On analytic primals.

Memoria di Jerzy Herszberg (London, W. C. 1, Gran Bretagna)

Abstract

Summary. - Cartain standard forms of equations of primals with singularities of a given type are investigated. Also the relation between the geometric and analytic case is given and some analytic invariants are found. The application of these methods to the resolution of singularities is indicated.

1. In a paper on resolution of singularities [3] B. Segre used certain forms of local equations of d-folds lying on non-singular ($d+1$)-folds. He derived, by means of these methods, some results about the geometric properties of the variety. Some properties of analytic primals were later on discussed by him in [4].

In the extensive paper [3] only a small part of it was devoted to a detailed discussion of the relation between the geometric and analytic methods. In this paper we show, by means of an example, that the method of choosing local equations may change in some cases the geometric properties of the variety at the point in question. Furthermore we derive a set of conditions under which we can apply the methods of analytic transfosmations, thereby simplifying, and not altering, the geometric situation. We also obtain some new results in this connection.
2. In this paragraph we give an example of a possible behaviour, under analytic transformations, of a surface \boldsymbol{F} in S_{3} with a double curve \boldsymbol{C}. For simplicity we use non-homogeneous coordinates $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$.

Let \boldsymbol{F} be the surface whose equation is

$$
\begin{gathered}
\left(x^{2}+2 x y+y^{3}\right)^{2} f_{1}(x, y, z)+2\left(x^{2}+2 x y+y^{3}\right) z f_{2}(x, y, z)+ \\
z^{2} f_{3}(x, y, z)=0,
\end{gathered}
$$

where $f_{s}(0,0,0) \neq 0$ and

$$
\left[f_{3}(0,0,0)\right]^{2}-f_{3}(0,0,0) f_{1}(0,0,0) \neq 0
$$

but f_{1}, f_{2}, f_{3} are otherwise general.
This surface \boldsymbol{F} has a double point at the origin and on \boldsymbol{F} there is a
double curve C whose equations are

$$
x^{2}+2 x y+y^{3}=0, \quad z=0
$$

The curve C has a double point at \boldsymbol{O} and the use of dilatations [3] is restricted to bases which are non-singular. Thus to resolve the singularity of \boldsymbol{F} at \boldsymbol{O} (or, strictly speaking, the singularity of \boldsymbol{F} through \boldsymbol{O}) we first have to apply a dilatation with O as base. We obtain thereby the proper transform of S_{3} which is a non-singular threefold M_{1} and the proper transform F_{1} of F on it. On F_{1} there is a double curve C_{1} which is the proper transform of C and a double burve E_{1} corresponding to the point O. To resolve the singularities of F_{1} we have to apply, at least, two more dilatations, one with C_{1} as base and one with E_{1} (or, strictly speaking, with its proper transform) as base, in total, at least three dilatations.

Now in the problem of resolution of singularities one often deals with a sequence of consecutive points and whith the behaviour of a given variety at these points. To facilitate the analysis one often allows the use of local coordinates which are analytic transforms of $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$, regular at the point in question. Returning now to the surface F, suppose we are interested in the behaviour of \boldsymbol{F} at \boldsymbol{O} and we allow the following analytic transformation:

$$
\begin{aligned}
& x_{1}=x+2 y-\frac{1}{2} y^{2}-\frac{1}{8} y^{3}-\frac{1}{16} y^{4}-\frac{5}{12 \overline{8}} y^{5}-\ldots=x+y+\sqrt{1-y} \\
& y_{1}=x+\frac{1}{2} y^{2}+\frac{1}{8} y^{3}+\frac{1}{16} y^{4}+\frac{5}{128} y^{5}+\ldots=x+y-y \sqrt{1-y} \\
& z_{1}=z .
\end{aligned}
$$

This transformation is certainly regular at \boldsymbol{O}. Then $x_{1} y_{1}=x^{2}+2 x y+y^{3}$ and the «local equation» of \boldsymbol{F} may be written in the form

$$
x_{1}^{2} y_{1}^{2} F_{1}\left(x_{1}, y_{1}, z_{1}\right)+2 x_{1} y_{1} \tilde{1}_{1} F_{2}\left(x_{1}, y_{1}, z_{1}\right)+z_{1}^{2} F_{3}\left(x_{1}, y_{1}, z_{1}\right)=0,
$$

where $F_{i}\left(x_{1}, y_{1}, z_{1}\right)$ is a power series, convergent for small

$$
\begin{gathered}
\left|x_{1}\right|,\left|y_{1}\right|,\left|z_{1}\right| \text { for } i=1,2,3, \text { and } F_{3}(0,0,0) \neq 0 \\
{\left[F_{2}(0,0,0)\right]^{2}-F_{1}(0,0,0) . F_{3}(0,0,0) \neq 0 .}
\end{gathered}
$$

Here we have two double «lines» through O, given by $x_{1}=z_{1}=0$ and $y_{1}=z_{1}=0$ and to resolve the singularity we first apply the local dilatation

$$
x_{1}=x_{2}, y_{1}=y_{2}, z_{1}=z_{2} y_{2}
$$

so that the local equation of the proper transform F_{1} of F becomes

$$
x_{1}^{3} F_{1}\left(x_{2}, y_{2}, y_{2} z_{2}\right)+2 x_{2} z_{2} F_{2}\left(x_{2}, y_{2}, y_{2} z_{2}\right)+z_{2}^{2} F_{3}\left(x_{2}, y_{2}, y_{2} z_{2}\right)=0
$$

and here the tangent cone at the origin 0_{1} is

$$
x_{2}^{2} F_{1}(0,0,0)+2 x_{2} z_{2} F_{2}(0,0,0)+z_{2}^{2} F_{3}(0,0,0)=0
$$

which is a pair of distinct planes and on subsequent application of local dilatation with the line $x_{2}=0=z_{2}$ as base, there will correspond two simple points to the point O_{1}. Thus from the above example it can be seen that if we allow a choice of local coordinates the number of dilatations required is two, whilst in the geometric case the number is three at least. Also the dimension of the base can be altered. Hence the two situations are not the same and the complications may be greater and may occur in various neighbourhoods of the point with which we are concerned. Of course, the application of analytic transformations simplifies the algebra considerably in most cases and we establish here which geometric properties can be preserved, and also obtained, when analytic transformations and local dilatations are allowed. Thas in this parer we consider the relation between the analytic and geometric case, and the conditions under which we can derive geometric results by applying analytic transformations and local dilatations.

Throughout we suppose that the ground field \boldsymbol{K} is the field of complex numbers.
3. We now give precise definitions to the terms geometric and analytic properties and to geometric and analytic methods.

