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S u m m a r y .  - Let t~ c R ~' be an open set and let P be a linear partial dij]erential operator with 
constant coe]]icients in  R n. Then t) is said to be P-convex i] ]or each ] E C~(Y2) there is a 
u e~ ' ( .Q)  such that P ( D ) u  = ]. A complete geometric characterization o] P-convex sets in  
R 3 is given when P is o] principal  type and when Y2 has C2-boundary. As  a step in  the 
proo] one also obtains necessary and su~cient  conditions ]or uniqueness in the local Cauchy 
problem at simply characteristic points in R ~. The tools are a sophisticated use o] the author's 
uniqueness cones on one hand and his semi-global nullsolutions on the other hand. Hints  
are given on the di/]ieulties that may  be encountered in  R ~ for the same problem. 

l .  - I n t r o d u c t i o n .  

I n  this pape r  we shall t r ea t  uniqueness in the  local Cauchy p rob lem when the  
linear par t ia l  differential equat ion P ( D ) u  ~--] has cons tant  coefficients. We shall 
also t r ea t  the  connected prob lem of global solvabil i ty of P ( D ) u  =- / in ~n open set .O 

when ] e C~(Y2). MALGI~ANGE [157 Thcor~me 47 p. 295] showed t h a t  P ( D ) u  = f has 
u solution u E ~ ' ( I2)  for eueh ] e C~(Y2) if and  only if for each compac t  set K c Y2 
there is ano ther  compac t  set K ' c / 2  such t h a t  

(1.1) u e ~'(Y2), supp  P ( - -  D) u c K ~ supp  u c K ' .  

With  HOlCMANDEI~ [87 p. 80] we call such a set P-convex .  
W e  have  here used the  s tandard  nota t ion  of [8] and  we shall also stick to it  in 

the  following except  t h a t  we shall use D s =  ~/~xj7 j = ]7 . . . ,  n. 

Le t  it now be t h a t  K c / 2  and  tha t  K is compact .  Le t  it also be  t h a t  to each 
x e 8t9 we can find a ne ighbourhood Y2~ of x in ~K such t h a t  

' ' P ( -  D )  u = 0 ,  s u p p  u c ,.c2' c~ .~ => u ---= 0 (1 .2)  u e g ( s g ) ,  

I f  u E ~'(tg) then  we ex tend  it  to ~'(R")  b y  let t ing u = 0 outs ide /2 .  Then u res t r ic ted 
to /2" in (1.2) is in ff)'(Y2'~) so u is zero in zg'~. Le t  ~: be the  convex hull of K .  
L i o n s  [14], see also [8, I J emma 3.4.3, p. 80] has p roved  tha t  u e ~ ' ( R ' ) ,  

x c S ~  - 

(*) Entrata in Redazione il 7 giugno 1978. 
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K '  is a compact  subset of ~ and (1.1) is satisfied. This a rgument  shows the con- 
nection between local and semilocal uniqueness in the  Cauchy problem and 
P-convexi ty .  

A natura l  problem is to give a geometric characterizat ion of P-convexi ty .  In  R ~ 
there  is the following complete characterization. 

TttEO~Et~ 1 . i  (HSICMANDEt¢ [8, Theorem 3.7.2, pp. 89-90]). - A n  open connected 

set 12 c R ~ is P-convex i] and only i] every characteristic line intersects ~ in an open 

inte~al .  

In  R ~, n>~3, one knows tha t  every  open set ~2 is P-convex  if and only if P is el- 
liptic [8, Cor. 3.7.1, p. 89], and tha t  ~ is P - c o , v e x  for all P if, MALG~AEGE [:[5, The- 
or~me 3, p. 29~], and only if, TREVES [26, Frop.  6.1, p. 351], ~2 is convex. These are 
general theorems. However~ no general theorem of the Theorem 1.1 type  is known. 
A natural  first step forward is to look at  operutors P(D) of principal type,  tha t  is 
operators such tha t  if P~(~) ~- 0, 0 ¢ ~ e R ~ then  grad P~(~) V: 0. In  order to sim- 
plify fur ther  this paper  is restricted to the case n ~ 3 and to 12 with ~ in C ~. Then 
one can give necessary and sufficient geometric conditions for P-convexi ty .  This 
also applies to uniqueness in the local Cauchy problem. 

Some ra ther  lengthy definitions will now be given and with their  help the theorems 
will be s tated in a short  form. Afterwards one discusses the ra ther  restr icted hypo- 
thesis in the theorems and what  one m a y  expect  in more general cases in connec- 
t ion to already known results. 

Firs t  we need u proper  definition of local uniqueness in the Cauehy problem. 

DE~NI~rlON 1.1. - .Let 12 c R ~ be an open set and let 
closed in 12. .Let  P(x,  D) be a linear partial dif]erential 

cients. -Let x ° ~ ~F ~ ~ .  Then there is local uniqueness 

(in relation to F)  i f  to each neighbourhood Y2 ~ o] x ° there 

o] x2 such that 12'~c12' and such that if  u e~'(Q~"), 

be a nonempty set which is 
operator in 12 with C=-coe]]i - 

in the Cauchy problem at x ° 

is another neighbourhood t9 f~ 
P(x ,  D ) u  ~ - 0  in Y2 ~, supp 

u c F (5 ~"  implies that u ~ O. When  there is not local uniqueness at x ° then we say 

that there is local nonuniqueness in  the Cauchy problem at ~* (in rel~ation to ~) .  

l~.E)1_a~K. -- Local nonuniqueness means tha t  there  exists a neighbourhood Y2 ~ 
of x ° such tha t  for  each neighbourhood .c2'~ of x ° with tg~'c 12~ there  is a u e ~(.Q'~), 
u ve 0, with supp u c /~  n YP" and P(x,  D) u ~ O. 

DEFI~I~ON 1.2. - .Let P(~) be a polynomial of order m in R ~ with constant coe]]i- 
eients. Zet Pm be its principal part. I]  P~(~) ~ 0 then ~ is said to be noncharacteristic. 

I] P~(~) ~- 0 then ~ is charaeteristie. I]  P,~(~) ~- 0 and grad~ P~(~) v e 0 then ~ is called 

s imply  characteristic. .Let n ~ 3. Let ~ -~ (1, 0, 0) be s imply characteristic and 
assume that l~e grad P~(1, 0, 0) ~- (0, 1, 0). I] P,~(1, 22, ~)  ~ 0 ]or all small real 
(~2,~3) ve (0,0) then we say that (1 ,0 ,0 )  is s imply characteristic o] type 1. 

I]P,,(1, O, ~ )  = 0 ]or all ~ e R then (1, 0, 0) is said to be s imply characteristic of 
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type c~. I]  l~e P~(1, O, ~ )  -~ a ~ s  wi th  a~ =/= m,  2 < k <~ m and i/  (1, 0, 0) is not o] 
j=ls 

type :1 then (1, 0~ 0) is said to be o] type k. 

1%E~A~X. - Le t  (1, 0, 0) be a simply characteristic point. One can always ro ta te  
the x~ xa-coordinates and then  mult iply the operator  P by  a proper  complex con- 
stunt such tha t  with P denoting the new operator  grad Re P~(:1, 0, 0) ~- (0~ 1, 0). Then  
there  is a unique analyt ic  funct ion s(t), defined for small t such tha t  l~e P~(I~ s(t), t) ~ 0 
and s(0) ---- 0 since Re grad P~(:1, 0, 0) = (0, :1, 0) ¢ 0. I t  follows tha t  t - .  Im  P,~(1, 
s(t) , t )  is an analyt ic  funct ion with Im_P~(], s(0), 0 ) ~  0. So there  are two pos- 
sibilities. Im  P~(1,  s(t), t) ~ 0 for sma.ll t or Im/ ) , , (1 ,  s(t), t) =/= 0, 0 < It[ < 6, for  
some 8 > 0. Tha t  proves tha t  the type  of a simply characterist ic point  (:1, 0, 0) 
is a well defined number.  One also sees how to give a definition invar iant  under  
or thogonal  t ransformations.  Since we shall use the  above definition in our com- 
putat ions we stick to it all the time. 

In  the following a funct ion denoted b y  ~ will have  real values. 
We can now formulate  a theorem on local uniqueness. 

THEOREM :1.2. - Let  ~2 be an open set, 0 e ~2, and let ~ e C~(~2) with grad Fee  0 
in  ~2 and ~fl(O) ~ O. Let  F ~ {x; ~p(x)>0}. Let  P (D)  be a linear part ial  diHerential 

operator with constant coe/]icients. Let grad ~p(0) ~- (1, 0, 0) and let (1, 0, 0) be a s imp ly  

characteristic poin t  o/ type 1~. 

I /  tc ~- 1 then there is local nonuniqueness  in  the Cauchy l~roblem at x -~ 0 i] and 

and only i/  ]or some (~ > 0 

(1.3) (x; ~(x)>o,  Ixl < ~} ~ {x; x ~ O ,  Ixl < ~}. 

