An Estimate on Convergence of Approximation by Iterations
of a Solution to a Quasi-Variational Inequality and Some
Consequences on Continucus Dependence and G-Convergence (*).

MArco Birorr (Milano)

Summary. — 8t da una stima per Papprossimazione mediante iterazione della soluzione di
una disequazione quasi-variazionale ¢ se ne deducono risullati circa la dipendenza coniinua
della soluzione dall’ostacolo e dal termine noto e circa la G-convergenza.

1. — Introduction and results.

Let be 2c RY a bounded open set with smooth boundary 802 and a;eL=(Q),
4, j=1, ..., N, such that

N
(1.1) > aq(w) €8> alé]? a.e, In 0.

ig=1

Yée RY; we suppose 0¢e Q. :
We indicate, by H-{2) the subspace of H ()

Hi(Q)= {ueH'(2) u|,= 0}
where ['c 0% is closed and regular (for the hypothesis on regularity of I' cf. [16]);

we define A: Hp(Q) — (HL(Q))* (Hp(2))* is the dual of HH(Q)) by

(1.2) {Au, vy = i @y (®) U, (@) vy, (@) d lfu(x)v(x) dx
=1 S
(where A>0 if I's2 002, A>0 if ['=00Q) and M: £2(Q2) - L°(2) by

(1.3) Mo(r) = glf (plo + &) + K(z, &)

x+&eQ

Vo € £2(2), where K(x,£)e (2 xR%) (R = {£eR~, £>0}) K(z, &) >K,>0.

(*) Entrata in Redazione il 29 marzo 1978.
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Let be fefr(), r> N, with f(z)>0 a.e. in £2; we consider the problem

CAuyo—uy > fyo—u,
(1.4) Yo e HL(Q2)  v(z) < Mu(z) a.e. in 2,
we HH(O2) w(z) < Mu(z) a.e, in 2.
The problem (1.4) has been introduced by A. BENsoussan, J. L. Lions [1], {2],

in relation to some problems in stochastic control; A. BENSOUSSAN, M. GOURSAT,
J. L. Lions [4], have shown the following existence result:

TH. 1. ~ Let be u® the solution to the problem

Aut=f
and ur defined by

CAury v —um >y v—uy,
(1.4,) Yoe HL(Q); v(2) < MumY(x) a.e. in 2,
wre Hp{£2); w{x) < Mur1{z) a.e. in Q.
We have
Un in £2(0)

where w is the mazimum solution of the problem (1.4).
Th. Laestch has shown the following uniqueness resulf.

Ta, 2. — Let be K,>> 0; the solution to the problem (1.4) is unique.

In the framework of Th. 1,2 some results on continuous dependence can be
obtained from Th. 4 [4]; these results have, however, some monotonicity hypothesis,
which reduce their applicability.

In the framewock of Th. 1,2 some results on G-convergence for problems of type
(1.4) can be obtained from [6].

These results are valid in the following hypothesis: let be %, a subsolution
(cf. [20]) of the limit problem we define . by

<Aun5 v— “n> = <:f7 v— un>
Yoe Hi(2); o(2) < Mu, () a.e. in 0

u,E Ho(£2); o {2) < Mth,_1 (%) a.e. in Q

the u,}u, where u is the solution of the limit problem.
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This hypothesis is difficult to verify and is related to the problem of the regularity
of a solufion of (1.4).

We specify, however, that the operators M considered in [4], [6] are more general
than the operator given by (1.3).

The aim of this paper is to obtain a more careful result on convergence of u»
to » than this of Th. 1 and to deduce from it some results on continuous dependence
and @-convergence, which improve those of [4], [6].

We obtain:

TH. 3. — Let be K,> 0; we have
O<u"— u< Kby, 0<f< 1

where K, 6, are constants dependent only on K, and Supu®(z).
From Th. 3 we have a result shown by other methods by C. TRoIANIELLC [22]:

CorOLL. 1. — Let be K> 0, K(x, &) = K(&) e C(R]); the solution to the problem
(1.4) is in C(Q).