Let V be a $(d-1)$-fold lying on a non-singular \boldsymbol{d}-fold \boldsymbol{U} situated in A_{N}. Any global property of \boldsymbol{V} or its birational transform will be called a geometric property. Furthermore only birational transformations of V into V_{1} which are regular at a generic point of V and V_{1} will be allowed in the geometric case and such will be called geometric methods. Let \boldsymbol{O} be a point of \boldsymbol{V} and x_{1}, \ldots, x_{d} be local uniformising parameters of U at \boldsymbol{O}. Then \boldsymbol{V} is represented in the quotient ring of \boldsymbol{O}, denoted by $Q(O / U)$, by a single equation which may be written in terms of the local uniformising parameters x_{1}, \ldots, x_{d} as a power series

$$
f(x)=f_{s}(x)+f_{s+1}(x)+\ldots=0
$$

where $f_{i}(x)$ is a form of degree i in $x_{1}, \ldots, x_{d}, s \geq 1$ and $f_{s}(x) \neq 0$. This is called the local equation of V at O and O is an s-ple point of \boldsymbol{V}. We
write $O[f(x)]=s$, where in general $O[F(x)]$ denotes the order of $F(x)$. If

$$
\begin{equation*}
x_{i}=\sum_{\lambda=1}^{d} a_{i 2} x_{\lambda}^{\prime}+\varphi_{2}^{(i)}\left(x^{\prime}\right)+\varphi_{3}^{(i)}\left(x^{\prime}\right)+\ldots, i=1,2, \ldots, d, \tag{1}
\end{equation*}
$$

where $\varphi_{n}^{(i)}\left(x^{\prime}\right)$ is a form of degre n in $x_{1}^{\prime}, \ldots, x_{d}^{\prime}$ and $\Delta=\left|a_{i j}\right| \neq 0$, then $x_{1}^{\prime}, \ldots, x_{d}^{\prime}$ may be taken as new local coordinates and the local equation of \boldsymbol{V} then becomes

$$
f^{*}\left(x^{\prime}\right)=f_{s}^{*}\left(x^{\prime}\right)+f_{s+1}^{*}\left(x^{\prime}\right)+\ldots=0
$$

We say that $f(x)$ and $f^{*}\left(x^{\prime}\right)$ are analytically equivalent at \boldsymbol{O}, or just equivalent at O. If $f^{*}\left(x^{\prime}\right)=O$ rappresents an analytic primal W, then we say that W is an analytic transform of V regular at O. We use the same symbol \boldsymbol{O} as a point of \boldsymbol{V} and \boldsymbol{W}. Similar procedure will be adopted throughout, i.e. O_{i} will denote a point of V_{i} and W_{i} if W_{i} is an analytic transform of V_{i} regular at O_{i}. We do not introduce new symbols as no possible confusion can arise.

The following properties may be easily verified;
(i) the transformation (1) is reversible and x_{i}^{\prime} may be expressed as a power series in x_{1}, \ldots, x_{d} for $i=1,2, \ldots, d$,
(ii) the analytic equivalence at O of the power series is a true equivalence relation,
(iii) $f_{s}(x)$ and $f_{s}^{*}\left(x^{\prime}\right)$ are projectively equivalent.

Also, if in $Q\left(O_{1} / D_{1}\right)$, a ($d-1$)-fold V_{1} is given by the vanishing of a polynomial $f\left(x_{1}, \ldots, x_{d}\right)$ in the local uniformising parameters x_{1}, \ldots, x_{d} of D_{1} at O_{1} and $(\mathrm{x}),\left(x^{\prime}\right)$ are related by (1), then we say that W_{1} given by $f^{*}\left(x^{\prime}\right)=0$ is an analytic transform of V_{1} regular al O_{1}. In virtue of (ii) and (iii), the multiplicities of V_{1} and W_{1} at O_{1} are the same. Also the tangent cones are projectively equivalent. Any property of V_{1} at O_{1} invariant under the transformation (1) will be referred to as an analytic property of V_{1} a ξO_{1}. Methods which allow transformations of the type (1) will be called analytic methods. Also any local dilatation [3], [5] of W_{1} wil be allowed when analytic methods are applied.

Before we investigate further properties, we first consider the geometric case in some detail.
4. Let \boldsymbol{V} be a primal in \boldsymbol{A}_{d} having an \boldsymbol{s}-ple point at \boldsymbol{O}. Suppose \boldsymbol{C} is a subvariety of \boldsymbol{V} of dimension δ such that (i) each point of \boldsymbol{C} is \boldsymbol{s}-ple on \boldsymbol{V}, (ii) \boldsymbol{C} is a simple point of \boldsymbol{C}, (iii) there is no \boldsymbol{s}-ple subvariety \boldsymbol{D} of \boldsymbol{V},
other than C, which is of dimension $\delta_{1}\left(\delta_{1}>O\right)$ and which passes through \boldsymbol{O}. Then we say that \boldsymbol{V} has $M(s, \delta)$ at \boldsymbol{O}. In this paper we shall investigate certain properties of points of this type only. Throughout we denote by Δ the integer $d-\delta$. In $Q\left(O / A_{d}\right)$ the subvariety C is represented by an ideal P_{δ} and since \boldsymbol{C} has a simple point at \boldsymbol{O}, therefore the extended ideal $Q\left(O / A_{d}\right) . P_{\delta}$ of nonunits in $\left(Q / O A_{d}\right)$ has a basis consisting of Δ elements ([2], 132), and, in particular, we may choose the basis to be polynomials in x_{1}, \ldots, x_{a}. This can be easily done by multiplying each element of the basis by a suitable unit of $Q\left(0 / A_{a}\right)$. Indeed, if we arrange the coordinate system so that the tangent $[\hat{\delta}]$ to \boldsymbol{C} at \boldsymbol{O} has the equations $x_{i}=0, i=1,2, \ldots, \Delta$, then we may choose as the basis of P_{δ} the polynomials $\psi_{1}, \ldots, \psi_{\Delta}$, where $\psi_{i}=x_{i}+\varphi_{i}$ and $O\left(\varphi_{i}\right) \geq 2$ for $i=1,2, \ldots, \Delta$. We observe that $\psi_{1}, \ldots, \psi_{\Delta}$ may be taken as a system of parameters in $Q\left(C_{\delta} / A_{d}\right)$. Hence ([6], 292), if $f_{i}\left(\psi_{1}, \ldots, \psi_{\Delta}\right)$ is a form of degree i in $\psi_{1}, \ldots, \psi_{\Delta}$ with coefficients $a_{j}\left(x_{1}, \ldots, x_{d}\right)$ in the polynomial ring $K\left[x_{1}, \ldots, x_{d}\right]$, written shortly $K[x]$, then $f_{i}(\varphi)=0\left[\bmod \left(P_{\delta}^{i+1}\right)\right]$ if and only if all the coefficients $a_{j}(x)$ in the form $f_{i}(\psi)$ are members of P_{δ}.

We now write the equation of \boldsymbol{V} in the form

$$
f(x)=f_{s}\left(\psi_{1}, \ldots, \psi_{\Delta}\right)+f_{s-1}\left(\psi_{1}, \ldots, \psi_{\Delta}\right)+\ldots+f_{0}=0
$$

where $f_{i}(\psi)$ is a form of degre i in $\psi_{1}, \ldots, \psi_{\Delta}$ with coefficients in $K[x]$ and we suppose that $f_{i}(\psi) \neq 0\left[\bmod \left(P_{\delta=3}^{i+1}\right)\right]$ for $i=0,1, \ldots, s-1$.

