,Q" € Ofoy, #}

where §,; is the Kronecker delta. Hence for each integer k >k, —1, we may define
an entire function 4™ (2; k) by replacing H(A) in (4.97) by H™(1). Let {2{™} be the
(posgibly void or finite) ordered sequence of zeroes of A™(4; k), taken according
to algebraic multiplieity. We shall always assume that A is an element of the open set

(5.43)m {A: Ay # 03 —U §2im%

where the union in (5.43),, is taken over the whole sequence {,‘{,}m}} for fized m.
Let the operators P™(1) and G™(1) be defined by the equations

(b.44) P(3) = P(2) — Q"™ = K(1) — H"™(3)
(5.45) () = [I— 2H™(A)]"1P™(2)

for each A in the set (5.43),. The operator P{™(]) is analytic with respect to ||
about each point A such that f(1)+ 0; the operator GI™}(4) is analytic with respect
to ||, for each A4 in the open set (5.43)..

Suppose either [T —bE (b)) or [T —bG™(b)]-1 exists for some fixed b in (5.43),,.
Then there exists ¢ > 0 such that the dise {1: {1 —b| < ¢} is a subset of the set (5.43),
with the following properties:
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(i) The inverses [I —AK(4)]-* and [I — AG™(4)]-* both exist and are both de-
fined on all of 5, provided 1 satisfies |A—b|<Ce;

(ii) The inverses [I —AK(A)]-* and [I — AG"™(1)]* are analytic functions of 1
with respect to ||, provided A satisfles |2 —b|<Ce.

For each 2 in (5.43), such that either [I —AK(A)]* or [I —AG'™(A)]* exists,
we have the relation

(5.46) [AE(A)Y[I—AK(A)]*=[AH™(A)][I—2H™(4)]*
+ [T — 2= B AG ()] [T — 26" ()T — AH™ ()]

The function (5.27), is analytic with respect to ||, on the open set of all points A
in (5.43),, sueh that [T — AK(1)]* exists, provided k is an integer such that k >k, —1.

ProoF. — In order to prove existence of ™, we let &, ..., £, be an orthonormal
basis for the space A4{{I—2,H(4,.)]}, which is finite dimensional, since H(4,) is
compact. It goes without saying that the latter space, and its dimension ¢, are
dependent on J,. Note that 1, i§ an eigenvalue of the equation

LH)Fw=w (welk);

also note that A{[I —A,H(1,)]} and #{[I— 1,(H(1.))*]} have the same dimen-
sion (see exercise 35, p. 584, in DUNFORD-SCHWARTZ [4]). Hence we may let #;, ..., 7,
denote any orthonormal basis for the latter space.

Let the operator Q' be defined by

q

(5.47) Qi = 275w £

i=1

Let us suppose that veH# satisfies (5.40) with A= 4,,. Then we have
(3.48) [I— AnH(An)]o = 2@ 0.

If we take the inner product of both sides of (5.48) with #,, and if we note that
Am: 0, then we see that

(5.49) Qo m>=0, (j=1,...,0).

But (5.47) and (5.49) yield
0= <Q{m}v; 750 = {0y &5 (1=1,...,9
sinee 7,,...,7, is an orthonormal set. Hence Qv =0 and hence v satisfies

[I—i H(A)]o=0.
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Since v e AN {[I — A,H(A»)]} and since &, ..., &, is an orthonormal basis for the latter

space, we may write
a

V= z<’l), Ed>§a=6

i=1

and so A= 4, is not an eigenvalue of (5.40).

We note (see corollary IV.3) that @™ e 0{p;#} for each real p > 0; hence (5.42)
holds for ¢ = 0 since O{a,) is a linear manifold. Since (5.42) holds for each integer 1
in 0<i<s, we may conclude by assertion (ii) of theorem IV.3 that

L—
(5.80)  [AE"(A))[L—iH™(A)]— zl;v' m{[NH™ ()T —AH™(A)] 71}
i=0

is analytic with respect to ||, provided %k>%,—1 and provided that i is not an

eigenvalue of (5.40). Hence the functions 4" (1; k) described in the statement of

the lemma may be constructed; the ordered sequence of zeroes of A™}(1; %), where

each zero is taken according to algebraic multiplicity, is independent of k for % > k1.
Note that we may write

1{m}
(5.51) Py = (1/f(1) D 2™ (A)<u, 5™ A)>
=1

7

where, since ¢ depends on m, we write

(5.52) "™=14q
and where
:b{-'”}(l) . {xa(}*) j=1,..,1
T =M =141, 0,0
(5.53) fMmi— j=1+ I+ g
{m}(l) —_ {yl(‘z‘) J=45 .. l
’ Si—l 3=l+17-~~7l+q

Hence P™(j) is analytic with respect to | |, about each point A such that f(4) 0
by the same arguments that we used to prove the analyticity of P(4). It is easy
to see that «{™(1) and y{™(]) are entire functions with respect to the norm of the
space . The rest of the proof follows as before. W

In the next lemma we state a few well-known facts for future reference.

LemuMA V.4, - We will alweys assume henceforth that 1 is an element of the
set (5.24). Let d(1) be the Ix! determinant with (see (5.1) and (5.38))

A

- 6@'5 BRTER
(5.54) %)

<as(A), yd )y
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in its i-th row, j-th colummn, where J,; is the Kronecker delta. Then

(i) Let ¢ be an element of the set (5.24). The following assertions are equivalent:
(1) d(a) = 0;
(2) A==0 is an eigenvalue of (5.2);

(3) A= a is an eigenvalue of the equation (5.55);
(5.5b) AN w=w (weH).

If & is an element of the set (5.24) then the following are equivalent:
(4) d(b)#0;
(b) the inverse [I —bH(b)]* exigts and is defined on all of 3.
(6) the inverse [I —bG(b)]* exists and is defined on all of 3.
(ii) Let D;{4) be the transformation (from 3# onto the set of complex numbers)
such that D,(A)u is the determinant obtained by replacing the j-th column of d(4) by
(5.56) (<o (A, ey oy AD)T

where 7' indicates a transpose. The equation

1L DA
i 250

(5.57) [I— AG(A)] u=u-t

holds at all points 4 in the set (5.24) such that d(2)+£0.

(iii) The equation
a'(2) , , »
(5.58) i = T{[AG(A)][I — AG(A)]1}

holds at all points A in the set (5.24) such that d(i)£0.

ProorF. — The proofs of (i) and (ii) for the most part involve standard results,
and will not be done here. Note that the results of Lemma V.2 and equation (5.28)
are useful in the proof of (i).

