
On analytic  primais. 

h[emoria di JE~zg ~ERSZBERG (London, ~¥. C. t, Gran Bretagna) 

Summary. -Cartain standard forms of equations o t primals with singularities of a given 
type are investigated. Also the relation between the geometric and analytic case is given 
and some analytic invariants  are found. The application of these methods to the 
resolution of singul~arities is indicated. 

1. In  a paper  on resolut ion of s ingulari t ies  [3] B, SEG:RE used certain 
forms of local equat ions of d-folds  lying on non-s ingular  ( d - ~  1)-folds. 
He  derived, by means of these methods, some results  about  the geometric 
propert ies  of the variety. Some propert ies  of analytic primals were later  on 
discussed by him in [4]. 

In the extensive paper  [3] only a small part  of it was devoted to a 
detailed discussion of the relat ion be tween the geometric  and analytic methods. 
In this paper  we show, by means of an example,  that the method of choosing 
local equat ions may change in some eases the geometric  propert ies  of the 
variety at the point in question. Fur the rmore  we derive a set of conditions 
under  which we can apply the methods of analytic t ransfosmations,  thereby 
simplifying, and not altering, the geometric situation. We also obtain some 
new results  in this connection. 

2. In this paragraph we give an example of a possible behaviour,  under  
analytic transformations,  of a surface F in S~ with a double curve C. For  
simplici ty we use non-homogeneous  coordinates x , y ,  z .  

Let  F be the surface whose equat ion is 

(x 2 -[- 2 x y  -4- yS)~. f l  (x, y ,  z) -b 2@ 2 -{- 2 x y  A- Y~) zf~ (x, y,z) -[- 

z2f~ (x, y, z )=  O, 

where fs (0, O, O) :~= 0 and 

[f2(o, o, 0)] 2 -  h(o, o, o) f~(o, o, o )#o ,  

but f l ,  [2, f3 are otherwise general. 
This surface  F has a double point at the origin and on F there is a 
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double curve C whose equat ions are 

x~+2xy+y3=O, ~=0. 

The  curve C has a double point at O and the use of dilatations [3] is 
restr icted to bases which are non-singular .  Thus to resolve the singulari ty 
of F at O (or, str ictly speaking, the singulari ty of F through O) we first 
have to apply a dilatation with O as base. We  obtain thereby the proper 
t ransform of S~ which is a non-s ingular  threefold Mi and the proper  
t ransform F~ of F on it. Ou F~ there is a double curve C~ which is the 
proper  t ransform of C and a double burve E1 corresponding to the point O. 
To resolve the singulari t ies  of F~ we have to apply, at least, two more 
dilatation% one with C~ as base and one with E~ (or, str ictly speaking, with 
its proper  t ransform) as base, in total, at least three dilatations. 

Now in the problem of resolution of -~ singulari t ies  one often deals with 
a sequence of consecutive points and whith the behaviour  of a given variety 
at these points. To facil i tate the analysis one often allows the use of local 
coordinates which are analytic t ransforms of x, Y, z, regular  at the point in 
question. Returning now to the surface F, suppose we are interested in the 
behaviour  of F at O and we allow the following analytic t ransformat ion:  

I y~ 1 1 5 y~ 
x ~ - x + 2 y - ~  - ~ y ~ -  Y~-  128 . . . - x + y + V l - - y ,  

1 1 1 4 5 y~ 
y~--x+ 2y2+~y~ {_~y  .+.]~_~ + . . . - x + y - y V l - y ,  

This t ransformation is certainly regular  at O. Then x~y~ -- .~" + 2xy + y: 
and the <<local equation>> of F may be wri t ten  in the form 

where  Fi(x~, yl, z~) is a power series, convergent  for small 

t ~c, [ , I Yl 1, [ zl ] for i = l ,  2, 3, and F~(0, 0, 0)=4=0 

[F4o, o, o)] ~ -  F~(o, o, o). F~(o, o, o)4= o. 

Here  we have two double <<iines>> through O, given by x~ = z l - - - - 0  
and y~ = z l  ~.--~0 and to resolve the singulari ty we  first apply the local 
dilatation 
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so that the local equat ion of the proper  transform F~ of F becomes 

x~F~(~ y~, y~ z2) + 2x~z2F2(x2~ Y2, Y2 z2) + z2~F~(x~, y,, Y2 z~) = 0 

and here the tangent cone at the origin 01 is 

x~FI(O, o, 0 ) +  2x~z~F~(o, 0, o ) +  z~F~(o, O, o)= o 

which is a pair of distinct planes and on subsequent  application of local 
dilatation with the line x2 = 0 = z~ as base, there will correspond two simple 
points to the point 0~. Thus  from the above example it can be seen that if 
we allow a choice of local coordinates the number  of dilatations required is 
two, whilst  in the geometric case the number  is three at least. Also the 
dimension of the base can be altered. Hence  the two situations are not the 
same and the complicat ions may be greater  and may occur in various 
neighbourhoods of the point with which we are concerned. Of course, the 
applicat ion of analytic t ransformations simplifies the a lgeb ra  considerably in 
most c a s e s  and we establish here which geometric propert ies  can be 
preserved, and also obtained, when anal~:tic t ransformations and local dila- 
tations are allowed. Thus in this parer  we consider the relation be tween the 
analytic and geometric case, and the condit ions under  which we can d e r i w  
geometr ic  results by applying analytic t ransformations and local dilatations. 