Then $f(x)=0\left[\bmod \left(P_{s}^{s}\right)\right]$ if and only if $f_{i}(\psi)=0$ for $i=0,1, \ldots, s-1$. But C_{δ} is s-ple on \boldsymbol{V}. Thus the equation of \boldsymbol{V} may be written in the form

$$
\begin{equation*}
f(x)=f_{s}\left(\psi_{1}, \ldots, \psi_{\Delta}\right)=0 . \tag{2}
\end{equation*}
$$

We call it the standard equations of \boldsymbol{V} with $M(s$, b) at \boldsymbol{O}.
We point out that the converse is not true. Howewer, if the equation of V can be put in the form (2) and $0\left[f_{s}(\psi)\right]=s$, and Δ, as defined previously, is the least integer with this property, then V has an s-ple wointat O and, furthermore, any point of the variety \boldsymbol{C} given by $\psi_{1}=0=\psi_{2}=\ldots=\psi_{\Delta}$ is s-ple on V. Bat in this case \boldsymbol{V} has only $M(s, \delta)$ at \boldsymbol{O} if
(i) \boldsymbol{C} has a simple point at \boldsymbol{O},
(ii) there is no other subvariety \boldsymbol{D} of \boldsymbol{V} through \boldsymbol{O} which is of dimension $\delta_{1}\left(\delta_{1}>0\right)$ and which is s-ple on \boldsymbol{V}.
5. Let $f(x)=0$ be an equation of an analytic primal W. Suppose there is an analytic subvariety D of dimension δ through O which has simple point at O and whose points are s-ple on W. By this we mean that the
equation of \boldsymbol{W} can be written, by a suitable choice of the local coordinates, in the form

$$
\begin{equation*}
f(x)=F\left(\psi_{1}, \ldots, \psi_{\Delta}\right)=0 \tag{3}
\end{equation*}
$$

where

$$
\psi_{i}=x_{i}+\varphi_{2}^{(i)}+\ldots, i=1.2, \ldots, \Delta, \quad 0[f(x)]=s
$$

and, as before, $\Delta=d-\delta$ and Δ is the least integer with this property. Suppose that there is no other subvariety of dimension $\delta_{1} \geq \delta$ through O which is \boldsymbol{s}-ple on \boldsymbol{W}. Then we say that \boldsymbol{W} has $M(s, \delta)$ at \boldsymbol{O}. Thus, if \boldsymbol{V} is any algebraic primal having $M(s, \delta)$ at \boldsymbol{O} and \boldsymbol{W} is an analytic transform of \boldsymbol{V} regular at \boldsymbol{O} and having $M\left(s, \delta_{1}\right)$ at \boldsymbol{O}, then certainly $\delta_{1} \geq \delta$.

We also extend the definitions of multiple subvarieties to analytic primals. We first introduce some general notation which will be used throughout. Let $\omega^{(r)}$ denote some differential operator of the form $\frac{\partial^{r}}{\partial x_{1}^{\lambda 1} \ldots \partial x_{d}^{\lambda d}}$, with $\lambda_{1}+\lambda_{2}+\ldots+\lambda_{d} d^{\prime}=r$. Then for a fixed r there are $\binom{d+r-1}{r}$ distinct forms that $\omega^{(r)}$ can take. Let $\omega^{(r)} f(x),(r=0,1, \ldots, \sigma)$ be all possible derivatives of $f(x), \omega^{(0)} f(x)=f(x)\left[\right.$ atogether $\binom{d+\sigma}{\sigma}$ terms $]$.

The ideal generated by all these polynomials will be denoted by Ω (σ). If $f(x)$ is a power series, we give the same definition to $\omega^{(r)}$ and we define in a similar way an ideal $I I(\sigma)$ generated by $\omega^{(r)} f(x)[r=0,1, \ldots, \sigma]$ in $K\{x\}$, where, in general, $K\{x\}$ denotes the ring of power series $K\left\{x_{1}, \ldots, x_{d}\right\}$. Suppose that $f(x)=0$ represents an analytic primal of dimension $d-1$ and suppose that $\Pi(s-1)$ determines in $K\{x\}$ an analytic variety (not necessarily pare) of dimension δ and $\Pi(s)$ is the unit ideal. Then we say that \boldsymbol{W} has an \boldsymbol{s}-ple subvariety through \boldsymbol{O} of dimension δ.

Suppose that $f(x)=F\left(x^{\prime}\right)$, where $(x),\left(x^{\prime}\right)$ are related by $(1), f(x)$ is a polynominal and $F\left(x^{\prime}\right)$ is possibly a power series. Then

$$
\frac{\delta f(x)}{\delta x_{i}}=\sum_{\lambda=1}^{d} \frac{\partial F}{\partial x_{\lambda}^{\prime}} \frac{\partial x_{\lambda}^{1}}{\partial x^{i}}
$$

and hence, if

$$
\omega^{(r)} f(x)=f^{(r)}(x)=g\left(x^{\prime}\right),
$$

say, it follows that $g\left(x^{\prime}\right)=0[\bmod \Pi(s)]$ for $r \leq s$. Whall use this result in $\S 10$.
6. We now suppose that \boldsymbol{V} has $M(s, \delta)$ at \boldsymbol{O}, but the vertex of the tangent cone of \boldsymbol{V} at \boldsymbol{O} has dimension τ and $\tau>\delta$. This is the case, for example, with a surface F having a binode B_{s} at O which is of the type $M(2,0)$, but the vertex of the nodal tangent cone is of dimension one if $s>2$.

We discuss the general problem first. Suppose that $f(x)$ is a polynomial of the form

$$
\begin{equation*}
f(x)=f_{s}\left(x_{1}, \ldots, x_{\sigma}\right)+f_{s+1}(x)+\ldots+f_{n}(x), \tag{4}
\end{equation*}
$$

where $1 \leq \sigma<d, s>1$. Then it may be possible to write the polynominal $f(x)$ in the form

$$
\begin{equation*}
f_{s}\left(X_{1}^{(2)}, \ldots, X_{\sigma}^{(2)}\right)+f_{s+2}(x)+\ldots+f_{m}(x), \tag{5}
\end{equation*}
$$

where $X_{i}^{(2)}=x_{i}+\varphi_{2}^{(i)}$ for $i=1,2, \ldots, \sigma$, and $\varphi_{2}^{(i)}$ is a form of degree 2 in x_{1}, x_{2}, \ldots, x_{d} and in (5) possibly $f_{i}(x)$ is different from that in (4) for

$$
i=s+2, \ldots, 2 s
$$

and also m may be different from n if $n \leq 2 s$.
Let $X_{i}^{(\rho)}$ be a general notation for any polynomial of the form

$$
X_{i}^{(\rho)}=x_{i}+\varphi_{2}^{(i)}+\ldots+\varphi_{\rho}^{(i)}, i=1,2, \ldots, d,
$$

where $\varphi_{r}^{(i)}$ is a form of degree r in $x_{1}, x_{2}, \ldots, x_{d}$. Suppose there exist poly. nomials $X_{1}^{(\rho)}, \ldots, X_{\sigma}^{(\rho)}$ such that $f(x)$ may be written in the form

$$
\begin{equation*}
f(x)=f_{s}\left(X_{1}^{(\rho)}, \ldots, X_{\sigma}^{(\rho)}\right)+f_{s+\rho}+\ldots+F_{N_{\rho}} \tag{6}
\end{equation*}
$$

where here f_{i} is possibly different from that in (4) for $i=s+\rho, \ldots, p s$ and \boldsymbol{N} may be differnt from \boldsymbol{n} if $n \leq \rho s$. We call it the process of partial factorisation and if $\rho>2$, we say that for the polynomial (5) the process can be continued. This method was first introduced by Miss H. P. Hudson [1] in the study of surfaces with binodes.