I ]  2 < k < <x~ then there is nonuniqueness  in  the local Cauchy problem i] and only 
i] there is a K > 0 and (~ > 0 such that 

(1.4) {x; ~(x)~O, 121 < ~} ~ {x; x~Klx~] ~(~-~), Ixl < ~}. 

I /  k ~- ~ and P is o] pr inc ipa l  type i.e. i f  ~ :/: 0 ~ e R ~, P,,(~) ~ O, impl ies  that 
grad Pm(~) ~ 0, then there is local nonuniqueness  in the Cauchy problem i] and  only i] 

there is a K > 0 and (~ > 0 such that (1.4) is true when one reads k/(k  - -  1) ~- 1 / o r  k ~ c~. 

The theorem will be proved in the following sections. 

DEri~imIO~ " 1.3. Let Y2 be an open set in  R ~ wi th  boundary in  C 2. Let  xo E ~Y2. 

Zet  ~ > 0 and y~ e C~({x; Ix -- xOl < ~}) such that grad • V= O, ix --  x° t < ~, grad V(x °) : 
= (1 ,0 ,0 ) ,  9 ( ~  {x ; lx - -xO t < ( ~ } - -  { x ; I x - x o l < ( ~ , F ( x ) > 0 } .  Zet  P ( D )  be a linear 

operator o/ order m with constant coef]ieients. Let P~, be its pr inc ipa l  part .  

I /  Pro(l, 0, 0) ~-- 0 then x ° is said to be a characteristic point  o] 3Y2. 
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(1.7) 

.Let 

I f  (1, 0, 0) is simply characteristic of type 1 for P,~ then x ° is said to be a semi- 

global nonuniqueness point of type I if  the component containing x ° of 

(1.5) H = {x; x~ = o, x e ~ 9 }  

is compact in ~t' (in the topology o/ {x; x, == 0}) when 

(1.~) n ' =  {x; x~ = o, xeO}. 

/ /  H in (1.5) is not a compact subset of t t '  then x ~ is said to be a point of semiglobal 

uniqueness point  of type 1. 
Let (1, O, O) be simply characteristic of type c~ for P.,  and let 

= {x; xo + t(o, 1, o), t e n } .  

_Let L '  be the interval of JL (~ ~ which contains x ° and let L" be the interval of L N ~f2 
which contains x °. I f  L '  and L" have no common endpoints~ finite or not finite, then x ° 
is said to be a point of semiglobal nonuniqueness of type c~. I f  JL' and L" have at 
least one common endpoint then x ° is called a point of semiglobal uniqueness of type ~ .  

Let (1, 0, 0) be simply characteristic of type k, 2 < k < m .  Let .L, L '  and L" be defi- 
ned as above. Zet x u be the centre of Z t~ and assume that 

~ . " =  {(o, t, o); Iti<a'} 

for some a'>O. Let ~ e  P.~ have the form 
~Tt 

"]~]=m--1  + ~=/c 
~ i < m - - 1  

with bk V = O. Z e t a ' >  O. Zet the normal of ~D along Z" be proportional to (1~ 0~ 0). Let 

M = (k -- 1)Ibka r ]1/(1-~)k~/<~-k). 

Along L" 3Q is given by 

x~ = e(x~).~ + o( .~) ,  i x~ i<a ' .  

Here N(x~) is continuous on Ix21 < a'. Then x ° is called a point of semigtobal nonunique- 
Hess of type k if  one of the following three conditions are fulfilled 

(1.9) k = 2 ;  b ~ > 0 ;  N ( x ~ ) < M ( 1 - - x 2 / a ' )  -~, - - a  ~ < x ~ < a ' ,  

(1.10) k = 2 ;  b 2 < 0 ;  N ( x ~ . ) < M ( l + x ~ / a ' )  -~, - - a ' < x 2 < a ' ,  

(1.11) k > 2. 
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I] a ' :  0 and if x ° is a point o] local nonuniqueness o/ type k in the Cauchy problem 
with .F replaced by ~ and f2 replaced by R ~ then x ° is also called a point of semiglobal 
nonuniqueness of type k. I f  00o is not a point o] semiglobal nonuniqueness o] type k then 
it is called a point o] semiglobal uniqueness o] type k. 

I~E~AEK. - Le t  (1, 0, 0) be  normal  to 8/2 a t  x ° and  let x ° be a s imply  character-  
istic poin t  of t y p e  k, 2<k~<m. Let  a ' >  0. I f  the  normal  to 8z9 a t  some point  
of L '  is no t  propor t iona l  to  (1, 0, 0) then  x o is a point  of semiglobal uniqueness.  

All those  heavy  definitions are made  to suit  the  formula t ion  of the  following 

theorem.  

THE0]~E~ 1.3. - Zet .(2 be an open set in R ~ with C ~ boundary. I~et P be a linear 
partial di]ferential operator o] principal type in R" with constant coe]ficients. Then [2 
is P-convex i] and only i] 8f2 contdins no point o] semiglobal nonuniqueness ]or the 
operator P. 

I~]~A~E. - I n  the  conclusion of the  theorem one should expect  /~-convex to be  

used instead of P-convex .  The proof  will show t h a t  uniqueness and  nonuniqueness  
depends on the  principal  pa r t  of the  opera tor  in such a way t h a t  it does not  m a t t e r  

if we look a t  P ( - - D )  Or P(D). So for the  sake of convenience we jus t  t r ea t  P(D)  
where one should look a t  P ( - - D ) .  

The  first one to  t r ea t  nonuniqueness  in the  character is t ic  Cauchy p rob lem seems 
to be  Goursat .  Ze t  f2 be  open in R ~ and  let 

P(~) = ~1~, + Z a,,~ ~. 
1~1<1 

I f  0 e l 2  and  F =  (x;xl>~O,x~K2} t hen  GOtmSAT [5, pp.  303-308] shows tha t  0 
is a po in t  of local nonuniqueness  for P.  l~ow let  _P be an  opera tor  in R" with con- 

s tan t  coefficient and  let 2V = (1, 0, ..., 0) e R ~ be a simple characteris t ic  point .  Le t  
also P~  have  real  coefficients, let grad  P~,~(h r) - - - - (0 ,1 ,0 ,  ..., 0 ) =  £V', and  let  
x = ( x ~ , x ~ , x " ) ~ R  ~, x ' e R  ~-~. Let  z P ' c R  ~ be open and  let F = ~ ' .  Le t  0 e F ,  

and  let F c~ {x; [x] < 5} = {x; ~(x)~>O, Ix] < ~} for some !P e C 2 with grad ~p(x) ¢ O, 
g rad  ~v(0) = 2¢. Le t  ~ = R ~. Then 1V[ALGI~A~GE [16] shows tha t  there  is local non- 
uniqueness a t  x ~ 0 if for some M > 0 and  ~ ' >  0, one has 

(1.12) 

Malgrange 's  results are somewhat  weaker  bu t  it  is po in ted  out by  t t6R~A~])E~ [11, 
p. 108] t h a t  ~ a l g r a n g e ' s  proof  gives precisely this. I t  was poin ted  out  b y  PE~sso~  [22, 
Theorem 5] t h a t  (1.12) is also sufficient for nonuniqueness  in the  analy t ic  coefficient case. 
Malgrange 's  proof  consists of a construct ion of a simply- character is t ic  analyt ic  hyper-  
surface lying above  l p ( x ) ~  0. Then  a nullsolution is cons t ruc ted  b y  the Goursa t  
technique.  Other  formulat ions  to garantee  (1.12) are given b y  TI~EVES [26, The- 
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orem 6.10, pp. 377-378], ZACR~A~0aLOV [35] and also by  PE~sso~ [22]. The two 
last references refer to  operators with analytic  coefficients. Possible ways of extending 
MMgrange's result  to operators with l inearly independent  I~e P~(~Y) and I m  P~(N) 
are indicated by  tt6~)IA~DER [11, Theorem 1.3.5]. I n  our language we then  have  
a point  of type  k -~ I in the  R 3 case. t t e re  the only possible characteristic surface 
will be the plane. 

I f  we have  a hyperplane  H as initial hyperplane then  we can use H6rmander ' s  
nullsolution if H is simply characterist ic or not  or [7, Theorem 3.2] [8, Theorem 3.7.1, 
p. 89]. For  variable analytic  coefficients this corresponds to the local result  by  
PE~sso~ [18] or the  semiglobal result  by  PEgSSO~ [23], [24, Theorem 4']. The 
results in [23], [24] combined with an approximat ion technique are cornerstones 
in our proofs of nonuniqueness in this paper.  