Throughout  we suppose that the ground field K is the field of complex 
numbers.  

3. W e  now give precise definitions to the terms geometric and analytic 
propert ies  and to geometric  and analytic methods. 

Let  V be a ( d - - 1 ) - f o l d  lying on a non-s ingular  d- fo ld  U si tuated in 
AN. Any global proper ty  of V or its birat ional  t ransform will be called a 
geometric property.  Fur thermore  only birational t ransformations of V into V1 
which are regular  at a generic point of V and V1 will be al lowed in the 
geometric case and such will be called geometric methods. Let  O be a point  
of V and xl,  ..., xa be local uniformisifig parameters  of U at O. Then V i s  
represented in the quotient  ring of O, denoted by Q(O/U), by a single equa- 
tion which may be wri t ten in terms of the local uniformising parameters  
xl, ..., xa as a power  series 

f(z) = f,(x) + f~+~ (z) + . . .  = o, 

where f~(x) is a form of degree i in xl,  ..., ,~a, s ~ 1 and fs(x)=~:0. This is 
cal led the local equation of V at 0 and 0 is an s -p ie  point of 1I. W e  
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write O[f(x)] = s, where in general  0IF(x)]  denotes the order of F(x). If 

cl 

(1) x , =  Z 

where ¢p~>(x')is a form of degre n in x~',..., X'd and A : [a~j[=~=O, then 
xl', ..., a~'d may be taken as new local coordinates and the local equation of V 
then becomes 

f*(x') = f : (x ' )  + f:+l(x't + ... = o.  

We say that f(x) and f*(x') are analyt ical l ly equivalent  at O, or just  equiva- 
lent at O. If f*(x')~ 0 rappresents  an analytic primal IV, then we say 
that W is an analytic transform of V regular at O. We use the same 
symbol O as a point of V and W. Similar  procedure will be adopted 
throughout,  i .e.  0i will denote a point of V~ and W~ if Wi is an analytic 
t ransform of V~ regular  at Oz. We do not introduce new symbols as no 
possible confusion can arise. 

The following propert ies may be easily ver i f ied;  

(i) the t ransformation (1) is reversible and x'~ may  be expressed as a 
power series i n  xl,  ..., xa for i - - 1 ,  2 . . . .  , d, 

(it) the analyt ic  equivalence at O of the power series is a true 
equivalence relation, 

(iii) fs(w) and f*(x') are projectively equivalent.  

Also, if in Q(O1/U1), a (d--1)- fold  VI is given by the vanishing of a 
polynomial f(xl, ..., x~) in the local uniformising parameters  xl, ..., Xd of U1 at 01 
and (x), (~') are related by (1), then we say that IV1 given by f*(x')---0 is an 
analytic t ransform of TV1 regular  al 01. In  vir tue of (it) and (iii), the mul- 
tiplicities of I}1 and W1 at 01 are the same. Also the tangent  cones are 
projectively equivalent.  Any property of V1 at 01 invariant  under  the tran- 
sformation (1) will be referred to as an analytic property of 171 a ~01. Methods 
which allow transformations of the type (1) will be called analytic methods. 
Also any local dilatation [3], [5] of W1 wil be allowed when  analytic methods 
are applied. 

Before we investigate fu r ther  properties, we first consider the geometric 
case in some detail. 

4. Let  V be a primal  in Aa having an s-ple  point at O. Suppose C is 
a subvariety of V of dimension ~ such that (i) each point of C is s-ple on 
V, (it} C is a simple point of C, (iii) there is no s-ple subvariety D of V, 
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other than C, which is of dimension ~ (~ > O) and which passes through O. 
Then we say that V has M(s, ~) at O. In this paper  we shall investigate 
certain propert ies of points of this type only. Throughout  we denote by ~ the 
integer d -  ~. In  Q(O/Aa) the subvariety C is represented by an ideal Ps and 
since C has a simple point at O, therefore t h e e x t e n d e d  ideal Q(O/Aa). P+ of non-  
units in (Q/OAa) has a basis consisting of A elements ([2], 132), and, in part icular,  
we may choose the basis to be polynomials in x~,..., ~c a. This can be easily done 
by mult iplying each element  of the basis by a suitable unit  of O(O/Aa). Indeed,  if 
we arrange the coordinate system so that the tangent  [~] to C at O has the 
equations ~vi--0, i - - -1 ,  2, ..., A, then we may choose as the basis of P~ the 
polynomials ~b~, ..., ~ ,  where ~b~--x~-{-~ and 0(~0~) ~_~ 2 for i - - 1 ,  2, ..., A. 
We observe that ~ ,  ..., ~A may be taken as a system of parameters  in 
Q(C~/Aa). Hence ([6], 292), if f i (~ ,  , . . ,~)  is a form of degree i in ~ ,  .... ~b~ 
with coefficients aj(x~, ..., xa) iu the polynomial r ing K[x~, ..., xa], wri t ten 
shortly K[x], then f i (¢ . )= 0 [mod(P~+~)] if and only if all the coefficients a/w) 
in the form fi(~) are members  of P~. 