If in the expression (6) the process cannot be continued and $f_{i}(x) \neq 0$ for some $i, s+\rho \leq i \leq N$, then we say that the partial factorisation terminates. If $f_{i}(x)=0$ for $i=s+p, s+\rho+1, \ldots, N_{\rho}$, then we say that the partial factorisation is completed.

Similarly, if

$$
f(x)=f_{s}\left(x_{1}, \ldots, x_{\sigma}\right)+f_{s+1}+\ldots
$$

is a power series, we may "partially factorise» this expression and write

$$
f(x)=t_{s}\left(X_{1}^{(\rho)}, \ldots, X_{\sigma}^{(\rho)}\right)+f_{s+\rho}+\ldots,
$$

where $X_{i}^{(\rho)}(i=1,2, \ldots, \sigma)$ are defined as above.
If there exist power series $X_{i}=x_{i}+\varphi_{2}^{(i)}+\varphi_{3}^{(i)}+\ldots$ for $i=1,2, \ldots, \sigma$ such that $f(x)=f_{s}\left(X_{1}, \ldots, X_{\sigma}\right)$, then we say that the process of partial factorisation is completed for $f(x)$, and if it is not completed and cannot be continued, we say that it terminates.

We first prove
Theorem I. - If V, given by $f(x)=0$, is a primal in A_{d} and it has. $M(s, \delta)$ at O, and if the vertex of the tangent cone of V at O has dimension τ, where $\tau>\delta$, then the partial factorisation of $f(x)$ must terminate.

Proof. - Since the vertex of the tangent cone is of dimension τ, by a suitable choice of the coordinate system, we may write the equation of \boldsymbol{V} in the form $f(x)=0$, where $f(x)$ is given by (4) and $\sigma=d-\tau<d$. Also we may suppose that the tangent [$\delta \overline{0}$ of \boldsymbol{C} (cf. § 4) has the equations

$$
x_{1}=0=x_{2}=\ldots=x_{\Delta} .
$$

Clearly the process of partial factorisation is independent of the coordinate system. Let $\Omega(s-1)=p$ be the ideal defined in $\S 5$. Then the ideal p determines a variety in A_{d} and the only component of it through O is the irreducible variety C. Now $x_{\Delta}=0$ is an equations of a prime which passes through the tangent $[\delta]$ of \boldsymbol{C} at \boldsymbol{O}, hence there exists a polynomial of the form $x_{\Delta}+\varphi(x)=p(x)$, with $O[\varphi(x)] \geq 2$, which vanishes on C. The extended ideal $\boldsymbol{p}_{0}=\boldsymbol{p} . Q\left(O / A_{d}\right)$ is a δ-dimensional ideal determining $C^{\prime \prime}$ in $Q\left(0 / A_{d}\right)$. Hence $[p(x)]^{m}=O\left[\bmod \left(\boldsymbol{p}_{0}\right)\right]$ for some positive interger $\boldsymbol{m}([2], 16)$. Hence

$$
\begin{equation*}
[p(x)]^{m}=\varphi_{1}(x) F_{1}(x)+\ldots+\varphi_{\alpha}(x) F_{\alpha}(x), \tag{7}
\end{equation*}
$$

where $\varphi_{i}(x) \in Q\left(O / A_{d}\right)$ and $F_{i}(x)$ denotes some polynomial of the form

$$
\omega^{(r)} f(x), o \leq r \leq s-1, i=1,2, \ldots, \alpha .
$$

Since V has $M(s, \delta)$ at \boldsymbol{O}, we assert that the partial factorisation cannot be completed. For suppose we can complete it. Then $f(x)=f_{s}\left(X_{\sigma}^{(\rho)}, \ldots, X_{\sigma}^{(\rho)}\right)$ for some ρ and thus the $(d-1)$-fold V has an s-ple subvariety of dimension $d-\sigma=\tau>\delta$, given by $X_{i}^{(0)}=0, i=1,2, \ldots, \sigma$, which passes through O and this contradicts the assumption that \boldsymbol{V} has $M(s . \delta)$ at \boldsymbol{O}. This proves the assertion. Suppose now that the partial factorisation does not terminate and
cannot be completed. Then we can write $f(x)$ in the form (6) for every $\rho \geq 1$ and N_{ρ} is an integer which depends on ρ an $f_{i}(x) \neq 0$ for some \boldsymbol{i},

$$
s+\rho \leq i \leq N_{\rho}
$$

In particular, in (6) we take $\rho=m$. Then consider the algebraic curve Γ whose equalions are

$$
\begin{gathered}
X_{i}^{(m)}=0 \quad i=1,2, \ldots, \sigma \\
x_{j}=0, \quad j=\sigma+1, \ldots, \Delta-1, \Delta+1, \ldots, d .
\end{gathered}
$$

This curve has a simple point at \boldsymbol{O} and its tangent at \boldsymbol{O} is the axis $O x_{A}$. Hence its Puiseux's expansion at \boldsymbol{O} is of the form

$$
x_{i}=a_{i 2} t^{2}+a_{i s} t^{3}+\ldots, i=1,2, \ldots, \Delta-1, \Delta+1, \ldots, d, x_{\Delta}=t
$$

where $\mathbf{a}_{i j}$ is an element of \boldsymbol{K}. Substituting this expansion in (7) we obtain

$$
t^{m}+\ldots=\bar{\varphi}_{1}(t) \bar{F}_{1}(t)+\ldots+\bar{\varphi}_{\alpha}(t) \bar{F}_{\alpha}(t),
$$

where

$$
\bar{\varphi}_{i}(t)=\varphi_{i}\left(a_{12} t^{2}+\ldots, \ldots, a_{d 2} t^{2}+\ldots\right)
$$

and $\bar{F}_{i}(t)$ is similary defined for $i=1,2, \ldots, \alpha$. We observe that since $\varphi_{i}(x) \in Q\left(O / A_{a}\right)$, hence $O[\bar{p}(t)] \geqslant 0$. Let $\omega^{(r)} f(x)=f^{(r)}(x)$. By the definition of $\Gamma \cdot$ we have $\left\{\bar{X}_{i}^{(m)}(t)\right\}=0$. Hence $f^{(r)}(t)=q(t)$, where $O[q(t)] \geq s+m-r$, and therefore