In order to establish (5.58), it will be helpful to generalize slightly the functions
d(2) and D;(%). (We shall always assume that A is an element of the set (5.24) in
the following.) Let d(c; 2) be the Ix! determinant with

¢ -
5.59 04— == <&AA), 9ilA)
(5.59) i ) B>

in its i-th row, j-th column. Of course, we have that d(A; A) = d(1). Clearly, the
function d(o; 1) iz continuous (where defined) in ¢ and A together, and is analytic
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(where defined) in A for fixed ¢ and vice versa (the reader may verify that
{24(A), y(A)> is analytic (where defined) with respect to the norm on the set of complex
numbers; here the analyticity of 2;(4) and y,(4), where defined, are needed). Let the
transformation D;(c, 4) (from 3# onto the set of complex numbers) be defined so
that D;(o, A)u is the I x] determinant in which the j-th column of d(s; 4) has been
replaced by (5.56). The solution of the equation

(5.60) (I—eGM))w="h (hes)
is

g & a3 Ah
(5.61) = g ———d 7 +h

provided, of course that d(c; A)# 0 for fixed ¢ and A. Let V(s; 1) be the resolvent
defined by the equation

{5.62) I+ oV(o; A)=[I—0oGA)]
and let the operator E;(c; A) (on S to ) be defined by
(5.63) Bio; Myu=2;,(A) Doy L)u
From (5.61)-(5.63) we note that

1 i

If 2,(A) % 0 for some fiwed j and 1, and if we extend the set {z;(4)/|z;(A)} (where j
and A are fiwed) into an orthonormal basis for #, then we see that

SEJ(O'; A2 (A), 2,4))
2;(A) ]2

(5.65) [ B{o; H]= —D,(o; H2(A)

from (5.63) and from the definition of trace (see the right side of (2.15)). If
2;(4) =0 for some fized j and A, the equation

(5.66) t[Bi(o; A)] = Dy(o; 4)2:(4)

still holds, as both sides are zero. From the usual « rule » (using columns) of taking
the derivative of a determinant, we obtain

? 1

(5.67) — = dlo; ;u)_m)

Dy{o; Mzi(4) .

W M~
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From (5.64), (5.66), and (5.67), we obtain

9 dos 1y = 1[V(o; 1]

(5.68) " d(o; A) oo

which holds at all points (o, A) such that d(o, ) 0. Note that
(5.69) Vie; )= 3 JLGAF*
=0

where the Neumann series (5.69) for V(o; A) converges uniformly and absolutely
with respect to | |; for |3 + |o| < e, where ¢ is a small positive number (recall that
G(%) is in the space C{1; 3¢} and is analytic where defined with respect to ||).
We claim, therefore, that

gt d

(5.70) = f {V(8; 2 :iy 1 7 TGN

where the path of integration is inside the region |4] -+ || <<e. In order to ob-
tain (5.70), we first note that v and the summation in {5.69) may be interchanged,
since by (2.16) the operator 7 is a continuous linear function on C(1). As a result
of (2.16) and of the uniform convergence of the series (5.69) with respect to | 11, the
series obtained by interchanging v with the summation in the series in (5.69) continues
to converge uniformly (with respect to the norm on the set of complex numbers)
for |A] 4+ |o| <&, and the latter series with & replacing ¢ may integrated in term
by term fashion with respect to ¢ to obtain

o

(5.71) fr[V(&; mas=3 2

2 it e

0

The series in (5.71) continues to be uniformly convergent in the region |o| + |1] <e,
and hence uniformly convergent with respect to 4 in |A| <e— |of for small fized o.
By lemma III.2, each term in the geries in (5.71) is an analytic, complex-valued
function of A4 for each fixed ¢, and each 4 in (5.24). Hence the series in (5.71) may
be differentiated with respect to 4 in term-by-term fashion, since, by Cauchy’s for-
mula, 8/04 can be expressed as an integral operator. Therefore (5.70) is justified.

By lemma II11.2, we may interchange 7= and d/di in (5.70) so

(5.72) %T{[G(A)]fﬂ} — I d ]H—l}

(5.73) — z[G (DIGA Y

(5.74) = (j+ D o{F (AT}
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where (5.73) follows from (3.21) and from the fact that G(A)e C(1) and G'(A)eC().
Clearly (5.74) follows from (2.40). By (5.69) and (5.70) and by (5.72)-(5.74), we have

a

(5.73) 537 t{V(6; 1)} dé = t{o@'(2) + o> () V(e;4) }
0

provided |6] + [A]< ¢ along a suitable path connecting & ==0 with § = ¢. In order
to obtain (5.75), one must prove the validity of an interchange of v with the sum-
mation of a certain series; the justification is again obtained by noting that the
series in (5.69) converges with respect to ||, for [o|+ |A|<e, and by using the
fact that 7 is a bounded linear functional on the space C(1).

Integrating (5.68), we obtain for |6| 4 |Aj<e

(5.76) d(o; 2) = exp {— f [V (6; ;hnd&}

0
gince d(0, ) =1. From (5.75) and (5.76) we obtain

1 0

~do; A 5 d(o; A) = t{e@' () + 0*G'(1) V(a, 4)}

for |o| + |A] <e. Hence (5.58) follows for |1| < ¢&/2 from (5.68), from (5.77), and from
the equations

, d 2
(5.78) a'(d) = %d(o‘; A)Ia=l + a_ld(o'y}') |u=,2.
and (see (5.62))
(5.79) [AGAYII —AGA) = V(A; ) + AG'(A) + 226" () V(A; A) .
The reader may verify the continuity of (9/00)d(c, 2) and (¢/04)d(s, 4) in both
variables together which is necessary for the validity of (5.78).

Up to now, (3.58) is established only for 4 such that |A| is small. We wish to
establish (5.58) for all complex A such that A is in the complement of the set (5.80)

(5.80) [L@Jixg] U{d: #(3) = 0} U {J: d() = 0}

where the left most union in (5.80) is over the whole sequence {4,}. We may appeal
to analytic continuation in order to establish (5.58) for all 1 not in the set (5.80),
provided we show that the set (5.80) is countable, and can have only A= oo a8
an accumulation point. To show the latter, it suffices to show that the zeroes of d(4)
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are countable, and may accumulate only at A= oco. Note that the funetion
(5.81) [4(4; k) fA)T d(A)

has only removable singularities (and so its appropriate analytic extension is an
entire funection). This follows from the definition of d(1), and from part (vii) of
theorem IV.3. The set of zeroes of d(1) is a subset of the set of zeroes of the extension
of (5.81), which is an entire function. Hence the set of zeroes of the extension of (5.81),
and thus of d(1), are countable, and may accumulate only at 1= oco. Thus the
set (5.80) has the required properties. (*) M

COROLLARY V.4-1. — Suppose a is a complex number such that
(5.82) a¢LiJ 758
If f(a)= 0, then each of the functions d(i), G(4), [I—AG(1)]"Y [I— AK(A)]"* has
(at worst) a pole at A=a.

PrOOF. — The agsertion about d(2) follows from the fact that (5.81) has only
removable singularities; the assertion about G(4) follows from (5.37) and (5.38);
the assertion about [I — AG(A)]* follows from (5.57) and from the fact that

(5.83) [F(AT4(4; k)]Dy(4)
and
(5.84) A4 k)zy(A) = A(4; B)[I — AH ()] m,(4)

have only removable singularities. The assertion about [I— AK(4)]-! follows
from (5.29) and from the assertion about [I —AG(A)]"*. =

COROLLARY V.4-2. — The equation

G.85) (RO — 2K — 3 o, VKT — AE ]

1. ! k—1
_ A%k _dd)_ S PG T~ A6A)1

holds for all integers k>k,—1 and for all A in the set (5.24) such that d(2) 0.