We now write the equation of V in the form 

[(oe) = . . . ,  +a) + . . . ,  + ... + [o = o ,  

where  f~(~) is a form of degre i in ~b~, ..., ~:~ with coefficients in K[x] and 
we suppose that f~(q~)=4=0[mod(P~l)] for i ~ 0 ,  1, ..., s - - 1 .  

Then f (x ) - -0 [mod(P~) ]  if and only if f d + ) - - 0 f o r  i - - 0 ,  1, ..., s - - 1 .  
But C~ is s-ple on V. Thus the equation of V may be wri t ten in the form 

(2) f ( x )  = . . . ,  = O. 

We call it the slandard equations of V with M{s, ~) at O. 

We point out that the converse is not true. Howewer,  if the equation 
of V can be put  in the form (2) and 0 [f~(~}] - -  s, and A, as defined previously, 
is the least integer with this property, then V has an s-ple~point .at  O and, 
fur thermore ,  any point of the variety C given by ~ 1 " - 0 - - ~  ~ - - , ~  is 
s-ple on V. But in this case V h a s  only M{s, ~) at O if 

(i) C has a simple point at O,  

(ii) there is no other subvariety D of V through O which is of 
dimension ~1 (8~ > O) and which is s-ple  on V. 

5. Let  f(~c) - - 0  be an equation of an analytic primal W. Suppose there 
is an analytic subvariety D of dimension ~ through O which has simple 
point at O and whose points are s -ple  on W. By this we mean that the 
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equat ion of W can be written, by a suitable choice of the local coordinates, 
in the form 

(3) 

where 

f(x) = F(+~, ..., +~) = O, 

~i--x~+cp(2 ~) + . . . ,  i - - t .  2, ..., A, 0 [ f ( ~ ) ] - - s ,  

and, as before, 5 -  d - - ~  and h is the least integer with this property.  
Suppose  that there is no other  subvar ie ty  of dimension ~ 5 through O 
which  is s -p le  on W. Then we say that W h a s  M(s, 5) at O. Thus, if V 
is any algebraic primal having M(s, 8) at O and W is an analytic t ransform 
of V regular  at O and having M(s, ~1) at O, thcn certainly- ~1 ~ 5. 

W e  also extend the definitions of multiple subvarieties to analytic 
primals. W e  first int roduce some general notation which will be used 

throughout. Let  ¢o (r) denote some differential  operator  of the form ~x~l ... ~x~d, 

),, + + ... + T h e n  for  a f i x e d  t h e r e  are  + - -  1 t 
@ 

w i t h  distinct 
\ r / 

forms that ¢o <r) can take. Let  o)(~')f(x), (r - - 0 ,  1, .... ~) be all possible deriva. 

tires °f f(x), °g°'f(x) = f(~c) I at°gether ( d -~ ~ ) terms ] • 

The ideal generated by all these polynomials will be denoted by fl (~). 
If  f(x) is a power  series~ we give the same definition to ~o (r) and we define 
in a similar way an ideal II(~) generated by to<~')f(~) [r~--0, 1, ..., ~] in Kt~!, 
where, in general, Ktx} denotes the ring of power  series K fx~, .... Xd}. 
Suppose that f ( x )~  0 represents  an analytic primal of dimension d -  1 and 
suppose that II(s ~ 1) determines  in KIxl  an analyt ic  variety (not necessari ly 
pare) of dimension ~ and H(s) is the unit  ideal. Then we say that W has 
aa  s -p le  subvar ie ty  through O of dimension ~. 

Suppose that f (x) - -F(~ ' ) ,  where (x), (x') are related by (1), f(x) is a 
polynominal  and F(x/) is possibly a power  series. Then 

and hence, if 

say, it follows 
in § 10. 

~ f ( x )  = Z 

,~'"' f ( x )  - -  f~ '  (x) = g (~'), 

that g(xl):-0[rood II(s)] for r ~ s. We shall use this result  
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6. W e  now suppose tha t  V has  M(s, ~)at O, bu~ the ve r t ex  of the 
ta.ngent cone of V at O has d imens ion  ~ and  z >  $. This  is the case, for 
example ,  with a surface  F hav ing  a binode B~ at O which is of the type 
M(2, 0), but  the ve r tex  of the nodal  t angen t  cone is of d imens ion  one 
if s > 2 .  

