Algebraic Cones With Linear Vertex (V).
by Jack Oum (Madison 6, U.S. A)

Summary - Some basic properties of algebraic cones are derived using methods of an elemen-
tary geomeiric nature.

Introduction.

We prove here some fundamental theorems invelving the projection of
a variety from a linear variety. It is probably safe to say that most of what
we prove is classical, in the sense that special cases of our theorems have
been known for many years. In fact our interest in the subject has been
mofivated by the importance of the cone construction in the interseetion
theory of cycles, where it seems to play an essential role (see, for instance,
Chow [2], p. 458). This theory can be traced to SEVERI[7), VAN DER WAERDEN
[9], Hopee and Prpor [4], SAMUEL [6], and CHOWw [2], among others.

Special cases of many of our theorems occur in these paperrs; but often
the theorems are either stated without proof or dismissed as easily seen.
Moreover, when a theorem is proved, the proof frequently involves a tedious
use of GRASSMANN varieties (for example {1], p. 3-03). We have attempted
here to remedy this situation. In keeping with the foundational nature of
the subject, we have suncceeded in employing only elementary tools, with
the exception of fhe criterion for unit multiplicity and its converse ([11],
theorem 6, p. 152). CHOw has shown, however, that the criterion itself may be
proved without intersection multiplicity {3], so it is only in the use of the converse
to this criferion at the end of section 2 (in theorem 2.10) that these results
depend on intersection theory.

Our language is that of WgrIL [11]. Projective m-space will be denoted
by P" and affine n-space by S”. In section 1 we prove a theorem (the
dimension theorem) relating the dimension of a cone having a linear vertex
to that of the base variety. In section 2 we prove a theorem relating the
degree of the cone to that of the base variety (the degree theorem) and a
theorem (the simple point thorem) connecting the simplicity of a point on
the base variety with the simplicity of the corresponding fiber on the cone.

(1) This research was begun while the author was a National Science Foundation
postdoctoral fellow at Johns Hopkins University; it was completed while the author received
partial sapport from G-14362 and NONR 1202(11) at the University of Wisconsin.
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Section 3 is devoted to proving that under certain conditions a cone with a
generic vertex intersects another variety in components which oceur with
multiplicity | and which do not intersect in a point rational over the ground
field, and section 4 discusses some examples in the characteristic p==0 case,

In conclusion, we are indebted to PRroF. A. SEIDENBERG for reading a
preliminary version of the manuscript and for making many helpful sugge-
stions which have been incorporated in the present version.

1. The dimension theorem.

1.1 Definition. Let ¥V, Whbhe varicties in §” defined over a field k and
having independent generic points (x), (y) respectively over k. If A is a tran-
scendental quantity over k(x, y), the point (x) 4 A ((¢) — (x)) has a locus over
kE which we shall denote by | VW|. Furthermore, if W= |VW|, we shall say
that W is a cone with V in its verfex.

It is then clear that | VW|=| WV/| and that |VW| is independent of the
choice of (x), (y), » and k. We also find it convenient to make the convention
that dim ® = — 1 and | ®V|=|V®| = V.

1.2 LeMMA ~ Let V be o variely in S™ havirng a generic point (x) over
a field k, let (&) be a point in S" with coordinates in k, and let V' be the
variety in S" having geweric point (') = (a) — (x) over k. Then V is a cone
with («) in its vertex if and only if V' is acone with O (the origin)in its vertex.
Moreover, if L is the linear variety attached to V at a poinit (y) in V and L' the linear
variety attached to V' at the point (y) = («) —y), then (2) is a generic poini
over k(y) for L if and only if ()= («) — (2) is a generic point over k(y) for L.

Proor. - The first assertion is immediate from the definitions. Suppose
then that (2) is a generic point over ky) for L. Let F(X) =0 be a sef of
equations for V over k so that G,(X)=0 is a set of equations for V' over
k, where G,(X) = F,« — X). Then 8G,/3y'; = — 3F,/3y;, so L and L have the
same dimension. Moreover, dim (2)/ky) = dim (&)/k(y); and A,G. —¥) =
= A F,(z2 — ) =0 simce (2)eL’ and hence is generic over k@y) for L'. The
converse follows by symmetry.

1.3 PROPOSITION. — Let V be a cone in S™ with o point P in its vertex,
let Q== P be apoint of V and R=EP a point of |PQ|. Then the linear variety
attached to V at Q is also the linear variety altached to V at E.

Proor. - Suppose P = 0, so that V is defined over a field of definition
k by a set of homogeneous equations F,(X)=0. Since |0Q|=[OR|CV and
hence contained in the attached linear varieties Ly, Lz to V at @, R
respectively, Oc Lo and Lg. Therefore, if @ = (x) and R=(y), d.FyX) = 0
is a set of equations for Lg and A,Fn(X)=0 a set of equations for Lg. But
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there exists a Ag=0 such that (y) = Ax); so AWAFWX) = A, FuX) due to
the homogeneity. Therefore Lg = Lg.

It P4=0, let V' be the variety of lemma 1.2, and let K = kP, @, R).
Using the mnotation of that lemma, by the above case we have L'g = L'p,.
Therefore, if (2) is a generic point for L'g = L'p over K, (#) is generic for
Lg and Lgr over K; so Lg= Lg.

1.4 COROLLARY., - Let V and W be varieties in S", and let Lp, Lg be
the linear varieties attached to V, W at distinct poinis P, Q respectively. Let
B be a point of | PQ| different from P and Q, and let L' be the linear variely
attached to | VW| at R. Then |LpLg| CL' (3.

Proor. -~ [PW]| is a cone with P in its vertex. Let L'g, L'g denote the
linear varieties attached to |PW| at , respectively. Then L'g = L'r by 1.3.
But WC|PW|implies LyCL'g, and |PW|C | VW, implies L'gCL’". Therefore
LoCLg= LgCL'. Similarly, LpCL’; so the corollary follows from the
linearity of L'

1.5 LeMyua - Let k be a field of characteristic 0, let F(X)3d=0 be in
HXy, o, X,] and let GX)=03F/3X,. X, + .. +3F/3X,.X,. Then G(X)=
=y F(X) for some vek (if (°) and) only if v is an integer = 0 and F is
homogeneous of deg v .