$$
O\left[\varphi_{1}(t) \bar{F}_{1}(t)+\ldots+\bar{\varphi}_{\alpha}(t) \bar{F}_{x}(t)\right] \geq s+m-(s-1)=m+1>m
$$

which leads to a contradiction. Thus the partial factorisation must terminate in this coordinate system and hence also in any other coordinate system. This establishes Theorem I.
7. We may obtain Theorem I in a slighlty different form. Since V $M(s, \delta)$ at \boldsymbol{O}, the equation of \boldsymbol{V} is of the form (2). We may write it

$$
\begin{equation*}
f_{s}\left(\psi_{1}, \ldots, \psi_{\sigma}\right)+f_{s+1}\left(\psi_{1}, \ldots, \psi_{\Delta}\right)+\ldots+f_{N}\left(\psi_{1}, \ldots, \psi_{\Delta}\right)=0, \tag{8}
\end{equation*}
$$

where σ, Δ have the same meaning as in the previous paragraph, and $f_{i}(\psi)$ is a form in $\psi_{1}, \ldots, \psi_{\Delta}$ if degree i with coefficient in $K[x]$.

Let $\chi_{i}^{(p)}$ be a general notation for any polynomial of the form

$$
\chi_{i}^{(o)}=\psi_{i}+\theta_{2}^{(i)}(\psi)+\ldots+\theta_{\rho}^{(i)}(\psi), \quad i=1,2, \ldots, \sigma,
$$

where $\theta_{j}^{(i)}(\psi)$ is a homogeneous polynomial in $\psi_{1}, \ldots, \psi_{\Delta}$ of degree j with coefficients in $K[x]$. Then we may write

$$
\begin{equation*}
f(x)=f_{s}\left(\chi_{1}^{(\rho)}, \ldots, \chi_{\sigma}^{(p)}+f_{s+p}(\psi)+\ldots+f_{N p}(\psi)\right. \tag{9}
\end{equation*}
$$

for some ρ, and here $f_{i}(\psi)$ is not, in general, the same as $f_{i}(\psi)$ in (8) for $i=s+p, \ldots, s p$. We call it the process of partial factorisation with respect to $\psi_{1}, \ldots, \psi_{\Delta}$. As before, since V has $M(s, \delta)$ at O and $\Delta>\sigma$, we may show that this process must terminate but we do not include the proof as it is similar to the one of Theorem I. Thus Theorem I can now be stated in the form of

Theorem II. - With the hypothesis of Theorem I, the process of partial factorisation with respect to $\psi_{1}, \ldots, \psi_{\Delta}$ must terminate.
8. In this paragraph we prove various results in connection with analytic transformations. We observe that every analytic transformation of the type (1) may be writton as a product of a linear transformation

$$
\begin{equation*}
x_{i}^{\prime \prime}=\left(\sum_{\lambda=1}^{d} A_{\lambda i} x_{\lambda}\right) / \Delta \tag{10}
\end{equation*}
$$

where $A_{i j}$ is the cofactor of $a_{i j}$ in the determinant $\left|A_{i j}\right|=\Delta$, followed by the analytic transformation

$$
\begin{equation*}
x_{i}^{\prime \prime}=x_{i}^{\prime}+g_{2}^{(i)}+\ldots \tag{11}
\end{equation*}
$$

where

$$
g_{j}^{(i)}=\left(\sum_{\lambda=1}^{\lambda} A_{\lambda i \varphi_{j}^{(\lambda)}}\right) / \Delta
$$

In what follows we shall assume that the analytic transformations are of the type (11). Let $f(x)$ be given by (4). Let t be the ideal generated by

$$
\frac{\partial f_{s}}{\partial x_{1}}, \ldots, \frac{\partial f_{s}}{\partial x_{\sigma}}
$$

We first prove
Lemma 1. - Suppose that $f(x)$ can be written in the form (6) for some $\rho \geq 1$. Then the partial factorisation can be continued if and only if $f_{s+\rho}=0(\bmod t)$.

Proof. - If $f_{s+\rho}=O(\bmod t)$, then $f_{s+\rho}=a_{1} w_{1}+\ldots+a_{\sigma} w_{\sigma}$, where $w_{i}=$ $=\frac{\partial f_{s}}{\partial x_{i}}$ and a_{i} is a form of degree $\rho+1$ for $i=1,2, \ldots, \sigma$. Then

$$
f_{s}\left(X_{1}^{(\rho)}+a_{1}, \ldots, X_{\sigma}^{(\rho)}+a_{\sigma}\right)=f_{s}\left(X^{(\rho)}\right)+\sum_{i=1}^{\sigma} a_{i} w_{i}+\varphi(x),
$$

where $O[\varphi(x)] \geq s+\rho+1$.
Hence $f(x)$ can be written in the form (6) with ρ replaced by $\rho+1$. Conversely, if $f(x)$ is represented by (6) with ρ replaced by $\rho+1$, then

$$
X_{i}^{(\rho+1)}=X_{i}^{(\rho)}+\varphi_{\rho+1}^{(i)}(i=1,2, \ldots, \sigma)
$$

and

$$
\begin{aligned}
f(x) & =f_{s}\left(X^{(\rho)}\right)+{\underset{i}{s}=1}_{g}^{s} \varphi_{\rho+1}^{(i)} w_{i}+f_{s+\rho+1}^{*}+\ldots+f_{N \rho}^{*} \\
& =f_{s}\left(X^{(\rho)}\right)+f_{s+\rho}=f_{s+\rho+1}^{*}+\ldots+f_{N \rho}^{*} .
\end{aligned}
$$

Thus $f_{s+\rho}=\sum_{i=1}^{\sigma} \varphi_{\rho+1}^{(i)} w_{i}=0(\bmod \boldsymbol{t})$ which proves the Lemma.
We now show that if the partial factorisation is completed in two ways, i.e. if

$$
\begin{gather*}
f(x)=f_{s}\left(X_{1}^{(\rho)}, \ldots, X_{\sigma}^{(\rho)}\right)+\ldots+f_{N 1} \tag{12}\\
=f_{s}\left(\left(X_{1}^{*}\right)^{(r)}, \ldots,\left(X_{\sigma}^{*}\right)^{(r)}\right)+f_{s+r}^{*}+\ldots+f_{N 2}^{*}, \tag{13}
\end{gather*}
$$

then $r=\rho$. To prove this it will be sufficient to show that if $f(x)$ is represented by both (12) and (13), and $r=p$, and if also the partial factorisation can be continued in one case, then it can be continued in the other case too.

We prove it in
Lemma 2. Let $f(x)$ be represented by the two equations (12) and (13) with $r=\rho$. Then $f_{s+\rho}=0(\bmod t)$ if and only if $f_{s+\rho}^{*}=0(\bmod t)$.