W e  discuss  the genera l  problem first .  Suppose tha t  f(x) is a po lynomia l  
of the form 

f(x) = L(x~, ..., z~) + L+~(z) A- . . .  + f , ( x ) ,  

where  1 < s < d, s > 1. Then  it m a y  be possible to wri te  the po lynomina l  
f(vc) in the form 

(5) L,,<2) X~2)) 

where  X~ 2) - -  x~ -4- ~i) for i - -  1, 2, ..., ~, and ~ )  is a form of degree  2 in x~, 
x~, ..., x~ and  in (5) possibly fi(@ is d i f fe ren t  f rom that  in (4) for 

i = s + 2 , . . . ,  2s, 

and also m may  be d i f fe ren t '  f rom tt if  n <~ 2s. 

Let  X~ el be a genera l  nota t ion  for any  polynomia l  of the form 

" - ' x i + ~  ~ . . , - ~  , i ~ 1 ~  2, . . ,  d ,  

. (it where  %. is a form of degree  r in ~ ,  xz, ..., X,d. Suppose  there  exist  poly- 
nomials  X(~ ~) . . . .  , X~ ) such  tha t  f(x) may  be wr i t t en  in the form 

(6) f(x) = L(X~ P) , ..., z~ ~) + f,+~ + ... + FN~, 

where  here  f~ is possibly d i f fe ren t  f rom that  in (4) for i - - s - t - P ,  ...; p s and  
N may  be d i f fe rn t  f rom n if n <~ ~s.  W e  call  it the process of partial 
factorisation and i f  p > 2, we say that  for the po lynomia l  (5) the process can 
be cont inued.  This  method  was f irst  in t roduced  by MIss H. P. HUDSOZ¢ [1] 
in the s tudy  of sur faces  wi th  binodes.  

I f  in th:e express ion  (6) the process cannot  be con t inued  and  fi(x)=~=O for 
some i ,  s + ~ ~< i <~ N ,  then  we say tha t  the partial factorisation terminates. 
I f  f~(x)--O for  i - - s + p ,  s - } - p + t ,  . . . ,  N¢, then  we say tha t  the partial 
factorisalion is completed. 

Similar ly ,  if  

[(x) = L(x~,  .. . ,  ~ )  + f ,+1-4-  ... 
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is a power series, we may ~part ial ly factorise ~ this expression and write 

f(x) = / , ( x ?  ) , ..., P)) + f,+p + ..., 

where X~ P) (i----1, 2, ..., ¢~) are defined as above. 

If  there exist power series X ~ = x ~ + ~ + ~ ) +  ... for i - -  t; 2, ..., 
such that f ( x ) =  f,(X~, ..., Xo), then we say that  the process of partial  
faetorisation is completed for f(x), and if it is not completed and cannot be 
continued, we say that it terminates. 

We first prove 

T~EORE~ I . -  I f  V, given by f ( x )=O,  is a pr imal  in  Aa and it has 
M(s, 8) at O, and i f  the vertex of the tangent cone of  V at 0 has dimension 
• , where • ~ 8, then the partial factorisation of  f(x) must  terminate. 

PROOF. - Since the vertex of the tangent cone is of dimension "c, by a 
suitable choice of the coordinate system, we may write the equation of V in 
the form f(x) --  O, where f(x) is given by (4) and z --- d --  ~: < d.  Also we may 
suppose that the tangent  [8] of C (cf. § 4) has the equations 

x l - -  0 - - x 2  ~ - - x ± .  

Clearly the process of part ial  fact0risation is independent of the coordi- 
nate system. Let  ~ ( s -  1 ) - - p  be the ideal defined in § 5. Then the ideal p 
determines a variety in A~ and the on ly  component of it through O is the 
irreducible variety C. Now x A - - 0  is an equations of a prime which passes 
through the tangent [~J of C at O, hence there exists a polynomial of the 
form x~ T ~(x) ~ p(x), with 0[~(x)] ~ 2, which vanishes on C. The extended 
ideal p o - - p .  Q(O/Ad) is a ~-dimeusional idea.1 determining C' in Q(O/Ad). 
Hence [p(x)]m = O[mod(po)] for some positive interger m ([2], 16). Hence 

(7} = %(x) El(x) + ... + 

where ~i(x) e Q(O/Aa) and Fi(x) denotes some polynomial  of the form 

o~(~[(x), 0 ~ r ~_ s - -  1, i - -  i, 2, ..., ~. 

Since V has M(s, 8) at O, we assert that the partial  factorisation cannot 
be completed. For suppose we can complete it. Then f(x) --- f~(X(~ P) , ..., X~ ~) for 
some p and thus the ( d -  1)-fold V has an s-ple subvariety of dimension 
d - -  v - - ' :  ~ 8, given by X~ P) --  0, i - -  1, 2, ..., ~, which passes through O and 
this contradicts the  assumption that V has M(s. 8) at O. This proves the 
assertion. Suppose now that the part ial  factorisation does not terminate and 
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cannot be completed. Then we can write f ( x )  in the form (6) for every 9>--1 
and N~ is an integer which depends on ~ an f~(~c):=t=0 for some i ,  

s + p _ <  i _< N~. 