Proow. - If n =0, the lemma is immediate; so assume the lemma is true
w

when n >3 and let ® =0§>0. We can write F(X)= 3 «;X,”*, where
i:o
a;ek[X,. ..., Xp] and not all «;, =0 Then

wm B wm
GH(X)= 'Ea(m-i)acinm“ -+ ‘22 <'}]0 aocl/anle-i> X,
4 m= j== 4 o
L B
= X |(m-i)a, - = (aoci/an)Xj] X m—t,

Equating coefticients of powers of X, in the relation G(X) = yF(X), we get

B
(m-t)a; + 2 Ba,/0X,X; = ya, i =0, .., m;
j=2

(?) It is easily seen from examples that |LpL,! does not always equal I/. For
instance, let T be a non-linear curve in 83, let @ be a simple point of W, and let
V=P be a point of L, different from @ and ¢ W. Then Lip=P and lLi,LQj =L, but
PW /| has dim 2 and therefore Loz 1

(%) Bee, for instance [10], p. 27.
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or

8
2 da,/dX; X, = [y~(m~i)] o,.
j=2

Therefore by the induction hypothesis, either a, = 0 or «, is homogeneous
of deg y-(m-i). Hence F is homogeneous of deg y.

1.6 PropOsITION. ~ Let V7" be a wariely in 8" defined over a field k of
characteristic 0, let P be a generic poini of V over k, and let T be the langent
linear variely to V at P. If W is a variety defined over k and contained in
T. then V is a cone with W in ils veriex.

Proor. - Suppose first W = 0, and let P = (x). Choose a transcendence
basis for k(@) over k, say @y, .., &,, 80 the remaining @, ., ..., are algebraic
over k., .., ®,). Let F(X,, ... X,, X,,,;) be the unique (up to a constant
factor) irreducible polynomial in %[X,, ..., X,, X, ;] determined by (x, ...,
Xy, By ), 80 that if 3F, /32, ,;, =0, then 3F,;/0X, ;e (F(X)) in k[X,, ....X,,
X, i) Butdeg 9F;/3X,;in X,,,; is < deg F;in X,,;, so this is impossible.
A,F(X —x) =0 is a set of n-r linear equafions such thatrk ||0F;/3x; || = n—r,
s0 these equations are a set of equations for 7. Then A, F(x) = 0 since OeT,
80 A, F(X) = v:Fy{X) for some v,ek[X,, ..., X,, X, ;] (and hence in %). Therefore
F(X) is homogéneous of deg v;, by 1.5. The equations Fy(X) = 0 define n-r
hypersurfaces, mutually orthogonal at (x). Hence by the criterion for unit
maultiplicity ([11], theorem 6, p. 152), their intersection contains a wunique
component through (x) of dim », so V is this component. But if A is
transcendental over k(x), A(x) is in this intersection and A(x)-> (x) over k;
so Alx)e V also. Thus |OV| =V and V is a cone with O in its vertex.

Suppose now W==0, and let (a) be a generic point of W over k(x)
Then () is generic for V over K = k(z). It follows from the previous case
and 1.2 that V is a cone with () in its vertex, d. e (a) -4 A{(x}—({(x))eV.
Therefore the locus of this point over k is contained in V. Buf this locus
is by definition |WV/|, so (WV|=T. Q. B.D.

Let S™ be an affine space obtained from P" by choosing a hyperplane
at co. If V, W are subvarieties of S”, there exists uniquely determined
representative cones V', W in §"** for V, W. Moreover, one sees immediately
from the definitions that the representative cone |VIW/| of |V W] is the same
as |V'W’|. Hence, we shall denote .the uniquely determined subvariety of P"
having | V'W’| as its representative cone also by ‘V'W”|

1.7 THEOREM (DIM THEOREM). — Let L”" and V* be varieties in P™ with L
linear, let k be a field of definition for L and V, and lel T be the fangent
linear variety to V at a generic point P of V over k. Then r 4+ s — dim (LN T) <<
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=dim |LV|<r+s-+ 1 (where dim ® = -—1). Moreover, if the universal
domain has characteristic 0, then r + s — dim (L n T) = dim |LV|(*).

Proor. - Let @ be a generic point of L over k(P), so that if (x), (y) are
sets of independent homogerieous coordinates for P, @, then the representative
cone for |LV| has p(x)-v(y) as a generic point over %k, where p, v are
independent variables over k(P,Q). Then dim |LV|<r 4 s+ 1. On the other,
hand, if B is the generic point of |LV| having p(x) -+ v(») as homogeneous
coordinates, then R is simple on [LV| and is in |QP|; so by 1.4, |LT|C T,
where 1" is the tangent linear variety to |LV| at R. Therefore dim T’ =
dim |LT|=r + s — dim (L n T). This proves the first assertion, and also the
second when LN 7T = .

Suppose then L, = LN T==® and the universal domain has characteristic 0.
It L =1, then by 1.6 V=|LV| and the theorem is proved; so we may
assume I, c L. By intersecting L with a generic linear variety over k(P) of

dim n-—dim+ L, — 1, we obtain a subvariety L, of L such that (@) dim
Ly=r—dim Li—1, ) L:n L, =®, and (¢c) L, is defined over a purely
franscendental extension k(u) of k¥ and P is generic for V over k(u). Then
L, N T=® implies, by the above case, that dim |L,V|= dim L,+ s 4 1. If
@ is a generic point ol L, over k(u, P), there exists a generic point R, for
|L,V| over k(u) such that R,e|Q.P[; so by 1.4, if 7, is the tangent linear
variety to | L,V| at R,, then |L,T[CT, Since I = | Lo Ly |C|L.T|C T, by 1.6 |L,V|
is a cone with L in its vertex. Hence, |[LV|=|L,V|, and therefore dim
LV|=@—dimL,— 1)+ s+ 1 =74+ s—dim(LNT).