Proor. — Note that equation (2.31) yields

(5.86)  #{[1 —AH(W)IAGA] [T —2G(AN)][L — AHA)]} = 2] — 26(A)] )

(*) Note that (5.81) is non-vanishing at 4 = 0.
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since the maps 4 —G(1) and A —[AG(4)]" are analytic with respect to | |; for each A
in (5.24), and hence G(i)e C(1) and [AG{1)) e C(1) for 4 in (5.24). The other oper-
ators in (5.86) are evidently in O(oo) for A4 in (5.24) such that d(1) = 0. Note that
the restriction on A that d(A)+# 0, along with the condition that A be in (5.24)
guarantees existence of the inverses in (53.86) (see assertion (i) of lemma V.4). Also
note that the equation (3.10) holds if A(2) in (3.10) is analytic with respect to | |;
multiplying (5.86) through by m; we obtain the relation

(5.87) vl — AHMIAGATTI — AGAT[I — AHA) T} = w{[AG(A)T I — AN T}

which is valid for each non-negative integer §, since (5.86) is valid for each A in (5.24)
such that d(1)s%0. The existence of the polynomial on the right side of (5.85)
follows.

Existence of the trace on the left side of (5.85) follows from the results of lemmaV.2;
the restrictions imposed on A for the validity of (5.85) guarantee existence of
[I—AK(A)]" (see assertion (i), lemma V.4).

From (5.26), (5.86), (5.87), and from the linearity of m,, we have

(5.88) 1{[11(( VT — AK(A)]- — zzam,[[m V'IT — A )]—1]}
=7;{[w( VI — AH(A)] — EAam,[[me] [I—AH( *1]}

+ TGN T — M6 — 3 HT G T — AT

provided 4 and % satisfy the restrictions imposed in the statement of the corollary.
Hence (5.85) follows from (4.97), (5.58), and (5.88). =
We can now state the analogue of lemma V.4 for the function H™(4).

Lemma V.5. — Let A, be an element of the sequence {4,}, where m henceforth
denotes a fixed positive integer.

We shall always assume that A is an element of the set (5.43),. Let d™(4) be
the 1 x 1 determinant with (see (5.51)-(5.33))

(5.89) 84— e <MHA), yMHA))

f(l

in its i-th row, j-th column, where (see (5.53))

(5.90) Am(A) = [I — AH"™ ()T 1a{™(A) .
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Then:
(i) Let a be a point of the set (5.43),,. The following assertions are equivalent:
1) d™(a)=0;
2) A=« is an eigenvalue of (5.2);

3) A=a is an eigenvalue of the equation (5.91);
(5.91) W™(Ne=2 (ze).

Let & be a point of the set (5.43),: The following assertions are equivalent:
4) d"™(b) # 0;
3) the inverse [I —bE(b)|* exists and is defined on all of #;
6) the inverse [T —bG™(b)]-1 exists and iz defined on all of 2.
(ii) Let Di™(4) be the transformation (from J# onto the set of complex numbers)

such that D§M}(2)u is the determinant obtained by replacing the j-th column of
a™(2) by (see (5.53))

(<ot (AP, ooy <, HIEHAD)T (weSH).
The equation

A U DM (A)u
_ {m} —~1p; — {m} ] J
(5.92) [I—AG™ ()T u=u T ,glz’ (4) A

holds at all points 4 in the set (5.43), such that d™(1)=0.
(iii) The equation

—[d™)

(5.93) )

= G (W] — 26"™2)]7)

holds at all points A in the set (5.43), such that d"}1)=0.

COROLLARY V.5-1. — Let A and a be complex numbers satisfying |1 — 1.| < e,
and (@ — An|<én, wWhere &, is the number defined in lemma V.3. If f(a) = 0, then
each of the functions

d™@ay, 6"y, [I—i¢"W1, and [I—AKER)]

has at worst a pole at A1 =a.
From corollaries V.4-1 and V.5-1, we are able to state the following result.

COoROLLARY V.5-2. — If @ is any complex number such that f(a)=0, then
[ —AK(4)]"* has (at worst) a pole at A= a. Furthermore, the function (5.27), is
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analytic with respect to ||, on the open set of all points A such that i is not an
eigenvalue of (5.2), and such that f(1)#0, provided k>%k,—1 in (5.27),.

COROLLARY V.5-3. — The formula

(5.94) {[AK(A][I AK(2 zzzm,[[m VYT — AE( )]—1]}

Aim3 Z; BV am( )y k=i
- [A{'m}((}_. k))} [d{m}( ] z AT {[XG{M} MY — AGIH(A )]—1}

holds for integers %>k,—1 and for each A in (5.43), such that d"™(2)=0.

PROOF. — Use (5.46), (5.93), and (4.97) with A™(4; k) and H'™(4) replacing
A(A; k) and H(A) respectively. =

A complex valued function ¢(A) is said to be a meromorphic function of maximal
domain if there exists a (non-empty) countable set @ of isolated points such that
g(4) is defined and analytic for all complex A¢ @, and if ¢(1) has a pole of posi-
tive multiplicity at each point Ae @ (i.e. ¢(4) may not have a removable or es-
sential singularity at points 1 € ).

THEOREM V.6. — Let H (1) be given by (4.1), and let the operators H, satisfy the
assumption (4.96) for each integer ¢ in 0<%<s, where the numbers «, are real and
positive. Let f(A) be an entire, complex-valued function such that f(0)==0. Let
z;(2) e and y,(2) e for each complex 4 and each integer j in 1<j<!, where !
is gome fixed positive integer. We suppose that the mappings A — x,(4) and A —y,(4)
are entire functions with respect to the norm || of the Hilbert space # for each
integer j in 1<j<!. Let the function K(4) be given by (5.1).

(i) The (distinct) eigenvalues of (5.2) from a denumerable (or possibly empty)
set of isolated points.

(ii) For each fixed integer k >k, —1, there exists a unique entire or mero-
morphic function 2(4; k) of maximal domain such that

(5.95) {A|f(2) # 0} C domain (D(1; k))
and such that the equation

D'(2; k)

(5.96) ~S0h

_r{[m( VI — AR — zz»m[[m ]’[I~1K(l)—1]}

holds for each integer k>k,—1 and each complex i which is not an eigenvalue
of (5.2) and which is not a zero of the function f.

(iii) If a is a complex number such that f(a)s0, and if A=a is an ei-
genvalue of (5.2), then PD(a; k)= 0 for each integer k satisfying k>Fk,—1.
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(iv) It b i3 a complex number such that Z(b;k)=10 for some integer %
satisfying k>k,—1, then exactly one of the following occur.

(1) f(b)#%0 and A=1"> is an eigenvalue of (5.2);
(2) f(b)=0.

(v) The (possibly finite or empty) ordered sequences of zeroes and poles of
D(4; k), written according to multiplicity, are independent of k, provided &>k, —1.
Hence the domain of 2(4; k%) is independent of %k for k>k,—1. The ordered
sequences of zeroes and poles of Z(4; k), taken according to algebraic multiplicity,
will be denoted by {»;} and {g,} respectively. The sequences {»,} and {p,} have no
finite Iimit points.

(vi) The equation
(5.97) ‘@IM k i TAANE(AN]I —AERQ)]Y}

holds for each integer k>F, (A; k) has no

zeroes or poles, or such that

(5.98) 1< min{[Ugn] U [Utiedg]}

if 2(4; k) has zeroes or poles. The minimum on the right side of (5.98) is a positive
number.