In part icular,  in (6) 
whose equalions are 

we take ~ - - m .  Then consider 

X~ " ~ ) - 0  i - ~ l ,  2, . . , ,  a 

the algebraic curve I ~ 

x j = O ,  j - - z - { - 1 ,  . . . ,  A - - I ,  A-t-1 , ..., d.  

This curve has a simple point at 0 and its tangent  at 0 is the axis O x ~ .  

Hence its Pu i s eux ' s  expansion at 0 is of the form 

a 3 , , o ,  _ X~ : a~2t 2 d-  ist d -  . . . ,  i - -  1, 2, h 1, A d-  1, . . . ,  d,  XA : t ,  

where a# is an element of K .  Subst i tut ing this expansion in (7) we obtain 

where 

t , ,  + ... = ~-,(t) ~ ( t )  + ... + ~ ( t )  _P~(t), 

~ ( t )  - -  ~ ( a j  ~ -k- . . . ,  . . . ,  aa2t ~ -{- .. .) 

and /~i(t) is similary defined for i ~ 1, 2, ..., :¢. We observe that since 
opt(x) ~ Q ( O / A a ) ,  hence 0[~(/)] _>_ 0. Let o)(")f(x) - -  f l " ( x ) .  By the definition of l :we  
have { X~'~(/)} - -  0. Hence f'"~(t) - -  q(t), where 0[q(t)] ~ s d- m - -  r ,  and therefore 

O(%(t)Y~(t) + ... + ~( t )Y~( t ) ]  ~ s + m - -  ( s  - -  1) = m + 1 > m 

which leads to a contradiction. Thus the part ial  factorisation must terminate  
in this coordinate system and hence also in any other coordinate system. 
This establishes Theorem I. 

7. We may obtain Theorem I in a slighlty different  form. Since V 
M ( s ,  ~) at O, the equation of V is of the form (2). We may write it 

(8) f~(+~, ..., ~P~) + L+~(+~, ..., +~) + ... + fNCq,,, ..., +A) = 0, 

where ~, h have the same meaning as in the previous paragraph, and fi(+) 
is a form in +1, ..., ~a if degree i wi th  coefficient in K[x] .  

Let X~ (~) be a general notation for any polynomial of the form 

) ~ )  = +, + o~'>(+) + ... + o~)(+), i = 1, 2, . . . ,  ~ ,  
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where 0J ~(~) is a homogeneous polynomial in q)~, ..., ~a of degree j with 
coefficients in K[x]. Then we may write 

(9) f(x) - -  fs('X~ '~, ..., X~ °) + f~+~(~b) + ... + f~-e(t~), 

for some p, and here f~(+) is not, in general, the same as f~(+)in (8)for  
i - - s  + p, ..., sp. We call it the process of  parl ial  factorisation wi th  respect 
to +1, ..., +~. As before, since V h a s  M(s, ~) at O and h > c ,  we may show 
that this process must terminate but we do not include the proof as it is 
similar to the one of Theorem I. Thus Theorem I can now be stated in 
the form of 

THEORE3I II. - With  the hypothesis of  Theorem I, the process of  par t ia l  
factorisation with respect to qh, ..., '~  must  terminate. 

8. In  [his paragraph we prove various results in connection with 
analytic transformations.  We observe that every analytic t ransformation of 
the type (1) may be writ ten as a product of a l inear  t ransformation 

(10) x~' = A~.~x~ / A, 
:t  

where Aii is the cofactor of alj in the determinant  [ Aij [ -- A, followed by 
the analytic t ransformation 

(11) 

where 

! 
- -  x ~ +  + . . . ,  

In  what follows we shall assume that the analytic t ransformations are 
of the type (1t). Let  f(x) be given by (4). Let t be the ideal generated by 

We first  prove 

eL ef~ 
dXl ~ ""'  dXa 

LE~IMA 1. - Suppose that f(x,) can be writ ten in the form (6) for some 
p ~ 1. Then the par t ia l  factorisation can be continued i f  and  only i f  
f~+0 -= 0 (mod t). 
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PRoof' .  - I f  f:+e = O(mod  t), t hen  f:+e - -  a,w: + ... + a:+v~, where  w~ = 

--  ~f~ and  a~ is a form of degree  p + l  for i 1, 2, z. Then  

• --~pt X~ P~ + a~) : L(X+)) + ~ a~w~ + ~(x), t~ ( -~  + a~, . . . ,  

where 0 [¢p(x) ] ~ s -1- ~ + 1. 

H e n c e  f (x)  can be wr i t t en  in the form (6) wi th  o rep laced  by t~--F 1. 
Conversely,  if f(x) is r ep resen ted  by (6) wi th  ~ rep laced  by p--l-1, then  

and  

= x Y  + (i = 1, 2, ..., o) 

f(x) fgX~e~) + ~ -<i) = ., ,~+~ , ~  + f*+p+l + ... + f*p 
i=:t 

= h(X+)) + L+~ = f:+~+~ + ... + f~p. 

