On analytic primals.

Memoria di Jerzy HERszZBERG {London, W. C. 1, Gran Bretagna)

Sammary. - Cartain standord forms of equations o} primals with singularities of a given
type are investigated. Also the relation between the geometric and analytic case is given
and some analytic invariants are found. The application of these wmethods to the
resolution of singularities is indicaled.

1. In a paper on resolution of singularities [3] B. SEGRE used certain
forms of local equations of d-folds lying on non-singular (d - 1)-folds.
He derived, by means of these methods, some results about the geometric
properties of the variety. Some properties of analytic primals were later on
discussed by him in [4].

In the extensive paper [3] only a small part of it was devoted to a
detailed discussion of the relation between the geometric and analytic methods.
In this paper we show, by means of an example, that the method of choosing
local equations may change in some cases the geometric properties of the
variety at the point in question. Furthermore we derive a set of conditions
under which we can apply the methods of analytic transfosmations, therehy
simplifying, and not altering, the geometric situation. We also obtain some
new results in this connection.

2. In this paragraph we give an example of a possible behaviour, under
analytic transformations, of a surface F in S, with a double curve C. For
simplicity we use non-homogeneous coordinates x, y, z.

Let F be the surface whose equation is
@ + 2wy + ¥ 2 (@, ¥, 2) + 2@ + 22y + ¥°) of2 (2, yR) +
&fs (w, 9, ) =0,
where f; (0, 0, 0) =0 and

[f‘2(03 O: O)}z “‘fs(O; 0’ O) fl(o, O) O}:%:O’

but f,, f., f: are otherwise general.
This surface F has a double point at the origin and on F there is a
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double curve C whose equations are
2y +y=0 2=0.

The curve C has a donble point at O and the use of dilatations [3} is
restricted to bases which are non-singular. Thus to resolve the singularity
of F at O (or, strictly speaking, the singularity of F through Q) we first
have to apply a dilatation with O as base. We obtain thereby the proper
transform of §; which is a non-singular threefold M, and the proper
transform F, of F on it. Ou F, there is a donble curve (; which is the
proper transform of C and a double burve E, corresponding to the point O.
To resolve the singularities of F;, we have to apply, at least, two more
dilatations, one with C, as base and one with E, (or, strictly speaking, with
its proper transform) as base, in total, at least three dilatations.

Now in the problem of resolution of-singularities one often deals with
a sequence of consecutive points and whith the behaviour of a given variety
at these points. To facilitate the analysis one often allows the use of local
coordinates which are analytic transforms of x, y, z, regular at the point in
question. Returning now to the surface F, suppose we are interested in the
behaviour of F at O and we allow the following analytic transformation:

1,1 1 5 S
t=x+2Y—5Y —é?)‘s—‘ Ig?f" 12@95—---=96+ ¥+ Vi—y,

1 1 1 5 RE—
p=x+ 50+ g9+ v+ T2§y5+u-=w+y—y\/l—-a,

gy = 2.

This transformation is certainly regular at O. Then a4y, = «° + 2wy + ¥°
and the «local equation»> of F may be written in the form

wl Y Fa(ey, 91, 24 + 2n2: B, v, 210 + 25 Fa(wy, 91, 21) =0,
where Fx,, ¥:, #:) is a power series, convergent for small
by |, 9], 2] for =1, 2, 3, and Fy0, 0, 0)5=0
[F:(0, O, 0)f — F,(0, O, 0). Fy(0, 0, 0)==0.

Here we have two double <linesy through O, given by %, =2 =0
and gy, =# =0 and to resolve the singularity we first apply the loeal
dilatation