Proof. - Suppose $f_{s+p}=0(\bmod t)$. Then we may continue the process of partial_factorisation in (12). In this case put $X_{i}^{\text {io }+17}=\bar{x}_{i}$, for $i=1,2, \ldots \sigma$ and $x_{i}=\bar{x}_{i}$ for $i=\sigma+1, \ldots, d$. This is an analytic transformation, regular O. Then

$$
\begin{equation*}
f(x)=f_{s}\left(\bar{x}_{1}, \ldots, \bar{x}_{\sigma}\right)+f_{s+\rho+1}(\bar{x})+\ldots \tag{14}
\end{equation*}
$$

Also

$$
\left(X^{*}\right)^{(r)}=\bar{x}_{i}+\varphi_{2}^{(i)}(\bar{x})+\ldots, i=1,2, \ldots, \sigma
$$

and hence

$$
f(x)=f_{s}\left(\bar{x}_{1}+\varphi_{2}^{(1)}(\bar{x})+\ldots, \ldots, \bar{x}_{\sigma}+\varphi_{2}^{(\sigma)}(\bar{x})+\ldots\right)+f_{s+\rho}^{*}(\bar{x})+\ldots
$$

We now express

$$
f_{s}\left(\bar{x}_{1}+\varphi_{2}^{(1)}(\bar{x})+\ldots, \ldots, \bar{x}_{\sigma}+\varphi_{2}^{(\sigma)}(\bar{x})+\ldots\right)
$$

in the form

$$
f_{s}\left(\bar{x}_{1}, \ldots, \bar{x}_{\sigma}\right)+f_{s+1}(\bar{x})+\ldots
$$

and comparing it with (14) we find that

$$
\varphi_{2}^{(i)}(\bar{x})=\varphi_{3}^{(i)}(\bar{x})=\ldots=\varphi_{\alpha}^{\mid i)}(\bar{x})=0 \text { for } i=1,2, \ldots, \sigma
$$

where $\alpha \geq \rho$. Thas

$$
f(x)=f_{s}\left(\bar{x}_{1}+\varphi_{\rho+1}^{(1)}(\bar{x})+\ldots, \ldots, \bar{x}_{s}+\varphi_{\rho+1}^{(\sigma)}(\bar{x})+\ldots\right)+f_{s+\rho}^{*}(\bar{x})+\ldots
$$

and equating the forms of degree $s+\rho$ in this expression and in (14) we find that

$$
\varphi_{\rho+1}^{(\overline{1})}(\bar{x}) \frac{\partial f_{s}(\bar{x})}{\partial \bar{x}_{1}}+\ldots+\varphi_{\rho+1}^{(\sigma)}(\bar{x}) \frac{\partial f_{s}(\bar{x})}{\partial \bar{x}_{s}}+f_{s+\rho}^{*}(\bar{x})=0
$$

and returning to the original coordinates we obtain the congruence

$$
f_{s+\rho}^{*}(x)=0(\bmod t) .
$$

Similarly we can show that if $f_{s+\rho}^{*}(x)=0(\bmod \boldsymbol{t})$ then also $f_{s+\rho}=0(\bmod \boldsymbol{t})$. This proves the Lemma.

As a consequence of the previous results we thas state.
Theorem III. - If $f(x)$ is represented by (12) and the partial factorisation cannot be continued, then ρ is unique, independent of the way the partial factorisation has been carried out.
9. We extend here the previous, without proofs, to varieties with $M(s, \delta)$ at O. We use the notation of $\S 7$ and we thas state.

Theorem IV. - Let V have $M(s, \delta)$ at O and let the equation of V be $f(x)=0$, where $f(x)$ is given by (9). If the process of partial factorisation with respect to $\psi_{1}, \ldots, \psi_{1}$ terminates, then ρ is unique, independent of the way the partial factorisation has been carried out.
10. In this paragraph we prove certain results about isolated s-ple points. We first state and prove

Theorem V. - If V has an isolated s-ple point at 0 , then so has any analytic transform regular at 0 .

Proof. - Suppose that this theorem is not true. Then we can find an analytic transform \boldsymbol{W} of \boldsymbol{V} which is regular at \boldsymbol{O}, such that the point \boldsymbol{O} is not of the type $M(s, O)$. Then on \boldsymbol{W} there exists an analytic curve $\boldsymbol{\Gamma}$ which is \boldsymbol{s}-ple on \boldsymbol{W}. Suppose that \boldsymbol{W} is given by $f^{*}\left(x^{\prime}\right)=0$, where $(x),\left(x^{1}\right)$ are related by the equation (1). Let $P_{1}(t), \ldots, P_{d}(t)$ be the Puiseux's expansion of I , where

$$
P_{i}(t) \in K\left\{t_{6}\right\}, i=1,2, \ldots, d .
$$

Let Γ_{1}, given by $Q_{1}(t), \ldots, Q_{d}(t)$ be its transform in A_{d}. Then Γ_{1} is an analytic curve (possibly even an algebraic curve). Let γ be the tangent to Γ_{1} at \boldsymbol{O}. Suppose γ does not lie in the prime Π given by

$$
\pi(x) \equiv \pi_{1} x_{1}+\ldots+\pi_{d} x_{d}=0 .
$$

Now \boldsymbol{O} is an isolated \boldsymbol{s}-ple point of \boldsymbol{V}. Let \boldsymbol{p} be the maximal prime ideal of $Q\left(O / A_{d}\right)$. Then the extended ideai $p_{0}=\Omega(s-1) . Q\left(O / A_{d}\right)$ is p-primary (cf. § 6) and thus for some positive integer \boldsymbol{m} we have $[\pi(x)]^{m}=0\left(\bmod \boldsymbol{p}_{0}\right)$. Now (x), (x^{\prime}) are related by (1), hence on substitation we obtain $\pi(x)=\pi_{1}\left(x^{1}\right)$, where $\pi_{1}\left(x^{\prime}\right) \in K\left\{x^{\prime}\right\}$. If follows from § 5 that

$$
\left[\pi_{1}\left(x^{\prime}\right)\right]^{m}=0[\bmod \Pi(s-1)] .
$$

Now

$$
\left[\bar{\pi}_{1}(t)\right]^{m}=c t^{M}+\ldots, c \in K, c \neq 0 \text { and } M=n m
$$

where n is a positive integer. But if $F^{\prime}(x)$ is any member of $\Pi(s-1)$, then $F(t)=0$. This leads to a contradiction and establishes the truth of Theorem V.

