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Summary. — Let £ c R* be an open set and let P be a linear partial differential operator wilh
constant coefficients in R*. Then 2 dis said to be P-comvex if for each fe€ C®(R2) there is a
weD(2) such that P(D)u = f. A complete geometric characterization of P-convex sels in
R? is given when P is of principal type and when £ has C%-boundary. As a step in the
proof one also oblains necessary and sufficient conditions for uniqueness in the local Cauchy
problem at simply characteristic points in R3. The tools are a sophisticated use of the author’s
uniqueness cones on one hand and his semi-global nullsolutions on the other hand. Hinls
are given on the difficulties that may be encountered in R™ for the same problem.

1. — Introduction.

In this paper we shall treat uniqueness in the local Cauchy problem when the
linear partial differential equation P(D)u = f has counstant coefficients. We shall
also treat the connected problem of global solvability of P(D)uw = f in an open set Q
when fe C®(£2). MALGRANGE [15, Theoréme 4, p. 295] showed that P(D)u = f has
a solution u € D'(Q) for each fe C=(2) if and only if for each compact set KcQ
there iz another compact set K'c 2 such that

(1.1) ue & (), suppP(—D)ucK = suppucK’.

With HORMANDER [8, p. 80] we call such a set P-convex.

‘We have here used the standard notation of [8] and we shall also stiek to it in
the following except that we shall use D, = 98/¢x,;, j =1, ..., n.

Let it now be that K c 2 and that K is compact. Let it also be that to each
z € 08 we can find a neighbourhood Q) of » in (K such that

(1.2) wueD (), P(—Du=0, suppuc2. N = u=0.

If w € §'(Q2) then we extend it to §'(R") by letting u = 0 outside 2. Then u restricted
to Q, in (1.2) is in D'(£2,) so u is zero in Q). Let K be the convex hull of K.
LioNs [14], see also [8, Lemma 3.4.3, p. 80] has proved that ue &§(Rn),
supp P(— D)uc K implies that suppue K. Let K'= RN 2n ([; ( U Q;)) Now

z€00

(*) Entrata in Redazione il 7 giugno 1978.



118 JAN PErsgoN: The Cauchy problem at simply characteristic points, ete.

K’ ig a compact subset of £ and (1.1) is satisfied. This argument shows the con-
nection between local and semilocal uniqueness in the Cauchy problem and
P-convexity.

A natural problem is fo give a geometric characterization of P-convexity. In R?
there is the following complete characterization.

THEOREM 1.1 (HORMANDER [8, Theorem 3.7.2, pp. 89-901). — An open connected
set 2 c R® is P-convex if and only if every characteristic line intersects £2 in an open
interval.

In R», n>3, one knows that every open set £ is P-convex if and only if P is el-
liptic [8, Cor. 3.7.1, p. 89], and that Q2 is P-convex for all P if, MALGRANGE [15, Thé-
oréme 3, p. 294], and only if, TrevEs [26, Prop. 6.1, p. 351], £ is convex. These are
general theorems. However, no general theorem of the Theorem 1.1 type is known.
A natural first step forward is to look at operators P(D) of principal type, that is
operators such that if P,(&) = 0, 0% & e R» then grad P,,(£) == 0. In order to sim-
plify further this paper is restricted to the case n = 3 and to Q with 802 in 02 Then
one can give necessary and sufficient geometric conditions for P-convexity. This
also applies to uniqueness in the loeal Cauchy problem.

Some rather lengthy definitions will now be given and with their help the theorems
will be stated in a short form. Afterwards one discusses the rather restricted hypo-
thesis in the theorems and what one may expect in more general cases in connec-
tion to already known results.

First we need a proper definition of local uniqueness in the Caunchy problem.

DEFINITION 1.1. — Let 2 c R be an open set and lot F be a nonempty set which is
closed in Q. Let P(x, D) be a linear partial differential operator in £ with C®-coeffi-
cients. Let 0°c 8F N Q. Then there is local uniqueness in the Couchy problem at x°
(in relation o F) if to each neighbourhood Q' of a® there is another neighbourhood Q7
of a® such that Q'c Q' and such that if weD(Q"), Pz, Dyu=0 in 2", supp
wCF N Q" implies that w = 0. When there is not local uniqueness of o° then we sy
that there is local nonwuniqueness in the Cauchy problem at o (in relation to F).

REMARK. — Local nonuniqueness means that there exists a neighbourhood £’
of «° such that for each neighbourhood Q7 of z° with Q"¢ £’ there is & u e D'(Q"),
# 5= 0, with suppuc F £ and P(w, D)u = 0.

DEFINITION 1.2. — Let P(£) be a polynomial of order m in R" with constant coeffi-
cients. Let P, be its principal part. If P, (&) 0 then & is said to be noncharacteristic.
If P,(&) = O then £ is characteristic. If P,(&) = 0 and grade P,,(£) % 0 then & is called
simply characteristic. Let m = 3. Let &= (1,0,0) be simply characteristic and
assume that Re grad P,(1,0,0) = (0,1, 0). If P,(1,&, &)= 0 for all small real
(&, &) 5% (0,0) then we say that (1,0,0) 4s simply characteristic of type 1.
IfP,(1, 0, &) =0 for all &e R then (1, 0, 0) is said to be simply characteristic of
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type co. If Re P,(1,0,&) = > a;é’a' with a, = m, 2<k<m and if (1,0, 0) is not of
i=h

type 1 then (1,0, 0) is said to be of type k.

REMARK. — Let (1,0, 0) be a simply characteristic point. One can always rotate
the w,, z,-coordinates and then multiply the operator P by a proper complex con-
stant such that with P denoting the new operator grad Re P (1, 0, 0) = (0, 1, 0). Then
there is a unique analytic function s(t), defined for small ¢ such that Re P, (1, s(), ) = 0
and $(0) = 0 since Re grad P,(1, 0, 0) = (0,1, 0) 7 0. It follows that ¢ —Im P,(1,
s(t),?) is an analytic function with Im P,(1, s(0),0) = 0. So there are two pos-
sibilities. Im P,(1, s(¢),?) = 0 for small ¢ or Im P,(1, s(t), ) 0, 0 < ft| < 6, for
gome 6 > 0. That proves that the type of a simply characteristic point (1, 0, 0)
is a well defined number. One also sees how to give a definition invariant under
orthogonal transformations. Since we shall use the above definition in our com-
putations we stick to it all the time.

In the following a function denoted by ¢ will have real values.

We can now formulate a theorem on local unigueness.

THEOREM 1.2. — Let £2 be an open set, 0 € Q, and let p € OQ) with grad w0
in Q and p(0) = 0. Let F = {x; y(x)>0}. Let P(D) be a linear partial differential
operator with constant coefficients. Let grad y(0) = (1, 0, 0) and let (1, 0, 0) be o simply
characteristic point of type k.