Xy == Pgy, Y1 = Yo, P = %0,
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so that the local equation of the proper transform F, of F becomes
(%2, Yor Yo 22) + 2002 F5(202, Yoy Yo 22) + 2" Fa(202, Yo, Yo 22) =0
and here the tangent cone at the origin 0, is
2" Fi(0, 0, 0) 4 22.2.F5(0, 0, 0) + 2,°Fy(0, 0, 0) =0

which is a pair of distinct planes and on subsequent application of local
dilatation with the line ax, = 0 = #; as base, there will correspond fiwo simple
points to the point O,. Thus from the above example it can be seen that if
we allow a choice of local coordinates the number of dilatations required is
fwo, whilst in the geometric case the number is {hree at least. Also the
dimension of the base can be altered. Hence the two situations are not the
same and the complications may be greater and may occur in various
neighbourhoods of the point with which we are concerned. Of course, the
application of analytic transformations simplifies the algebra’ considerably in
most cases and we establish here which geometric properties can be
preserved, and also obtained, when analytic transformations and local dila-
tations are allowed. Thus in this parer we consider the relation between the
analytic and geometric case, and the conditions under which we can derive
geometric results by applying analytic transformations and local dilatations.

Throughout we suppose that the ground field K is the field of complex
numbers.

3. We now give precise definitions fo the terms geometric and analytic
properties and to geometric and analytic methods.

Let V be a (d — 1)-fold lying on a non-singular d-fold U situated in
An. Any global property of V or its birational transform will be called a
geometric property. Furthermore only birational transformations of V into V,
which are regular at a generic point of V and V, will be allowed in the
geometric case and such will be called geomefric methods. Let O be a point
of V and @, ..., z; be local uniformising parameters of U at O. Then Vis
represenfed in the quotient ring of O, denoted by Q(O/U), by a single equa-
tion which may be written in terms of the local uniformising parameters
X1, «v, g asS a power series

fle) = f(x) + foqu (@) 4 ... =0,

where fi(x) is a form of degree { in a,, ..., 24, 8 = 1 and f,(ax)3=0. This is
called the Jocal equation of V at O and O is an s-ple point of V. We
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write O[f(x)] =s, where in general O[F(x)] denotes the order of F(x). If

d ] oy N
(1) ;= XZ apxh + o) (&) + o) + .., i=1,2,.., d,

=1
where cp(,f’(w’) is a form of degre n in x/,.., &g and A = | a; | &0, then
xy, ..., €5 may be taken as new local coordinates and the local equation of V

then becomes
) = fH&) + fiale) + .. =0.

We say that flx) and f*(x') are analyticallly equivalent at O, or just equiva-
lent at Q. If f*(x') = O rappresents an analytic primal W, then we say
that W is an analytic transform of V regular at O. We use the same
symbol O as a point of V and W. Similar procedure will be adopted
throughout, 4.e. O; will denote a point of V; and W; if W; is an analytic
transform of V; regular at O;. We do not introduce new symbols as no
possible confusion can arise.
The following properties may be easily verified ;

{i) the transformation (1) is reversible and «’; may be expressed as a
power series in- @, .., x4 for ¢ =1, 2. ..., d,

(ii) the analytic equivalence at O of the power series is a frue
equivalence relation,

(i) fs{x) and fy (/) are projectively equivalent.

Also, if in Q(0,/U,), a (d — 1)-fold V, is given by the vanishing of a
polynomial f(x,, ..., xz) in the local uniformising parameters o, ..., xq of U, at O,
and (x), (¢} are related by (1), then we say that W, given by f*x') =0 is an
analytic transform of V, regular al O, In virtue of (ii) and (iii), the mul-
tiplicities of V, and W, at O, are the same. Also the tangent cones are
projectively equivalent. Any property of V. at O, invariant under the tran-
sformation (1) will be referred to as an analytic property of V;a£0,. Methods
which allow transformations of the type (1) will be called analytic methods.
Also any local dilatation [3], [b] of W, wil be allowed when analytic methods
are applied.

Before we investigate further properties, we first consider the geometric
case in some detail.