In  our eagerness to get conditions of the necessary and sufficient type  we t rea t  
operators in R ~ with constant  coefficients. The surfaces involved are supposed to 
be in C ~ and the characteristic points of the  surfaces are supposed to be simple. We 
even suppose tha t  the operator  is of principM type  in Theorem 1.3 and par t ly  in 
Theorem 1.2. W h a t  happens when one looks at  R ~, n > 3. The type  k m ay  be de- 

m 

fined for every  ~" e R "-2, l~"l = 1, as k in 1",,(1, o, t~") : ~ b3 V, b~ =/= 0, if 2 < k < m. 
j = k  

B ut  ah'eady k = 1 seems to give trouble. And how can one combine it  to give a ne- 
cessary and sufficient condition. As to the regulari ty of ~1# in the Cauehy problem 
one sees tha t  it  does not  ma t t e r  for  local nonuniqueness as tong as one can get a 
s imply characteristic analyt ic  surface inside E close to x °. As is proved by  PE~s- 
so~ [22] this also applies to surfaces of higher constant  multiplicity and under  cer- 
ta in  addit ional  conditions also to the semiglobal case [23], [24]. ~o r  the Cauchy 
problem with analyt ic  coefficients other  types of null solutions have been constructed 
b y  K O ~ T S V  [13]. Tha t  one m a y  have  uniqueness in the class of C~-functlons for 
certain characteristic problems is proved by  BAOUENDI and G o v L ( o w c  [1]. 

The origin of the uniqueness theorems which are used here is the well known 
theorem by  HOI~IGgE~ [6] on the  local noncharaeterist le  linear Cauchy problem for 
equations with analytic  coefficients. I=[51~ANDE]~ [8, Theorem 5.3.1, p. 125] has 
generalized it to distribution solutions. In  Section 2 after  Theorem 2.1 there  are 
some comments  on the  history of uniqueness theorems. There  we also define what  
is meant  b y  uniqueness cones. They  were int roduced b y  PE~sso~- in [21] bu t  M- 
ready t t 6 rmander  proved Theorem 2.1. The main idea with uniqueness cones is 
expressed by  Theorem 2.2 and Theorem 2.3. These theorems are other cornerstones 
in the  proof of local uniqueness and semiglobM uniqueness. 

The local uniqueness a t  a simple characteristic point  was first t rea ted  b y  tt6R- 
]VIA~DER [8, Theorem 5.3.2, p. 126] for a C ~ initial hypersurface.  I t  was generalized 
by  TI~EVES [26, Theorem 6.8, pp. 368-369] and Z A 0 m ~ O G I ,  OV [33], [34] for h igher  
order  of contact  between L f rom definition 1.3 and 3F. In  [8] and [34] also analyt ic  
coefficients are allowed. Anyhow x ° is a common endpoint  of L '  and  Z". I n  [9, The- 
orem 8.1] ]~(~lCMANDEI~ gives a very  sharp uniqueness theorem of global character .  
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I n  its local version for cons tant  coefficients it  says t h a t  if ~F is in C 1 and  if x ° is a 
comm on  endpoint  o f / /  and  L" then  there  is local uniqueness a t  x o. The  same result  
for ~F in C 2 was p roved  b y  uniqueness cones in PE~sso~  [21]. HSrmande r ' s  result  
is wri t ten out  for P~  with real coefficients. The result  in [21] also applies to the  case 
wi th  complex va lued  coefficients in P ~ .  One m a y  say t h a t  the  t r e a t m e n t  of points  
of t y p e  I in the  present  pape r  goes b a c k  to this observat ion.  

The  first example  of uniqueness when L - ~  L ' - ~  Z '~ was given b y  PaRs-  
so~ [21, p. 79]. I n  [22] P ] ~ s s o ~  gave some examples  on uniqueness when L '  and  L" 
have  no common  endpoint .  Another  s imple example  of local uniqueness is given b y  

~ - - R  ~ , F ~ ( x ; x ~ x ~ x 3 } ,  P(D)~--D~D~-~-D~, x°~-O. Here  Z = L ' = L "  and  there 
is uniqueness a t  x ° since the  normal  o~ 3F a t  (0, t, 0)~ t ¢ 0, is noncharaeter is t ic .  
Ho lmgren ' s  theorem says t h a t  this poin t  is a local uniqueness point .  This zero is 
then  t r anspor t ed  to 0 b y  uniqueness cones or b y  HSrmande r ' s  result  [9, Theorem 8.1]. 

I n  [22] it  is said t ha t  the first examples  above  show tha t  L '  and  Z" alone cannot  

decide on uniqueness or not  uniqueness.  The simple conjecture is t ha t  the  existence 
of certain s imply  characteris t ic  surfaces does. TI~EVES [29, Theorem I]  has given 
a uniqueness theorem for  a character is t ic  Cauchy p rob l em a t  x ---- 0 in R ~ when the 
mul t ip l ic i ty  of the  character is t ic  line a t  x ~ 0 is two bu t  equal  to one outside x == 0. 
I t  has been generalized to distr ibution solutions b y  BLRKELA:ND and PE~SS0~ [2, The- 

orem 1.3]. This shows t h a t  the  conjecture in [21] t ha t  one can use uniqueness cones 
to decide on uniqueness is not  t rue  in general a l though it is t rue  in the  case covered 
b y  Theorem 1.2. 

General izat ion to higher dimensions of uniqueness results and  results on  P-con-  
vex i ty  will p robab ly  mee t  m a n y  difficulties. We  have  not  wr i t ten  clown some obvious 

ones to keep this pape r  a t  u modera te  length.  This also applies to local results  when 
the  coefficients are variable.  One way  to get sharper  results seems to be  to  combine 
the  phi losophy of uniqueness cones with HSrmande r ' s  result  [9, Theorem 8.1]. We 
did not  m a n a g e  in some details. Therefore  we have  C ~ surfaces everywhere .  

To the  a l ready cited results we like to add  the  results on P - c o n v e x i t y  b y  Z.aC~- 
~IA~OGLOU [39], PE~SS0~ [19] and  [21, Theorem 9.1]. Local  uniqueness is t rea ted  
b y  ZACn~A~OGLOV in [36], [37], and  [38]. He  gives a necessary and sufficient con- 
dition for uniqueness in the  Cauehy p rob lem for first order equat ion with  analyt ic  
coefficients [36]. This condit ion specialized down to the  Theorem 1.2 case is just  
the  same as the condit ion of this theorem.  I n  [37], [38] he gives one necessary and  
one sufficient condit ion for uniqueness for special higher order equations.  

Other  uniqueness theorems have  been p roved  b y  B o ~ ¥  [3], H S ~ A ~ I ) E ~  [10] 

and  ]3ONY [4]. Fu r the r  references are given in Section 2. The references are b y  no 
means  complete.  They  include the  sources which in the  au thor ' s  opinion~ are mos t  
re levant  for the  p rob lem of this paper .  

The  pape r  is organized as follows. Section 2 gives the  definition of uniqueness 
cones and  general  theorems of H o l m g r e n  type .  Section 3 t rea ts  the  geomet ry  of 
uniqueness cones connected with the  proofs of Theorem 1.2 and  Theorem 1.3. The  

uniqueness p a r t  of Theorem 1.2 is p roved  in Section 4 wi th  the  uniqueness cones 
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of Section 3. I n  Section 5 local and semiglobM uonuniqueness results are proved.  
They  complete the proof of Theorem 1.2. The remaining semiglobal uniqueness par t  
of Theorem 1.3 is then  proved in Section 6. 

2 .  - U n i q u e n e s s  c o n e .  

Let  P(D) be a linear part ial  differential operator  of order m > 0 in R ~. Le t  P~ 
be its pr incipal  part .  Le t  M c R ~ be an open convex set contained in a half space 
of R ~. For  N e M ,  x ° e R  ~, ~o>0 define 

K ( N ,  M, x o, Q) = {x; x e  R ~, <X-- Xo, N> >--  ~, <x-- x °, ~><0, ~zM}. 

We also allow ~ = c¢ here. I f  M e  {~; P~($)=/: 0} then  K ( Y ,  M,  x °, ~) is said to 
be a uniqueness cone for P at x ° in the direction _AT. We use this language in the 
formulat ion of the following theorem due to H6rmander .  

TP._E0t~E~ 2.1 (HOR)L~NDEt¢ [8, Cor. 5.3.3, p. 130]). - _Let P(D) be a linear par- 
tial di]/erential operator in R ~ with constant eoeMieients. _Let ~ c R ~- be an open set. 
Let K (N ,  M,  x °, ~) c Q be a uniqueness cone for P.  Let u e ~ ' (Q)  be such that 

(supp u) n K(~V, M,  xO, e) n (x;  <x - -  x o, _~> = - -  ~} 

is empty. I f  P ( D ) u  = 0 in the inner points of K ( N ,  M, x °, q) then also u = 0 there. 

I~VL~]~.K. - HSrmander ' s  result  is a generalization to  distribution solutions of 
results b y  F.  Jolz~- [12] for  funct ion solutions of part ial  differential equations. How- 
ever HSrmander  has not  made much use of this result  in his book or otherwise. He  
has most ly  used various deformations of noncharacterist ie  hypersurfaces to show 
uniqueness as is already done in his proof of Holmgren 's  uniqueness theorem. 