(vii) Let the polynomial p(4; k) be defined by

(5.99) p(4; k) =

,{[RG I —-AGNT .

j=

Furthermore, let §(1; k) be the X! determinant with
(5.100) 855 1(2) (A5 k) — <A(A; B)LI — AH (2)]2a5(2), y{(A)>

in its i-th row, j-th column for each complex A¢ Ugl,%, where the latter union is

taken over the whole sequence {1,}. The funection §(4; k) has removable singularities
at the points A = 4,, and hence has an extension g(4; k) which is an entire function.
The equation

5.101 Py = ——IEE) -
#100 5B = Gaypac; mo P P P

holds for each 4 in the set (5.24).
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CoMMENTS. — The reader will note that the Fredholm function Z(4; k) of the
operator K(4) is asserted to be defined and analytic (at least) for points A such that
f(A)£0. In addition, the function Z(4; k) either will have poles or will actually
be analytic at points such that f{A) = 0. In parts (i) through (vi), we did not wish
to make reference to the auxiliary functions G(1), d(4), ete.; hence the assertions (i)
through (vi) will not necessarily be proved in the order in which they are stated.

We will begin by constructing Z(4; k) in terms of the functions A(4; k) and d(2)
(see (5.102)), which is a generalization of a classical « multiplication » theorem of
Fredholm. In using the definition (5.102), we shall restrict 4 to the set (5.24); the
restriction of Z(4; k) to the set (5.24) is called D(4; k). The function F(4; k) has all
of the properties we want it to have at points of the set (5.24), i.e. it is analytic on (5.24)
and the eigenvalues of (5.2) which oceur in the set (5.24) are also the zeroes of D(As k).
But we claim that the functions Z(1; k) should not really be badly behaved about
the points A = 1,, unless, of course, it should happen that f(1,) = 0. As we pointed
out earlier, the problem with G(2) and d(4) (and hence with DA k)) is that they
were constructed by using the operator [I — AH(A)]-!; hence these functions are not
defined at the points A= 4,. So we look at the function Z™(i; k) constructed
from A“}2; k) and d™ (1) (see (5.103)). Heuristically, Z'™(i; k) has all the proper-
ties we want it to have about the point A= 1, (provided f(1.)70), i.e. it is
analytic about A= 1, and it vanishes at the eigenvalues of (5.2) which are near
the point A,.. But we will show that F(1; k) and Z™(4; k) are equal on their domains
of definition (which, as we indicated comprise all but a countable number of points,
possibly acecumulating at 1= oco). Hence Z(J; k) has a removable singularity at
A= A if f(lm)#0, and we may extend the definition of Z(4; k) to the largest set
on which it will be analytic. The resulting function is, of course, Z(4, k), which
now has the properties we want, i.e. it is analytic on its domain of definition, and it
vanishes if 1 is an eigenvalue of (5.2). One shortcoming about 2(1; k) is that it
may also have zeroes at some points A such that f(1)=0; aside from this, and
one other critical property, 2(4; k) shares many of the properties that A(4; k) has.
The other one property we refer to is that up to now, we eannot guarantee (at least
yet) that the sums of reciprocal powers of the eigenvalues of (5.2) (or of the zeroes
of Z(A; k)) are convergent, or, if convergent, can be evaluated. For this, certain
additional assumptions are needed on the growth of the functions |x;(4), |y;(4)] and
|f(A)|; this will be pursued later on. The relation (5.101) will be important for the
establishment of the analogue of (4.102); it expresses Z(4; k) as a quotient of two

entire functions.

Proor. — Let p(A; k) be the polynomial defined in (5.99), and let

~

(5.102) F(hs k)= A(A; k) d(A) exp p(2; k)

for each integer k>k,—1 and for each A in the open set (5.24). (The set (5.24)
coincides with the domain of definition of the function d(4)).
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Let A, be an element of the sequence {1,}, where m is a fixed positive integer,
and let p'™(4; k) be the polynomial obtained by replacing G(1) by G*™(4) in (5.99).
We define

(5.103) (A5 kY= A™(A; k)d™(A) exp p™(4; )

for each integer k>%,—1 and each complex A in the set (5.43),; here A™(1; k) is the
function defined in lemma V.3. (The set (5.43),, is precisely the domain of definition
of the function d™(1).) If f(1,) # 0, then 4, is an element of the open set (5.43),, by
the results of lemma V.3; hence if f(1,) 5= 0, then the function Q{’“}(l; k) is defined
and analytic for each integer k>%,—1 and for each 4 in a small open dise (which
does not depend on %) about the point 4,,.

For convenience, let P and Z" denote the sets (5.24) and (5.43),, respectively.

Let J (J'™) denote the set of all points A in P(F™) such that d(1)7#0
(@™(3)=£0). By the definition of Z(F™), we have that A(4; k)£ 0 (4™ (4; k) £ 0)
for each integer k>k,—1 and each 1 in P(F™). Hence Z(1; k)£ 0 (F™(1; k)= 0)
for each 1 in F(J ).

Note that the set  is precisely the complement of the set described in (5.80);
hence g consists of all points in the plane except possibly for a countable number of
points which are isolated, i.e. which may accumulate only at A= co. Hence J
is a connected open subset of the complex plane. The same conclusions evidently ap-
ply to the set .7, and hence to I N 7™,

By (5.85), (5.94), (5.102), and (5.103), we have

(5.104) LA k) _ (@A R)
D k) DA k)

for each 1€ 7 NI "™ and each k>k,—1. But 06 I NIT ™, and
(5.105) (03 k)= F"™0; k) =1

g0 that for each integer k>k,—1, we have

(5.106) Z(A; k)= Z"™(; k)

provided ieT NI n since the latter set is a connected open set. By continuity,
the equation (5.106) is valid for each 4 e Z N 2™ in order to show this, the reader
will recall that the complement of 7 N J™ consists of a denumerable number of
isolated points, so that if 1e(F NP —(F N F™), then there is a punctured dise
centered about A consisting entirely of points in J N T, Equation (5.106) is
then established for Ae(Z NP —(F N F™) by continuity arguments.

Note that the points in the complement of FN P are isolated; hence there
exists a small punctured open disc @,, centered about A, such that @,c Fn F™.

19 - dnnali di Matemalica
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If f(A.) %0, then 4, EY{M} as we have already seen. Thus if f(4,,) 4 0, the func-
tion 9{7”}(2, k) is analytic for each 1e 6, Uil and each integer k>k,—1; also
(A k) is analytic for each 1€ @, and each k>k,—1. Furthermore, (5.106) holds
for each 1e6, and each integer k>%,—1; hence if f(1,)= 0, the function Q?(Z; k)
has a removable singularity at the point A= 1,: If f(1,)= 0, then by corol-
lary V.5-1 and by (5.103), we conclude that ™ (1; k) has (at worst) a pole at the
point A,; since (5.106) is valid for each A € @,,, we conclude that the function Z(1; k)
has (at worst) a pole at the point 4,. By the preceding, and by the results of corol-
lary V.4-1, we may conclude that the complement of & congists of a denumerable
number of isolated points at which F(4; k) has, at worst, poles; hence there exists
an entire or meromorphic function Z(4; k) of maximal domain &, such that Z(4; k)
is an analytic extension of Z(1; k). In fact, we will now show that &, is independent
of k; at this point, it is clear that (5.95) holds.