4. Let V be a primal in A4 having an s-ple point at O. Suppose C is
a subvariety of V of dimension & such that (i) each point of C is s-ple on
V, (ii) C is a simple point of C, (iii) there is no s-ple subvariety D of V,
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other than C, which is of dimension & (&, > 0} and which passes through O.
Then we say that V has M(s, 8) at O. In this paper we shall investigate
cerfain properties of points of this type only. Throughout we denote by A the
integer d — 8. In Q(0/4,;) the subvariety C is represented by an ideal Ps;and
since Chas a simple point at O, therefore the-extended ideal §(0/4,). P; of non-
units in (@/04,) has a basis consisting of A elements (2], 132), and, in particular,
we may choose the basis to be polynomials in ay,..., ;. This can be easily done
by multiplying each element of the basis by a suitable unit of Q(O/4,). Indeed, if
we arrange the coordinate system so that the tangent [8] to € at O has the
equations x; =0, i =1, 2, ..., A, then we may choose as the basis of Ps the
polynomials ¢, ..., by, where ;= a; 4- 9; and O(p;) = 2 for ¢ =1, 2, ..., A.
We observe that ¢,, .., 4 may be taken as a system of parameters in
Q(Cs/Aqg). Hence ([6], 292), if fi(d., ...,0a) is a form of degree ¢ in ¢y, .., ¢a
with coefficients ajx., ..., x4} in the polynomial ring Kz, ..., x4], written
shortly K[x], then f;(¢) = O [mod(P{t")] if and only if all the coefficients a;(x)
in the form f;()) are members of Pj.
We now write the equation of V in the form

fle) = folby, ooy da) +Foalda, ooy da)+ o - fo =10,

where f{d) is a form of degre 7 in ¢, ..., ¢y with coefficients in K[x] and
we suppose that fi()=F0[mod(P{tY)| tor i =0, 1, ..., s — 1.

Then f(x) = 0[mod(P5)] if and only if fi{¢)=O0for ¢=0, 1, .., s — 1.
But Cs is s-ple on V. Thus the equation of V may be written in the form

(2) f(m} == fs{";)ly veey LPA) = O.

We call it the slandard equations of V with Mis, 3) at Q.

We point out that the converse is not true. Howewer, if the equation
of V can be put in the form (2} and 0 [f:(d)] = s, and A, as defined previously,
is the least integer with this property, then V has an s-ple point at O and,
furthermore, any point of the variety C given by ¢, =0 =, =...= ¢, is
s-ple on V. But in this case V has only M(s, 3} at O if

(i) C has a simple point at O,

(ii) there is no other subvariety D of V through O which is of
dimension %, (3, > 0) and which is s-ple on V.

5. Let flx) =0 be an equation of an analytic primal W. Suppose there
is an analytic subvariety D of dimension 3 through O which has simple
point at O and whose points are s-ple on W. By this we mean that the
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equation of W can be written, by a suitable choice of the local coordinates,
in the form

(3) f(w) = -F(('I)h ooy "IJA) == 07
where

bi=ai+ o8 + o, i=1.2 .., A, O[ff®)]=s,

and, as before, A=d— 23 and A is the least integer with this property.
Suppose that there is no other subvariety of dimension 8, =3 through O
which is s-ple on W. Then we say that W has M(s, 3) at O. Thus, if V
is any algebraic primal having M(s, 3) at O and W is an analytic transform
of V regular at Q and having M(s, 3,) at O, then certainly 3, = 2.

We also extend the definitions of multiple subvarieties to analytic

primals. We first introduce some general notation which will be used
”

throughout. Let o denote some differential operator of the form

. : dt+r—1\,.
with A, 4 2, 4 ... 4+ Ad=r. Then for a fixed r there are - distinot

forms that o™ can take. Let w™f(x), r =0, 1, ..., o) be all possible deriva-

tives of f(x), w9f(x) =f(x) | atogether (d_: G) terms } .

The ideal generated by all these polynomials will be denoted by Q (o).
If flx) is a power series, we give the same definition to w” and we define
in a similar way an ideal II(c) generated by o™ flx) [r=20, 1, ..., o] in K{x},
where, in general, K{x} denotes the ring of power series Kiw,, .., g} -
Suppose that f(x) = 0 represents an analytic primal of dimension d-—1 and
sappose that II(s — 1) determines in K {»} an analytic variety (not necessarily
pure) of dimension % and II(s) is the unit ideal. Then we say that W has
an s-ple subvariety through O of dimension 2.