Thus fs+e---- Y" +~_ lw~=  0 (mod. t) which proves the Le mma .  
iml 

W e  now show that  if the par t i a l  fac tor i sa t ion  is comple ted  
ways,  i. e. if 

in two 

(12) = , . . .  X ~  ) f (x) fgX~ P~ , ) + ... + f~vl 

(13) = L((xT)'"' ,  . . . ,  (x$) , ' - , )  + + ... + f } = ,  

then  r = p. To prove this it will be su f f i c ien t  to show that  if f@) is 
r ep resen ted  by both (12) and  (13), and  r - -  p, and  if also the pa r t i a l  fac tor i sa t ion  
can  be con t inued  in one case, then it can be con t inued  in the other  case  too. 

W e  prove it in 

LEMMA 2. Let f (x )  be represented by the two equations (12) and  (13) 
with  r = ~. Then  f~+p --  O(mod t )  i f  and  only i f  f*+p --  0 (rood t). 

P~ooF.  - Suppose  f~+~o = 0 (rood t).  Then  we may  con t inue  the process  
of par t i a l  fae tor i sa t ion  in (12). In  this case pu t  X~P+I~ = 2.i, for  i = l,  2, ... z 
and  x~ = x~ for i - -  z + 1, ..., d .  This "is an  ana ly t i c  t r ans fo rmat ion ,  r egu la r  
O. Then  

(14) 

Also 

f@) = f g x l ,  .... ;~) + f,+p+, (~) + ... 

(X*) ( ' '  = ~ + ~ ) ( ~ )  + ..., i = 1, 2, . . . ,  
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and  hence  

f(x) = L ( ~  + ~(~) (~) + ..., ~ + ~ )  (~) + ...) + f;+~( ) + 

W e  now e x p r e s s  

_ ( 1 )  r ~ 

in  the fo rm 

L (~, ..., ~ )  + L+I(~) + . . .  

and  c o m p a r i n g  it wi th  (14) we f ind  that  

?~' (2) --" ~'~(2) - -  - -  ¢~)(2) - -  0 for  i - -  1, 2, ..., ~, 

where  :¢ :> ~. Thus  

{z)  :2  . . .  

the fo rms  of deg ree  s - } -o  in this e x p r e s s i o n  and  in ( 1 4 ) w e  and  eq~a t ing  
f ind that  

and  r e t u r n i n g  to the o r ig ina l  coord ina te s  we obta in  the c o n g r u e n c e  

/*+p(x) - -  0 (mod t). 

S im i l a r l y  we can  show that  if * - -  fs+p (x) = 0 (mod t )  then also f~+~ 0 (rood t). 
This  p roves  the L e m m a .  

As a c o n s e q u e n c e  of the p rev ious  resu l t s  we thus state.  

THEOREh[ I I I . -  I f  f(~c) is represented by (12) and the partial factorisation 
cannot be continued, then ~ is unique, independent of the way lhe partial 
factorisation has been carried out. 

9. W e  e x t e n d  he re  the prev ious ,  w i thou t  p r o o f s ,  to va r i e t i e s  wi th  
M(s, ~) at  O .  W e  use  the no ta t i on  of § 7 and  we thus s tate .  

THEO:RE~ IV. - Let V have M (s, 5) at 0 and let the equation of V be 
f (x) -~  O, where f(x~) i~ given by (9). I f  the process of partial faetorisation 
with respect to ~1, ..., ~ terminates, then ~ is unique, independent of the 
way the partial [aetorisation has been carried o~tt. 
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10, In this paragraph we prove certain results about isolated s-pie 
points. We first state and prove 

T~tEORE~ V. - I f  V has an isolated s-ple point at O, then so has any 
analytic transform regular at O. 

PROOF. - Suppose that this theorem is not true. Then we can find an 
analytic t ransform W of V which is regular  at O, such that the point O is 
not of the type M(s, 0). Then on W there exists an analytic curve P which 
is s-ple on W. Suppose that W is given by f*(~c') -" 0, where @), (x ~) are 
related by the equation (1). Let P~(t), ..., Pa(t) be the Pu i seux ' s  expansion 
of F, where 

P~(t) e:K{t:}, i - - 1 ,  2, ..., a.  

Let l?~, given by Qz(t), ..., Qa(t) be its t ransform in An. Then I~1 is an 
analytic curve (possibly even an algebraic curve). Let y be the tangent  to P~ 
at O. Suppose y does not lie in the prime II given by 

(~) ~ ~ x ~  + ... + ~,~Xa = O. 

Now O is an isolated s-pie point of V. Let p be the maximal prime 
ideal of Q(O/Aa). Then the extended ideal Po --  ~](s -- 1). Q(O/Aa) is p -p r imary  
(cf. § 6) and thus for some positive integer m we have [~(x)] m--- 0(rood po). 
Now @), (~c ') are related by (1), hence on substi tution we obtain r~(x)----~(x~), 
where rq (x ' ) eKIx '} .  If  follows from § 5 that 

Now 

~(t) ]-~ 

[rc~(x')] m -- 0[mod II(s - -  1)]. 