From Th. 3 we can deduce the following result on continuous dependence:
TH. 4. —~ Let be {fs} {Ka} two sequences such that

limfo=Ff in (2}, r>N, fd) >0 a.e. in £2

&>+ oo

lim Ku(x; &) = Kz, &) in L°(Q X RY),

%>+ 00

Ealw; E)>Ko>0 ace. in 2 xRY

and s the solution to the problem

{Ats, v— oy > {f, v— ta)

(1.4,) Yoe HL(Q), o(w) < Mata(x) a.e. in Q,
us€ HHQ),  wal@)< Muus(z)  ace. in Q.
Where
Map(z) = Infg(cp(m + &) + Kalz, &) .
e
We have

Hm uy =u  in £9(0Q)

o>+ oo

where u is the solution of (1.4).
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Let be now a},e£>(2), 4, j=1,..., N, such that

Bl€12> E w)& &> alé)? a.e. in Q.

if=1

We define A7: Hi(2) — (HH(2))* by

=1

(APu, vy = Ea” )t () U, () div - /lf¢ dz

We denote by %, the solution to the problem

<Apum v— ur>><f7 v— um> ’
(1.4,) Yoe HH(Q) (@) < Mu,(®) a.e. in 2,
u,€ Hr(Q) (@) < M, (%) a.e. in Q.

We suppose that 47 G-converges to A (for the definition of G-convergence [8], [9],
[21]).

TH. 5. - If K,>0, K(z; &) = K(§) € O(RY), M: O(2) - 0(Q); we have

limu, =% in C(2)

P—>-+ co
where  is the solution of (1.4).

REM. 1. — The result of Th. 5 improves a previous result of A. BENSOUSSAN,
J. L. Lions [3], in which the 4 suppose

lim a2, = a; in £9(Q) ij=1,.., N

P>+ 0

In the case of homogeneisation with f also non positive and K(z, &) = K,>0 we
have a more precise estimate.
Let be by;(x) i,7=1, ..., N in C*(RY) periodic of period P= H [0, y,] such that

Blé12> Eb”(w V6:iE > a|€)?

=1
in RY VéeR”,
We choose
aénj(w) = b‘ij(p'{v)
and

(@) == gy
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where ¢;; are the constant coefficients of the homogeneised operator [5], {9], [13], [21].
In this case we have:

TH. 6. — Let be f also non positive, K(x, &) == K,>0, I'= 90

g(x) = Inf (i‘éﬁ fo+ ), )
£20

We suppose g{x) € U(2) and wlz) > — K, in £ where w(ax) is the solution to the problem

Ay=g.
We have
lu,— ulew<Cp”,  p=7,

where

[r4
(& is a possible Holder coefficient in the De Giorgi-Nash theorem relative to o, 3, 2, f)
and P, is an integer dependent on 4.

In the § 2 we show the Th. 3 and the Coroll. 1; in the § 3 we give a proof of Th, 4
by the result of Th. 3 and the result of continuous dependence for variational ine-
qualities [17], III, Th, 1.4; in the § 4 we show the Th. 5 by Th. 3 and some pre-
liminary lemmas on G-convergence for variational inequalities; in the § 5 we give
a proof of Th. 6 by Th. 3, the estimate on G-convergence for variational inequa-
lities [7], and a result of J. L. JoLy, U. Mosco, G. TroraNigrro [10}], [15], on the
regularity of solution to quasi-variational inequalities.

ReM. 2. — A result analogous to Th. 3 for the problem in stochastic control
related to (1.4) has been given by J. L. MENALDI [14]; unfortﬁna.tely the equivalence
between the two type of problems and approximations ask a regularity, which
generally we are not able to show.

REM. 3. — The Th. 3, 4, 5 can be extended to operators of the type

N "f
Aoy = | { S (a0@) 10 (2) + by(e) u(a)) 0,(@) S (d@) 1o (o) + o(e) u(a)) v(x)} a

=1 d=1
2

u, v € H:(£2) where
(1.5) CAuy uy>ajulzy,  Vuc HHQ), «>0

Gy by dyy €228, e¢(r) >0 a.e. in Q.
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The Th. 3, 4 can be also extended to the case £ unbounded if (1.5) is valid, and
K(x, &) >} oo for |§|—-} oo uniformly in #, and to the parabolic case if we consider
the maximum solutions.