Suppose _that flx) = F(&), where (x), () are related by (1), flx) is a
polynominal and F(a') is possibly a power series. Then
b _ g 3F 2w
Su; =1 0%, 3ot

and hence, if

o f(x) = " () = g(@),

say, it follows that g(x) = O[mod II(s)] for » =< s. We shall use this result
in § 10.
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6. We now suppose that V bas M(s, 3) at O, but the verfex of the
tangent cone of V at O has dimension t and ©> 8. This is the case, for
example, with a surface F having a binode B, at O which is of the type
M2, 0), but the vertex of the nodal tangent cone is of dimension one
if > 2.

We discuss the general problem first. Suppose that f(x) is a polynomial
of the form

(4) f(w,) - fs(q;l 3 eery ma) + fs—l—l(m) "'I— oe +fn(m>;

where 1 << o <d, s> 1. Then it may be possible to write the polynominal
f(x) in the form

(5) [ (X7, s X)) 4 fopal®) F oo + Fl®),

where X = w; + ¢! fori=1, 2, ..., o, and ¢¥ is a form of degree 2 in w,
X2, o, g and in (3) possibly fiw) is ditferent from that in (4) for

i==s -+ 2, .., 2s,

and also m may be different from n if n < 2s.
Let Xi* be a general notation for any polynomial of the form

X =w b+ o, i=1,2 ., 4,

where «:p(,.“ is a form of degree r in @,, x,, ..., 4. Suppose there exist poly-

nomials X\ | ..., X®gsuch that fla) may be written in the form
(6) )= fX, oy XY+ fogp+ o+ By,
where here f; is possibly different from that in (4) for ¢ =8 4+ ¢, ..., p8 and

N may be differnt from n if n < ps. We call it the process of partial
factorisation and if p > 2, we say that for the polynomial (5) the process can
be continued. This method was first introduced by Mrss H. P. Hupson [1]
in the study of surfaces with binodes.

If in the expression (6) the process cannot be continued and fi(x)4=0 for
some i, $+ p < ¢ = N, then we say that the partial factorisation terminaies.
It /ifw)=0 for i=s+p, s+p+1, .., No, then we say that the partial
factorisation is completed.

Similarly, if

f(ﬂ(’) = fs(mh ey wa) + fs+1+
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is a power series, we may «partially factorise» this expression and write

f@) = 14X, ) XY forp + o)

where X{” 4 =1, 2, ..., o) are defined as above.

If there exist power series X; = u; -+ o) o 4 .. for i=1,2, .., 0
such that flx) = fJ(X;, ..., X,), then we say that the process of partial
factorisation is completed for f(x), and if it is not completed and cannot be
continued, we say that it ferminates.

We first prove

TarorEM L. - If V, given by flx)=0, is a primal in A; and it has
Mis, &) at O, and if the vertex of the tangent cone of V ai O has dimension
T, where t© > 5, then the partial factorisation of flx) must terminale.

Proor. - Since the vertex of the tangent cone is of dimension T, by a
suitable choice of the coordinate system, we may write the equation of V in
the form flx) = O, where f(x)is given by (4) and s =d —t < d. Also we may
suppose that the tangent [3] of C (cf. § 4) has the equations

0, =0=uw, = ... = x4.

Clearly the process of partial factorisation is independent of the coordi-
nate system. Let @(s — 1) = p be the ideal defined in § 5. Then the ideal p
determines a variety in 4, and the only component of it through O is the
irreducible variety C. Now x4 = 0 is an equations of a prime which passes
through the tangent |3] of C at O, hence there exists a polynomial of the
form wcy 4+ @) = plx), with O]e(x)] = 2, which vanishes on C. The exfended
ideal py=p. QO/4,) is a 3-dimensional ideal determining (" in Q(0/4,).
Henece [px)]™ = O[mod (p,}} for some positive interger m ([2], 16}. Hence

{7) [p@)]™ = @ifa) Fi(e) + ... + palx}F, (),
where o;(x) € @(0/A,;) and Fix) denotes some polynomial of the form
oPfe), 0<vr <s—1, i=1, 2, ..., .