In  [28, Th. 12.1, p. 60] TREVES gave a new proof of Holmgren 's  uniqueness the- 
orem for a C 2 initial hypersurface.  By  a nonlinear analyt ic  change of coordinates 
he reduced the  Cauchy problem to a special case of his dual  Cauchy-Kovalevskij  
theorem for functions in one variable with values in the space of analutie functionals. 
See also PE~sso~¢ [25]. T~EV~S calls the abst ract  theorem behind the dual Cauchy- 
Kovalevskij  theorem Ovsjannikov's  theorem [17] al though he himself independent ly  
found it  [28, p. 2]. I f  the  abst ract  theorem should be labelled it  seems appropria te  
to  call i t  Yamanaka ' s  theorem since -YA)~ANA~CA [30] proved  i t  a l ready in 1961. 

Le t  us call the  direction normal  to the initial hyperplane  of a noncharaeteris t ie  
Cauchy problem for the t ime direction. The other  variables are the space variables. 
The deformat ion in the proof of Holmgren 's  uniqueness theorem leads to a Cauchy 
problem with solutions having compact  support  in the space variables for a fixed 
time. In  [20] Persson showed tha t  cut  off functions in the space variables of the ori- 
ginal problems combined with a direct application of the  dual Canchy-Kovalevskij  
theorem gave a finite velocity of propagat ion of zeros. Here  the  coefficients of the  
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opera tor  are assumed to be  analyt ic  functions or even cont inuous functions analyt ic  
in the  space variables.  This implies Ho lmgren ' s  uniqueness theorem.  The au thor  

used this in [21] to p rove  Theorem 2.1. This shows t h a t  one can reach this theorem 
for constant  coefficients wi thout  the  use of nonlinear t ransformat ions .  The t r ick 
with cut off functions has also been used b y  ]3AOUENDI and  GOULAOUIC [1] for other  
generalizations of Holmgrens ' s  uniqueness theorem.  We  also like to point  out  a 
simplification applicable to the  proof  in [20] due to YA)iAIgAKA and 1)ERSS01~ [32]. 
I n  [32] there  is a beaut i fu l  procedure  due to Y a m a n a k a  b y  which one avoids the  re- 
duct ion of the  differential equat ion  P ( D ) u  ~ 0 to a first order sys tem gaining ad- 
dit ional informat ion  on the  velocities of p ropaga t ion  of zeros of the solution of the 
equation.  See also YA~ANAKA [31]. 

The real idea behind [21] is the  following immedia te  reformula t ion  of Theorem 2.1. 

THEOlCEH 2.2 (PElCSSO~ [21, Theorem ~.2, p. 74]). - -Let [2, P(D),  N,  M,  ~ and x ° 

be as in the hypothesis o] Theorem 2.1. I] u • ~'(~2) and if P ( D ) u  ~ 0 in ~2 and if 

(supp u) C~ K(N,  M, x °, e) Ch {x; ( x -  x o, h r)  = - -  ~o} 

is empty then there is an s > 0 independent o/ u such that u is zero in the inner points 

of K(N',  M, x ° -t- eN, e -[- e]Nl~) • 

t~E~AI~K. -- We  notice t h a t  x ° • ~2'= f~(N, M, x ° ~- eN, O ~- e ( N ,  N ) ) ,  if 2 '  V: 0. 
Indeed  we need a sharper  fo rm of Theorem 2.2. 

THEOI~ElVl 2.3. -- -Let ~2, P,  N,  M and x ° be as in the hypothesis of Theorem 2.1. Let 
u • ~ ' (Q)  be such that P ( D ) u  -~ 0 in ~2. _Let F be a non-empty closed convex set in [2 
such that x ° is an inner point of F and such that K (N ,  M,  x °, ~ )  (~ F is a compact 
subset o] [2. -Let ~ ( N ,  M,  x°~ c~) be non-empty. I f  

(2.1) /~(N, M, x °, c~) n 3F c ~supp u 

then u is zero in some neighbourhood ~ '  o] K(2¢, M,  x °, ~ )  ~ F where ~ '  is indepen- 
dent o/ u. 

P~ooF. - We see t h a t  (2.1) shows t h a t  u ---- 0 in a ne ighbourhood of the  compac t  
o 

set K(N,  M,  x °, oo) n ~F. The t rans la t ion  giving Theorem 2.2 obviously  also gives 
Theorem 2.3. 

3. - The  geometry  o f  u n i q u e n e s s  cones .  

I n  this section we shall s tudy  the  connection between real s imple zeroes of poly- 
nomials  in R 3 and  associated uniqueness cones in R 3. Le t  P(D) be a linear par t ia l  
differential opera tor  in R 3 of order m with cons tant  coefficients such t h a t  

9 - A n n a l i  d~ M a t e m a t i e a  
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/9~(1, O, O) = 0 a nd  

(3.1) l ~ e g r a d P ~ ( 1 ,  O, 0) = (O, 1, 0) .  

A t  first we assume t h a t  /9~ has  real  coefficients. L e t  

(3.2) P~(~) = ~ - ~  ~ ~ -~ 

aa~ l  

N o w  (3.1) implies t h a t  k~>2 if bk ~ 0. Because  of  (3.2) there  is a real  va lued  ana ly t i c  

solut ion s(t) of 

(3.3) 

for  small  s a nd  t. 

(3.4) 

/9~(1, s, t) = O 

One sees t h a t  

s(t) = -- b~t k -~ O(F+I) , 

if b k ¢ O .  I f  b ~ = O  and  k = m  then  

(3.5) s(t) = o 

solves (3.3) for  all t. 
I t  is no t iced  in [21, L e m m a  5.1] t h a t  if bk # 0 then  there  are cons tan t s  K > 0 

and  e > 0 such t h a t  

(3.6) 3 / =  {(~; ~ = (1, s, t), 0 < - -  s < c, Itl 7' < KtsI}. 

is an  open  convex  set  of noncharae te r i s t i c  direct ions of P~,~. Le t  N = (1, - -  el2, O) 
and  let x ° ~ R ~. T h e n  K(Z  r, M, x °, c~) is a uniqueness  cone for  P .  Also K(2g', M' ,  
x °, ~ )  is a uniqueness  cone of /9 if i V ' =  (1, c'/2, 0), 

(3.7) M ' =  { ( 3 ; d = ( 1 ,  s , t ) , O < s < e ' , l t ] ~ < K ' s } ,  

a n d  c' a nd  K '  small. 
/ l 

L e t  x ° =  (0, xa ,0) .  I n  [21, p. 77] i t  is po in t ed  ou t  t h a t  for  x ~ < x  2 there  is a 

d >  O a nd  K " >  O such t h a t  

(3.s) K(N', ~ ' ,  ~ ,  ~ )  • {~; x, = ~ ,  lxt < d, }x.I < a} c 

I f  k ~ m a nd  b~ = 0 t h e n  for  some c > 0 

(3 .9)  M " =  {8;  ~ = (1, s, t);  o < s < e, {t{ < e} 
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is a set of noncharacter is t ic  directions of P~ :  Le t  N ' :  (1, e/2, O), x ° ~  (0, x~, 0). 
Then K ( h  r ' ,  M", x °, c~) is a uniqueness cone of P.  We  also notice t h a t  for x~ ~ x',, 
there  is a d > 0 such t ha t  

This is immedia te  f rom (3.9) and  the  definition of K ( N ' ,  M", x °, c¢). 
We  notice t h a t  (3.10) shows t h a t  K(N", M", x °, ~)  is indeed a useful uniqueness 

cone. Then we let bk ~ 0, k even. A look a t  P~  shows tha t  also in this case there  
is a c > 0 such t h a t  every  (~ e M" in (3.9) is noncharacter is t ic  for P~ .  So also in 
this case (3.10) is true.  I f  bT: ~ 0, k odd, then  there is a c ~ 0 such t ha t  P~(($) =/= 0, 

6 ~ M2 if we define 

(3.1~) M 2 : {(~; (~ : ( 1 ,  8 ,  ~ ) } ,  0 < 8 ( (~, - -  e < - -  ~ < o[s [  1]/¢ , 

I t  is obvious t ha t  with h r = (1, el2, 0), x ° = (O, x'~, O) K(Z  r, M2, x °, ~ )  is a unique- 

ness cone of P and  tha t  for x~ < x' 2 and some d > 0, K ' >  0, 

(3.12) K(N,  M~, x0, oo) n {x; x~ = ~ ,  Ix~l < d, t~i < g} c 

c {x; ~, < e ~ ,  ~ < O  or x, < - -  K'(~/(~'~-- ~) ) '~ -~ ' ,  ~ > O ) .  

