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Summary. — In this paper we study the stability (1) of linear inviscid fluid miztures. In par-
ticular, we show that the statical stability criterion of Gibbs is both necessary and sufficient
for the dynamical stability of the mixture (), using, as our main hypotheses, only those ine-
qualities and symmetries which are consequences of the second law of thermodynamics (3).

1. - Notation.

& will always designate a three-dimensional euclidean point space with U the
corresponding vector space; a-b is the inner product of a,be U. We write V,
div, and A, respectively, for the gradient, divergence, and laplacian «operators in &.

In matrix operations involving elements p= {,..., yuy)€RY the vector g will
always be identified with a column vector, and a similar assertion applies to elements
a=(a,..., ay) U¥, In particular, if a, bec V%, and if M is an NXXN matrix
then

a= Mb

is equivalent to the following system of wector equations:

{*) Entrata in Redazione il 28 giugno 1975.

(1) Cf. Garavas [1968]. This tract studies existence, uniqueness, and stability for non-
linear chemically reacting systems using, for the most part, the first method of Liapounov
and fixed point arguments.

(?) Apparently the first authors to relate these two notions of stability were COLEMAN
and GREENBERG [1967] and CoLEMAN [1970] who showed that Gibbs’ eriferion is sufficient
for dynamical stability. Their results, which are not for mixtures but rather for general
classes of fluids, deal with the full non-linear equations of the theory. It is a simple matter
to extend the results of Coleman and Greenberg to mixtures. We prefer, however, to work
within the linear theory. because within this framework we can establish not only the suffi-
ciency of Gibbs’ criterion, but also its mecessity.

(®) Cf. GUrTIN and Vargas [1971].
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We write MT for the transpose of M, and M >0 (resp. M >0) means that M is
positive definite (resp. positive semi-definite). Finally, if p: € >R¥, then Vp: & —U¥
is defined by

V= Vs ooy V) .

Throughout this paper B will designate a compact region in & whose boundary
0B is sufficiently smooth for the divergence theorem to be applieable (}). Given
fields ¢, p: B—+>R; u,v: B—>U; p,0: B—>RY; u,v: B— UY;, we write

N N
(P v)=|oy, (@w0) =J.u“v y (o) = '21(‘““ g}, (W v)= Z (uiy vi) .
i<
B B

=1

Further, for each of the above inner products, ||-| denotes the corresponding L2
norm; i.e., e.g., |@|?= (g, ¢). Most of the time we will be concerned with functions
@(x,t) of xc B and 1[0, oo). In this instance [¢|; denotes the norm of ¢(-,1);
that is,
3
lolo=( [o(x, 01as)".

B

A similar meaning applies to correponding inner products, e.g. (@, ¥);.
Under the above hypotheses on B the Poincaré inequality

(1.1) lpll<a|Vel

holds for every class O fleld ¢: B—R with compact support in the interior of B.
In (1.1) « is a constant independent of ¢. More generaily, the Poincaré inequality
can be extended to the class of all % fields ¢: B—R which vanish on a given
consistent subset § of 0B. Roughly speaking, a subset 8 is consistent if S can be
« seen » from any point of B under a cone whose opening admits a lower bound (2).

2. — General theory.

The classical theory of fluid mixtures is based on the following system of balance
equations:
o+ odive=20,

géuz—dtha+mu (“217"'7-N)7
ov-+-Vp=0,
o(é +v-v) = — div(g -+ u, b, + pv) .

(2.1) ®)

(1) This will be the case if B is regular in the sense of KriroGeG [1929].
(?) Cf. STamMpACCHIA [1965].
(3) The superposed dot denotes the material time derivative.
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Here p is the density, v=1/p the specific volume, v the velocity, p the pressure,
e the internal energy, q the heat flux, ¢, the concentration (!) of (constituent) a,
h, the relative mass flux (%) of &, m, the mass supplied to « (due to chemical reactions),
and u, the (relative) chemical potential (*) of «. These fields are defined for all x
in the region of space B occupied by the mixture and for all fime {. The mixture
is assumed to contain N -1 constituents, but only N of the constituent mass balance
laws are linearly independent; for this reason the subsecript « in (2.1), has the range 1
to N¥. Further, summation from 1 to N over repeated Greek subscripts is implied,
so that

N
%m=§mm.