If k=1 then there is local nonuniqueness in the Cauchy problem at x = 0 if and
and only if for some & > 0

(1.3) {z; p(@)>0, |v| < 6} o {w; w,>0, x| < d}.

If 2<k < oo then there is nonuniqueness in the local Cauchy problem if and only
if there is a K >0 and 6> 0 such that

(1.4) {#; p(@) >0, 2| < 6} D {w; @ > K a0, o] < 6} .

If k = oo and P is of principal type i.e. if £ 0 £ R?, P, (&) = 0, implies that
grad P, (&) = 0, then there is local nonuniqueness in the Cauchy problem if and only if
there is a K > 0 and 6 > 0 such that (1.4) is true when one reads kj(k— 1) = 1 for k = oo.

The theorem will be proved in the following sections.

DEFINITION 1.3. Let 2 be an open set in R® with boundary in C®. Let x, € 08.
Let & > 0 and y € O*({w; |[v — 2°| < 8}) such that grad v = 0, |z — 2°] < 6, grad p(a°®) =
= (1,0,0), 2N {w; |z — 2°| < 8} = {2; [x — 2| < 9, p(x)>0}. Let P(D) be a linear
operator of order m with constant coefficients. Let P, be its principal part.

If P,(1,0, 0) = 0 then a° is said to be a characleristic point of 00.
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If (1,0,0) s simply characteristic of type 1 for P, then 2° is said fo be a semi-
global nonuniqueness point of type 1 if the component containing x° of

(1.8) H={z;», = 0,000}
is compact in y: g (in the topology of {®; x, = 0}) when
(1.6) H={z;0,=0,zeQ}.

If H in (1.B) is not a compact subset of H' then 20 is said to be a point of semiglobal
uniqueness point of type 1.
Let (1, 0, 0) be simply characteristic of type oo for P, and let

(1-7) Pm(f) = 5?—152 + 5{2 | z aaéa .
| =m=1
oy <m—1

Let

L= {x;2°+0,1,0),teR}.

Let L' be the interval of L N Q which contains a° and let L' be the interval of L N 60
whick contains a*. If L' and L' have no common endpoints, finite or not finite, then x°
is said to be a point of semiglobal nonuniqueness of type co. If L' and L' have al
least one common endpoint then a° is called o point of semiglobal uniqueness of type oo.

Let (1,0, 0) be simply characteristic of type k, 2<k<m. Let L, L' and L' be defi-
ned as above. Let o' be the centre of L' and assume that

L'= {(0; i, 0); ﬁKa’}

for some o' >0. Let Re P, have the form

(1.8) ReP, =&, + &, (I ]E %E“) + 25,578
o] =m~1 i=F
oy <m—1

with b, # 0. Let a'> 0. Let the normal of 32 along L" be proportional to (1,0, 0). Let

M= (k— 1)]bk(1/',1/(1“k) Jpk/(1-k)
Along L 082 is given by

v, = N(@)a? + o(ad), |m]<a’.

Here N () is continuous on |2,|<a’. Then a® is called a point of semiglobal nonunique-
ness of type k if one of the following three conditions are fulfilled

{1.9) E=2; b,>0; N <M1—ajey?r, —a'<ym<a,
(1.10)  k=2; by<0; N(@) <M1 wefa’)*, —a <z3<a,
(111) k> 2.
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If o' = 0 and if a° is a point of local nonuniqueness of type & in the Cauchy problem
with T replaced by Q2 and Q replaced by R* then a° is also called a point of semiglobal
nonunigqueness of type k. If o is not a point of semiglobal nonuniqueness of type k then
it is called a point of semiglobal wniqueness of type k.

REMARK. — Let (1, 0, 0) be normal to 602 at 2° and let 2°® be a simply character-
igtic point of type %, 2<k<m. Let ¢/'> 0. If the normal to 02 at some point
of I/ is not proportional to (1, 0, 0) then z° is a point of semiglobal uniqueness.

All those heavy definitions are made to suit the formulation of the following
theorem.

THEOREM 1.3. — Let £ be an open set in R® with 0% boundary. Let P be a linear
partial differential operator of principal type in R® with constant coefficients. Then 12
is P-convex if and only if 0Q contains no point of semiglobal nonuniqueness for the
operator P.

REMARK. — In the conclusion of the theorem one should expect P-convex to be
used instead of P-convex. The proof will show that uniqueness and nonuniqueness
depends on the principal part of the operator in such a way that it does not matter
if we look at P(— D) or P(D). So for the sake of convenience we just treat P(D)
where one should look at P(— D).

The first one to treat nonuniqueness in the characteristie Cauchy problem seems
to be Goursat. Let £ be open in R? and let

P =&&+ 2 a8,

[1ESS

If 02 and F = {z;2,>0,2c 2} then GoumrsAT [5, pp. 303-308] shows that 0
is a point of local nonuniqueness for P. Now let P be an operator in R* with con-
stant coefficient and let N = (1,0, ..., 0) € R* be a simple characteristic point. Let
also P, have real coefficients, let grad P,(¥N)=(0,1,0,...,0)=N', and let
@ = (2, %, 2") € R*, "¢ R~ Let Q'c R* be open and let F = Q'. Let 0¢F,
and let F N {; |z] < 6} = {w; p(x)>0, [¢| < 6} for some y e O* with grad p(x) s« 0,
grad p{0) = N. Let 2= Rr. Then MALGRANGE [16] shows that there is local non-
uniqueness af z = 0 if for some M > 0 and 6'> 0, one has

(1.12) P(Ma" |2, #, ) >0, |o']<d .

Malgrange’s results are somewhat weaker but it is pointed out by HORMANDER [11,
p. 108] that Malgrange’s proof gives precisely this. It was pointed out by PERssON [22,
Theorem 5] that (1.12) is also sufficient for nonuniqueness in the analytic coefficient case.
Malgrange’s proof consists of a construetion of a simply characteristic analytic hyper-
surface lying above p(z) = 0. Then a nullsolution is constructed by the Goursat
technique. Other formulations to garantee (1.12) are given by TREVES [26, The-
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orem 6.10, pp. 377-378], ZACHMANOGLOU [35] and also by PERSSON [22]. The two
last references refer to operators with analytic coefficients. Possible ways of extending
Malgrange’s result to operators with linearly independent Re P, (&) and Im P, (N)
are indicated by HORMANDER [11, Theorem 1.3.5]. In our language we then have
a point of type k = 1 in the R3 case. Here the only possible characteristic surface
will be the plane.