H o w  the cases b~ < 0, k even or k odd, should be  t r ea ted  is obvious and  we do not  

write down the  expression (3.9)-(3.12) modified to these cases. 
Before we s ta r t  looking a t  operators  with complex coefficients we notice t h a t  

(3.13) g r a d e P  (1, ~ ,  ~a) = ((m --  1)~ 2 @ b~(m-- k ) ~  + 0 ( ~  + I ~ l  @ [~sl~+~), 

1 + o(Le, I + levi), k b ~  -~ + O(l~l  + le~l~) • 

Now we allow complex coefficients in P~ .  Let  ~ e R a, P,~(~) = 0 and  grad  P,~(~) va 0. 
After  a ro ta t ion  of coordinates and  a proper  mult ipl icat ion of P with a complex con- 

s tan t  we can a lways get  ~ ' =  ~/1~1 ~ (1, 0, 0) and  Re  grad  P,~(~') = (0, 1, 0). So our 
assumpt ion  a t  the  beginning of this section is no restriction. We  solve Re  Pro(l, s, t) -~ 0 
for small s and  t and  get  (3.4) if l~e Pm is given b y  (3.2) with P~  replaced b y  l~e P~  
and bk =/: 0. I f  k = m and b~ = 0 then  we get (3.5). We  notice t ha t  

g(r) ---- I m  P,,(1, s(r), r) 

is an anMytic funct ion in r for small  r. 

I f  g ¢ O then  g(r) =/= 0 for O < ]rj < d', some d ' >  O. Tha t  implies 

(3.14) P~(1, s, r) =~ 0 ,  (s, r) va (O, O), (s, r) sma l l .  
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I n  this cuse for all (a, b) ~ .R s with a ~ ~- b s small 

(3.15) M s - ~  {(1, s , t ) ;  ( s - - a )  2 +  ( t - - b )  ~ < a  ~ + b  2) 

is an  open convex set of noncharacter is t ic  directions for P.  Le t  h r ' / ~  (1, a, b). Then  
K ( ~ " ,  Ms, x °, c~) is a uniqueness cone of P .  We  notice t ha t  

(3.16) K ( ~ " , i , , O , ~ ) ( 3 { x ; x l - - ~ - O ) :  { x ; x - ~ t ( O , a , b ) , - - ~ < t < < . O ) .  

I f  g -  0 then  l~eLP~(1, s(r), r ) :  t),,(1, s(r), r ) -~  0 for  small  r. I n  this case 
we get uniqueness cones jus t  b y  looking a t  I~e P, ,  and  we are back  in the  case 
which we a l ready have  t reated.  

I n  the  proof  of local uniqueness we shall ~lso look a t  uniqueness cones of the  
following type .  Le t  P~  be given b y  (3.2) wi th  b~ ~ 0. I t  follows tha t  for  all small  a > 0 

( 3 . ~ )  i --- {a; a = (x, s, t), tsl < lb~la'/2, a < - t < 2a} 

is a convex set of noncharacter is t ic  directions of P~ .  Le t  ~V ~ (1~ 0, - -  3a/2). Then  

we see t ha t  

(3.18) K ( ~ ,  M, 0, ~ )  = 

--~ {x; x~ <~-- ]b~laklxs]/2 A- 2ax3, xa<O, or 21<-- Ib~la"lxs]/2 ~- axa, x3 > 0}.  

4. - Proof of  local uniqueness in Theorem ] .2 .  

Let  k ~ 1 and  let (1.3) be  false for all ~ > 0. We  notice t ha t  ~ ~ C 2. Le t  M 3 be 

defined b y  (3.15) and  let 5V/'~ - (1, a, b). Then there  is an r > 0 such t h a t  for all 
(a,b) with a 2 + b  2 = r  ~ 

K(N", ~ ,  (0, a, b), rs) n {~; <~--  (0, a, b), N"> = -- r~} c (Csupp ~) u {o}. 

Theorem 2.1 then  says t h a t  for  some 6 t >  0 

l 2 S (4.1) (supp u) n {x; Ixll < ~ ,  xs + x~ < r~/2} c {x; x~>o} .  

To a given (V~ 0 there  is (a ~, b'), a '2 -~ b r~ = ($~ ~ J'~ such t h a t  ~f(0, a ' ,  b') ~ 0. 
~ e t  a = - -  a', b : -- b', ~ T :  (1, a, b). Then  (4.1), ~' small, ~ ' ~  r/2 and  ~(0, a ' ,  b') < 0 

give t h a t  

K ( N ,  M~, O, ~s) n (x; (x, 2~ ~) : -- ~s} c ~supp u .  

Theorem 2.2 shows t h a t  u is zero in some neighbourhood of x : 0 independent  of u. 
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L e t  2~<k~< c~: W e  can  a lways  use  un iqueness  cones wi th  M f r o m  (3.6) or wi th  M '  
f r o m  (3.7) to  clear  up  a long  t - +  (0, t, 0) such  t h a t  for  some  K " >  0, d > 0 

{x; x supp Ix~l< a, j = 1, 2, 3} c (x; x~> - -  K ~lx~l~}. 

H e r e  it  is i m p o r t a n t  t h a t  F e C 2. See (3.8) a n d  see also [21, pp .  76-77]. If t he re  is 
a sequence  (0, t~, 0) wi th  say  t~. > 0, tj --> 0 such  t h a t  ~p(0, t~, 0) < 0 t h e n  we can  use 
t he  s a m e  un iqueness  cones K ( N ,  M ,  O, ~) wi th  v e r t e x  a t  0 a n d  ~o = - -  ((0,  t~-, 0), 2¢}. 
T h e o r e m  2.2 gives u = 0 a r o u n d  x = 0. A t  las t  we a s s u m e  t h a t  ~p(0, t, 0 ) ~ 0 ,  [tl<~c~ 
for  some  8 > 0 b u t  t h a t  (1.4) still  is n o t  t r u e  for  a n y  (K, ~). T h e n  2 < k < m  since (1.2) 
m u s t  be  t r u e  for  some  K > 0 a n d  some  ~ > 0 w h e n  k = c~. 

W e  m a y  n o w  a s s u m e  t h a t  F ( x ) =  0 is g iven  b y  x~--~s(x~, x ~ ) =  0 where  ~o is 
in C 2 nea r  ( x ~ , X s ) =  0, ~o(0, 0 ) =  0 a n d  x~--~s(x~,xs)>O <=> y~(x)>~O l o t  smal l  x. 
I f  (1.12) is no t  t r ue  t h e n  t he r e  is a sequence  (x2~, x3~) -+ (0, 0) such t h a t  ~(x~., x3~) > 

:~(~-~) for  all j .  W e  not ice  t h a t  we m a y  choose all x~  > 0 poss ib ly  a f t e r  sh i f t ing  Jx3~ 

x'a = -  x3 a n d  t h e n  de le t ing  t h e  p r imes .  W e  a s s u m e  t h a t  this  is 4one.  Then  we 
not ice  t h a t  we can  a lways  choose t -+ ~(x2~, t) increas ing  a t  x3~ b y  choosing a new 
smal le r  x~ .  W e  a lways  keep  in m i n d  t h a t  ~(x~, 0 ) < 0 .  

:Now let  b~ > 0, k odd.  T h e n  we t a k e  M2 f r o m  (3.11). L e t  x° = ,~3~(4~-~), $~,' x3~) 
a n d  let  h; = (1, c/2, 0). H e r e  x '  2 =/= 0 is some  fixed n u m b e r  to  be  specified be low 
such t h a t  x2~ < x'2 for  all j .  F r o m  (3.12) one gets  wi th  

(4.3) K(_~, M~, x °, oo) (~ {x; x,  - -  x2j, I x ~ -  " ~/(~-~) 

c {x; x l - -  j x~  (k-l, < c(x~ --  x~), x3 --  x3j < O, or 

x , -  j x ~  (~-') <~-- K ' ( (x~  - -  X~,)k/(xr~- X~j))~/(k-~), X~ - -  X3,>  O} .  

L e t  t > x3j be  the  so lu t ion  of 

- -  K"t2 = ~°-3ji~/(k-1) --  K ' ( ( t -  X~3i ) k/(X2! - -  X23))1[(k--1). 

where  K '  is t a k e n  f r o m  (4.3) a n d  K r' f r o m  (4.2). L e t  x,j = -  2 K " t  ~. W e  choose 
x '  2 > 0 such t h a t  wi th  d f r o m  (4.2) ix'2[ < d a n d  also such t h a t  K'r< K'(x~ --  x~,) -~/k-~) 
for  all j suff icient ly big. L e t  F~ = {x; x2>~x2~ , x~>~x~}. W e  not ice  t h a t  x3j is ehoosen  
such t h a t  t - ->~(x~j ,  t) is inc reas ing  a t  t = x~ .  F r o m  (4.3) one s e e s . t h a t  

~ ( N ,  M , ,  x °, cx)) n ~ F j c  Csupp u .  