Since V has M(s, ) at O, we assert that the partial factorisation cannot
be completed. For suppose we can complete it. Then fix) = fs(Xf,r’) , oy XP for
some p and thus the (d — 1)-fold V has an s-ple subvariety of dimension
d—oc=1>8,givenby X! =0, i=1, 2, ..., o, which passes through O and
this contradicts the assumption that V has M(s. &) at O. This proves the
assertion. Suppose now that the partial factorisation does not terminate and
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cannot be completed. Then we can write f(x) in the form (6) for every p=1
and N, is an integer which depends on p an fix)=0 for some i,

s+p=i=N,.

In particular, in (6) we take p=m. Then consider the algebraic curve I
whose equalions are

szu =0 =12 .,,0

;=0, j=o-+1, .., A—1 A+1, .., d.

This curve has a simple point at O and its tangent at O is the axis Ox,.
Hence its Puiseux’s expansion at Q is of the form

wi:aiztz—[—aiats—l-..., T = 1, 2, ey A— 1, A+ 1, ey d, wA:'t,
where a;; is an element of K. Substituting this expansion in (7) we obtain

17 4 = 9 (8) Bu(l) + o+ 0u(8) o),

where

Dill) = PilOal® + ey wry @al® 00
and Fi(f) is similary defined for ¢=1, 2, ..., «. We observe that since
oix) € QO/A4,), hence O[p(t)]=>=0. Let w™f(x)= f"(«x). By the definition of I''we

()

have { X; (f)} = 0. Hence ["() = ¢(f), where O[g(f)] = s 4+ m — r, and therefore

OleOF () + o + 9O P =s+m — (s —1)=m +1>m

which leads to a contradiction. Thus the partial factorisation must terminate
in this coordinate system and hence also in any other coordinate system.
This establishes Theorem I.

7. We may obtain Theorem I in a slighlty different form. Since V
M(s, 3) at O, the equation of V is of the form (2). We may write it

®) fibis oy o) + foaalba, ooy da) + oo 4 Falds, ooy $2)=0,

where o, A have the same meaning as in the previous paragraph, and fi(¢))
is a form in ¢, ..., $a if degree i with coefficient in Klx].

Let x{” be a general notation for any polynomial of the form
Xigp) = ¢ + 6(21’)(4’) + e e(p“(q’)y i=1, 2, .., o,
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where 8/ (4) is a homogeneous polynomial in ¢,, .., $s of degree j with

coefficients in K[x]. Then we may write

) F@) = 07, o, X A Fond) oo A+ Fv),

for some p, and here fi() is not, in general, the same as f;($)in (8) for
t=8-40p, .., sp. We call it the process of partial faclorisation with respect
to ¢y, ..., $a. As before, since V has M(s, ) at O and A >0, we may show
that this process must terminate but we do not inelude the proof as if is
gimilar to the one of Theorem I. Thus Theorem I can now be stated in
the form of

TaroREM II. - With the hypothesis of Theorem 1, the process of partial
faclorisation with respect lo &y, ..., $a must terminate.

8. In this paragraph we prove various results in connection with
analytic transformations. We observe that every amnalytic transformation of
the type (1) may be written as a product of a linear fransformation

a
(10) 2 = ( 121 Aries )/ 4,
where A4; is the cofactor of a; in the determinant | 45 | = A, followed by
the analytic transformation
(11) o = o + g + ..,

where

d
g;.ﬂ=( 2 Ay )/A.

A=1

In what follows we shall assume that the analytic transformations are
of the type (11). Let f(x) be given by (4). Let ¢ be the ideal generated by

ofs of;

ru— , EET *
oy ? dae,

We tirst prove

Lemma 1. - Suppose thot f(x) can be written in the form (6) for some
p = 1. Then the partial factorisation can be continued if and only if
fere =0 (mod ¢).
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Proor. - If f,,, = O(mod ¢), then [, = aw; + ... 4 a,0,, Where w; =

_

= and a; is a form of degree p -1 for ¢ =1, 2, ..., . Then

1(XE + gy, X+ a0) = f(XE) + § am; + o),

where Olgpx)] =84 p+ 1.