Since P(A; k) = G(4; k) for each /1637, and hence for each i€ g, we can show
that the equation (5.96) follows from (5.85) and (5.102), provided 4.7 and &> k,—1.
(The validity of (5 96) in part (ii) is asserted for all 1 belonging to a set somewhat
different than 7°; at this point, we cannot consider the proof of (5.96) as being
complete).

Let & and %' be integers such that k'>k>k,—1. We claim that

Dk D)
)

Ve
G R G —Zﬂ’r{D\K VI —AEQ)]

(5.107)

for each 1eJ . First we show that right side of (5.107) is well defined. Since (5.27);
is analytie with respect to ||, for (say) A4 near the point zero, provided k>%,—1,
the difference (5.108);

(5.108), Pm AT —AEM)]-)

of (5.27),., and (5.27); is analytic with respect to | |, for 1 near zero and for integers
j>ky—1; a fortiori, the operator (5.108);, and hence the operator

mA{[AK(A)] I —AK()] %}
is an element of the space 0{1;3#} for integers j>%,—1. Hence the right side of
(5.107) is well defined. Equation (5.107) is then established for i€ .9 by subtra-

cting the relation (5.96), from the relation (5.96),. Since g is a connected open
set, we may conclude from (5.107) that

(5.109) DA k)= D(A expE ,{[)\K(l I —AK@A) ]

provided 1S and k'>k>k,—1. But the complement of 7 is a denumerable set
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of isolated points; since Z(1; k) and 2(4; k') are either entire functions or mero-
morphie functions of maximal domain, we may conclude (by arguments of the type
previously employed) from (5.109) that &, =,. In the sequel, we shall denote
S or &, by the symbol . Note that the zeroes and poles of an entire or mero-
morphic function of maximal domain must be countable and isolated. The results
of assertion (v) in the statement of this theorem are therefore proved.

The proofs of parts (iii) and (iv) are related; since the proof of (iv) is a bit more
difficult, we shall prove (iv) and leave the proof of (iii) to the reader.

Suppose bes and 2(b; k)= 0 for some integer k>%,—1. If f(b)=0, we are
finished, so let us suppose henceforth that f(&) -4 0. We consider two subcases: either
b+ A, for any positive integer m or b= 1, for some positive integer m.

Suppose b= 1,, for some positive integer m. Sinece we have assumed that
f(b)5£ 0, by the results of lemma V.3, we may conclude that be %™ and that
A" (b, k)£ 0. But D(4; k) is an analytic extension of Z'3(i;k), and D(4; k)=
= §"™(2; k) for 1€ ™. Hence Z" (b, k)= D(b; k)= 0; by (5.103), we have that
A" (b) =0 since F"™(b,k)=0 and since A"(b, k)s£0. Hence by assertion (i) of
lemma V.5, we may conclude that A= 105 is an eigenvalue of (5.2).

If b A, for any positive integer m, we may prove (iv) in a similar fashion, by
using the results of lemma V.4, The result (i} is an immediate consequence of parts (iii),
(iv), and (v).

Up to now, the relation (5.96), has been established for each A e J. Let 7 denote
the set of all points A€ such that P(4; k)f(4)=£0. We wish to establish (5.96),
for each A1eJ . (Using the results of parts (iii) and (iv), the reader may show that 7
is precisely the set of all 4 such that 1 is not an eigenvalue of (5.2) and A is not a
zero of the function f). We note by the definitions of  and T that J CJ; since
the complement of J is a set of isolated points, each point 2 in 7~ — 3 is at the
center of a punctured open dise comprised entirely of points in . The validity
of (5.96), for each 1 in I—J may be established by continuity arguments.

Aggertion (vi) in the statement of this theorem follows directly from the results
of assertion (ii).

The faet that the function §(A; k) has an extension g(A; k) which is an entire
function follows from the fact that A(4; k)[I— AH(A)]* has removable singularities
at the points 2= 4,.

We note that g(A; k) is precisely the expression (5.81), provided 1 e% {i.e. A is an
element of the set (5.24)). Hence (5.101) follows directly from (5.102) for 1 e =m

The situation (2) described in part (iv) of theorem V.6 occasionally does oceur,
as illustrated in the following example. The computation of 2(4; 0) for the operator
K(2) described in the example may be done in many different ways.

EXAMPLE. ~ Let {@, ., @5} be any orthonormal set in the space #. Let

1
KA u= @, <{u, 9> + @2{u, > + (—,;T)%w, P2 -
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We set H(A)= 0, P(1)= K(A), =3, and

fA) = (4—1)

2, (A= (A—1)g, (i=1,2)
#3(A) = @s

¥i(A) = ¢ (i=1,2,38).

Since H(4) =0, we have A(;0) =1 and p(4,0)=0. Hence F(4;0) and d(1) are
defined for all A=£1, and F(4;0) = d(A) for L+#1. Setting z,(A) = x,(A) in (5.54),
we have that d(A)=1—A. Hence Z(1;0) is defined for all complex 1, and
D(2;0)= (1 —A4). We see that 2(4;0) has a zero at A=1, but A=1 is not an
eigenvalue of (5.2), because A=1 is a pole of K(i). u

The first result of corollary V.5-2 and the results of the next corollary are es-
sentially contained in TAMARKIN [14; p. 148] for the special case # = L,[0, 1] and
0<or;<2.

COROLLARY V.6-1. — Let a be a complex number such that f(a)#£ 0. If A=ais
an eigenvalue of (5.2), then 1=« is a pole of [I —AK(4)]?, (where the Laurent
series for the latter is convergent with respect to | |, in a punctured disc centered
about 1= a).

PROOF. — Suppose ag_ﬁugg. Since f(a)=£ 0, we conclude that o is an element of

the set (5.24). By assertion (i) of lemma V.4, we have that d(a)= 0. By (5.57),
we conclude that [7 — AG(A)]~* has, at worst, a pole at 1= a. Hence by (5.29),
we conclude that [ —AK(4)]* has, at worst, a pole dt A=a. If [I—AK(4)]"* has
a removable singularity at 1= a, then it is easy to show that lim[I—AK(4)]*
provides an inverse to [I —aK(a)], contradicting the fact that A=a is an eigen-
value of (5.2).

If a= A, for some m, then similar arguments apply. Here one would use part (i)
of lemma V.5, equation (5.92), and the relation obtained by replacing H(4) and G(4)
in (5.29) by H"™(1) and G'™(1) respectively. The latter relation, i.e. the analogue
of (5.29), is valid because of (5.44)-(5.45). =

We have arrived at the point where we will be able to establish an analogue
of (4.102) for the function K(1). The equation (5.101) will be a key result here, since
we have the meromorphic function 2(4; k) expressed as a quotient of entire functions.