DEriNiTioN. - Let IL° and V" be varietes in P" with L linear, let % be
a field of definition for L and V, and let T be the tangent linear variety
to V at a generic point P of V over k. If dim 'LV|=dim |LT|, we shall
say V is an L-variety.

The definition is independent of the choice of k and P and is equivalent
to requiring that dim |LV = + s —dim(LN T). In some of our.theorems
we shall assume ome of the variefies involved is an L-variety, and the dim
theorem tells us then that in the case of characteristic O this hypothesis is
superfluous. However, we shall give in seciion 4 examples which show that
most of these statements are actually false in general without the added
condition.

In the notation of the above definition, we list some instances of

(*) This is a special case of [4], lemma 1, p. 144. However, it is not clear how one
makes rigorous the proof suggested there, especially when L N To=®.

Annali di Matematica 46
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L-varieties. V is an L variety if it satisfies any of the following:

%) V is linear
i) Lnr=9
14%) Ln T is proper
w) the universal domain has characteristic 0
v) V = |LW | for some variety W.
{({) — (4v) are immediate from the definitions and the dimension theorem.

(v) follows from the observation that LV| =7V and from applying
1.4 to obtain LC T and hence |LT| = T.

1.8 COROLLARY ~ Let L* and V" be varieties in P" such that L is linear
and V is an L-variety, let k be a field of definition for L and V, and let T
the tangent linear variely to V at a generic point P of V over k. Then dim
(LZND) =dim(LNV)

Proor. - Suppose dim (LN T) =dim (LNV), let t =dim (LNT)=0, and
let N*—!* be a generic linear variety over %k(P). Then NNL = L, is a linear
variety of dim s —{¢—1 (or else L, = ®), and there exists an extension
field K of % such that I, is defined over K and P is generic for V over K.

Moreover NN(LNT)= @ implies LNT = . .. dim|[L,V|=(s—f—1)4
+ 7+ 1 by the dimension theorem. Since dim |LV|=s + v — {, this implies
|L,V| =|LV| and hence LC|L,V|. Bat LNV =& since NN(ILNT)=® and
dim (LN V)< dim (LNT), so every point of [L,V| lies on a variety of the
form |Z,Q| with QeV. In particular then, every point of L lies on such a
variety; so LC 'LV, where V, is a component of LNV. Therefore \L,Vy| = L.
But dim |LV,| < dim L, 4 dim V; 4+ 1 by the dimension theorem, so
§ < (§—1t—1)4dimV; -1 and { = dim V;.

1.9 ProprosIiTioN. - Lel L” and VS be varieties in P" such that L is linear
and LNV = ®. Then dim |LV|=1r 4 s+1. (%)

ProoF. - Suppose dim |[LV| <r+s-41. If P is any point of L,
dim |PV|=s+ 1 since P¢V. ... if L=1L,DL,_2.D..DL; DL, is a properly
decreasing sequence of r 41 linear varieties (obtained for instance by cutting
down with generic hyperplanes), then | L,_ ;41 V| =|L,_; V| for some
i=1, .., r. For if not, r4+s+1> dim |L, V| >dim |[L,_,V|>..>

() This is proved also in [1], p. 8-08. Note that when V is an L~variety the propo-
sition follows from 1.8 and the dim theorem.
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dim | L,V | >dim | L,V | =8 4 1 which is impossible. But if @ is a point
of L,_;,, such that Q¢ L,_,, then | L,_,Q} =L, ;... Moreover, since
Lp_; V=0 and Q¢ | L, _,;V |, there exists a point Be V such that Qe| L, _,R|.
L Bl =L@ | =Ln_;4y1, 850 ReL,..., NV, a contradiction to the
hypothesis that LAV = &.

2. The degree and simple point theorems.

2.1 PROPOSITION. — Let V" and W?* be varietes in §™ defined over a field
k, and let L* be a generic linear variety over k in 8™ such that LNV = ®.
If C is a component of | LV | 0 W not contained in V, then C is proper and
general over & for W(.e. O conlains a generic point of W over k).

Proor. - Suppoese first that (r +-s + 1)+ 4 —n <0. Dim |[LV|=r + s 41
by 1.9, so we must see in this case that | LV | 0 W =& outside V. Dim
VWi =r4it4+1<n—s, s0 LN | VW | is proper implies LN | VW | = D.
But L0V = ® by hypothesis; so if | LV | N W contains a point Q€ V, there
exists a point PeV such that Qe | LP | . Then | QP | NL3=®, so [VW|NL=F®,
a contradiction.

Consider now the case where (r--s8- 1)+t —nz=0, and suppose C is
an improper component of | LV | N W which is not contained in V. Then
a=dim C>@r+s+ 1)+ {—mn; so if N*—* is a generic linear variety over
the field K = k(u), where (u) is the set of coefficients in the defining equations
of I, then NN C has dim 0 and NN W has dim {— «. Let @ be a point of
N0 C and W a component of NN W containing Q. Q¢ | LV | N W and QeV
since @ is generic over K for C. But we can apply the previous case to
conclude | LV N W' = ® outside V, a contradiction.

For the second assertion, let C denote the % -closure of €. Then
CCCC W, so Cis a proper component of | LV|N W and of |[LV|n C. This
implies dim C = dim W, and hence C = W. Q. E. D

Notice that the condition LNV = @ in proposition 2.1 is equivalent to
the requirement dim | LV |=r 4+ s 4 1.

We take the liberty at this point to make a slight addition to the
langunage for the sake of convenience: We shall say a linear variety L is
tramsversal fo o variety V along a subvariely U of LNV provided L is
transversal to V at some point of U. If k is a field of definition for L, V, U
and L is transversal to V along U, then L is transversal to V at any generic
point of U over k.

The next proposition plays a crucial role in what follows. In the case
of characteristic O it follows from [11], prop. 14, p. 181, via the converse
criterion for unit multiplicity. We give here a proof using no intersection
multiplicity.