Hence f(x) can be written in the form (6) with o replaced by g 4 1.
Conversely, if f(x) is represented by (6) with p replaced by g -4 1, then

XEPW =X 4 ol (1=1, 2, ., o)
and

f@) = £,(X9) + g G i A [ s 4 o 15,

- fs(X‘P)) + fs-l—-() = f:j{-p-l-l + e fITIp .
Thus foq, = ﬁ CP((QH w; = 0 (mod. ¢) which proves the Lemma.
==}

We now show that if the partial factorisation is completed in two
ways, 4. e. if

(12) fl@)= f(X¥, ., X4 ..+ fwm

(13) = f{XD7, ) (X)) + flie + oo Ry

then r = p. To prove this it will be sufficient to show that if f(x) is

represented by both (12) and (13), and » = p, and if also the partial factorisation

can be continued in one case, then it can be continued in the other case too.
We prove it in

Levma 2. Let f(x) be represented by the iwo equations (12) and (13)
with v = p. Then [y, = 0(mod '¢) if and only if fiyr, =0 (mod ¥).

Proo¥. - Sappose [, = 0 (mod ¢). Then we may continue the process
of partial factorisation in (12). In this case put Xy™' =z, fori=1,2, .0
and o; = a; for i =o -1, ..., d. This is an analytic transformation. regular
O. Then

(14’) f(m) = fs(af'la ey 5-70') -+ fs+p+1 (%) 4 .
Also
X" =2; + ¢P(E)fu, i=1,2 ., 0
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and hence
F@) = [(@ 4+ o0 @ + )y oy To+ 90 @) + )+ @) +

We now express

Fo@ A 0 (@) 4 ey s B+ 9L (@) - )

in the form

[s @y ey To)+ Foaal®) + o
and comparing it with (14) we find that
o @) =i 2) = .. =¢P@) =0 tor i=1,2, ..,0
where o = p. Thus
F@)=[(@ + 905 @ + )y o) T 9T @+ ) + 5@ +

and equating the forms of degree s o in this expression and in (14) we
find that

of; @)

o2 L 1 ol L

+fs+o( )'—‘O

and returning to the original coordinates we obtain the comgruence
farse) =0 (mod ).

Similarly we can show that if /i, (x) =0 (mod ¢) then also fs;, = 0 (mod #)
This proves the Lemma.
As a consequence of the previous results we thus state.

TaroreM III. - If fix) is represenied by (12) and the partial factorisation
cannot be continued, then p is unique, independent of the way the paritial
factorisation has been carried out.

9. We extend here the previoas, without -proofs, to varieties with
M(s, 3) at O. We use the notation of § 7 and we thus state.

TaroREM IV. -« Let V have M(s, 8) at O and let the equation of V De
f) =0, where f(x)is given by (9). If the process of partial faclorisation
with respect to ¢, ..., $a terminates, then ¢ is unique, independent of the
way the partial factorisation has been carried out.
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10. In this paragraph we prove certain results about isolated s-ple
points. We first state and prove

TreorEM V. - If V has an isolated s-ple point at O, then so has any
analytic transform regular at O.

Proor. - Suppose that this theorem is not true. Then we can find an
analytic transform W of V which is regular at O, such that the point O is
not of the type M(s, 0). Then on W there exists an analytic curve I' which
is s-ple on W. Suppose that W is given by f*) =0, where (¥), (') are
related by the equation (1). Let Py(f), ..., Py(f) be the Puiseux’s expansion
of T, where

P;(1) e Kit},i=1,2, ..., d.

Let Iy, given by Q.(f), ... Q4% be its transform in A4, Then I; is an
analytic curve (possibly even an algebraic curve). Let y be the tangent to I';
at Q. Suppose 1 does not lie in the prime II given by

Tc(m) = T40y + . '—l— ndmd = 0-

Now O is an isolated s-ple point of V. Let p be the maximal prime
ideal of Q(O/A;). Then the extended ideai p, = Q(s — 1). Q(O/A4,) is p-primary
(cf. § 6) and thus for some positive integer m we have [n(x)]™ = 0 (mod p,).
Now (x), (x') are related by (1), hence on substitution we obtain wn(w) = m,(x"),
where 7 (x'ye K{a'}. If follows from § B that

[ (@)™ = O[mod (s — 1)].
Now

M@ =ct .., ceK, ¢c=0 and M = nm,

where n is a positive infeger. Buf if F(x) is any member of II(s — 1), then
F(H)y = 0. This leads to a contradiction and establishes the truth of Theorem V.