To the above list of fields we add the (absolute) temperature 0 and the entropy 7.
Then, defining the state ¢ to be the following vector in R¥*2:

(2.2) o=(p,0,1), = (fs-ees i)
the constitutive equations of the classical theory take the form

(2.3) £= (@), n = 1l(a), v= (o), ¢, = 6,(0),
q=14(0,Ve),  h,=h(a,Vo), m,= i, Vo).
‘We assume that each of the response functions appearing in (2.3) is of class 02,
and, since the mixture is a fluid, that each of these functions is isotropic.
For our purposes it is convenient to introduce the potential

(2.4) E=¢e—0n+4 pv—p,e,,
so that, by (2.3)—,,

(2.5) £=Eo).

GURTIN and VARGAS (*) have shown that for the constitutive equations (2.3) to be
compatible with the second law (in the form of the Clausius-Duhem inequality) it

(*) ¢« = pu/0, Where gu is the density of .

(2} ho = ge(va—1v) (no sum on &) with v, the velocity of «.

(®) Actually, g is the chemical potential of « minus the chemical potential of constit-
nent ¥ 1.

(4) [1971], Theorem 4.1. Actually, they take ¢ = (v, 0, ¢4, ..., ¢y) and Vo as independent
variables. The slightly different version presented above involves only completely trivial
modifications.
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is necessary and sufficient that

~ 0 . oé ) oé
2. = = o = ——
( 6) v ap 4 77 86 b C aﬂ“’
and
1. ~ .
(2.7) bgq(c, Vo)-V6 4+ h, (o, Vo) Vu, + 1, (6, Vo)u,<0 .

We henceforth assume that (2.6) and (2.7) are satisfied. Then (2.1)-(2.6) lead to
the following alternative form () for the energy equation (2.1),:

(2.8) 00 =—divq—h,Vu,—m_u, .

o) 2 o

Given a fixed state &= (§, 0, &), let
(2.9) $(0) = &(6) — B4(c) + BD(0) — By éy(0) -

The classical criterion of Gibbs for the stability of G is that ¢(a) bave a strict local
minimum at 6=6. A simple calculation, based on {(2.6), shows that

(2.10) #(a) = (o) — (6 — 0)7&,

where £, is the gradient, in R¥+2, of £ with respect to ¢ (and where ,, o, and ¢
are considered as column vectors in R¥+2). Let

(211) A = (éuc)u=3 ’

where the (N --2) X (N --2) matrix &, is the second gradient of £ Then (2.10)
implies that

$o=0 and ¢,=—£&, at o=o0,
and we have

PROPORITION 2.1. — A necessary and sufficient condition that the stale G satisfy
the Gibb’s criterion for stability is that A be positive definite.

Also note that if
(2.12) Fle) = (— (o), #(0), &i(0), ..., éx(a)) ,
then (2.6) takes the form
f=—E.

(1) [1971], equation (4.8).
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Hence f, = —&,, and we conclude from (2.11) that

~

(2.13) A= (fJe-s-
Further, it is clear from (2.11) that
(2.14) A= Ar,

3. — Linear theory.

We now derive the linear theory appropriate to small departures from a strong
equilibrium state . Note first that, by (2.13),

Flo)—F(6) = Alc — 61+ 0(jo — o]?)

as ¢ —>g. Thus, if we neglect the term of order O(je — 3[2), we conclude from (2.12)
that the constitutive equations (2.3),—, have the form

—(v—1)
7—
(3.1) 6—6 |=dAlc—d],
oy —0Cy

where $= %(c), etc.
We assume now that o is a strong equilibrium state (*); that is, we suppose that

(3.2) (0, Vo) fi, = 0

for all possible values of ¢ and Ve. Then, using an argument based on (2.7), it is
not difficult to show that the constitutive equations (2.3);-; have the following
linear approximation (2):

—1
6;;q V6 "
(3.3) :1 :——L[V }9 :_T[l"'—ﬁ'] ’
: w .
hy

and that the (N-+1)X(N-1) matrix L and the N X N matrix T are positive semi-
definite:

(3.4) L>o0, T>0.

)y Cf. {19711, § 7.
(?) Cf. [1971], Theorem 7.1.
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The linearized versions of (2.1),, and (2.8) are
o = divo,
o = —divg,
o, = — divh, -+ m,,
gv =—Vp,

where we have written ¢ for the constant density ¢ in ¢. To the same degree of
approximation the material time derivative and the spatial time derivative coincide;
thus, e.g., in (3.5); ¥(x, t) is the derivative of v(x, 1) with respect to ¢ holding « fixed.