364 J. Omm: Algebraic Cones With Linear Vertes

2.2 PROPOSITION. - Let k be_a field of definition for a variety V' and,
a linear wvariety L° in P, lel V be an L-variety, and lel M® be a generic
linear variety over k in P" such that | =< n —s— 2. Moreover, suppose there
exists a component C* of |ML| nV such that C & L. Then | ML | is transversal
o V along C.

Proor. - By 2.1, C is proper and general over k for V. Therefore, there
exists a point Pe(C such that P is generic over k for V. P¢ L implies
ILP|NMZ4® and hence |[LV|NMZ=®, so dim |LV|=n-i. Let T be the
tangent linear variety to V at P, and consider two cases:

OastE 1. ~£=0.Dim (70L) = dim L + dim V-—dim [LV|<=s + r— (n—1)
by hypothesis. Since {=10, dim (I'NL)<s-4+r—mn; so T'NL is proper
if £=®. Therefore TN | ML | is also proper if 70 L==®. On the other hand,
if TNL=® and TN|ML ==®, then dim (I'n | ML|)=0 since L is a
divisor in | ML |. But if T'n|ML| is a point not in L, then TN | ML |is
improper only if » -+ (s+ 1) — n < 0; and this is impossible since
o= (84 1) - r—mn.

CaSE 2 - > 0. M has a homogeneous generic point over k(x° ..., %) of
the form po(a®) 4 ... + p (@), where (@, ..., «¥) are algebraically independent
quantities over k and the ; are indeterminates over k(®, ..., ’). Let @ = (x°)
and let M, —* be the linear variety having homogeneous generic point
w(@?) + ... 4 p@%) over k(@ .., ®') =K. Then M, is generic over k, so
L,= | M,L | has} dim s~ ({— 1)+1=s8-4% by the dimension theorem.
Applying 2.1, any component of L,NV not contained in I has dim (s 1)
+r—mn<a; so C ¢ L.

Also, V is an IL,-variety. For, let B be a generic point of V over K and
let T, be the tangent linear variety to V at E. Then M, is generic over KR):
and therefore L,N T, is improper implies I, N TC L. Claim : Ly N T} is proper.
For, if not,"dim (L N Ty) = dim (L,nT) > (s + f)+ # —n. But dim (LN 7T)=
=s+4r—dim | LV | and dim |LV| = n— ¢, by hypothesis, so dim
(Ln TI)Ss+1~-—(n»—-i), a contradiction. Therefore I,NT, is proper, so V
is an L, -variety.

Thus, we can apply case 1 to conclude | QL, | is transversal to V along
C. But | QL, | = | ML |. Q. E. D.

In what follows we use the concept of degree of a variety. To make if
clear that we are keeping our resolve to use no intersection mulfiplicity other
than the criterion for unit multiplicity and its converse we shall state here
explicitly what is used. If V" is a variety in P* and k a field of definition
for V, let L"—* be a generic linear variety over k in P", and let d be the
number of points in VNZL. It follows from the criterion for unit multiplicity
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that if M"—7 is any other variety such that M NV is proper and such that M
ig transversal to V at every point of M N V¥, then d= number of points
in MNV also. By deg V we shall mean this number d.

‘We use one further fact, namely that a variety is of deg 1 if and only
if it is linear. One sees this as follows: Let V be a variety in P", let k be
a field of definition for V, and let P be a generic point of Vover k. If then
S§” is an affine space containing V at finite distance, lei (x) be a sef of

coordinates tor P in S§". There exists coodinates wx;, .., ®; algebraically
independent over k such that a; , ,.., @ are separably algebrale over
B(ri, .. ,2; ) = K. Then Xiy— i, = 0(j =1,..,r) isaset of equations for a linear
variety L of dim #—r in 8"; and if F»(X;, .., X; , X; ) is the unique

{up to a constant factor) irreducible polynomlnal in k[ iy s X , Xw'{_u]
determined by (x;, ..., wi, % ok then A,F (X — x) =0 is a set of equatlons
for the tangent linear variety T to V at (x), by reasoning similar to that in
the proof of 1.6. Therefore I is transversal to V at (x); and since any other
point of LN V in 8" is a conjugate of (x) over K, we see that L is transversal
to V at every point ot LNV in P*; so it deg V=1, LNV = P. Therefore
F, has deg 1 in X; , , since otherwise P specializes over K o another point
in LNV (in P7). Bv ﬁhe fact I, does not intersect Vin the hyperplane at oo,
F, must then be linear. Therefore 7= V and V is linear. The converse
statement that a linear variety has deg 1 follows from [11], corollary, p. 91,
which asserts the intersection of two linear varieties is again a variety if if

is =@,

2.8. LEMMA. - Let V" be o come in P" which is nol linear. Then every
point of the vertex is singular on V.

Proor. - If P is in the vertex of V,| PV | = V; so whenever Q=P is
in V, then | PQ | C V. Suppose P is simple on V, and let L"~""" be a generic
linear variety over %(P). Then if T is the tangent linear variety to V at P
TN | PL| and VN | PL| are both proper, by 2.1. Therefore VN|PL|= P
since if Q=P is in | PL| NV, then | PQ|{C| PL| NV and the intersetion
is improper. Thus, deg V=1 and V is linear, a contradiction.

2.4. LeMMA. - Let V be a wvariely in S" defined over a field k; let (x)
and (2) be points of V, and (x, ') o finite specialization of .(x, 2) over k
with coordinates &; in k. Let t be any quantily, and let (y) be the point
defined by

Y, =2 +te,—2) (I=i<n.

Then every finite specialization (y) — > (i) over (x, 2) — > (&, ') over k is
o point of the linear variety attached to V at (x').
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Proor. - The proof is an immediate generalization of {11}, prop. 20 p. 98.

2.5. LEMMA. - Let k be a field of definition for a varielty V' and o
linear variety L° in P", let P,, P, be independent generic points of V over k
and suppose dim (| LP, | N V)=0. If then p, is the number of poinls of
ILP;| 0V which are not in L, we have p; = ,.