We will briefly recall a few facts about entire functions of finite order. Let
W(4)# 0 be an entire complex valued function. Let 6>0. We recall that W(A)
is said to be a function of order ¢ if, for each &> 0, there exists A(s') > 0 such
that the inequality

(5.110) |W(A)|<A(e') exp [|A°T]
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holds for all complex 4, and if ¢ is the smallest nonnegative real number with the
property (5.110). If W,(A) has order d, for i=1, 2, then the functions Wy(1) + W,(4)
and W,(A) W,(4) have orders not exceeding max{d,, d,}. If W(1) has order >0,
and if {w,} is the sequence of non-zero roots of the equation W(i)= 0, taken ac-
cording to algebraic multiplicity, then
. A RATAY
(5.111) W(2) = Binex® T [1 — ~] exp Y - [—]
q OF i=1] Lo
where B is some non-zero counstant, where »n is some non-negative integer, where
(h 4 1) is the smallest integer larger than J, and where ¢(4) is a certain polynomial
whose degree does not exceed h. The product appearing in (5.111) is taken over
the whole sequence {w,}, and is uniformly convergent on compact subsets of the
complex plane. The produet in (5.111) is not quite the same as the canonical product
discussed in TrTcEMARSH [15; p. 250]; however, we will not need this concept here.
The inequality

(5.112) 3w < + o
4

holds for each £ > 0; furthermore, a computation similar to the one needed to ob-
tain (4.147) will yield (¥*)

(5.113) —%%’ — )+ 3 St

Since ¢'(A) is a polynomial of degree (h—1) or less, we note that the relation
w i
(5.114) Cm, (W) = St

holds for each integer i>0d-—1. We can now state the analogue of (4.102).

THEOREM V.7. — Suppose H(4), K(4), z;(4), ¥;(A), and f(1) satisfy the assump-
tions of theorem V.6.
Let #>0 and let A(g') >0 for each &> 0. Suppose that the inequality

i
(5.113) D]+ 2 loi(2)] + [ys(2)] < A(e) exp [12]+]
i=0
holds for each &> 0 and for each complex A. Let
(5.116) ky, = max {k,, #}
and let {»,} and {g,} be the ordered sequences of zeroes and poles of the function

D(A; k) (for k>k,—1), taken according to multiplicity. Then:

(*) We assume W(0) %0 in (5.118) and (5.114).
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(i) We have
(5.117) 3 %49 < 4 oo
and 1
(5.118) 2ol "< + oo

for each ¢ >0, where the sums (5.117) and (5.118) are taken over the whole se-
quences {»;} and {g,} respectively.

(ii) The formula

(5.119) 2o Y =3 0 %Y = AR — 2K ()]}

holds for each integer & such that k> k,—1.

NortEk. — The series in (5.117) and (5.118) are not necessarily asserted to converge
if e= 0. Consequently, if %, is an integer, the formula (5.119) is not necessarily
valid for k= k, — 1. This contrasts somewhat with the results obtained in part (vi)
of theorem IV.3. In this respect, it may be that this theorem can be slightly refined
if %<k, {(see theorem V.8),

PRrOOF, — As we have previously done, we let %; be the smallest integer such that
y>ky—1. Welet k =k in (5.99), (5.100), and (5.101). Recall that any determinant
can be expressed in terms of sums and differences of products of its component
entries. From the results of assertion (viii) of theorem IV.3, and from (5.115), we
are able to obtain estimates on the expression (3.100) and hence on the function
g(A; k). Hence there exists a function B(s')> 0 defined for &> 0 such that
the inequality

(5.120) lg(2; k)| <B(e') exp [|A["7*]

holds for each complex 4 and each &> 0. Since p(4; k) in (5.99) is a complex
valued polynomial of degree %; or less, we have

(5.121) lexp p(4; k)| <B(e) exp [|A]+¥]

where E(s’)>0 for each &> 0. By definition of k;, we can show that %, << ko;
hence from (5.116), (5.120), and (5.121), we obtain

(5.122) g(2; &y) exp p(A; k)| < B(e') exp [[A[*]
where B{e')> 0 for each &> 0. TFinally, (4.104) and (5.115) yield the inequality

(5.123) A(TTA(G; k)] < D(e') exp [|A[**]
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where D(g') > 0 for each &> 0.
Let {7} be the ordered sequence of zeroes of the function (1), taken aceording
to multiplicity, where

{(5.124) r(A)=gA; ) expp(d; ky) .

Let {g;} be the ordered sequence of zeroes of the function ¢(4), taken according to
multiplieity, where

(5.125) tA) = [f(A)TAQA; k)]

From (5.122), (5.123), and (5.112), we have

(5.128) Elﬁz_l—(kz+s>< + oo
and
(5.127) Z l@ii_(k2+5)< + oo

for each ¢> 0. Furthermore, by (5.122), (5.123), and by (5.114), the equations

(5.128) —m, (Z;_) = 35+
i

and

(5.129) - m’"(t?) Y grteD

holds for integers %> k,—1. Now by (5.101), (5.124), and (5.123), we have

(5.130) D(35 Tey) = r(A)E(A)

8o that the ordered sequences {v,} and {g,} are subsequences of the ordered sequences
{#.} and {g,} respectively. Hence (5.117) and (5.118) follow from (5.126) and (5.127)
respectively. The equation

= —(&+1 —(k+1) N m— (Rt ~—(l+1
(5.131) Z”é )“ZQi( Y= 3 =3 gy
t 2 i %

follows from (5.130) if k> k,—1 by arguments of an algebraic sort. Also we have
from (5.130).

- D' (25 k] (2) t'(2)
3:152) =m i) =] L)
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Equation (5.119) follows from (5.97), (5.128), (5.129), (5.131), and (5.132). m

The next theorem represents a slight refinement of theorem V.7. If the functions
x:(4), 4(A), and f(1), are all polynomials in A, then (5.115) holds with » = 0. Here
ky=k,, but the series in (5.117)-(5.118) are actually convergent if ¢= 0. If %k, is
an integer, then it turns out that we have validity of (5.119) for k= k; — 1, and
not just for k> ky—1.

THEOREM V.8, Let K(A) be given by (5.1), and let all the assumptions of the-
orem V.6 be satisfied. In addition, let us suppose that z,(2) and y,(1) are #-valued
polynomials in A for each integer ¢ satisfying 1<i<!, and let us assume that f(4)
is a complex-valued polynomial in A with f(0)s£ 0. Then (5.117) and (5.118) with
ko = ko hold for g=0 and (5.119) holds for each integer k>%,—1.