2, — Proof of Th. 3.

Congider the problem

(A, v —B) > <f, v — B)
(2.1) Yve HY{2) o{z) =g} on I} o(@) <plw) a.e in Q
we HY(D) W(w) == @x) on I} wx)<y®) ae in Q

where ¢ € H¥(9Q), e £>(£2) such that there is
ve HY{2), v@)=¢@® onl and v(z)<y(®) ae in £2.

Let be i the solution of the problem (2.1); we indicate w= 8{y, f, ¢).
The Th. 3 is shown if we show

(2.2) w10 0010 e in @

where 0 < f,<<1 and C,Q >0 are suitable constants.

We show (2.2) by induction.

From [4] we have u(#)>0 a.e. in Q; let be P = Supu’(w) <+ co; if C@>P, we
have (2.2) for n==0.

We suppose now (2.2) for n—1 and we show (2.2) for »n.

We have

—nt1

(2.3) w4 Qgﬁc’—_—;—tg (w-+¢) a.e in 2

0

Let be wr=u"-Q, wl=y 1@, w=u-+@Q.
We have

(2.4) wr= 8(Mw"?, f+ 29, Q)

We observe that (2.2) is equivalent to

e
o

T oV

(2.5) — w.
0



MARCO BIROLI: An estimate on convergence of approximation, elc. 89

‘We have
28 O F0° T S(mMW Yo rol T e OQ)
w= 8w, (f+19),@) .
From [17] Th. 1.4, we have
N (L o
(2.7) g <8t M, [+ 30, Q).
As in {12}, pg. 165, we have
— 65" e
(2.8) Mo l)>m Muwr—r  (a>0)
if
1—-6"0"+C) P+Q 5
= == 19
b0+ O~ K,
then
(2.9) o = max (l%i—%w)’ 0) .

From (2.7), (2.8), (2.9) we have

65"

(2.10) g g < S M), [+ 79, Q)

then from (2.3)

07"
;" + C

—n+1
wn@s(M(ag‘l—:;}gw), i+ 2Q, Q).

((2.11)

From (2.6) we have {2.5) if

—n+1
(2.12) oceitwj%o—@ .

¢
We have (2.12) if «a=0; if x40 we can write (2.12) as

Po;" — C 65" - O
Pg:"+0) 6"

<1

F&;—%—H +P06;n— 08;n+1_ o2 <?6;2n+1 + PC@;‘”‘“
Po»— (P+1)6,"— (*<0
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then we can choose
P P+q

=P iTPTOTE

and we have (2.12) and (2.5).
The result is shown. o

We give now the proof of Coroll. 1.

LeMMA 1. — We consider u= S(y, f, 0), where fe£2(2) and ype C(2), =0 on I

we have ue C(L).
From [15] we have the result if Aye (), p> N.
We can suppose ¢ =0 in I" we have a sequence {y,} such that

ldpaje-<0 limy, =9 in G(Q),

B> 00

then from [17] Th. 1.4; we have

lim S(%")m f} 0) = S(w? f’ 0) in EOO(Q)

P> o OO

then u e C(£). ]

From [18] we have w'e 0*() with 0 < a< 1; then from the lemma 1 and [14],
[12] we have u"e C(Q).
From Th. 3 we have
mwur =u in £°(0)

B> - 00

then ue C(92).

REM. 4. — From the proof of Th. 3 we have that we can choose in the result

P

=5 x

+d Véix>0.

In our proof we can not choose d=0, why for §~>0 we have @ — 0 and then
C — -+ co.

3. — Proof of Th. 4.

From Th. 3 the Th. 4 is shown if we show that

(3.1) lim w) = %" in £°(2), Y.