Proor. - The specialization P, << - > P, over k extends to a generic

specialization (P, @, ..., Q,)<< — > (P, ‘Q_l,a..., Qw)’ where the @; are the
points of | LP, | NV not in L. Then the @, are in | LP,| NV and are
distinct and not in L because the specialization is generic. ... p, =< p,.

2.6. LevMMa. —~ Let L* and V" be varieties in P° with L linear awnd such
that LNV has dim = 0; let P be any point of | LV | ; and suppose whenever
Q is a point of L0V, | LP | intersects the linear variety attached fo V at ¢
in just Q. Then there exists a point R in V such that Pe | LR | .

Proor. - If Pe L, the lemma is immediate; so assume P¢ L. Let kbe a
field of definition for L and V and the points of LNV let B, be a generic
point of | LR,| over k(R, and hence also a generic point of | LV | over k.
Then P, — > P over k extends to a specialization (P, R,, | LR,/) — > (P,R,L"),
where L' is a linear variety of dim s 1 containing P, R, and L. Also,
L'=|LR| if R¢L, and in this case we are done. Suppose then ReL N V.
(Ry,|LR,|, |RR.,|)— > (R, 1/, ') over k, where [' is a line contained in the
linear variety T attached to V at R, by [11], prop. 20, p. 98. But then
'CL/'0T= LP|nT. Thisis a contradiction to the hypothesis that |LP|n T
has dim 0.

2.7 LEMMA ~ Let k be a field of definition for a linear variely L° and
o variety V* in P*, let P be o generic point of V over k, let L, = |LP|, and
suppose V is an L-variety ond |L,V|3=|LV|. Then both V and |LV| are
Li=varieties.

Proow. - Let @ be a generic point of V over E(P), so that P is then
generic for V over k(Q); and let T be the tangent linear variety to V at .
Since dim |'L,V|=dim |LV|+4 1, to see V is an L;-variety we must verify
that dim (7N Ly)=dim (TNL). If TnL CTNOL, then [LT|=|L,T|and
therefore Pe|LT|. Since |LT| is defined over k((), this implies .VC|LT|;
so |L,VIC|LT|. But then dim | L,V | <dim | LT | =dim | LV | by the
hypothesis that V is an L-variety. This is impossible because |L,V|d=| LV,
so V is an L,-variety.

We now apply the result to conclude | LV | is also an L,-variety. For,
| LV| is an L-variety; L, = | LE | , where R is a generic point for | LV | over
L since there exists such an R in LP|; and |L,|LV||&=|L|LV]| because
|L| LYV || = |L,V| and |L|LV||=|LV].
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2.8 THEOREM (DEGREE THEOREM). Let k be a field of definition for a variety
V" and a linear variety L® in P", let P be a generic point of V over k, and
suppose |LP| NV consists of a finite sel of poinis Py,.., P,y, such that
cach P, is simple on V and | LP | intersects the tangent linear variety to V

at P; in just P;. Then v. deg | LV | = deg V— p.

Proor. -~ To begin, observe that PeL imples r = 0 and the theorem is
trivially true, so we may assume P¢L and hence v > 0. Also, since P is
generic over k for Vand the tangent T to V at P intersects | LP | in just P,
TNL = ®, so by the dim theorem, dim | LV | ==+ 4+ s-1. Let I, = | LP]|.
1t the P; are simple on | LV |, then LNV is proper in | LV |; and if in
particular | LV | is linear, then I, is transversal to Vat P, in | LV | (where
{LV | is considered as P"+5+!), Therefore in this case we have deg V=yp v,
which agrees with the statement of the theorem. Thus, we may further
assume | LV | is not linear.

Let now N? be a generic linear variety over E(P) with t =n — (r4-s 4 2).
t =0 since w—(r 4+ 8- 1) >0 by hypothesis. L; has dims4- 1 and is defined
over k(F), so NNL, = @; and therefore dim | NL,| = n — r by the dim theorem.
By 2.1, any component of | NL; " 1V not in I, is proper and general over
kE(P) for V and hence has dim 0. Therefore | NL, [NV = PU .. UP.,
UQU ... V@, with @,¢ L,. Also, if T, is the tangent linear variety to V atf
P, |NL,; 0nT; is proper. For, T, is defined over %(P); and therefore by 2.1,
either the intersection is proper or is contained in IL,. It the intersection is
contained in L,, it must be of dim O by our hypothesis. Thus, | NL, | is
transversal to V at P;. Claim: | NL,| is also transversal to V at Q,. For,
E(P) is a field of definition for V and L,; N*is generic over k(P) with
t<=n—(E+1)—2; @ is a component of | NL, | 0 V not contained in L;;
and by 2.7 Vis an L,-variety except when | L,V | = | LV | . Thus, 2.2 applies
when | L,V|d=| LV |, and we can conclude in this case that | NL,| is
transversal to V at @,. But | L,V | =|LV | implies | LV | is a cone with P in
its vertex; so by 2.3 and the fact we have assumed | LV| is not linear, P is
in the singular locus of |LV|. But if @ is a generic point of L over k(P),
| QP| contains a point which is generic over k for | LV | and hence which is
simple on | LV|. Therefore, by 1.3, P must be simple on |LV|;s0|L, V|5 |LV]
and 2.2 always applies. Thus, deg V=p+v 4 =.

On the other hand, by 2.1 any component of | NL,|0|LV| not contained
in L, is proper, so L., [L&,|, .., | LO.| are components of NL,|n'LV]|.
Suppose B is a point of | NL,|N|LV| not in L,. |LR|C|NL,| and | NL,|
intersects the tangent linear variety to V at any point of L N V in just that
point, so | LE | also has this property. Therefore we can apply 2.6 to conclude
there exists a point R;eV such that | LR | =!LR,|. Then R,e|NL,| also,
8o R,e| NL, | nV. Thus B, is some ¢, and ReL, U | LQ, lv..uLa. .
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Hence |NL, | N |LV|= LU |LQ |VU..U| LG |. We have already
observed that Q; is generic over k(P) for V, so we can apply 2.5 to conclude
I LQ,| intersects Vin the same number of points outside L as L,. Therefore
|LQ,| NV contains exactly v points not in L. But these are points of

INL,|nV, so |[LQ|=..= |L@Q;,| for some @, .., Q. Thus, exactly % of
of the varieties | L@, |,..,| L@, | are distinct. Therefore | NL, | N | LV|
contains exactly %+ 1 distinet components.