--etCh±+.., e e K, c=~=O and M - - n m ,  

where n is a positive integer. But if F(x) is any member of II(s--1) ,  then 
F(t) ----. O. This leads to a contradiction and establishes the truth of Theorem V. 

We point out that the analogous result  is not true in the theory of 
valuations. Let R = K[x, y] be the ring of polynomials in x, y over K. Let E be 
the quotient field of R and R' be the completion of R. Let p be the maximal 
prime ideal (x, y ) i n  R .  Suppose R1 is the quotient  ring Rp. Then R1 is 
isomorphic with a subring of R'. Suppose B is a zero dimensional valuat ion 
of rank  one and the value group F of B is isomorphic to the additive group 
of integers. Let v(~) denote the value of ~ in B and suppose v ( x ) >  O, 
v(y) > 0. Let  ~' be the quotient field of R'. Then E _ E r and B extends in E' to 
a valuat ion B' of dimension zero and rank two i.e. if we identify-E with 
a subfield of v ' ,  then there ex i s t s  an element ~ of E' such that v(~)> v(~) 
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for any ~ e Z. Thus there exists a one-dimensional  valuation B '  of Z'  such 
tha~ the valuation r ing R' of B' contains R. 

That the similar  resul t  is not true in the case of singularities,  i.e. that 
in our part icular  case we cannot have an <<analytic curve)) which is s-ple 
on W, has been shown above. 

We finish the paragraph by stating without proof (1} 

THEOREM V I . -  If V has M(s, ~) at O, then so has any analytic 
transfarm W of V regular at O. 

11. In  this paragraph we study the effects of dilatations on both, 
geometric and analyt ic  primals. Suppose V is a primal in Aa and V has 
M(s, ~) at O and W is any analytic t ransform of V regular  at O. Suppose 
that C is of dimension $, each point of it is s-ple  on V, it passes-through O 
and is non-s ingular .  We apply a dilatation to V with C as the base. Let  II 
be the tangent  [$] to C at O. Let V1 and U1 be the transforms of V and A(~ 
respectively. Then to every [$ + 1] through II there corresponds a point of Ut. 
Let  the equation of V be respresented by f(x) -- O, where f(~) is given by (6). 
We recall  that II has the equations xl -- 0 ---- x2 -- --  ~A. Let 01 of V1 correspond 
to the [~-~- 1] given by the equations x 2 = 0 - - x ~ - -  - - x a .  Let  ~ ,  ..., ~babe 
the polynomials defined in § 4 and let m~ be the degree of ~i ( i - - 1 ,  2~ ..., A). 
Let vl be the order of C and put v "- max (v~, mi) + 1. Suppose ~ ,  ..., % is 

i _ i ~ h  
the complete set of forms vanishing on C which are of degree v in the 
homogeneous coordinates x0, xl,  ..., ms. Suppose V lies in S~ and A~ is 
obtained from it by taking m0---0 as the prime at infinity. If we t ransform 
V and Sa by means of all forms of degree m, then we say that the dilatation 
is of degree m (el. also [2], 246). 

Suppose, in general ,  we apply a dilatation of degree ~ to S~ and V 
and we obtain thereby U~e) and V ~) ( f ~  v). Then U ~+l~ is in regular  cor. 
respondence ([2], 248) with the join of Ut~) and S~ and V('~+ ~ is also in 
regular  correspondence with the join of V( ~ and V. We shall thus discuss, 
for simplicity, the join of U (~) and Sa which we denote by- U~ and we denote 
the t ransform of V on U~ by V1. Suppose that in non-homogeneous coor- 
dinates we write the polynomials ~ ,  ..., % in the form ~1, ..., ~ ,  where  
~ ,  ..., ~a are defined in § 5. Then  ~1, ..., ~ form a basis of the extended 
ideal Q(O/Ad). ~2(s-  1) and hence 

A 
+, = w h e r e  XJ" e i = 1, 2, . . . ,  a 

(i) The proof is s imilar  to the proof of Theorem V. 
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and i - -  h q_ 1, ..., ?. Suppose  b~ is s i tuated in AN, where  _~Y-- d o q- ~ - -  1. 
There by a suitable ar rangement  of the coordinate system of AN a generic 
point of U1 may be taken in the form 

x l ,  . . . , x ~ ,  + , . . . ,  +~ +~ _ 

or shortly ~ ,  ..., ~ .  The origin O~ is a simple point of U~. We  

, +-7, ..., +-;, ~+~,  ..., ~ 

assert  that 

may be taken as uniformising parameters  of U at 
ring of power  series in 

+1, +~ +~ +~, ..., ~ ,  ~+~,  ..., ~ .  