If we have a hyperplane H as initial hyperplane then we can use Hérmander’s
nulisolution if H is simply characteristic or not or [7, Theorem 3.2] [8, Theorem 3.7.1,
p. 89]. For variable analytic coefficients this corresponds to the local result by
PERSSON [18] or the semiglobal result by Prrsson [23], [24, Theorem 4']. The
results in [23], [24] combined with an approximation technique are cornerstones
in our proofs of nonuniqueness in this paper.

In our eagerness to get conditions of the necessary and sufficient type we treat
operators in R® with constant coefficients. The surfaces involved are supposed to
be in €® and the characteristic points of the surfaces are supposed to be simple. We
even suppose that the operator is of principal type in Theorem 1.3 and partly in
Theorem 1.2. What happens when one looks at R”, » > 3. The type k may be de-

m
fined for every &e R+, || =1, as k in P,(1,0,1&") = > b;t’, by 0, if 2<k<m.
j=k
But already % = 1 seems to give trouble. And how can one combine it to give a ne-
cessary and sufficient condition. As to the regularity of 0F in the Cauchy problem
one sees that it does not matter for local nonuniqueness as long as one can get a
simply characteristic analytic surface inside F close to a°. As is proved by Purs-
SON [22] this also applies to surfaces of higher constant multiplicity and under cer-
tain additional conditions also to the semiglobal case [23], [24]. For the Cauchy
problem with analytic coefficients other types of null selutions have been constructed
by KomaTsu [13]. That one may have uniqueness in the class of O=-functions for
certain characteristic problems is proved by BaournNDI and GouriAovrc [1].

The origin of the uniqueness theorems which are used here is the well known
theorem by HOLMGREN [6] on the local noncharacteristic linear Cauchy problem for
equations with analytic coefficients. HORMANDER [8, Theorem 5.3.1, p. 125] has
generalized it to distribution solutions. In Section 2 after Theorem 2.1 there are
some comments on the history of uniqueness theorems. There we also define what
is meant by uniqueness cones. They were introduced by PERSSON in [21] but al-
ready Hormander proved Theorem 2.1. The main idea with uniqueness cones is
expressed by Theorem 2.2 and Theorem 2.3. These theorems are other cornerstones
in the proof of local uniqueness and semiglobal uniqueness.

The local unigueness at a simple characteristic point was first treated by HOR-
MANDER [8, Theorem 5.3.2, p. 126] for a (2 initial hypersurface. It was generalized
by TREVES [26, Theorem 6.8, pp. 368-369] and ZACHMANOGLOU [33], [34] for -higher
order of contact between I from definition 1.3 and 0F. In [8] and [34] also analytic
coefficients are allowed. Anyhow #° is a commen endpoint of L' and L”. In [9, The-
orem 8.1] HORMANDER gives a very sharp uniqueness theorem of global character.
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Tn its local version for constant coefficients it says that if 0F is in € and if 2° is a
common endpoint of I" and L” then there is local uniqueness at 2°. The same result
for 0F in (2 was proved by uniqueness cones in PERSSON [21]. Hoérmander’s result
is written out for P,, with real coefficients. The result in {21] also applies to the case
with complex valued coefficients in P,,. One may say that the treatment of points
of type 1 in the present paper goes back to this observation.

The first example of uniqueness when L = L'= L' was given by PERs-
SON [21, p. 79]. In [22] PERSSON gave some examples on uniqueness when L’ and 1"
have no common endpoint. Another simple example of loeal unigueness is given by
Q=R3 F={z; 0,>5,0,}, P(D)=D,D,+ D;, *=0. Here L=L'=L" and there
is uniqueness at #° since the normal of oF at (0,1, 0), ¢== 0, is noncharacteristic.
Holmgren’s theorern says that this point is a local uniqueness point. This zero is
then transported to 0 by uniqueness cones or by Hormander’s result [9, Theorem 8.1].

In [22] it is said that the first examples above show that L’ and L” alone cannot
decide on uniqueness or not uniqueness. The simple conjecbure is that the existence
of certain simply characteristic surfaces does. TrREVES [29, Theorem I] has given
a uniqueness theorem for a characteristic Cauchy problem at # = 0 in R? when the
multiplicity of the characteristic line at # = 0 is two but equal to one outside » == 0.
It has been generalized to distribution solutions by BIRKELAND and PERSSON [2, The-
orem 1.3]. This shows that the conjecture in [21] that one can use uniqueness cones
to decide on uniqueness is not true in general although it is true in the case covered
by Theorem 1.2.

Generalization to higher dimensions of uniqueness results and results on P-con-
vexity will probably meet many difficulties. We have not written down some obvious
ones to keep this paper at a moderate length. This also applies to local results when
the coefficients are variable. One way to get sharper results seems to be to combine
the philosophy of uniqueness cones with Hormander’s result [9, Theorem 8.1]. We
did not manage in some details. Therefore we have (? surfaces everywhere.

To the already cited results we like to add the results on P-convexity by ZAcH-
MANOGLOU [39], PERSsON [19] and [21, Theorem 9.1]. Local uniqueness is treated
by ZACHMANOGLOU in [36], [37], and [38]. He gives a necessary and sufficient con-
dition for uniqueness in the Cauchy problem for first order equation with analytic
coefficients [36]. This condition specialized down to the Theorem 1.2 cage is just
the same as the condition of this theorem. In [37], [38] he gives one necessary and
one sufficient condition for uniqueness for special higher order equations.

Other uniqueness theorems have been proved by Bowy [3], HORMANDER [10]
and Bony [4]. Further references are given in Section 2. The references are by no
means complete. They include the sources which in the aunthor’s opinion, are most
relevant for the problem of this paper.

The paper is organized as follows. Section 2 gives the definition of uniqueness
cones and general theorems of Holmgren type. Section 3 treats the geometry of
uniqueness cones connected with the proofs of Theorem 1.2 and Theorem 1.3. The
uniqueness part of Theorem 1.2 is proved in Section 4 with the uniqueness cones
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of Seetion 3. In Section 5 local and semiglobal uonuniqueness results are proved.
They complete the proof of Theorem 1.2. The remaining semiglobal uniqueness part
of Theorem 1.3 is then proved in Section 6.

2. — Uniqueness cone,

Let P(D) be a linear partial differential operator of order m > 0 in R». Let P,
be its principal part. Let M c R* be an open convex set contained in a half space
of R*. For Ne M, »*c R* o> 0 define

K(N, M, 2, g) = {50; ze R (p— @5, Ny>— g, {®—a° 8)<0, de M}.

We also allow ¢ = oo here. If M c{§; P,(§) = 0} then K(N, M, p) is said to
be a unigueness cone for P at «° in the direction ¥. We use this language in the
formulation of the following theorem due to Hoérmander.