Furthermore, L, is simple on | LV | because it contains a generic point
of | LV | over k. Therefore there exists a point Ae L, such that 4 is rational
over k{P) and simple on |LV|. If T, is the tangent linear variety to |LV|
at 4, | NL;| n T4 is proper by 2.1;so | NL, |is transversal to | LV | along L,.
But also dim | L, | LV || > dim | LV | since | LV | is not a cone with P in its
vertex, as we have seen previously; so, since by 2.7 | LV | is an L, ~-variety,
2.2 applies and | NL,| is transverval to | LV | along each | LQ;|. Thus,

deg | LV | = 5— -4 1. This combined with the above relation for deg Vis the
desired result. Q. E. D.

In the next theorem we make use for the first time of the converse
criterion for unit multiplicity ([11], theorem 6, p. 152). We use the criterion
in the following form: Let V7 be a variety, and let L™ ~7” be a linear variety
such that L0 V=P, 0..N P,. Suppose moreover that  is transversal to I
at P,,.., P, and deg ¥V =p. By the criterion for unit multiplicity and its
converse, we can then conclude that L is transversal to V at P, More
generally, suppose M is a linear variety such that M N V is proper
and = M, U.. U M, with the M, all linear; and suppose M is transversal to
V along M,, .., M,anddeg V= . Then by cutting down with an appropriate
linear variety and reducing to the previous case, we see that M is also
transversal to V along M,. By the converse criterion it now follows that
if P is any point of M, which is not in any other M, , then P is simple
on V.

2.9 LeMMA. ~ Let V be a variety in P, let L. and L, be linear wvarieties
in P" such that I CL,, and suppose V is an L-voriety. Then V is an
Ly -variety if and only if | LV | 4s an L, -variety.

Proor. - Let P, Q be independent generic points of L, V respectively
over a field % of definition for both L and V; and let T be the tangent
linear variety to V at @ and I the tangent linear variety to | LV | at a
generic point of | PQ| over k(P, Q). Then since V is an L-variety and
|LT | CT' by 14, | LT | =T. .| LT | =|L | LT|| = |I.T}, and [ L,|LV||=
=|LV]| ,s0 dim | L,T | = dim | L, | LV|| if and only if dim | Z,T| = dim |, V|.
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2.10 THEOREM (SIMPLE POINT THEOREM). — Let k be a field of definition
for a variety V" and o linear variety L° in P", let P be a point of V nol
in the wvertex of | LV | and such that V is an | LP | -variety, and let T be
the lineqr variety attached to V at P. Suppose moreover that | LP| NV =P,
and that | LQ | NV = Q whenever § is a generic point of V over k.

Thewn if | LP| N T = Pand P is simple on V, every point of | LP | nol
in L is simple on | LV |; and conversely, if |LP|is simple on | LV |, then
|LP{ N T=P and P is simple on V.

Proor. - Let L, = | LP|, and let N be a generic linear variety over k(D)
with t =% —{r 4+ s+ 2). Since | LV | is a cone with /7 in its vertex and
by hypothesis P¢the vertex of | LV |, P¢ L. Therefore dim | NL, | =n —r
and by 1.9 dim | LV | =r+4 s+ 1. By 2.1 every component of | NL,| NV
not contained in Z, is proper and general over k for V. Since by hypothesis
L, N V=P, this implies | NL, | N V is proper and = PU P, U.. UP, with
P;¢ L, and generic over k for V. Similarly, | NL, | n | LV | is proper and

contains Ly, | LP, | ,.., | LP, | as components. Suppose E is a point of
| NLy | N LV | notin L,. |LE|C | NL | N jLV |and LN V=®;so by 2.6,
there exists a-point R,e V such that | LE | = | LR, | . Then B,e | NL, | N V.

Therefore R, is some P; and ReZ, U..U | LP,|. Hence | NL, | N | LV | =
=L, U|LP,| U..U | LP,|. Moreover, since P, is generic over k for V,
| LP;| 0 V= P; by hypothesis; so | LP; | &= | LP; | for i<=j.

To apply 2.2, we must verify that { < n —(s+4+ 1) —2 and dim | L, V| <
<wn—t=r-s-4 2. The first inequality follows if we assume r > 0, which
we may do because the theorem is otherwise trivially true. The second
inequality follows from the observation that dim | LV | =# 4 s 4 1 and the
fact that { LV | C | L4V | because P is not in the vertex of | LV | . Therefore
by 2.2, we can conclude that | NL, | is transversal to | LV | along | LP, | ; for,
the hypothesis that V is an L,-variety along with the inequality dim
| L,V | =r-+4s-+2 imply Vis an L-variety, and then by 2.9 | LV |is an
L;-variety. Finally, observe that deg V=deg | LV | by the degree theorem.
For, it @ is generic for V over k, | LQ | 0N V= Q by hypothesis; and if Ty is
the tangent linear variety to Vat Q| LQ| N Ty = Q since LNTy=d
by the condition dim | LV | =# 4-s-4 1 and the above observation that V
is an L-variety.

Suppose then that | LV | NT=P and P is simple on V. It follows
from 2.1 that | NZ, | N T is proper; so | NL, | is transversal to V at P also.
Therefore deg V= yp=deg | LV |. Hence, by the converse criterion for unit
multiplicity, every point of Z; not in L is simple on | LV |.

Conversely, suppose I, is simple on | LV |. Then | NL, | is transversal
to | LV | along Ly; for | NL, | intersects properly the tangent linear variety
to | LV | at any point of L, which is rational over k(P) and simple on |LV|,
by 2'1. Hence deg | LV | = i = deg V. Therefore by the converse criterion for

Annali di Matematica 47
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unit multiplieity, | NL, | is transversal to V at P, 4. e. P is simple on V and
|NL;| n T = P. Then a fortiori, L, N T = P.