We point out that the analogons result is not true in the theory of valuations. Let $R=K[x, y]$ be the ring of polynomials in $\boldsymbol{x}, \boldsymbol{y}$ over \boldsymbol{K}. Let Σ be the quotient field of R and R^{\prime} be the completion of R. Let \boldsymbol{p} be the maximal prime ideal (x, y) in R. Suppose R_{1} is the quotient ring R_{p}. Then R_{1} is isomorphic with a subring of R^{\prime}. Suppose B is a zero dimensional valuation of rank one and the value group Γ of \boldsymbol{B} is isomorphic to the additive group of integers. Let $v(\xi)$ denote the value of ξ in B and suppose $v(x)>0$, $v(y)>0$. Let Σ^{\prime} be the quotient field of R^{\prime}. Then $\Sigma \subseteq \Sigma^{\prime}$ and \boldsymbol{B} extends in Σ^{\prime} to a valuation \boldsymbol{B}^{\prime} of dimension zero and rank two i.e. if we identify $\boldsymbol{\Sigma}$ with a subfield of Σ^{\prime}, then there exists an element ξ of Σ^{\prime} such that $v(\xi)>v(\eta)$
for any $\eta \in \Sigma$. Thus there exists a one-dimensional valuation \boldsymbol{B}^{\prime} of $\boldsymbol{\Sigma}^{\prime}$ such that the valuation ring R^{\prime} of B^{\prime} contains R.

That the similar result is not true in the case of singularities, i.e. that in our particular case we cannot have an «analytic curve» which is s-ple on W, has been shown above.

We finish the paragraph by stating without proof ${ }^{(1)}$
Theorem VI. - If V has $M(s, \delta)$ at O, then so has any analytic transform W of V regular at 0 .
11. In this paragraph we study the effects of dilatations on both, geometric and analytic primals. Suppose V is a primal in A_{d} and V has $M(s, \delta)$ at \boldsymbol{O} and \boldsymbol{W} is any analytic transform of \boldsymbol{V} regular at \boldsymbol{O}. Suppose that C is of dimension δ, each point of it is s-ple on \boldsymbol{V}, it passes through O and is non-singular. We apply a dilatation to \boldsymbol{V} with \boldsymbol{C} as the base. Let II be the tangent [$\bar{\delta}]$ to \boldsymbol{C} at \boldsymbol{O}. Let V_{1} and U_{1} be the transforms of \boldsymbol{V} and A_{d} respectively. Then to every $[\delta+1]$ through $I I$ there corresponds a point of U_{1}. Let the equation of V be respresented by $f(x)=0$, where $f(x)$ is given by (6). We recall that Π has the equations $x_{1}=0=x_{2}=\ldots=x_{\Delta}$. Let O_{1} of V_{1} correspond to the $[\delta+1]$ given by the equations $x_{2}=0=x_{3}=\ldots=x_{\Delta}$. Let $\psi_{1}, \ldots, \psi_{\Delta}$ be the polynomials defined in $\S 4$ and let m_{i} be the degree of $\psi_{i}(i=1,2, \ldots, \Delta)$. Let v_{1} be the order of C and put $v=\max _{1 \leq i \leq \Delta}\left(v_{1}, m_{i}\right)+1$. Suppose $\varphi_{1}, \ldots, \varphi_{\rho}$ is the complete set of forms vanishing on C which are of degree v in the homogeneous coordinates $x_{0}, x_{1}, \ldots, x_{d}$. Suppose V lies in S_{a} and A_{d} is obtained from it by taking $x_{0}=0$ as the prime at infinity. If we transform \boldsymbol{V} and S_{d} by means of all forms of degree \boldsymbol{m}, then we say that the dilatation is of degree m (cf. also [2], 246).

Suppose, in general, we apply a dilatation of degree μ to S_{d} and V and we obtain thereby $U^{(\mu)}$ and $V^{(w)}(\mu \geq v)$. Then $U^{(v+1)}$ is in regular correspondence ([2], 248) with the join of $U^{(v)}$ and S_{d} and $V^{(v+1)}$ is also in regular correspondence with the join of $V^{(v)}$ and \boldsymbol{V}. We shall thus discuss, for simplicity, the join of $U^{\left({ }^{(\nu)}\right.}$ and S_{d} which we denote by U_{1} and we denote the transform of V on U_{1} by V_{1}. Suppose that in non-homogeneous coordinates we write the polynomials $\varphi_{1}, \ldots, \varphi_{\rho}$ in the form $\psi_{1}, \ldots, \psi_{\rho}$, where $\psi_{1}, \ldots, \psi_{\Delta}$ are defined in $\S 5$. Then $\psi_{1}, \ldots, \psi_{\Delta}$ form a basis of the extended ideal $Q\left(O / A_{d}\right) . \Omega(s-1)$ and hence

$$
\psi_{i}=\sum_{j=1}^{\Delta} \lambda_{j}^{(i)} \psi_{j}, \text { where } \lambda_{j}^{(i)} \in Q\left(O / A_{d}\right), j=1,2, \ldots, \Delta
$$

(3) The proof is similar to the proof of Theorem V.
and $i=\Delta+1, \ldots, \rho$. Suppose U_{1} is situated in A_{N}, where $N=d \rho+\rho-1$. There by a suitable arrangement of the coordinate system of A_{N} a generic point of U_{1} may be taken in the form

$$
x_{1}, \ldots, x_{d}, \frac{\psi_{2}}{\psi_{1}}, \ldots, \frac{\psi_{p}}{\psi_{1}} \frac{x_{i} \psi_{j}}{\psi_{1}}(1 \leq i<d, \quad 2 \leq j \leq \rho)
$$

or shortly $\eta_{1}, \ldots, \eta_{N}$. The origin O_{1} is a simple point of U_{1}. We assert that

$$
\psi_{1}, \frac{\psi_{2}}{\psi_{1}}, \ldots, \frac{\psi_{\Delta}}{\psi_{1}}, x_{\Delta+1}, \ldots, x_{a}
$$

may be taken as uniformising parameters of U_{1} at O_{1}. Let K^{*} be the ring of power series in

$$
\psi_{1}, \frac{\psi_{2}}{\psi_{1}}, \ldots, \frac{\psi_{\Delta}}{\psi_{1}}, x_{\Delta+1}, \ldots, x_{d}
$$

We first show that $x_{i} \in K^{*}$ for $i=1,2, \ldots, \Delta$. Let $\varphi(x)$ be any form of degree λ in $x_{1}, \ldots, x_{d^{*}}$ Then

$$
\varphi(x)=\varphi\left(x_{1}, \ldots, x_{a}\right)=\varphi\left(\psi_{1}, \frac{\psi_{2}}{\psi_{1}} \cdot \psi_{1}, \ldots, \frac{\psi_{\Delta}}{\psi_{1}} \psi_{1}, x_{\Delta+1}, \ldots, x_{d}\right)+\varphi^{(1)}(x),
$$

where $0\left[\varphi^{(1)}(x)\right] \geq \lambda+1$. We may now proced in the same way with $\varphi^{(1)}(x)$ and we find that any form $\varphi(x)$ is a member of K^{*}. In particular, $x_{i} \in K^{*}$ for $i=1,2, \ldots, d$. Hence $\dot{Q}\left(O / A_{d}\right) \subseteq K^{*}$. We know that
and thus

$$
\psi_{i}=\lambda_{1}^{(i)} \psi_{1}+\ldots+\lambda_{\Delta}^{(i)} \psi_{\Delta}
$$

$$
\frac{\psi_{i}}{\psi_{1}}=\lambda_{1}^{i i)}+\lambda_{2}^{(i)} \frac{\psi_{2}}{\psi_{1}}+\cdots+\lambda_{\Delta}^{(i)} \frac{\psi_{\Delta}}{\psi_{1}}
$$

where $\lambda_{j}^{(i)} \in Q\left(O / A_{d}\right) \subseteq K^{*}$. Hence $\frac{\psi_{i}}{\psi_{1}} \in K^{*}$ for all i. Let ζ be any element of $Q\left(P_{1} / U\right)$. Then ζ may be represented in the form $\frac{F(\eta)}{G(\eta)}$ where $G(0,0, \ldots, 0) \neq 0$, and thus we may express ζ as a power series $F_{1}\left(\eta_{1}, \ldots, \eta_{N}\right)$. From the previous results it follows that $\xi \in K^{*}$ and this proves the assertion.