THEOREM 2.1 (HORMANDER [8, Cor. 5.3.3, p. 130]). — Let P(D) be a lincar par-
tial differential operator in R™ with constant coefficients. Let 2C B~ be an open set.
Let E(N, M, 2 p) C 2 be a uniqueness cone for P. Let u e D'(2) be such that

(supp u) N K(N, M, 2" ¢) N {w; (o — a®, N} = — ¢}
is empty. If P(D)u = 0 in the inner points of K(N, M, 2% g) then also u = 0 there.

REMARK. - Hormander’s result is a generalization to distribution solutions of
results by F. Joux [12] for function solutions of partial differential equations. How-
ever Hormander has not made much use of this result in his book or otherwise. He
has mostly used various deformations of noncharacteristic hypersurfaces to show
uniqueness as is already done in his proof of Holmgren’s unigqueness theorem.

In [28, Th. 12.1, p. 60] TREVES gave a new proof of Holmgren’s uniqueness the-
orem for a (? initial hypersurface. By a nonlinear analytic change of coordinates
he reduced the Cauchy problem to a special case of his dual Cauchy-Kovalevskij
theorem for functions in one variable with values in the space of analutic functionals.
See also PERSSON [25]. TREVES calls the abstract theorem behind the dual Caunchy-
Kovalevskij theorem Ovsjannikov’s theorem [17] although he himgelf independently
found it [28, p. 2]. If the abstract theorem should be labelled it seems appropriate
to call it Yamanaka’s theorem since YAMANAKA [30] proved it already in 1961.

Let us call the direction normal to the iniftial hyperplane of a noncharacteristic
Cauchy problem for the time direction. The other variables are the space variables.
The deformation in the proof of Holmgren’s uniqueness theorem leads to a Cauchy
problem with solutions having compact support in the space variables for a fixed
time. In [20] Persson showed that cut off functions in the space variables of the ori-
ginal problems eombined with a direct application of the dual Cauchy-Kovalevski]
theorem gave a finite velocity of propagation of zeros. Here the coefficients of the
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operator are assumed to be analytic functions or even continuous functions analytic
in the space variables. This implies Holmgren’s uniqueness theorem. The author
used this in [21] to prove Theorem 2.1. This shows that one can reach this theorem
for constant coefficients without the use of nonlinear transformations. The trick
with cut off functions has also been used by BAOUENDI and GouLAovUlc [1] for other
generalizations of Holmgrens’s uniqueness theorem. We also like to point out a
simplification applicable to the proof in [20] due to YAMANAKA and PERsson [32].
In [32] there is a beautiful procedure due to Yamanaka by which one avoids the re-
duction of the differential equation P(D)u = 0 to a first order system gaining ad-
ditional information on the velocities of propagation of zeros of the solution of the
equation. See also YAMANAKA [31].

The real idea behind [21] is the following immediate reformulation of Theorem 2.1.

THEOREM 2.2 (PERSSON [21, Theorem 4.2, p. 74]). — Let 2, P(D), N, M, ¢ and 2°
be as in the hypothesis of Theorem 2.1. If u € D(Q) and if P(D)u =0 in 2 and if

(supp w) N K(N, M, s° o) N {w; (e — 0% N) = — o}

is empty then there is an & > 0 independent of w such that u is zero in the inner points
of K(N, M,x° 4 ¢N, o+ <|N|2).

REMARK. — We notice that 20 e Q' = K(N, M, 2° + eN, o + s<(N, N)), if Q' 0.
Indeed we need a sharper form of Theorem 2.2.

THEOREM 2.3. — Let 2, P, N, M and x° be as in the hypothesis of Theorem 2.1. Lel
u e D(2) be such that P(D)u = 0 in Q. Let F be a non-emply closed convex set in §2
such that o° is an inner point of F and such that K(N, M, s o) N F is a compact
subset of 2. Let IOI(N, M, a°, c0) be non-empty. If

(2.1) K(N, M, s", 00) N oF ¢ supp u

then u 18 zero in some neighbourhood ' of K(N, M, a° oo) N F where Q' is indepen-
dent of wu.

ProOF. — We see that (2.1) shows that 4 = 0 in a neighbourhood of the compact

set JQI(N y M, 2% co) N 2F. The translation giving Theorem 2.2 obviously also gives
Theorem 2.3,
3. — The geometry of uniqueness cones.

In this section we shall study the connection between real simple zeroes of poly-

nomials in R® and associated uniqueness cones in R2. Let P(D) be a linear partial
differential operator in R® of order m with constant coefficients such that

9 — Annali di Matematica
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P,(1,0,0) = 0 and
(3.1) Re grad P,(1,0,0) = (0,1, 0).

At first we assume that P, has real coefficients. Let

(3.2) P =575+ 3 a8+ 3 bETE.
wy<m—1 F=F
@1
o] =m

Now (3.1) implies that k> 2 if b, 5= 0. Because of (3.2) there is a real valued analytic
solution s(?) of

(3.3) P.(1,s,1) =0

for small & and ¢. One sees that
(3.4) 8(1) = — byt* 4 O(t*+1),

if by 0. If b= 0 and &k = m then
(8.5) s(ty=0

solves (3.3) for all ¢.
It is noticed in [21, Lemma 5.1] that if b, = 0 then there are constants K > 0

and ¢> 0 such that
{3.8) M=1{806=(01,81,0<—s<e tf<K|s|}.
is an open convex set of noncharacteristic directions of P,. Let N = (1, — ¢/2,0)
and let 2° e R». Then K(N, M, a°, o) is a uniqueness cone for P. Also K(N', M,
a®, oo) is a unigueness cone of P if N'= (1,¢'/2,0),
(3.7) M={8;0=(1,s1),0<s<c,tf<K's},
and ¢ and K' small.

Let 2 = (0, #,, 0). In [21, p. 77] it is pointed out that for @, < @, there is a
d> 0 and K"> 0 such that

(3.8) K(N', M', 2", Oo)m{w§wz:$/zl7 |z, | < d, lmai<d}c

c {m; #<— K {wazk/(k—l)(x; . mg}lf(l—k)} X
If 2 = m and b,, = 0 then for some ¢> 0

(3.9) M= 1{8;6=(1,8t);0<s<elft|<c
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is a set of noncharacteristic directions of P,: Let N'= (1, ¢/2,0), 2° = (0, 2,, 0).
Then K(N', M", 2%, oo) is a uniqueness cone of P. We also notice that for m;' < @,
there is a d > 0 such that

(3.10) EN', M", 2% o0) N {w; @, = a, |o,| < d, |o,| < 4} C {&; &, <— elo,]} .

This is immediate from (3.9) and the definition of K(N', M’, x° oo).

We notice that (3.10) shows that K(N', M", 2°, oo) is indeed a useful uniqueness
cone. Then we let b, > 0, k even. A look at P, shows that also in this case there
is a ¢> 0 such that every d e M” in (3.9) is noncharacteristic for P,. So also in
this case (3.10) is true. If b, > 0, k odd, then there is & ¢ > 0 such that P, (d) s 0,
de M, if we define

{3.11) M,={3;0=(1,s,1)}, O<s<e, —e<<—t<clsVr.