We point out that the analogous result is not true in the theory of
valuations. Let B = K[, y] be the ring of polynomials in x, y over K. Let T be
the quotient field of R and R’ be the completion of R. Let p be the maximal
prime ideal (@, ) in R. Suppose FE; is fthe quotient ring R, Then R, is
isomorphic with a subring of R’. Suppose B is a zero dimensional valuation
of rank one and the value group I' of B is isomorphic to the additive group
of integers. Let v(£) denote the value of £ in B and suppose v(x) > 0,
v(y) > 0. Let ' be the quotient field of . Then £ C ¥’ and B extendsin X’ to
a valuation B’ of dimension zero and rank two i.e. if we identify-3 with
a subfield of X/, then there exists an element £ of I’ such that v(E) > v(x)
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for any v € ¥. Thus there exists a one-dimensional valuation B’ of £’ such
that the valuation ring R of B’ contains R.

That the similar result is not true in the case of singularities, i.e. that
in our particular case we cannot have an «analytic curve» which is s-ple
on W, has been shown above.

‘We finish the paragraph by stating without proof (%)

THEOREM VI. - If V has M(s, 3) at O, then so has any analytic
transform W of V regular af O.

11. In this paragraph we study the effects of dilatations on both,
geometric and analytic primals. Suppose V is a primal in 4, and V has
M(s, 8) at O and W is any analytic transform of V regular at Q. Suppose
that C is of dimension 3, each point of it is s-ple on V, it passes-through O
and is non-singular. We apply a dilatation to V with C as the base. Let II
be the tangent [8] to C at O. Let V, and U, be the transforms of V and 4,
respectively. Then to every {3 -+ 1] through II there corresponds a point of U,.
Let the equation of V be respresented by f{x) = 0, where f{x) is given by (6).
We recall that I has the equations #; = 0 = 2, = ... == @a. Liet O, of V, correspond
to the [5 4 1] given by the equations ;=0 =2, = ... = 5. Let ¢, ..., 44 be
the polynomials defined in § 4 and let m, be the degree of §; (i =1, 2,..., 4).
Let v, be the order of C and put v = max (v, ms) - 1. Suppose ¢, ..., ¢, is

1<i<A
the complete set of forms vanishing on C which are of degree v in the

homogeneous coordinates x,, @, ..., ®4. Suppose V lies in S; and 4, is
obtained from it by taking «, = O as the prime at infinity. If we transform
V and S; by means of all forms of degree m, then we say that the dilatation
is of degree m (cf. also [2], 246).

Suppose, in general, we apply a dilatation of degree p to &; and V
and we obtain thereby U™ and V% (p=v). Then UC+! is in regular cor-
respondence ([2], 248) with the join of U® and S, and V®+D is also in
regular correspondence with the join of V® and V. We shall thus discuss,
for simplicity, the join of U® and S; which we denote by U, and we denote
the transform of V on U, by V,. Suppose that in non-homogeneous coor-
dinates we write the polynomials ¢, ..., ¢, in the form ¢,, .., J,, where
$y, «., $a are defined in § . Then ¢y, ..., ¢a form a basis of the extended
ideal Q(0/4,). Q(s — 1) and hence

A . .
i = 2 A7, where M’ € Q0/4,),j =1, 2, .., A
j==1

{1) The proof is similar to the proof of Theorem V,
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and ¢=A -+ 1, ..., p. Suppose U, is situated in Ay, where N=dp + p— L.
There by a suitable arrangement of the coordinate system of Ay a generic
point of U, may be taken in the form

b Gl g g
s, g, 2, e M o= 22 <)),
X1 Lg q)l 3 3 4)1 (!)1 ( ’ 7 P)

or shortly %, ..., yn. The origin O, is a simple point of U,. We assert that

be

A
q)l,q):, 10y %:,x,;_,.l, ...,md

may be taken as uniformising parameters of U, at 0,. Let K* be the
ring of power series in