Equations (3.3) and (3.5) constitute the complete system of field equations for
the linear theory; they are easily combined to form the following matrix equation:

P o0 o0 P
oA 0 6 g
(3.6) T I I L B | R e
0 0 v 0 0 0 | v
0 0 0 P dive
7 0
=4 0 L o — ,
1 0
0 0 | 0 J v Vp
where, for convenience, we have written
(3.7) p for p— P, 6 for 6— 8, p for p—p.

Equation (3.6) can be written more succintly in the form
(8.8) Au-- Tu= ALu-— Du,

where the (N--3)x(N-3) matrices A, T, and L, the column vector u, and the
matrix differential operator D have obvious definitions. Note that the field u has
values in the vector space

W=R¥+2x U.

To this system of equations we add the (homogeneous) boundary conditions
(et. (3.7)):
p =0 on 8 X[0, o0, von =0 on (B\8,)X[0, o),
(3.9) 6 =0 on S;X[0, c0), g'n =0 on (0B\8,;) %[0, co),
B,=0 on 8;X[0, co), h,,n=0 on (2B \8;) x[0, ),
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with 8, and §; consistent subsets of 0B (). Note that, by (3.3),, (3.9) implies that
0
3.10 [6]TL on 0 0B x [0, o)
. pv-n— = on X o).
( ) p‘ —a—“.’. ’

on,

By a process (*) we mean a class (2 function u=(p,0, p, v) from B into U
that satisfies (3.8) and (3.9) (with q and h, given by (3.3);). Basic to the proof of
stability given in the next section is

THEOREM 3.1 (CONSERVATION LAW). — Huvery process u satisfies

[2
(3.11) Hu, Au), = H(u, Au)o— [{(u, Tu), + (Vu, LVu) }dr .
0
Proor. — Since
(u, Du) = (p, dive) + (Vp, v),
the divergence theorem and (3.10) yield
(3.12) (4, LAu) — (u, Du) = — (Vu, LVu) .

Also, by (2.14) and the definition of A, A= AT, and it follows that

d .
(3.13) 7 (u, Au), = 2(u, Au), .

If we take the L® inner product of (3.8) with u and use (3.12) and (3.13), we arrive at

3 ],ﬁ("’ Au), = — (u, Tu);— (Vu, LVu),

which clearly implies (3.11). O

4. — Stability.

In this section we shall establish necessary and sufficient conditions for the
stability of solutions to the system (3.8), (3.9), using, for the most part, only the

(') The consistency requirement is needed only for Thecrem 4.2. For the remaining
results it suffices to use the weaker boundary condition (3.10).

(2) The requirement that # be class O2 is far stronger than needed; indeed, it suffices to
have u a weak solution (in the usual sense) of the system (3.8), (3.9).
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conditions (2.14) and (3.4) and the usual requirement that ¢ be positive:
(4.1) A=A, L>0, T>o0, 6>0,

As explained in Section 3, (4.1);.; are consequences of the second law of thermo-
dynamics. It is important to note that we make no assumptions whatsoever con-
cerning the symmetry of the matrices L and T.

THEOREM 4.1 (LIAPOUNOV STABITITY). — Let ¢ be Gibbs stable. Then given any
&> 0 there ewists & 6> 0 such that any process u with |ul, <0 satisfies |[u],<<e
for all i1>0.

PROOF. — Since o is Gibbs stable, Proposition 2.1 implies that 4 > 0; hence
(4.1), and the definition of A imply that A> 0. Thus there exist constants «, >0
such that

(4.2) a|wl2<(w, Aw) <f||w|?
for any L? function w: B—L. On the other hand, (3.11) and (4.1),.; imply that,
for any process u,
(u, Au), <(u, Au),,
and hence, by (4.2),
lull:<ylulo,

where y = (Bje)t > 0. This inequality clearly yields the desired result. 0
Theorem 4.1 has the obvious

COROLLARY (UNIQUENESS). — Let 6 be Gibbs stable. Then any process which vanishes
at time t =0 must be identically zero for all time.