It is obvious that with N = (1, ¢/2, 0), & = (0, z,, 0) K(N, M,, 2°, co) is a unique-
ness cone of P and that for z) <, and some d> 0, K'> 0,
(3.12) KN, M,, 2% oo) N {&; 1, = @y, |my| < d, o] < d} C
C {w; @ < 02y, @, <0 or @ < — K'(#/(w,— 2,))%D, 2,50} .
How the cases b, < 0, k even or &k odd, should be treated is obvious and we do not
write down the expression (3.9)-(3.12) modified to these cases.
Before we start looking at operators with complex coefficients we notice that
(818)  grad (1, &, &) = ((m — )& -+ bfm — k)& + O(& + 1&6,] + &),
14 O(&] + &) 5 Wb, 870 + O(I&,] + I£,[) -

Now we allow complex coefficients in P,,. Let &ée R3, P (&) = 0 and grad P,(&) 5 0.
After a rotation of coordinates and a proper multiplication of P with a complex con-
stant we can always get &' = &/|§| = (1, 0, 0) and Re grad P,(§') = (0,1, 0). So our
assumption at the beginning of this section is no restrietion. We solve Re P,(1, 8,1} =0
for small s and ¢ and get (3.4) if Re P, is given by (3.2) with P, replaced by Re P,
and b, 0. If k = m and b, = 0 then we get (3.5). We notice that

g(r) == Im P, (1, s(r), )

is an analytic function in r for small .
If g4 0 then g(r) = 0 for 0 < |r| < d', some d’> 0. That implies

(3.14) P,1,s81r)#=0, (s,r)=(0,0), (8, ¥) small .
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In this case for all (a,b) € R? with a? -- b* small
(3.15) My={{1,81); (s— @) + ({— b)?<ar + b3}

is an open convex set of noncharacteristic directions for P. Let N = (1, a,b). Then
K(N", M, 2° oo} is a uniqueness cone of P. We notice that

(3.16) E(N", My, 0, o0) N {&; &, = 0} = {w; » = (0, , b), — co <1< 0}.

If g=0 then Re P,(1,s(r),r) = Pn(1,8(r),7) = 0 for small ». In this case
we get uniqueness cones just by looking at Re P, and we are back in the case
which we already have treated.

In the proof of local unigueness we shall also look at uniqueness cones of the
following type. Let P,, be given by (3.2) with b, 5= 0. It follows that for all smalle > 0

(8.17) M={3;0=(1,s10),s|< |b:lo*/2, s < — t < 2a}

is a convex set of noncharacteristic directions of P,,. Let ¥ = (1,0, — 3a/2). Then
we see that

(3.18) E(N, M, 0, oo) =

= {&; 2. <— |bula*|w,]/2 + 205, 3,<0, or @ <— |bila|n,|/2 + aws, 25 > 0} .

4. — Proof of local uniqueness in Theorem 1.2.

Let k = 1 and let (1.3) be false for all 6 > 0. We notice that p € C%. Let M, be
defined by (3.15) and let N"= (1, a,b). Then there is an > 0 such that for all
(a, b) with a? + b% = r?

K(N", My, (0, a, b), r?) N\ {w; <o — (0, a, b), N"> = —r¥ C (Csupp u) U {0}.
Theorem 2.1 then says that for some §'> 0
(4.1) (supp %) N {w; |m] < &', @} + f < 7*[2} C {w; #,> 0} .
To a given &'> 0 there is (4, b'), @' - b'2 = 62 < 6’2 such that (0, &', b") < 0.

Let a=—a', b=—b', N=(1,a,b). Then (4.1), &' small, §'<<#/2 and 9(0,a’,5') <0
give that

K(N, M, 0, 6°) N {&; {w, Ny =— 6%} c [suppu.

Theorem 2.2 shows that « is zero in some neighbourhood of # = 0 independent of u.
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Let 2<k< co: We can always use uniqueness cones with M from (3.6) or with M’
from (3.7) to clear up along ¢ — (0,%, 0) such that for some K"> 0, 4> 0

(4.2) {w; v esuppu, jo,| <d, j =1,2,3} C{z;w,>— K'|a,|?} .

Here it is important that y € €2 See (3.8) and see also [21, pp. 76-77]. If there is
a sequence (0, %,, 0) with say ¢, > 0, ¢, — 0 such that (0, ¢;, 0) < 0 then we can use
the same uniqueness cones K(N, M, 0, o) with vertex at 0 and ¢ = — (0, ¢;, 0), N>.
Theorem 2.2 gives u = 0 around x = 0. At last we assume that (0, ¢, 0)>0, |t|<d
for some ¢ > 0 but that (1.4) still is not true for any (K, ). Then 2 <k<m since (1.2)
must be true for some K > 0 and some é > 0 when %k = oo.

We may now assume that p(x) = 0 is given by #, — @(,, ¥;) = 0 where @ i
in % near (2., #;) = 0, @(0,0) =0 and @, — @(,, 2;) >0 <= y(x)>0 for small .
If (1.12) is not true then there is a sequence (;, @;;) — (0, 0) such that g(a,;, ©,;) >
> jag,* for all j. We notice that we may choose all #;; > 0 possibly after shifting
®, = — @, and then deleting the primes. We assume that this is done. Then we
notice that we can always choose ¢ — @(z,,, t) increasing at x,; by choosing a new
smaller @;;. We always keep in mind that ¢(z,, 0)<0.

Now let by > 0, k odd. Then we take M, from (3.11). Tet #® = (ju}/*™, oy, «, )
and let N = (1, ¢/2,0). Here x, % 0 is some fixed number to be specified below
such that #,, <, for all j. From (3.12) one gets with

(4.3)  E(N, My, 2 co) N {w; @y = @y, ly — jal %P < d, o, — myy) < d} C
C {w; & — otV < o(wy — @y,), #3— @5;<0, or
By — JylF Y < — K (@5 — 2,)¥/(w, — 2,))VD, w3 — 25,0} .
Let ¢ > o,; be the solution of
— K = a0 — B ((E— (i — )10

where K' is taken from (4.3) and K’ from (4.2). Let @y; = — 2K"t?. We choose
@, >0 such that with d from (4.2) |#]| < d and also such that K’< K/ (5, — iy,)~ 1D
for all j sufficiently big. Let F, = {@; @y >®,;, v >2,;}. We notice that a;; is choosen
such that ¢ — ¢(x,,, ) is increasing at t = x,;. From {(4.3) one sees.that

KN, M,, 20, 00) N oF;c (supp w .