2.11 COROLLARY. — Let k be a field of definition for a variety V' in P",
let I® be a generic linear variely over k im P* with s <n—r — 2, let P be
a point of V rational over k and simple on V and such thal Vis a P-variefy,
and let P’ be any point of | LP | not in L. Then P-is simple on | LV |; and
if T is the tangent linear variety to V at P and T’ the tangent linear variely
lo{ LV |at P, then T'= | LT | .

Proor. - We may assume V is not linear since then the corollary is
trivial. Let %(u) be a purely transcendental extension of % over which L is
defined, and let Q be a generiec point of V over k(u). Then | LP | NV =P,
|LPINT =P, and |LQ| NV =@, by 2.1. Moreover, if Ty is the tangent
linear variety to Vat Q, | LP | NTg= ®. For by 2.1, if the intersection is 5= ®,
it must be P. But then V is a cone with P in its vertex, by the hypothesis
that V is a P-variety. Since P is simple on V by hypothesis, 2.3 implies V
must be linear, a contradiction to our assumption, Therefore | LP | N To= @,
so Visan | LP | -variety and dim [| LP | V| > dim | LV | by the dim theorem.
Thus P is not in the vertex of | LV | , and we can apply the simple point
theorem to conclude P’ is simple on |LV|. Finally by the dim theorem we have
dim | LV | = dim | LT | since LN Ty = L N T = ®@. Therefore dim 1" =dim |LT|,
s0 the second assertion follows from 1.4 when P'==P and 1.3 when P = P

3. Intersection properties.

3.1 ProrosIrioN. - Let V" be a variety and L* a linear variety in P"
such that L NV = @, and let W* be a variety in P" such that t =n —s—1
and L0 W is proper. Then (i) every component W, of | LV | N W is proper;
and (i) if k is a field of definition for V, L, W and P is a point of V,
then | LP | contains a generic point of W, over k if and only if P is
generic over k for V.

Proor. - By 1.9 dim | LV | =7+ s+ 1, and then W, ¢ L since LNW
is proper and W, is a component of | LV | N W. Let-P; be a generic point
of W, over k and let P be a point of V such that P;e | LP | . There exists
at least one such P since VN L = ®. Then the locus U of P, over k(P} is
contained in | LP | and not contained in L. Therefore U N L is proper in iLP|,
since L is a divisor in |LP |; so dim (U N L) = dim U — 1 (where
dim ® = —1).

Thus, dim U — 1= dim (UN V)= dim (WNL)= ¢} s—n, where the
inequality follows from the fact UC W if UN Ls=® and from the condition
t=n—s—1 when UNL=®. But dim P/k=dim P,/k — dim P,/kP) =
=dim W,—dim U= (r+s+1+4+¢t—mn)—(f +s—mn -+ 1) =r. Therefore P
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is generic over k for V. Also, since the equalities now hold, we have
dim Wy=dimU+4r=({{+s—n-1)+r;so W, is proper in | LV | N W.

Conversely suppose P is generic over k for V. Let @, be a generic point
of W, over k&, and let Q be a point of V such that Qe | LQ}. Then Q is
generic over k for V by the above result, so P< — — > Q over k. This
specialization extends to a generic specialization (| LQ |, &) < — — > (|LP|, P)
over k, where P, is then evidently a point of | LP | which is generic over
L for W,

3.2 Lmmya. — Let V be a variely in S* defined over a field k, let € denote
the sel of points which are in every linear variety atlached to V, let w be the
set of points P of S such that V is not a P -variety, and let & be the singular
locus of V. Then £ is a k-closed set, and either V is linear or S NS =nn3.

Proorw. - Let F,(X)=0 be a set of equations for V over k. Then
AyF, (Y — X) =0 define a k-closed set Fin S"X S". If £ isthe setof points
which are in every linear variety attached to V at those points of V which
are rational over k, then ¢ is a k-closed set also. Then VX € is a k& -closed
set such that every point of it which is rational over k is.in &, so VXL C§.
But this means £ C £, and hence ¢ = £.

Suppose now V is not linear. If Qex, then either | QV | = V or @ is in
the tangent linear variety 7 to V at a generic point of V over k(Q).
H ! gV =V, Qe by 23. In either case then, @£ N §. Conversely,
if Qc$ and ¢8, then Qe T and | QV | &=V, so Qen.

3.3 TuroreM - Let k be a field of definition for varieties V' and W' in
P, and let L* be a generic linear variely over k in P" such that s <n—r—2
and t=n-—s — 1.(% If there exists a point PeV suck that W is a P-variety
and P is not in the singular locus of W, then | LV | is transversal to W along
every component of | LV | 0 W. {f}

Proor. ~ Let k(u) be a purely transcendental extension of % over which

L is defined, let P be a generic point of V over k(u) =K, let W, be a
component of [LV|[ N W and hence not contained in L, and suppose V is
not confained in the singular locus of W. Then there exists a point QeV
such that @ is rational over k and ¢ is simple on V and is not in the

(¢} One sees from simple examples that == n-s-1is needed in order for the components
of [LV{ W to be always proper; for instance, consider r =0, =1, s=0, n=3,

(") Chow mentions in [2], p. 459, that this is true when Ve W and §=14-s-1; but he
proves there a more special result. Chow however makes no mention of an extra hypothesis
in the case of characteristc p==0, and we shall give in section 4 an example where VoW
and ¢ =n-s-1 but for which the theorem is not true without the condition that V contains
a point P such that W is a P-variety-
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singular locus of W; and furthermore, by 3.2, @ may be chosen so that
both V and W are @-varietes. Moreover, | LP| NW and | Lg | 0 W are
proper and | LP | contains a point P, which is generic over & for W, by 3.1.
Therefore if C is a component of | LP | N W containing P;, then CC W,.
But W, is defined over k;so( | LP |, O)—> (| LQ |, X'} over K, where X’
is a K-closed set contained in W, and such that any component (' of X’ is
a component of | LQ | N W ([8], p. 147, prop. 18).

| L@Q! is transversal to W along (' by 2.2. Also since both L N W
and | LQ | 0 W are proper and henmece (' cannot be a component of both,
C' ¢ V. Thus, if @ is a generic point of € over K, then ¢ is simple on W
and the tangent linear variety M to W at § intersects | LG | properly.
Moreover, by 2.11, ¢ is simple on | LV |, and if 7" is the tangent linear
variety to | LV | at @ and T the tangent linear variety to V at ¢,
then 7"==| LT |. But M N T is proper whenever M N ; LQ | is proper,
since | LQ | CT" and M N | LY | = D; so MNT"is also proper. Therefore | L V|
is transversal to W at @.