By a strongly-compatible initial function we mean a C° function uy: B—U
with compact support in the interior of B. Clearly, u, satisfies the boundary con-
ditions (3.9). In fact, if u,= (p, 0, &, v), then p, 0, p, v, V4, and Vu all vanish
on (0B)x[0, o), so that u, satisfies the boundary conditions (3.9) for any possible
choice of the sets S;, 8;, and 8;.

Our next result shows that Gibbs’ criterion iz also necessary for stability.

THEOREM 4.2 (INSTABILITY). — Assume that & is not Gibbs stable. Assume further
that A and L are invertible and that

(4.3) ﬁ:—(%)a=&>0.
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Then there ewists a strongly-compatible initial funciion u, and constants C, 2> 0 such
that any process u with u(x, 0) = uy(x) for all x€ B has

(4.4) [u].> Ce™.

The proof of this theorem is based on two lemmas.

LEMMA 4.1. — Let (4.3) hold. Then there exists an o> 0 such that
4.5) T At > —a|v|?
for every T = (7, v) e RV+2,

Proo¥. — By (2.2), (2.12), (2.13), and (4.3), £ is the entry in the first row and
first column of 4. Thus 174~ admits the representation

(4.6) AT = fad + ay(v) + (v, V), T=(mV),

where y,(v) is linear in v and y, is quadratic in v. Let 7, = 7/f + y,(v)/26% Then
(4.6) implies that

WD) tAr=Fr e v)>emY), e, v)=nv,v)— 41—3%(\')2 :

where we have used (4.3). Since ¢(v,v) is quadratic in v, there exists an « > 0,
independent of v, such that

(4.8) (v, ¥) >—alv|?

for all veR¥1, and (4.7), (4.8) imply (4.5). D

LEMMA 4.2. — Suppose that 6 is not Gibbs stable and A is invertible. Then there
exists a strongly-compatible initial function u, such that

(4.9) (Uo, Aug) < 0.

PROOF. — Since ¢ is not Gibbs stable, we conclude from Proposition 2.1 that 4
is not positive-definite. Thus, since A is symmetric and invertible, A must have
a strietly negative eigenvalue. Let ve R¥*2 denote a corresponding eigenvector,
so that

wTAt < 0.

Let ¢: B—R (p = 0) be a 0% function with compact support in the interior of B,
and let uy: B U be defined by

Uo(%) = @(&)(T1, Tay +vy Tsas 0},

5 — Annali di Matematica
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(so that the initial velocity field corresponding to u, is zero). Then u, is strongly
compatible, and, in view of the definition of A,

(U, Aug) = p|lp||2rT AT <0,
so that u, has all of the desired properties. O

PrRoOF OF THEOREM 4.2. — By (3.11), (4.1);, and the definition of L,
t
(4.10) (u, Au), < (u, Au),— f (Vv, LV), dr
0

in any process u, provided v= (6, ). Since L is invertible, (4.1), implies that
L> 0. Thus there exists a ¢ >0 such that for any vector » e R¥+!

7 L > 6 |n|2;
hence

(Vv, LVv) >48|Vv|?
in any process u. This result, (3.9), and Poincaré’s inequality (1.1) imply
(Vv, LVv) > o|v|3

where w >0 is independent of u; hence, by (4.10),
]

(4.11) (u, Au), <(u, Au)o— wf[[vnidr .
0

Next, letting ©= (p, v), (4.1);, (4.5), and the definition of A imply
o~ uT Au=TAr+ v|*>—alv)?,
and we conclude from (4.11) that-

t
(4.12) y[vli>— (u, Auo+ o[ |v]idr,  y=uo>0
0

in every process u. Let u, be the initial field established in Lemma 4.2, and let

(4.13) 2}5 = (lJ/'y > 0 5 02: _ y—l(uo’ Au“) > 0 [}
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where we have used (4.9). Then if u is any process with u(x, 0) = u,(x),

(u, Au)y= (uy, Auy),
and (4.12), (4.13) yield

(4.14) [v]t> 00+ 24|yt ar

which is a standard Gronwall inequality. Letting ¢(f) denote the right-hand side
of (4.14), we have ||v|;>¢() and ¢=2A|v|?>21¢. This differential inequality
can be integrated to give ¢(I)>¢(0)exp[24t] which yields

(4.15) [v]f> C®exp[24t].

If we take the square root of both sides of (4.15) and use the obvious inequality
[ufj2>|v|? we arrive at (4.4). O
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