ProoF. — We assume that f(0)=1 and that x,-(()):f)’ for j=1,...,1, where ]
is the zero-vector in #. To see that the latter is really no restriction, let us first

define the polynomial g(i) by

A=A"1—fA)], 4#0

(5.133)
0) = —f'(0)
Let the operator H(A) be defined by
1

(5.134) Ayv=H(Ayv + o, d)<v, 50>, (veH)

i=1
and let
(b.135) £,(A) = Ag(A) @5(2) .
Using the relation

1 Ag(3)

(5.136) = 70 +1
we see that
(5.137) E()v= H(}) _11_ _ﬁ <o, 9>

for each ve#. We note that H(2) is an operator-valued polynomial, and that
#;(4) is an P-valued polynomial. Furthermore, 565(0):_6 for j=1,...,0. If Kk, is
the number defined in (4.16), we shall temporarily write %,(H) instead of k,. By
the remarks made in Corollary 1V.3, we may write &o(H) = ko(H). We shall hence-
forth drop the carats in (5.137), and we shall henceforth assume that

(5.138) 2,(A) = Awy(A)  (i=1,...,1),
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where w,(4) is an 3 valued polynomial in A.
We will rewrite (5.2) as a matrix system. Let & be a fixed element in 3# with
|2 =1. We shall see that (5.2) can be written in the « equivalent » form,

1
(5.139) o= AH (A)ug + 1 > wy(A) {usy B
i=1
(5.140) wy= Ag(A) gy ByR + Aug, y(ADh  (i=1,...,1)

where u;,e#°. More precisely, let a be a complex number such that f(e)=£0.
Then if A = a and (w,, %1, ..., %,;) 18 & non-trivial solution of (5.139)-(5.140), we claim
that 4 = a and w = u, must be a non-trivial solution of (5.2). For we must have

a

(5.141) =

gy yil@)>h (=1, ...,10)

from (5.133), and from (5.140). Hence the requirement that u;# 0 for some i im-
plies that u,=+0. Using (5.139) and (b.141), we see that A=a and v =wu, is a
solution of (5.2). Conversely, if A==a and « is a solution of (5.2), then if uy=u
and if », is given by (5.141), we can show that (u,, uy, ..., %;) is a non-trivial solu-
tion of (5.139)-(5.140) with A —=a. -

If f(a) = 0, and if 4 = a in (5.139)-(5.140), then (5.139)-(5.140) may possibly have
a non-trivial solution; however, this is of no consequence here.

We define the operators A (4), B.(1), and D,4) for i=1,...,1 by the equa-
tions (the B, are subscripted for convenience):

(5.142) A(A)v = w,(2){v, k)
(5.143) By(A)v=g(2)<{v, h>h
(5.144) Dy(A)v = <o, y,(A)>k,

where ve#. Let H(2) be the (I + 1)x (- 1) square matrix of operators given by
(5.145) H(2) = diag (H(Z), By(4), ..., Bi(4))

and let P(1) denote the (/- 1)x (!4 1) matrix of operators given by

0 44 - AN
(5.146) P(}) = lel) 0 0
Dy 0 0
Let

(5.147) K() = H(2) + P(2)
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and let
(5.148) (thoy gy ey u)  =u  (u;€)

where u is an element of the product space "1, Clearly (5.139)-(5.140) is equiv-
alent to

(5.149) AKNDu=u.

The simplification here is that K(i), P(1) and H(4) are polynomial operators; the
theory that we developed for H(A) is applicable to the operators K(4) and H(A),
since

(5.150) keo(K) = Fo(H)
(5.151) = Fko(H)

by the results of Corollary IV.3 and lemma IIT.3. We shall continue to denote the
quantities in (5.160)-(5.151) by k, for simplicity.

If we did not assume that x,;(0) :6, we would not have been able to trans-
form (5.2) into a system of the form (5.149); the appearance of 1 as a coefficient
in (5.149) is most convenient here, since it enables us to use the results of the-
orem IV.3 easily.

‘We recall that K(1) is an operator-valued polynomial in A, and that (5.150) holds.
Let I denote the identity operator on #"*Y. For each integer k>k,—1, let &(4;k)
denote the entire function satisfying &(0; k) =1 and the equation obtained by re-
placing Z(4; k), K(2), and I in (5.96), by &(2; k), K(1) and I respectively. The func-
tion &(A; k) exists by the results of theorem IV.3; its zeroes are independent of %
and coincide with the eigenvalues of (5.149). We seek to develop a relation between
P(4; k) and &(4; k); using the analogue of (5.97), we could theoretically, at least,
compute &(1; k); however, the computation of [I— AK(4)]-* is simply too involved
because of the presence of off-diagonal terms in the matrix K(1). Instead, we will
employ an appropriate analogue of (5.102) with the tilde removed.

Let x,(4) be the (I 4+ 1)X1 column vector given by

(5.152) x,(0) = (wy(2),0,...,0)F  (i=1,...,0)

(5.153) 2A)=(@,...,0,10,., 07 (@G=1+1,..,20)

where % is the element in the (4 + 1 —I)-th row of x,(i) in (5.153). Let y.(4) be
the (I + 1)X1 column vectors given by

(5.154) yilA) = 2,,1(4) (i=1,...,1)

and
(5.155) yid) = (¥:_:(1),0,...,0)F  (i=1+1,...,21).
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Note that the zero vector (in ) is the element in the first row of x,(4) and y,(2)
for 1+ 1<i<2l and for 1<j<l.
We may write (see (5.146))
L Hd
(5.156) Po=3 x(2){v, yA)
i

=1

where v e "1 and where

(5.157) 1=21.

A simple calculation shows that the (I +1)x (I +1) matrix [I —AH(A)]-! is given by

(5.158) [I— AH(A)]"* = diag ([1 — AH(M)T I+ f—(% B,(2), ., I+ f(}[) B;(A)) .
We write

(5.159) G(A) = [I— 2 H(A)]*P(4)

and we define

(5.160) () =[T—AHM ] %) (i=1,...,0).

The Fredholm function d(4) of G(A) (see the statement of lemma V.4) is the deter-
minant of the {x! matrix containing

(5.161) 84— A<a5(A), yi(A))

in its ¢-th row, j-th column. From (5.152), (5.153), (5.154), (5.155), (5.138), and (5.158),
we have for 4,j=—=1,..., [

(5.162) (B(A), 7:i(A)> =0

(5.163) (Bipa(A); ¥eslA)y =0

(5.164) (53R, yoaa(B)) = A724(2), 9:(A))
(5.165) (ia(A), ¥l A)> = 8/H(A) -

We write a;; instead of {(#;(1), y,(4)> for brevity. The function d(4) is thus equal to

i
jl A

(5.166) d()) = det 1(4)
— A g,

J

where £, is the (X[ identity matrix over the set of complex numbers, and 4 is the
Ix1 matrix of elements a,;. By elementary operations on determinants, it can be
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seen that
i%@.ﬁl —F,
(5.167) d(i)=det iA 5
13 T
Dy g,
(5.168) = det 5
—d 0,
St
6, F.
(5.169) = (— 1) det

A
fl—'f(‘)T)A @l

where @, is the zero matrix of size [ X 1. By writing out the last determinant in (5.169),
and repeatedly expanding along elements of the last column, we obtain

B
(5.170) d(3) = det [.ﬁ'l — mAJ

(5.171) = d(1).

The next step is to compute a relation between A(1; k) and A(4; k) for integers
k>k,—1; according to the conventions observed, the latter function satisfies the
analogue of (4.97) with A(4; k), H(A) and I replaced by A(4; k), H(4), and I
respectively, and is assumed to have value of one at A=0. The existence of
A(2; k), of course, follows from the fact that H(4) is an operator-valued polynomial,
from (5.151), and from theorem IV.3. A simple computation shows that

(5.172)  [AH(A)V[I— AH(3)]™ )
7 l 1
= diag ([AH(A)]’[I—— JH(A)T, ~%)—)E1, s —;—((ﬂ)El)

where

(5.173) Eov=<{v,hdh, wed, i=1,..,1.

The relation (5.136) is useful here. Extending §h§ to an orthonormal basis for 5,
and using the definition of trace, we obtain

(5.174) Tk[—Tf’E,;]zmk[_Tf’] F=0,1,..;i=1,..,1.