O1. Let  K* be the 

We  first show that x~eK* for i - - 1 ,  2, ..., h. Let ~(~v)be any form of 
degree ). in xl,  ..., x~. Then 

~(xt = ~ ( x l ,  .... 'x~l = ~ t + , ,  ~ • +1, ..., +:  +,, ~ + ~ ,  ..., x~) + ~ + ( x t ,  

where  0[¢~ ~ ) (x ) ]~ ) ,  + 1. We  may now proced in the same way with ~(l~(x) 
and we find that any form ~(x) is a member  of K*. In part icular ,  x~eK* 
for i--~ l, 25 ..., d. Hence  Q{O/Aa)~ K*. W e  know that 

7 (i~ ,T, 

and thus 

+' x ; '~+  z[ ) +' z(2 +~ +Z = ~ + ' " +  ~ ,  

where ) ~  eQ(O/A a) ~ K * . H e n c e ~  e K* for all i. Let  ~ be any element 

of Q ( P ~ / U ) .  T h e n  ~ m a y  be  represented in  t h e  form Ft~)  where 
G(~) 

G(0, 0, ..., 0)=~ 0, and thus we may express  ~ as a power series F1{~ql, ..., ~q,~j. 
From the previous results  it follows that ~ K *  and this proves the assertion. 

Let  W be any analytic t ransform of V regular  at O. Then, by Theorem VI 
we know that W has M{s, ~) at O. Suppose  that we apply a dilatation and 
for one choice of the coordinate system the dilatation takes the form 

X I - - x l , X ~ - - - X z ( i - - 2 ,  3, ..., 5),  Xj - - x~ ,  i - - h  + l, ... d. 
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Let (~') be any other system of coordinates where (x). (x') are related by 
(1t) with (~"), (x') replaced by (0¢'), (x), respectively.  Let  

X,'  = x , ' ,  X~' = x-A (i = 2, 3, ..., 5), X j  = xj' ,  

j -- h + 1, ..., d, be the equations of a dilatation in the new coordinates. Then 

. - -  ,T~(1 )  x , '  = ~1' x l  + ~,~, ~ )  + ... = x~  + ~ ' ) ( x )  + ... 

x /  x~' x{ + ¢ ~(x)  + ... 
= ~c, ~ = ~c~ + ¢~" (x} + ... 

x ~  + [¢~) (x) ]Ix, + ... 

1 + [¢ i ' (x ) ] / x~  + ... 

-- X~ + c~X~ + @~)(X) + ..., i = 2 ,  3, ..., 

I ! 

= X~ -]- ~ '  (X) -}-..., i --  A + 1, ..., d, 

where  ~i~(X), ~}~)(X) are forms in X~, ..., X a of degree j and c~eK. 
Hence  (X), (X') are related by an equation of the type (1) and here I a~j ] - -  1. 
Thus local dilatation is independent  of the set of local coordinates and; in 
particular~ we may take the new coordinates in the form 

i J f - - ~ i ,  i - -  1, 2, ..., h ,  and xi "-x~ for i ~ 5 + 1 .  

Hence  we have. 

THEOREZ~ VII .  - Let V have M(s, 8) at 0 and W be any analytic tran. 
sform of V regular at O. Suppose that C through 0 which is s-ple on V is 
no~-singular. I f  we apply dilatatio-ns to V and W and 01 corresponds on 
both, V1 and WI to the same [8 + 1] through the tangent [8] to C at O, 
then W~ is an analytic transform of V~ regular at 01. 

Suppose now that V has an isolated s-ple  point at O and V1 is obtained 
by a dilatation with O as base and O1 corresponds to O. Suppose w e  form 
a sequence  IVy, Oil with Oi as the base of ~ dilatation of V~, and O~+~ 
corresponds to Oi. Hence  as a consequence of Theorem ¥ and Theorem VII  
we have : 
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TI=IEOREM V I I I . -  Let i V  i, 0~! be a sequence. Let I W~, Oi} be any 
analytic sequence such that IVi is an analytic transform of V~ regular at 
O~ for i~--O, 1, ..., and Vo-" V, Wo--- W. Theu Oi is an isolated s-ple point 
of W~ i f  and o~ly i f  it is an isolaled s-ple ~voi~t of Wi. 

12. W e  end the paper  by giving some results  about  isolated s-pie  points. 
Let  V be a primal with an isolated s -p le  point at O. Let  W be any analytic 
t ransform of V regular  at O. W e  now state and prove. 

T~EORE~ I X . -  I f  V has a~ isolated s-ple point at 0 and 0~, 0~, ..., 
is a sequence of free points, then 0,. is s~-ple point on V,. for some r, 
where 1 ~ s~ ~ s. 

P R o o F . -  Suppose  this is not the case. Then there exists an analytic 
curve 7 on W through O which is s-ple  on W and thus W does not have 
an isolated s-ple  point at O; this contradicts  Theorem V and establishes 
the truth of the theorem. 

W e  shall apply subsequent ly  the above results to sequences  of isolated 
s-ple  points on primals where  not all the points are free points. 
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