T h e o r e m  2.3 gives  t h a t  u is zero in a n e i g h b o u r h o o d  of K(iV, M2, x °, c~) N ~ j .  

Since x2~ --> 0 w h e n  j -~ c~ a n d  since (4.2) is t r u e  one n o w  knows  t h a t  u is zero in 
a n e i g h b o u r h o o d  of 

(4.4) (x;  x'2/2 < x2 < - a < < jzs*/  z3 = x j} 

for  some  d > 0 a n d  all b ig  j .  
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:Now one lets M be  defined b y  (3.17) where 2a----4~ ~/~-~) One chooses 
t 4,~. ~1(~-/) .'-4m ~ I A  x° = ~.,-~s , ~ 2 , - ,  x3~), N = (1, - -  3a/2, 0). F r o m  (3.18) one gets 

(4.5) K(N,  M, x% o~) = 

= { z ; -  3x 141IZ xl--J%s ~ ' k ~  lx2-- ~ Xas),x~--xas>O or 

# 2 Let  x~ = -  K xsj and let  

x , -  = - a ' t o o : -  3 ;14112 

Since k >  2 and  a = jx~(~-x)/2 one sees t ha t  

Ix~-- 3 x J 4 t ~ 2 ( )  Jr- K )xas (bk) xzj ,-  , -->0 

when j --> c~. 
I t  is now obvious f rom (&.2) and  f rom the  fac t  t h a t  u is zero in a ne ighbourhood 

of the  set  defined b y  (4.4) t h a t  for some big fixed j there  is 8 > 0~ and  8 ' >  0 such 

t h a t  for 
! 

x o i~,.~1(~-1) 3xJd, x~j) 1 -~ ~-~ {X; X 3 < x z ] - ~ -  e, X 1 > ~ - 8 ' } ,  ~-  tj,.¢'3.~ , 

one has 

/~(N, M, x °, oo) n ~F c Csupp u .  

Theorem 2.3 shows tha t  u is zero in a neighbourhood of K(N,  M, x °, ~ )  (~ F. Since 
0 e K(N ,  M, x e, ~ ) n  F this completes  the proof of uniqueness in Theorem 1.3 
when b~ > 0, k odd. I t  is obvious how one modifies this for general  k and  bk. These 

proofs will no t  be wri t ten  out  here. This completes  the  proof  of the  uniqueness p a r t  
of Theorem 1.2. The  cases when (1.3) or (1.4) are satisfied will be  t r ea t ed  in the  

nex t  section. 

5. - Characterist ic  surfaces  and nul l so lut ions .  

In  order to prove  nonuniqueness  we shall use nullsolutions with an  analyt ic  s imply 
characteris t ic  initial plane. The problem will be  to find the character is t ic  surfaces. 
I n  the  local case with x ° e 3F, F closed, to every  sufficiently small  ne ighbou rhood /2 '  
of x ° we seek a s imply character is t ic  surface S = {x; ~(x) = 0} for some real va lued 
analyt ic  ~ wi th  g rad  ~ ¢ 0 and  {x; ~f(x)>~O, x ~ 9 '}  = 2'. Then we seek a u e C~(~2 ') 

such t h a t  P(D)u  ---- O, supp u c {x; ~ (x)>0} ,  supp u =/: 0. 
I n  order to p rove  t h a t  a set  Q is not  P -convex  we shall find a s imply characteris t ic  

ana ly t ic  surface S such t h a t  there  is one n o n e m p t y  compac t  componen t  H of S (~ ~Y2 
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with a posi t ive distance to ~'(S n ~ )  the  bounda ry  of S (~ ~ in the topology of S. 

F i rs t  we construct  a solution u of P ( D ) u  = 0 in a ne ighbourhood t~' of S (~ 3f2 
in R 3 such t ha t  (supp u) n ~ =/= 0 and  supp u c ~2' (~ ~ ,  then  a v e Co(f2' ) such 

t ha t  v ~ i in a neighbourhood of S n ~9.  

We  also choose v such t ha t  

L e t  w ~ ~ .  

(5.1) 

Then 

(x; v(x) ¢1}  n (supp u) c 9 

a(supp f ,9)  > a(supp w, f,O) = o.  

This or ra ther  the  va r i an t  shown below shows thut  there is a compac t  set K such 
t h a t  (1.1) is not  t rue  for any  compac t  set K ' c  f2. One uses t ha t  P(D)  is invar ian t  
under  t ranslat ions and  finds a w such t h a t  the inequal i ty  of (5.1) is fulfilled. I f  the  

equal i ty  is not  t rue then  t ranslat ions give the result  above.  I f  we have  (5.1) the  
construct ion admi ts  a t ransla t ion back  to the  other  case. All these facts  will be used 

in the following wi thout  explicit  reference to them.  
Le t  P be  such t ha t  P~  is given b y  (3.2). Le t  P,,, have  real coefficients. Le t  

bk V= 0 in (3.2). We seek a funct ion ~ such t h a t  for a given M ) 0 .  

(5.2) 

We let 

(5.3) 

P~(grad  ~o) : 0; V(x) : x l - -  Mix,[ k/(k-1) , x~ : 0; grad F(0) : ( 1 , 0 , 0 ) .  

g(r) = --  M k ( k  --  1)-1]r] 1/(k-~) sign r .  

Then with s(t) f rom (3.4) we let 

(5.4) h(r) =- s(g(r)) .  

We notice t ha t  P . ( 1 ,  h(r), g(r)) -~ 0 for small r. The surfuce ~p(x) --~ 0 is now given by  

(5.5) x = (MIr[~/(~- % O, r) + t grad  P,,(1, h(r), g(r)) .  

F r o m  (4.3), (5.4), (3.4) and  (3.13) one gets 

and  

8P,,/8~1(1, h, g) = - -  ( k -  1)b~g ~ + O(g~+1) , 

~P,,~/~(1, h, g) = 1 ÷ O(g) ,  

~P,, /~3(1,  h, g) ~- kbkg ~-1 -~ O(gk) . 

We shall now make  the  coordinate t r ans format ion  

(5.6) x = (x' 1 + Mlrl ~/(k-1), o, r) + t grad~ P,~(1, h(r), g(r)) .  
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We get 

(5.7) 

(5.8) 

(5.9) 

xl = *; + Mlrl ~/(~-*' + t(- (k- X)b~(g(r))~+ O((g(r))~+'), 

O(g(r))), 

= r + + 

T ! We shall prove tha t  this is inject ive in a certain domain. ~ o w  (x~, t, r) -> (x~, t, g) 
is injective *or small r by  (5.3). We notice tha t  x 2 and xa are analyt ic  in t ~nd g. 
We first look at (x',~ t, g) -> (x~, x~, g) where (5.8) defines x~. I t  is obviously injec- 
t i r e  for small g. Le t  r = f(g) for small g. Let  

Let  

We get 

xa = ](g) ~- tkbT~g ~-~ + O(gk). 

a = kbk(-- k M  sign r/(k -- 1)) k-~ sign r .  

(5.10) ~ : r + a t , ' +  o(Irl'~Z,>') : 

= r 0 + + O(g(r))) + + 

= / (g ) (1  ÷ axe) ÷ O(gb. 

I f  1 q- a x e > d >  0 and g small we see tha t  xa is strictly monotone in g so (x'4~ x~, g) -+ 
--> (x',,x2, xa) is injective for Igl<d' some d' depending on d. Thus (x'~ , t, r) --> 
-+ (x~, x=, xa) is injeetive for t r l<d" and 1 q- ax=>d. We notice tha t  a ma y  depend 
on the sign of r. At  last (x',, x=, xa) -->x with x, = x', -4- MIrl ~/(~-~) where r is a well 
defined funct ion of (x=, xa), is injective. Tha t  means tha t  (x',, t, r) -> x given by  (5.6) 
is injective in 

(5.11) H = {(x~, t, r ) ; 1  q- t a > d  > O, [r t < d", x'~ e R}  

where d " >  0 depends on d. I t  follows from (5.5) and (5.8) tha t  

(5.~2) *, = ~(1-~I/(~ + a,o))~J('~-')+ 

@ x~(-- ( k -  1)bk(-- M k  s i g n x a / ( k -  ]))'°)(Ix.l/(1 + ax=))~'~-" ÷ 

o(i,~1(,~+1,,,~-,) = ~ ( ,  + ax=)l/('-~'lx~l~/(~-*' ÷ O(Ix, l(~+'"'~-") . 

l~ere O(Ix~l(~÷~)/(~-~)) is uniform in Ix=l<(1--d)/ lal  with d >  0. 
We shall need an approximat ion lemma. 