Theorem 2.3 gives that u is zero in a neighbourhood of K(N, M,,a" co) N F,.
Since w,; 0 when j — co and since (4.2) is true one now knows that « is zero in
a neighbourhood of

(4.4) {&; 2,/2 <<, — A < < 0, 1 = 0y}

for some d> 0 and all big j.
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Now one lets M be defined by (3.17) where 2a = ja;/*™. One chooses
2t = (jmg-(k“/)’ 37";/47 9031), N = (1’ - 3“/29 0). From (3.18) one gets
(4.5) K(N, M,a" oo) =
= {w; w1_jx§;(k’n<bk ot o, — 3m;/4I/2 + 0@ — #5,), w5 — @5;>0 or

J’z"ng(kﬁz) <b a¥lw, — 350;/4'/2 + 20(@s — @3;), B3~ @5, < 0} .
Let 4, = — K"«2, and let

@y — Jul®V = — b, at|r, — 3u,/4][2 .

Since k¥>2 and @ = ju}* /2 one sees that
jmy — 30, 4]<2(j + E)ah* (b, oy 2Rt 0
when j — oo.
1t is now obvious from (4.2) and from the fact that u is zero in a neighbourhood
of the set defined by (4.4) that for some big fixed j there is £ > 0, and &> 0 such
that for

. o !
F={w;m,<wy+ea>—¢), o= (]m’;,{(k Y, 8w, /4, @s;)

one has

K(N, M, a* oo) N 2F c {suppu.

Theorem 2.3 shows that # is zero in a neighbourhood of K(N, M, 1% oo) N F. Since
0e K(N, M, a°, co) " F this completes the proof of uniqueness in Theorem 1.3
when b, > 0, k odd. It is obvious how one modifies this for general k and b,. These
proofs will not be written out here. This completes the proof of the uniqueness part
of Theorem 1.2. The cases when (1.3) or (1.4) are satisfied will be treated in the
next section.

5. — Characteristic surfaces and nullselutions.

In order to prove nonunigueness we shall use nullsolutions with an analytic simply
characteristic initial plane. The problem will be to find the characteristic surfaces.
In the local case with 2° € 0F, F closed, to every sufficiently small neighbourhood O’
of #* we seek a simply characteristic surface § = {#; y(2) = 0} for some real valued
analytic ¢ with grad v = 0 and {#; w()>0, v € 2} c F. Then we seek a u € (% (£')
such that P(D)u = 0, supp « C {&; p(»)>0}, supp u = 0.

In order to prove that a set Q is not P-convex we shall find a simply characteristio
analytic surface § such that there is one nonempty compact component H of § N 0£2
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with a positive distance to 9'(8 N Q) the boundary of § N 2 in the topology of S.
First we construct a solution # of P(D)u = 0 in a neighbourhood £’ of SN oQ
in R® such that (supp )N 0Q=¢ 0 and suppwc Q' N O, then a ve CX(2') such
that » =1 in a neighbourhood of § N 0£2.

We also choose v such that

{w; v(®) £ 1} N (supp u) c 2

Let w = vu. Then
(6.1) d(supp P(D)w, § 2) > d(supp w, {L2) = 0.
This or rather the variant shown below shows that there is a compact set K such
that (1.1) is not true for any compact set K'c . One uses that P(D) is invariant
under translations and finds a w such that the inequality of (5.1) is fulfilled. If the
equality is not true then translations give the result above. If we have (5.1) the
construction admits a translation back to the other case. All these facts will be used
in the folowing without explicit reference to them.

Let P be such that P, is given by {3.2). Let P, have real coefficients. Let
b, 0 in (3.2). We seek a function y such that for a given M > 0.
(5.2)  P,(grad y) = 0; w(o) = o, — Mm,["/*v, 3, = 0; grad »(0) = (1,0,0).
We let
(5.3) g(ry = — ME(k — 1)~ 1r|V®=D sign 7.

Then with s(¢) from (3.4) we let

(5.4) hr) = s(g(r)) -

‘We notice that Pm(l, h(r), g(r)) = 0 for small ». The surface p(x) = 0 is now given by
(5.5) @ = (Mr|H%=20,0,7) + t grad P, (1, k(r), g(r)) .

From (4.3), (5.4), (3.4) and (3.13) one gets

OPn[0&:(1, by g) = — (k— 1)brg* + O(g**),

a-Pm/aE2(1’ h” g) = 1 + O(g) ?
and

0P, [0&(1, b, g) = kbrg** - O(g") .
We shall now make the coordinate transformation

(5.8) » = (@ -+ M=, 0,r) + t grad, P, (1, h(r), g(r)) .
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We get

(3.7) @y = @y 4 M0 o~ (k— 1) be(g(r))* + O((g(r))+1)
(5.8) @y = (1 + 0(g(r)) ,

(5.9) @y = 7 - thby((9(r))*) + O((g(r)*) -

We shall prove that this is injective in a certain domain. Now (a;,t,7) — (=, t, g)
is injective for small r by (5.3). We notice that x, and z, are analytic in f and g¢.
We first look at (ay, 1, g) — (#!, #s, g) where (5.8) defines x,. It is obviously injec-
tive for small g. Let r = f(g) for small g. Let

%y = f(g) + thbrg"~* + O(g") .

Let

@ = kby(— kM sign r/(k — 1))+ signr.
We get
(5.10) wg =7 4 atr O(Iz,-lk/(k-—l))

= r(l —+ amy(1 4+ O(g ) g(r)) z, O( [ @=v) =
= H(@)A + am,) + O(g%) .

If 14 az,>d >0 and g small we see that w, is strictly monotone in ¢ so (x;, #,, §) —
— (&, &y, #;) is injective for |g|<d’ some d' depending on d. Thus (2,t,7) —
— (@, , @y, &,) is injective for |r|<d’ and 1 -+ aw,>d. We notice that ¢ may depend
on the sign of r. At last (@, ., #5) — @ with @, = @, + M|r[//¢-1 where r is a well
defined function of (z,, #,), is injective. That means that (»,, ¢, 7) — # given by (5.6)
is injective in

(5.11) H={(z|,t,7);1+ta>d>0, |r|<d', v, R}

where d"> 0 depends on d. It follows from (5.5) and (5.8) that

(5.12) o = ]l[([xsl/(l + a$2))k/(k—1) +
+ a(— (k — 1)bo(— MFE sign o, /(k — 1))%)(|ws] /(1 -+ aas))¥/e=
O(Iw3|(k+1)/(k——1)) — M(l + awz)”“”“lmgi”‘k—“ -+ o(lxal(kﬂ)/(k—n) .

Here O(|z,[*+0/¢~0)} iy uniform in |w.|<(1— d)/|a| with d > 0.
We shall need an approximation lemma.