Let \boldsymbol{W} be any analytic transform of \boldsymbol{V} regular at \boldsymbol{O}. Then, by Theorem VI we know that W has $M(s, \delta)$ at O. Suppose that we apply a dilatation and for one choice of the coordinate system the dilatation takes the form

$$
X_{1}=x_{1}, X_{i}=\frac{x_{i}}{x_{1}}(i=2,3, \ldots, \Delta), X_{j}=x_{j}, j=\Delta+1, \ldots, d
$$

Let $\left(x^{\prime}\right)$ be any other system of coordinates where $(x),\left(x^{\prime}\right)$ are related by (11) with $\left(x^{\prime \prime}\right)$, $\left(x^{\prime}\right)$ replaced by $\left(x^{\prime}\right)$, (x), respectively. Let

$$
X_{1}^{\prime}=x_{1}^{\prime}, X_{i}^{\prime}=\frac{x_{i}}{x_{i}^{\prime}}(i=2,3, \ldots, \Delta), X_{j}^{\prime}=x_{j}^{\prime}
$$

$j=\Delta+1, \ldots, d$, be the equations of a dilatation in the new coordinates. Then

$$
\begin{aligned}
& X_{1}^{\prime}=x_{1}^{\prime}=x_{1}+\psi_{2}^{(1)}(x)+\ldots=X_{1}+\bar{\psi}_{2}^{(1)}(X)+\ldots \\
& X_{i}^{\prime}=\frac{x_{i}^{\prime}}{x_{1}^{\prime}}=\frac{x_{i}+\psi_{2}^{(i)}(x)+\ldots}{x_{1}+\psi_{2}^{(1)}(x)+\ldots} \\
& =\frac{X_{i}+\left[\psi_{2}^{(i)}(x)\right] / x_{1}+\ldots}{1+\left[\psi_{2}^{(1)}(x)\right] / x_{1}+\ldots} \\
& =X_{i}+c_{i} X_{1}+\Phi_{2}^{(1)}(X)+\ldots, i=2,3, \ldots, \Delta \\
& X_{(i)}^{\prime}=x_{(i)}=x_{i}^{\prime}+\psi_{2}^{(i)}(x)+\ldots \\
& =X_{i}+\bar{\psi}_{2}^{(i)}(X)+\ldots, \quad i=\Delta+1, \ldots, d,
\end{aligned}
$$

where $\Phi_{j}^{(i)}(X), \bar{\psi}_{j}^{(i)}(X)$ are forms in X_{i}, \ldots, X_{d} of degree \boldsymbol{j} and $c_{i} \in K$. Hence $(X),\left(X^{\prime}\right)$ are related by an equation of the type (1) and here $\left|a_{i j}\right|=1$. Thus local dilatation is independent of the set of local coordinates and, in particular, we may take the new coordinates in the form

$$
X_{i}^{\prime}=\psi_{i}, i=1,2, \ldots, \Delta, \text { and } x_{i}^{\prime}=x_{i} \text { for } i \geq \Delta+1
$$

Hence we have.
Theorem VII. - Let V have $M(s, \delta \mid$ at O and W be any analytic tran. sform of V regular at O. Suppose that C through O which is s-ple on V is non-singular. If we apply dilatations to V and W and O_{1} corresponds on both, V_{1} and W_{1} to the same $[\delta+1]$ through the tangent $[\delta]$ to C at O, then W_{1} is an analytic transform of V_{1} regular at O_{1}.

Suppose now that V has an isolated s-ple point at O and V_{1} is obtained by a dilatation with \boldsymbol{O} as base and \boldsymbol{O}_{1} corresponds to \boldsymbol{O}. Suppose we form a sequence $\left\{V_{i}, O_{i}\right\}$ with O_{i} as the base of a dilatation of V_{i}, and O_{i+1} corresponds to O_{i}. Hence as a consequence of Theorem V and Theorem VII we have:

Theorem VIII. - Let $\left\{V_{i}, O_{i}\right\}$ be a sequence. Let $\left\{W_{i}, O_{i}\right\}$ be any analytic sequence such that W_{i} is an analytic transform of V_{i} regular at O_{i} for $i=0,1, \ldots$, and $V_{0}=V, W_{0}=W$. Then O_{i} is an isolated s-ple point of W_{i} if and only if it is an isolated s-ple point of W_{i}.
12. We end the paper by giving some results about isolated s-ple points. Let \boldsymbol{V} be a primal with an isolated s-ple point at \boldsymbol{O}. Let \boldsymbol{W} be any analytic transform of \boldsymbol{V} regular at \boldsymbol{O}. We now state and prove.

Theorem IX. - If V has an isolated s-ple point at 0 and O_{1}, O_{2}, \ldots, is a sequence of free points, then O_{r} is s_{1}-ple point on V_{r} for some r, where $1 \leq s_{1}<s$.

Proof. - Suppose this is not the case. Then there exists an analytic curve γ on \boldsymbol{W} through \boldsymbol{O} which is s-ple on \boldsymbol{W} and thas \boldsymbol{W} does not have an isolated s-ple point at O; this contradicts Theorem V and establishes the truth of the theorem.

We shall apply subsequently the above results to sequences of isolated s-ple points on primals where not all the points are free points.

BIBLIOGRAPHY

[1] Miss H. P. Hudson, On Binodes and Nodal Curves, «Intern. Congress of Mathematicians» Cambridge (1912).
[2] W. V. D. Hodge, \& D. Pedoe, Methods of Algebraic Geometri, vol. III, ch.XVIII (Cambridge, 1954).
[3] B. Smgre, Sullo scioglimento delle singolaritò delle varietà algebriche, *Ann. di Mat» (4), 33, (1952), 5-48.
[4] --, Dilatazioni e comportamenti associati nel campo analistico, «Rend. Mat. di Palermos, (2), 1, (1952), 1 - 7.
[5] J. G. Semple \& D. Kirby, Local dilatation, "J. London Math. Soc., 30 (190̈5), 417 - 422.
[6] O. Zariski \& Samuel, Commutative Algebra, vol. II, ch.VIII (D. Van Nostrand, 1960).