LEM_r~A 5.1. Let 1~ be an integer, k > 2 ,  and let G(t) - - - -  Mttl kl(~-l), where M > 0 is 
a constant. Then to each e > 0 there is a real even polynomial _P such that P(O) -~ c~ 
P( t )>G(t ) ,  I t l<l ,  tP'( t ) l<(kM/(]~--1))I t]  1/(k-1) with P '  increasing in It]<1. 
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PRooP.  - L e t  c <  0. L e t  9 e C=(R), cp(t)>~O, be an  even  func t ion  a r o u n d  t : 0 

wi th  supp  ~ ¢ {t; Itt < 1} a n d  f ~  ----- 1. L e t  ~ > 0 a n d  let  ~v~(t) = s-~cf(t/e). L e t  

h(t) = sup {~(t) ,  e /2} .  

Le t  halt ) ~ h .  ~ .  I t  is now obvious  t h a t  the re  is an  e ' >  0 such t h a t  

(5.13) Ih:(t)l<la'(t)l, G(t)<-..h(t)<h~(t)<G(t)JF3o/4, o < [ t l < l ,  0 < ~ < e ' .  

W e  not ice  t h a t  h~ is a convex  C = func t ion  in ]tl<l with  h~ even.  Le t  8 > 0. T h e n  

it  is a lways  possible t o  choose an  even  po lynomia l  p(t) ~> 0 such t h a t  !p(t) -- h:~(t) I ~ ~, 
I t [<1.  W e  get  

t 

th:(t)--fp(s)C,l<altl, [tl<l. 
0 

(5.14) 

Le t  

(5.15) 
0 0 

I t  is obvious  f r o m  our  choice of p t h a t  P '  is increasing.  There  is an  # >  0 such 

t h a t  for  some d > 0 h'~ : 0 for  Itt<<d, 0 ~ e<~e'. F o r  ltt<~d {5.14) gives 

(5.16) t-P'(t)l<~ltl<(kM/(k-- Z))t t l  1/('c-1) = IG ' ( t ) l ,  l t l < d  

for  ~<~(kM/(k--1)) .  The  con t inu i t y  of h: and  G' on d<~lt]~<l and  (5.13) says t h a t  
for  some d ' > 0  

(5.17) IG'(t)l > Ih:(t)l -F d' a<  Itl<z 

Let 5 : rain (d', k M / ( k -  1)) t h e n  (5.14) and (5.17) give 

(5.18) [G'(t)l--{P'(t)l>d'-- ~]t]>0, d<l t ]< l .  

N o w  (5.18) a nd  (5.16) give JP'(t)]<lG'(t)l , I t ]<1.  I t  is obvious  f r o m  (5.13)-(5.15) 
t h a t  we can  choose  ~ so smMt t h a t  P(t) > G(t), i t I<l .  The  l e m m a  is p roved .  W e  
also ge t  

LE~A 5.1' .  - I f  ]or k ~  0% one lets l ~ / ( k - - 1 ) = l ,  and 1 / ( k - - 1 ) : 0  then 
Zemma 5.1 also covers this case. 

teEn, ARK, -- I n  t he  case k = 2 we m a y  allow c = 0 and  choose  P(t) --= Mt~. 
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Let  2 < k < m .  Let  c > 0 .  Choose P from Lemma 5.1. Le t  P ~ = p .  Let  t h e n P  
denote  the differential operator  of Theorem 1.3. Let  

! 
x 8 

(5A9) x - -  x ~ ÷ c ÷  (t) dt, o, 
0 

x;) ~- x; grad 2P,~(1, s(p(x;)), p(x;)) .  

With  r ~-- x 3 and with a defined above (5.10), (5.19) is an ~nalytic t ransformat ion of 
coordinates in Ix~] < (1--  d)/Ial, [x'~[ < d", d > 0 and d'~> 0 depending on d. Here  
we use (5.11) ~nd the fact  t ha t  p(t) is increasing in I t l < l  and tha t  

Ip(t) l< (kM/(k -- 1))It[ ~/(~-" . 

An easy argument  using the properties of p given by  Lemmu 5.1 shows tha t  the 
bicharaeterist ic lines 

and 
0 

t'--> (M[r']~('-~), O, r') + t' grad  P,,(1, s(g(r')), g(r')) 

for I t l < ( 1 - -  d)/lal, t t ' t < ( 1 - -  d)/l~l, rrl < X', jr' F < d" do not  have any c o m m o n  point .  
That  means tha t  the analytic  surface x~ = 0 given by  (5.19) lies above the surface 
defined by  (5.2) for the corresponding (x~, x3). 

We now take the inverse of (5.19). After an eventual  multiplication of P b y  a 
noavanishing analytic  funct ion P~ has the form (3.2) with analyt ic  coefficients in a 
neighbourhood of I x ~ l < ( 1 -  d)/ta ] and Ix'31<d", ]X'lf<d". Now we use PEI~SSON [23], 
[24, Theorem 4'] to get a solution u of P(x',  D')u = 0 in ]x~l < (1--  d)/tal, Ix'3[ < d", 
Ix'~] < d', for some d', 0 < d'<d". Here  

0 e supp u c {x'; xl ~> O}. 

In  fact  the proof shows tha t  

(5.20) {x' ; x~ = o, Ix~l < ( 1 -  a)/lal,  Ix'~[ < a'} c supp ~ .  

Let  e > 0 .  Choose v e C  o equal to 1 in 

{x'; Ix'it < d'- ~, tx'~t < ((1 - d)/lal) - ~, Ix~] < d e ' -  ~} 

and with compact  support  in 

(5.21) {x'; Ix'~r < d', Ix'~l < ( 1 -  d>/lal, Ix'~l < d"}. 
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Le t  w ~ uv. I t  is now obvious t h a t  in the  original coordinates supp w is above  the  

surface defined b y  (5.12). 
Le t  x ° be a point  of global nonuniqueness of t ype  k, 2 < k < m .  I f  M---- (k - -  1) × 

× ]a'bkkk] ~l(~-~'~ then  one sees t ha t  a ----- a'-~( - 1)k-l(sign r) k sign bk, We notice t ha t  for 

any  M ' >  0 there  is a $ > 0 such t h a t  

(5.22) N(x=)x~ < M'lx~l ~/~-~, lx, l<a' , O <  l x ~ l < ~  , 2 < / c < m .  

The cont inui ty  of N(x2) on Ix~]<a',  the  fact  t h a t  )5" and  iS' have  no common  end- 
points,  (1.9), (1.10) and  (5.22) shows tha t  we can choose M > 0 somewhat  smaller 
t h a n  before such t ha t  

with a " >  a ' ,  (0, a ' ~  t, O) e D, (0, - -  a ' - -  t, O) e /2 ,  0 < t < a " - -  a' and such tha t  x e / 2  
x is d e f i n e d  b y  (5.12) with a = (a")-~(--1)k-~(sign x'3)~ sign b~, 0 < ]x~] < d", lx'~l~< 

< ( 1 - d ) / I ~ l .  I~ere ~'~=r, x~=t, ~ ' 1 = 0  in (5.6). I f  we now assume tha t  
(1 - -  d)/[a] - -  e > a', s > 0, then  the  construct ion above  shows t h a t  when we choose 
c > 0 small enough in the  approx ima t ion  then  we get 

d(supp C/2) > d(supp C/2). 

This implies t ha t  /2 is not  P-convex .  

I f  a'----- 0 and x ° is a point  of local nonuniqueness of type  k, 2<~k<~m, then (1.4) 
is t rue  and  

M(1 ÷ ax~)-~ > K 

for M ~ 4K and Ix2t<-~la]-l/2. See (5.12). The construct ion above  applies to this 
case equally well. 

Le t  x o be  a poin t  of semiglobal nonuniqueness of t ype  oo. We  assume t h a t  
x ° = (0, x'~, 0) and  t ha t  the normal  of 3~2 at  x ° is (1, 0, 0) and  t ha t  the normal  along Z" 
of Definit ion 1.3 is propor t ional  to (1, 0, 0). We  also assume tha t  P~  has the  fo rm (1.7). 
Le t  0 be  the  centre of L", £ " =  {(0, t, 0); Itl<.a'}. Then there  is an M >  0, d ' >  0 
and  s > 0 such t ha t  

{x; xl = Mt~,I, lx~l < ~ ' +  ~, i~l < ¢ ,  0 < tx.l < x }  

is a subset  of ~Q. We  choose P f rom L e m m a  5.1' let P ' ( t ) =  p(t) and denote the  
opera tor  b y  P as before. W e  m a k e  the  t rans format ion  (5.19) with s = 0. Since P 
is of pr incipal  t ype  the  analyt ic  surface we get b y  let t ing x '  1 ~ 0 in (5.19) is s imply 
characterist ic.  The a rgumen t  of the case 2 < k < m applies equally well here. Thus ~2 
is not  P-convex .  
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I f  x ° still has t ype  co bu t  the  normal  along Z" of ~/2 is not  propor t iona l  to (1, O, O) 
we use the  fact  t ha t  ~/2 is in C ~ because it  is in C ~. This gives t ha t  arbi t rar i ly  close 
to an  endpoint  of Z" there is a point  of semiglobal nonuniqueness of t ype  co of the  
k ind  t rea ted  above.  Thus #2 is not  P-convex .  