LEMMA 5.1. Let k be an integer, k=2, and let G(t) = M[t|*%V, where M > 0 is
a constant. Then to each ¢ > 0 there is a real even polynomial P such that P(0) = ¢,
P@t)=G(t), 1t|<1, P'(t)|<(kM/(k— 1))t with P' increasing in [t|<1.
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ProoF. — Let ¢ << 0. Let ¢ € C°(R), ¢(¢)>0, be an even function around ¢ =0
with supp ¢ C {t; [t <1} and [p =1. Let &> 0 and let ¢u(t) = e g(t/s). Let

k(1) = sup {G(3), ¢/2} .
Let he(t) = h % @.. It is now obvious that there is an &> 0 such that
(5.13) B < |G'®)|, GE)<h(t) < he(t) < G(t) +3c/4, O0<t|<l, 0<e<e.
We notice that h is a convex C* function in [t|<1 with ] even. Let 6 > 0. Then

it is always possible to choose an even polynomial p(f) > 0 such that |p(t) — k. (2)| < 6,
ftj<1. We get

¢

(5.14) (0 — [pGs) ds|<oltl, <1
Let
(5.15) P#) = o+ f ( f () du) ds .

It is obvious from our choice of p that P’ is increasing. There is an &> 0 such
that for some d > 0 k. = 0 for |t|<d, 0 <e<eé. For |f|j<d (5.14) gives

(5.16) P/(1)] < oft| < (BM(E — 1)) o> = |@'(5)],  [t]<d

for d< (kM/(k —1)). The continuity of », and & on d<|t|<1 and (5.13) says that
for some d'> 0

(5.17) &)= b0 +a, d<li|<l.
Let 0 = min (@', kM/(k — 1)) then (5.14) and (5.17) give
(5.18) G'(t)|— |P'()|>d'— ojt]>0, d<ltj<l.

Now (5.18) and (5.16) give |P'(f)|<|G'(t)], [t]glf It is obvious from (5.13)-(5.15)
that we can choose & so small that P(¢) > G(f), |t{<1. The lemma is proved. We
algo get

LeMMa 5.1, ~ If for k= co, one lets kj(k—1) =1, and 1/(k—1) = 0 then
Lemma 5.1 also covers this case.

REMARK. ~ In the case k = 2 we may allow ¢ = 0 and choose P(t) = M2,
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Let 2<k<m. Let ¢> 0. Choose P from Lemma 5.1. Let P'= p. Let then P
denote the differential operator of Theorem 1.3. Let

14

(5.19) o= () + o+ [p()dt, 0, a}) + o] grad P, (1, s(p(a))) , pla) -

With # = #, and with o defined above (5.10), (5.19) is an analytic transformation of
coordinates in |z,| < (1 — d)/|al, |»,] < d’, d> 0 and @"> 0 depending on d. Here
we use (5.11) and the fact that p(f) is increasing in ff|<1 and that

lp(t)|< (kM/(k — 1))”[1/(74—1) .

An eagy argument using the properties of p given by Lemma 5.1 shows that the
bicharacteristic lines

t > (o +fp(s)ds, 0, 7") + t grad P, (1, s(p(r), p(r))

and

' — (Mr'|He=n, 0, ') + 1" grad P.(1, s(g(r")), g(r'))
for [t|<(1— d)/|a|, |t'|l<(1— @)/]el, [r| < d’, |r'| < d" do not have any common point.
That means that the analytic surface x; = 0 given by (5.19) lies above the surface
defined by (5.2) for the corresponding (x,, ;).

We now take the inverse of (5.19). After an eventual multiplication of P by a
nonvanishing analytic function P, has the form (3.2) with analytic coefficients in &
neighbourhood of |z,|<(1 — d)/la| and |z,|<d’, |#;]<d". Now we use PERsSON [23],
[24, Theorem 4] to get a solution u of P(x', D')u = 0 in |o,| < (1 — d)/lal, |z,| < d’,
;| < d', for some d', 0 < d'<d’. Here

0 € supp « C {#'; #,>0} .

In fact the proof shows that
(5.20) (w50, =0, o] < (1— @)/al, o, < &'} c suppw.
Let &> 0. Choose v (;° equal to 1 in
@5 el < &— e, o) < ((1— D)flal) — &, o}l < @'~ o)
and with compact support in

(5.21) (o' oyl < &', oy < (1 — d)f|al, log] < d'} .
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Let w = wv. It is now obvious that in the original coordinates supp w is above the
surface defined by (5.12).

Let 2 be a point of global nonuniqueness of type k, 2<k<m. M = (k— 1) X
X |a' b, k*[VA-" then one sees that @ = a'~*(— 1)*(sign r)* sign b, We notice that for
any M’'> 0 there is a J > 0 such that

(5.22) N (@) 3 < M |y |51 [wa]<a’y 0<lws]l<<d, 2<h<m.

The continuity of N(x,) on |r,|<a', the fact that " and L’ have no common end-
points, (1.9), (1.10) and (5.22) shows that we can choose M > 0 somewhat smaller
than before such that

M = (k— 1)|a" b, k*|/a-»

with a" > a', (0,a¢'+t,0)eQ, (0,—a'—1,0)e 2, 0 <i<a’— o and such that ze Q2
if 4 is defined by (5.12) with @ = (a)~*(— 1)*(sign @;)* sign by, 0 < |v;| < @', |z,|<
<(1—d)/|la]. Here @,=r, #,=1, ,=0 in (5.6). If we now assume that
(1-— d)/la] — e > a’, e > 0, then the construction above shows that when we choose
¢> 0 small enough in the approximation then we get

d(supp P(D)w, [:.Q) > d(supp «, [£Q).

This implies that 2 is not P-convex.
If ¢’= 0 and 2° is & point of local nonuniqueness of type k, 2<k<m, then (1.4)
is true and

M1+ ax) > K

for M = 4K and |o,|<la|"1/2. See (5.12). The construction above applies to this
case equally well.

Let 2° be a point of semiglobal nonuniqueness of type co. We assume that
#* = (0, @, 0) and that the normal of 8Q at 2° is (1, 0, 0) and that the normal along L
of Definition 1.3 is proportional to (1, 0, 0). We also assume that P, has the form (1.7).
Let 0 be the centre of L’, L"= {(0,1,0); |t|<a'}. Then there is an M >0, d'> 0
and ¢ > 0 such that

{o5 00 = Mz, 1] < @'+ & | < @, 0< [ < d'}

is a subset of 2. We choose P from Lemma 5.1’ let P'(¢) = p(¢) and denote the
operator by P as before. We make the transformation (5.19) with s = 0. Since P
is of principal type the analytic surface we get by letting #, = 0 in (5.19) is simply
characteristic. The argument of the case 2 <k < m applies equally well here. Thus 2
is not P-convex.
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If a® still has type oo but the normal along L of 0£2 is not proportional to (1, 0, 0)
we use the fact that 02 is in C! because it is in (2. This gives that arbitrarily close
to an endpoint of L” there is a point of semiglobal nonuniqueness of type oo of the
kind treated above. Thus £ is not P-convex.