Hence by (5.172), (5.174), and (3.37), we obtain the relation

(3.175)  T{[AHAWYI — AH() Y = 1 {[AH (W) [T — AH(A)T) — Im, {%%2}



A. V. LAGINESTRA - W. E. Bovce: Convergence and evaluation, ete. 301

valid for integers k>k,—1. TUsing (5.175), (4.98), and the appropriate analogue
of (4.98), we have

Al(As k) A4k

oy Al [f
(®176) am = )
Hence
k—1 ZH‘l f’
(5.177) A(2; k)= A(A; B)[f(2)]* exp {— lgoj ™ [7]}

which is valid for each complex 1 and for each integer k>k,—1. Let p(i; k) be
the polynomial obtained by replacing ¢ and I in (5.99) by G and I respectively.
From (5.170)-(5.171), from (5.102) (without the tilde), from the analogue of (5.102)
obtained by replacing &, p, 4, and d by &, p, A, and d, and from (5. 177 ), We can
state the relation

(5.178) E(A; k)= 2(%; k)[f(A)] exp q(4; k)

where

(5.179) q(7; &) = exp p(A; k) — kf A {f }]
’ ’ 0 j+1 7 f

The relation (5.178) is valid for each integer k>%k,—1 and each A which is not
a pole of 2(A; k). It is important to note here that ¢(4; k) i3 a polynomial of degree &
or less.

Let {v;} and {r,} be the ordered sequences of zeroes of &(A; k) and f(A) respec-
tively, where each zero is taken according to algebraic multiplicity. Then since
K(2) is an operator-valued polynomial, and since (5.150) holds, we may apply the
results of theorem IV.3 to conclude that

(5.180) z V| *o < + o0
and that
(5.181) Zv D = 7 {[AK(A)Y[I— AK(4)]*}

provided k is an integer such that k>%k,—1 in (5.181). Let {»;} and {p,} be the
ordered sequences defined in assertion (v) of theorem V.6. By (5.178), we see that {»,}
is a subsequence of the sequence {v,}. Hence, by (5.180), the relation (5.117) with
ky= ko holds for ¢= 0. The sequences {o,} and {r;} are finite sequences, since f(1)
is a polynomial. Hence by (5.178), we have by arguments of an algebraic sort:

—(k+1) ___ —(k+1) :—(k—kl) '-—(k+1)
(5.182) Zv Ev 2@1 +137;
i
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valid for integers k>k,—1. If &, is the smallest integer such that %, >%,—1 then
we have from (5.178)

& k)T D' k) f ,
b 4 R e R R
which is valid for integers k>k,—1, that is for integers k> . But the degree

of the polynomial ¢'(4; %,) is smaller than %, so
(5.184) mylq'(2; k)]=0
if k>k,—1. From the analogue of (3.97) with ¥ =%, and with &, K, and I re-

placing 2, K, and I respectively, and from (5.181), we conclude that if K>k, —1,
then

(5.185) Zv;(k+1) = —m, [éa (;u; kl)]

E(Ai k)
Since f(4) is a polynomial, we have

(5.186) St = —m, [-ff-']

for each non-negative integer k. Hence by (5.182)-(5.186), and by (5.97) with
=k, we have

(5.187) Sy tD — Y o) = — m, [@’((Zl.;lfl))]
(5.188) = T {[AK(A)][T — KA

valid for integers k>k,—1. K&

VI. - We wish to evaluate the quantities appearing on the right sides of equa-
tions (4.102) and (5.119). We shall do this for the operator K(i) by means of a
recursion formula. Let

(6.1) L(A) = [AEMA)T[I — AK(A)].
We have from (6.1)
(6.2) L(A) = AL(A)K(A) + [AK(A)T .
Let us assume that

(6.3) E(}) = E VE,
i=0
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and that
(6.4) L) = z AL,
i=0

where convergence of (6.3) and (6.4) is with respect to (say) | |,. From (6.2)-(6.4),

and from (3.19), we obtain
E—1

(6.5) Ly=(k+ 1)K, + ZLiKk—l-—i'
i=0
Hence we have
(6.6) Ly=K,
(6.7) L,=2K,+ K}
(6.8) L,= 3K, + (K K, +2K,K,) + K}
(6.9) L;= 4K, + (KK, + 3K, K,)
+ 2K} 4 (K K, + KK, Ko+ 2K, Kg) + Ky .
We write
(6.10) Svit—2 0 b= t{Ky}
(6.11) 2yt =2 e ={2K, + K5}
(6.12) 2 —2 07 = (3K, + 3K, K, + K5}
(6.13) 2vt— 2 0 t= 4K, + 4K, K, + 2K} 4 4K, K§ 4 Eg} .

Equation (6.10) is valid if %, <1 and »<<1 (see (5.115)). Equation (6.11) is
valid if k<2 and if % <2, ete.

If K(Z) satisfies the conditions of theorem V.8 (here the functions x,(1), y,(4),
and f(1) are polynomials), then equations (6.10) is valid if k,<1, equation (6.11)
is valid if k,<2, ete.

In order to obtain (say) equation (6.12) from (6.8), we would have to show that
if ko<3, then

(6.14) K K.} = {K,K,}.

We will prove (say) egnation (6.14) in more general form. Each term in the expres-
sion for I, is of the form

(6.15) Kﬁi ...Kj.':

where jj, ..., j, denote powers. Here ¢ is some integer such that ¢<k 4 1; also,
we have 0<i, <k and 1<j.<k+1 for each integer r in 1<r<gq. Furthermore,
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we have that

a

(6.16) S, +1)f,=k+1

r=1

as the reader will note by examining (6.6) through (6.9). These facts may be proved

by induction if one uses (6.5). Equation (6.16) states that the sum on the left side

of (6.16) is invariant for each term (6.15) which appears in the expression for L.
If 4,> s for some r (see (4.1)), then (see (4.1) and (5.1)) K, is precisely the

coefficient of A in the Maclaurin expansion of P(A) in (5.3); since P(1) is analytic

(with respect to | |, about A=0, we have that K, € C{1;3#7} if i,>s, so that (2.40)

yields the fact that the trace of (6.15) is equal to the trace of any permutation of (6.15).
It i,<s for each r in 1<r<g, then (6.15) is in O(p), where

(6.17)

The condition k>k,—1 implies that (see 4.16)

(6.18) (4 1oy <k +1.
From (6.16)-(6.18), we obtain

134, 4-1)
(6.19) p>go E =1
provided %~>k,—1. Hence if k>k,—1, the trace of (6.15) is equal to the trace
of any of its permutations by (6.19) and (2.40). From these results, incidentally,
we can gee that [AK(4)] and [I —21K(4)]* may be commuted in (5.119), provided
the condition k>k,—1 is satisfied.

It K(A)= H(4), then we observe that equation (4.2) has an eigenvalue if and
only it 7(IL,)40 for some integer k>k,--1. This follows directly from (4.98)
and (4.102). If f(4) has only positive zeroes, and if 7(L;)> 0 for some integer
k> k,—1 (see (5.116)) (or some integer %>k, —1 if the assumptions of theorem V.8
are satisfied), then we can guarantee that (5.2) has at least one eigenvalue.
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