4)17 4)2 Q)A

-— ey = 4 X ey Ly
4)1 ’ ’ (1.)1 ’ 4+1J )y g

We first show that x;e K* for ¢=1, 2, ..., A, Let o{x) be any form of
degree X in @, ..., ;. Then

s

cp(x)ch(mlr sy md) = QP("PI: E . ('I)l, eeey % q)l) mA+17 mawd) + cp‘l’(m),

where O[¢™ (x)] =X 4 1. We may now proced in the same way with ¢% (x)
and we find that any form g(x) is a member of K* In particular, x;e K*
for ¢ =1, 2, ..., d. Hence Q(0/4,;) € K* We know that

G = MWy o AV 9y,

and thus

peatal Lt
where 1\ € Q(0/4, € K*. Hence % € K* for all i. Let { be any element
of Q(P,/U). Then { may be represented in the form —g}% where

G0, 0, ..., 0)3=0, and thus we may express { as a power series Fi(7,, ..., nx).
From the previous results it follows that £€ K* and this proves the assertion.

Let W be any analytic transform of V regular at Q. Then, by Theorem VI
we know that W has M(s, ) at O. Suppose that we apply a dilatation and
for one choice of the coordinate system the dilatation takes the form

Xlzml,.Xi:a{’ {3.=2, 3, weey A), Xj:xj, ?‘=A+17 cony d.
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Let (x') be any other system of coordinates where (x), (x') are related by
(11) with (x"), («') replaced by (), {x}, respectively. Let

i .
X =x', Xi= g (7/'-:2: 3, e, b)), Xj,:mj,;

i
j=A4+41, .., d, be the equations of a dilatation in the new coordinates. Then
X/ = o = a:+ V() + ... = X + X)) + ..

Cw V) + .
B R

_ X[ () s A
4 [ ) s + .

=X+ eaX, +OVX) o, i =2, 8 .., A
X(Ii) = @y = w; 4+ §F (@) + ..
=X + WX +, i=A41, .., 4,

where @?’ (X, _}i’ (X) are forms in X, .., X; of degree j and c;eK.
Hence (X), (X') are related by an equation of the type (1) and here | ay | = 1.
Thus local dilatation is independent of the set of local coordinates and, in
particular, we may take the new coordinates in the form

Xi =, i=1,2, .., A, and o/ = a; for i=A + 1.

Hence we have.

THEOREM VIL. - Let V have M(s, 3) at O and W be any analytic tran-
sform of V regular at 0. Suppose that C through O which is s-ple on V is
non-singular. If we apply dilatations to V and W and O, corresponds on
both, V., and W, to the same [8-+ 1] through the tangent [3] to C at O,
then Wi is an analytic transform of V. regular ot O,.

Suppose now that V has an isolated s-ple point at O and V; is obtained
by a dilatation with O as base and O, corresponds to O. Suppose we.form
a sequence {V;, O0;} with O; as the base of a dilatation of V;, and O;y
corresponds to O;. Hence as a consequence of Theorem V- and Theorem VII
we have:
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TEeEoREM VIIL. - Let {V;, O;} be a sequence. Let { W;, O;} be any
analytic sequence such that W; is an analytic transform of V; vegular af
O; for i=0,1, ..., and Vo=V, Wo= W. Then O; is an isolated s-ple poini
of W, if and only if it is an isolated s-ple point of W,

12. We end the paper by giving some results abouf isolated s-ple points.
Let V be a primal with an isolated s-ple point at Q. Let W be any analytic
transform of V regular at O. We now state and prove.

TaroreMm [X. - If V has an isolated s-ple point at O and O,, O,, ...,
is o sequence of free points, thew O, is s,-ple point on V, for some 7,
where 1 << 8, < s.

Proor. - Suppose this is not the case. Then there exists an analytic
curve Y on W through O which is s-ple on W and thus W does not have
an isolated s-ple point at O; this contradicts Theorem V and establishes
the truth of the theorem.

We shall apply subsequently the above results to sequences of isolated
s—ple poinfs on primals where not all the points are free points.
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