3.4 Prorosition - Let V" be o subvariety of a variety W' in P*, let P
be a point of V simple on W, and let T be the tangent linear variely to W
at P. If L* is a linear variety in P" such that LN T =@ and |LP| N V=P,
then P is in o unique component of | LV | n W,

Proor, - Suppose P is in two compounents W,, W, of | LV | N W.
Since VC | LV | nt W, at least one of these, say W,,is not contained in V.,
Let k& be afield of definition for L, V, W, W, P; and lef P; be a generic point of
W, over k. Since L N V= @, there exists a point Qe V such that P,e|LQ;
and then P,==¢. Moreover, P.,¢ L; for Pyel implies W, CL and hence
PeL N T, a contradiction fo our hypothesis. Therefore dim | LP, | =s+ 1,
80 (P, | LP,|)— > (P, | LP|) over k. This specialization then extends
to (P, @, | LP,|,| P.Q|)—> (P, ¢, | LP|,!), where @' ¢ | LP[ 0 V=P.
Therefore by 2.4, ICT. But | P,@ | N L==®, so I N L7=P; and consequently
T n L3O, a contradiction.

3.5, COROLLARY - Let V" be a subvariety of a variety W' in P, let P
be a point of V simple on W, and let k be a field of definition for V, W, P.
If L* is a generic linear variety over k in P™ such that t <n—s — 1, then P
is in o unique component. of | LV | 0 W. (%)

Proor. - Apply 3.4.

3.6 THEOREM - Let k be a field of definition for V" and W?' in P", lef
P be a point of V N W rational over k and simple on W, and L* be a generic

() Van der Waerden proves a special case of this in [9], p. 635.
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linear variety over k such that t 2 n—s—1and r =n—s—2. If W, is
a component of | LV | N W through P such thal every componeni of LP| 0 W,
different from P is proper, then W, is the only component of | LY | 0 W
through P.

Proor. CasE 1. -f{=n—s— 1. It VCW, the theorem follows from 3.5; so
assume V ¢ W. By 3.1, W, is a proper component of | LV | N W and hence
has dim 7. Also dim | LW, | =7+4+s+41by 1.9; so | LW, | =|LW: Now
apply 34 to conclude | LW, | n W, and hence | LV | N W, has a unique
component through P.

Case 2. -t >n—s—1. Let kE(u) be a purely transcendental extension
of k& over which L is defined, let K = k(u), and suppose P is in a second
component W, of | LV | 0 W. Let N be a generic linear variety over K of
dim » —[f{—n—s8—1)]—1<n—1.]| NP| is transversal to W at P
by 2.1; so by the criterion for unit multiplicity, there exists a unique
component W’ of | NP | N W through P, W’ has dim » —s—1, and P is
simple on W. But |{LV| N W and | LV | N W are proper by 3.1, and
W, 0 | NP | is proper, and every component is general over k for W by 2.1;
so we can conclude W, N | NP | contains a component W', through P such
that W’ is general over K for W, and is also a component of | LV | n W'
Hence W', W', are distinet components of | LV | N W’ through P. But

[LPI{nW.C|LP | n(W,0 | NP|)=(|LP|0nW)yn|NP]|,
and by hypothesis either
dim (LPinW)=s+1+@¢+s+1+t—n)—nor |LP|OW, =P
In either case, by 2.1,
(JLP|nW)n|{NP|=P; so |LP| 0N W/ =P

Hence we can apply case 1 to conclude W', is the only component of
| LW |0 W through P, a contradiction Q. E.D.

ReEMarx ~ It is not clear in theorem 3.6 just when there exists a com-
ponent W, satisfying the condition that | LP | N W, be proper outside P. In
the case i=n —s—1 and VS W , there exists such a W,, namely V.

Question: If t >n—s—1 and V< W, does there always exist such
a W,?

(*) This example was pointed out fo me by A. Seidenberg.



374 J. Oum: Algebraic Cones With Linear Vertes

4. Some Counter examples,

Liet k& be a field of characteristic p == 0, let ® be a transcendental
quantity over k, and let A be the locus of P = (x, —ax —x?*') over k in
§? Then 4 is defined by Y 4 X 4 X?*+* =0 over k, and the tangent 7 to 4
at P is given by

(1+a®) (X —2)+ (Y —y =0.

Hence 0= (0, 0)e T, but 4 is not a cone with O in its vertex. .. 4 is not
an O-variety. Moreover, the example shows 1.6 and 1.7 are not true without
‘the characteristic O hypothesis. It also shows 2.2 is false without the
assumption that V is an L-variety; for, (in the notation of 2.2) taking
V=A4, M = a generic point of T over k, and C = (w, y), then | ML| =T
is now tangent to V at C. For the same reason 3.3 is false without the
assumption W is a P-variety for some P ¢ V, taking there V=0, W = 4,
L = a generic point of T over k.(°)

The following example shows 1.8 is false withouf the hypothesis that
V is an L-variety: let 4 be the curve in §° defined by

XPrY 4 Y X —1=10

over an appropriate field & of characieristic p >> 2. The tangent V to 4 at
(x, y) is given by

(yP~t — P2 X + (P —y? )Y =0 so OecT but O 4.

As for the simple point theorem, it is not clear if the theorem remains
true when one omits the hypothesis that V be an | LP | -variety. At any
rate, the possibility of omitting this condition seems to depend on being
able to apply [11], prop. 14, p. 131.
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