This also covers the local case wi th  k = ~ .  W e  notice t ha t  we m a y  allow 
complex coefficients in P ~ .  I f  the  t y p e  is k, 2~<k~< ~ ,  then  a surfuce characterist ic  
for l~e P~ mus t  certainly be character is t ic  for I m  P~, too. The  null solutions exist 
independent  of whether  the  coefficients ure real va lued or not.  

Le t  x ° be  a point  of semiglobal nonuniqueness of t ype  k = 1. Then we just  use 
[2~, Theorem 4'], wi thout  any  change of coordinates,  ~nd a proper  cut off function. 
T h a t  shows tha t  ~2 is n o t / ) - c o n v e x .  See also H 6 ~ A ~ ] ) E n  [8, Theorem 3.7.1, p. 89]. 

B y  this we have  comple ted  the  proof  of Theorem 1.2. I n  the nex t  section we 
shall complete  the  proof  of Theorem 1.3. 

6. - Semig lobal  un iqueness .  

Let  x ° be  a point  of semiglobal  uniqueness of t ype  k, 2 ~< k~< c~. I f  Z '  and  Z 'I 
have  a c o m m o n  endpoint ,  t hen  the  zero a t  this endpoint  or outside a given compac t  
set K if the  endpoint  is not  finite, can be t r anspor t ed  to x ° b y  uniqueness cones of 
the  Section 3 type .  I f  L '  and  L" have  no common  endpoint ,  and 2<~k<~m, and the  
normal  to ~ along Z rr is not  propor t iona l  to (1, 0, 0) a t  some point  then  there  mus t  
be  one point  wi th  noncharacter is t ic  normal  (1, 0, c), e ¢: 0. t t o lmgren ' s  uniqueness 
theorem or Theorem 2.2 gives a zero t ha t  can be t ranspor ted  to x ° b y  uniqueness 
cones of Section 3 t ype  or general Section 2 type .  I f  t he .no rma l  along L" is propor-  
t ional  to (1, 0, 0) and  a ' >  0 then  k -~ 2 and  (1.9) or (1.10) is not  t rue  depending on 

the  sign of b~. A s s u m e  t h a t  b~ > 0 and  tha t  (1.9) is not  t rue.  Then 

(6.1) ~ ( ~ )  > M(1 -- x~la') -~ 

for some x~, --a'<.x~ < a  r. Then one uses uniqueness cones of the t ype  t r ea ted  

in (3.8) to p rove  t h a t  for some e > 0, d >  0 

(6.2) ( s u p p u ) ~ ( x ;  Ix21<a'+2e ,  Ix~[<d, I % ] < d } c ( x ; x l > - - K ~ 1 x ~ }  

for some Kr"> 0. Then we let M ' r :  ( k - -  1)(b~(a'-[- e))l/(1-~)kk/(1-~). Now one sees 
f rom (6.1) and  the  definition of M r' t ha t  

(6.3) ~(x'.) > M~'(1-- x~/(ar + ~ ) ) - '  = M '  . 

We solve P~(1, s(-- 2M' r), -- 2M' r) : O. Let  h(r) ~ s(-- 2Mr r) and let g(r) ~- 
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= -  2M'r. ~ e w  coordinates are chosen for a fixed small r. 

(6.~) i ! 

x~ = oo~ + h(r)x~ + g(r)x~, 

x'~ ---- ~ P ~ / ~ ( 1 ,  h, g)xx + ~LP~/~2(1, h, g)x2 + ~ P ~ / ~ ( 1 ,  h, g)x~, 

I x'~ = (h~P,~/~3--g~S'~/~)x~ + (g~P~/~-- ~'~o/~)x~ + 

+ ( ~ / ~ - -  h ~.P~,,l~:~)x~. 

This is an orthogonal  t ransformation.  I t  is close to the ident i ty  for small r. After 
deleting the primes and after  multiplication of P b y  a proper  constant  one sees tha t  P,~ 
has the form (3.2) with a b~ which depends continuously on r. 

We go back to the original coordinates. We shall follow the bicharaeterist ie line 
' r) given by  ~(0) (1, h(r),g(r)). Then (5.7)-(5.9) for through ( ( M ' +  d ) r ,  x~, = f 

xx = 0 gives 

(6.5) 

~ r -  ~ ( ( a ' +  ~) ' -~ = - x j  r + o(r~) ,  

~ = ~'~ + ~(1 + o ( r ) ) ,  

x~ = (M' + d)r ~ + t(-- b~dM'2r 2) + 0(#) = 

-~ (M' + d)r ~ + M'r2t((a' + ~)-- x'2)-~ + O(ra) . 

For  fixed r solve x 3 = O  for t. Then t : ( a ' - f - e ) - - x ~ + O ( r ) .  One gets x 2 : a ' +  
~+O(r) ,  and x l : d r  ~+O(r3). Let  ~ :  (x~,x2,0)-= (e'r ~ + 0 ( # ) ,  a '+e-] -  

+ O(r), 0). For  e' small it  is obvious f rom (6.3) t h a t  ( ( M ' +  e')r2, x~, r )e  C~. 
~7ow one chooses a set M" from (3.9) in the new coordinates given b y  (6.4). Here  
one can choose c independent  of r since b2 is continuous in r. Ze t  N ' =  (1, c/2, O) 
in the (6 .4)coordinates .  IJet F--= (x;x~>--d,  x2>x'~} in the original coordinates 
with d > 0 f rom (6.2). I t  follows from (6.4), (3.10) and (6.2) t ha t  

(6.6) k (N ' ,  M", ~, oo) n ~F c Csupp u 

for some small r > 0. One also realizes t h a t  for  some ~ > 0 close to ~ b y  choosing r 
small one gets (0, a'-p- g, O) ~ ~(N,  M, V<, oo) n F. Theorem 2.3 then  says t h a t  u 
is zero around (0, a' -t- g, 0). This zero can then  be t ranspor ted  back to x ° b y  unique- 
ness cones of Section 3 type.  

For  local uniqneness points of type  k, 2 << k < m when L'  and Z" have no common 
endpoint  we can use Theorem 1.2 to get a zero around x% We also notice tha t  there  
is no complication in the argument  above when P, ,  has complex coefficients as long 
as 2~<k< oo. 
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I~et x ° ~ 0 be  a point  of semiglobal  uniqueness of type  1. Le t  K c ~Q, K compact ,  
supp P ( D ) u  c K ,  supp u c £2, u e g'. Le t  ~: be  the  convex hull  of K .  Le t  R > 0 

be  such t h a t  Ix] < / ~  if x e ~:. I f  x ° ~ / ~  then  u is zero a round  x °. See LIO~S [14] or 
[8, L e m m a  3A.3, p. 80]. ]Jet ~ 2 ' ~ - - ~ ( x ; I x l < R } .  Le t  x ° e R .  Le t  (1 ,0 ,0 )  be 
normal  to ~ 2  a t  x °. Le t  H '  be  the  componen t  of (x; x e ~ ,  x~ ~ 0} which con- 
tains x% Le t  ~ ' H '  be  the  boundury  of H '  in (x ;x~-~  0}. Le t  ~ ' ( ~ ' )  be  the  
boun da ry  of ~ ' ~  (x;x~ : 0} in (x; x ~ - - 0 } .  Since x ° is a point  of semiglobal 

uniqueness we mus t  h a v e  

F i r s t  ~ssume t h a t  (1, 0, 0) is normal  to ~ ~t every  point  of H ' .  We  know t h a t  H '  
is compact .  B y  the  use of uniqueness cones of the  (3.16) t y p e  we can get a finite 
covering (0~)¢~ of H '  in (x; x~ ~ 0}. Here  O~ are discs of a constant  radius r with 

centre a t  x (~) (0, ~(~) x (J)) such t h a t  for some d > 0 

(supp u) n {x; + < - d < < 0} 

is emp t y ,  j : 1, ..., N.  Since ~ ' H ' ( ~  ~ ' ( ~ ' )  is not  empty ,  u is zero a round some 
point  in U 0~. This point  can be connected to x ° b y  a finite polygon in ~J 0j .  
Then  we use cones of the  (3.16) t y p e  ~long this polygon to t r anspor t  the zero to x% 

Le t  H" be the  muximal  connected subset  of H '  containing x o ~nd which h~s normal  

(1 ,0 ,0 )  to ~ a t  every point .  I f  H"(~ ~ ' ( ~ ' ) ¢ 0  the  proof  goes exact ly  as 
~bove for H ' .  I f  ~ 'H"(~  ~ ' ( ~ ' )  is e m p t y  then  H" mus t  be  equal  to H '  and  t h a t  

is impossible because of (6.7). 
Since uny noncharacter is t ic  poin t  a t  ~D is a point  of local uniqueness the  a rgumen t  

in the  in t roduct ion shows tha t  the  proof of Theorem 1.3 is completed.  
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