This also covers the local case with k = oo. We notice that we may allow
complex coefficients in P,. If the type is k, 2<k< oo, then a surface characteristic
for Re P,, must certainly be characteristic for Im P,, too. The null solutions exist
independent of whether the coefficients are real valued or not.

Let 2 be a point of semiglobal nonuniqueness of type k = 1. Then we just use
[24, Theorem 4'], without any change of coordinates, and a proper cut off function.
That shows that £ is not P-convex. See also HORMANDER [8, Theorem 3.7 .i, p. 89].

By this we have completed the proof of Theorem 1.2. In the next section we
shall complete the proof of Theorem 1.3.

6. — Semiglobal uniqueness.

Let 2® be a point of semiglobal uniqueness of type %, 2<k<<oo. If L' and L’
have a common endpoint, then the zero at this endpoint or outside a given compact
set K if the endpoint is not finite, can be transported to «° by uniqueness cones of
the Section 3 type. If L' and L" have no common endpoint, and 2<k<m, and the
normal to 92 along L” is not proportional to (1, 0, 0) at some point then there must
be one point with noncharacteristic normal (1,0, ¢}, ¢ 5= 0. Holmgren’s unigueness
theorem or Theorem 2.2 gives a zero that can be transported to #° by uniqueness
cones of Section 3 type or general Section 2 type. If the.normal along .L" is propor-
tional to (1,0,0) and @'>> 0 then % == 2 and (1.9) or (1.10) is not true depending on
the sign of b,. Assume that b, > 0 and that (1.9) is not true. Then

(6.1) N(z)> M1 — xja’)?

for some #,, — a'<w, <a'. Then one uses uniqueness cones of the type treated
in (3.8) to prove that for some ¢>0, d >0

(6.2)  (supp w) N {@; |wa| < 0’ + 2¢, |0,] < d, 5] < d} € {w; v, >— K'a}}

for some K’>0. Then we let M"= (k— 1)(b.(a’+ &))/a-®E¥0-». Now one sees
from (6.1) and the definition of M” that

(6.3) N(z) > M"(1— a,/(a'+ &) = M.

We solve P,(1,s(— 2M'r),— 2M'r) = 0. Let h(r) = s(—2M'r) and let g(r) =
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= — 2M’y. New coordinates are chosen for a fixed small ».

@y = @+ blr)wy + g(r) 5,
@, = 0P,[0&(1, b, g)#, + OP,[0&(1, b, g) @, + OP,[0&(1, b, g),,
o, = (hOP,[0E,— g OP,[08,)a; + (g 0P, |08, — OP,[08,)x, +
+ (0P,.[08,— h OP,,[08) @, .

This is an orthogonal transformation. It is close to the identity for small . After
deleting the primes and after multiplication of P by a proper constant one sees that P,,
has the form (3.2) with a b, which depends continuously on 7.

We go back to the original coordinates. We ghall follow the bicharacteristic line
through ((M'+ ¢')r%, @, 7) given by &(0)= (1, h(r), g(r)). Then (5.7)-(5.9) for
@, = 0 gives

wy=1—t{(a' + &) — ;) 1r + O(r?),
wy = @, + t(1 + O(r)),
@y = (M- &)1* + H(— by d M%) + 0(%) =
= (M'+ &)r* + M'r*t((0’ + &) — #,)~* + 007) .

(6.5)

For fixed r solve @, = 0 for . Then ¢ = (a'-F ¢) — «, + O(r). One gets z, = a' -+
+ e+ 0(r), and 2, =¢&'r2 4 0(?). Let Z = (a;, 4, 0) = (' + O(r®), o'+ &+
+ O(r),0). For & small it is obvious from (6.3) that ((M'- ¢')r2a,r)e (2.
Now one chooses a set M" from (3.9) in the new coordinates given by (6.4). Here
one can choose ¢ independent of r since b, is continuous in r. Let N'= (1, ¢/2, 0)
in the (6.4) coordinates. Let ¥ = {»;#,>—d, x,>x,} in the original coordinates
with d > 0 from (6.2). It follows from (6.4), (3.10) and (6.2) that

(6.6) K(N', M", %, 00) N oF c {supp u

for some small » > 0. One also realizes that for some &> 0 close to ¢ by choosing r
small one gets (0, o' - £, 0) ef{(N, M,%, o) F. Theorem 2.3 then says that u
is zero around (0, '+ &, 0). This zero can then be transported back to 2° by unique-
ness cones of Section 3 type.

For local uniqueness points of type %, 2<k<m when L’ and I" have no common
endpoint we can use Theorem 1.2 to get a zero around #°. We also notice that there
is no complication in the argument above when P, has complex coefficients as long
a8 2<k< oo,
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Let o° = 0 be a point of semiglobal uniqueness of type 1. Let K c £2, K compact,
supp P(D)u C K, suppuc &, uc&. Let K ve the convex hull of K. Let B> 0
be such that x| < Rifwe K. It av¢ K then u is zero around #°. See LiIons [14] or
[8, Lemma 3.4.3, p. 80]. Let Q'= QN {v; |#| < R}. Let a®c K. Let (1,0, 0) be
normal to 202 at 2°. Let H' be the component of {w;» e 0Q’,», = 0} which con-
tains #°. Let 0'H' be the boundary of H' in {w;z, = 0}. Let 0'([ Q') be the
boundary of [2'N {;», =0} in {z;x = 0}. Sinece a® is a point of semiglobal
uniqueness we must have

(6.7) dH N ([2)~0.

First assume that (1, 0, 0) is normal to 002 at every point of H'. We know that H’
is compact. By the use of uniqueness cones of the (3.16) type we can get a finite
covering (0,)\, of H' in {r;», = 0}. Here O, are discs of a constant radius r with
centre at o = (0, ", 2{7) such that for some d >0

(supp w) N {5 (23— @) + (@, — ai)2 < 7% — d < @, < 0}

is empty, j =1,..., N. Since o' H'Nn o'(( ') is not empty, u is zero around some
point in |JO,. This point can be connected to 2° by a finite polygon in Jo,.
Then we use cones of the (3.16) type along this polygon to transport the zero to a°.

Let H” be the maximal connected subset of H' confaining «° and which has normal
(1,0,0) to 32 at every point. If H'N 9'([2') s 0 the proof goes exactly as
above for H'. If 0 H'n o'([ Q') is empty then H" must be equal o H' and that
is impossible because of (6.7).

Since any noncharacteristic point at 0 is a point of local uniqueness the argument
in the introduction shows that the proof of Theorem 1.3 is completed.
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