-

‘We show (3.1) by induction.
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For n=0 we have

Au?x =1 A= f
then from [18], [19] we have

Iim ») = «° in £2(0Q).

o—>+ oo

We suppose now the result to be valid for n» —1 and we show the result for =.
The function «] is the solution of the problem
Aug, v—up <o v—up,
(3.2) Yoe HH(Q) o(w) <M"Y x) a.e. in Q,

use Hp(0) Ua() < M* () a.e. in Q.
We indicate w,= u"— A-'f ; then w, is the solution to the problem

(AW, v — ws> >0
(3.3) Yve HH(Q) () <yalx) a.e. in 0
wy € Hi(Q) Wa(®) < pal) a.e. in 2,
where
p (@) = Mu" o) — A7 () .
Being
limfy =/ in £7(Q)

o>+ oo

we have [18], [19],

(3.4) lim A-'f, = A-'f in O().

o>+ 0o

Being the result valid for n —1, we have

(3.5) lim My, = Mu™" in £2(0)
o—> 4 oo
then
(3.8) lim (Mu ™ — A7) = (Murt— A~%f) in £=(0Q)
o—> -+ oo

then from [17] Th. 1.4

3.7) limw, =w in £*(£2)

o> co
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where w is the solution to the problem

{Aw, v—w>>0

(3.8) WweHNR)  w(@) <yp(@)
we Hn(Q) w(w) < p{w)
where
(@) = Muri(z)— A~ f(z) .
We have
(3.9) w(@) = u(x) — A~1f(2)

then from (3.4), (3.7) we have

(3.10) Hm wy =" in £°(Q) =

a—> - co

REM. 5. — The result of Th. 3 seem to be the first result on continuous dependence
for solutions of quasi-variational inequalities without hypothesis on monotonicity
for the sequences {fa} {Ka}.

4. — Proof of Th. 5.

We show at first the following lemma on G-convergence for variational inequalities:

LuEMMA 2. — We consider the following problems

CAPw,, v — wy) > fy v — w,)

(4.1,) Yoe H.(Q) o(x) <p,(®) a.e. in Q
w, € Hp(Q) w, () < (%) a.e. in 0
CAw, v — wh >, v— w)

(4.1) Yoe Hp(2) (@) <) a.e. in 0

w,e HL(£2) Wy {2) < v, () a.e. in Q

where v,, ye C(2)
limy,—yp in O

P—=+ oo
then _
Imw,=w in C(Q)

Pp—>+4 oo
where w,(w) is the solution to (4.1,), ((4.1)).

We suppose at first [Ary, [ <Cst., |Ap]peo<Cst.



Marco BirorLi: An estimate on convergence of approximation, eic. 93

From [16] we have

lim w, =w in £3(0)

P>+ o0

and fron [15] Th.

HA’prHgoo <0St.
then from [18] we have |w,].<Cst.,, 0<a<1, and

limw, =w in C(Q).

D> T 0
We suppose now y,==ye W?(2), p> N, we can alsc suppose y|,= 0.

We prolongate vy to a function in W*?(R”Y) then from the lemma of {9] we have
a sequence {y,,} {y.} such that y,., 9./p,=0 and

147y, e [Ap.]ee < Ont

(4.2) lon— wle=,  fwn— ple=<COn?
lim y,, =9, in C(Q) Vo .
P—> -+ 00

We consider now the problems

<szma U Wpny > {fy ©— Wpn)
(4.3,) Yoe Hp(Q) () < Wpu() a.e. in Q

w,,€ HH(L2) Wy {2) < Ppn(®) a.e. in Q,

(AW, 0 — W) >Lfy v — wa)

{4.3) 1 Yoe Hp(Q) o(x) <yl a.e. in 0

w, € Hr(Q) W (%) < () a.e. in Q.
From the first part of the proof we have

(4.4) lim w,, =w, in C(0) Vn .

D—>+ 00

From (4.2) and Lemma 1.4 of [9] we have

me_ ww”ﬁ“’ < 0”%
(4.5)
o — w]ga < Ont

7 — Annali di Malematica
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then
(4.6) limw,=w in C(Q).

p—>+ o0

We suppose now u,, ye Wh(Q2), p, 3 v.
We indicate by i, the solution to the problem

<Ap@m v — ?'_Up>><f7 O @],> ]
(4.7,) Yoe HH{Q) o(x) <y a.e. in 0,
W, € Ho(2) Wy{w) < p(w) 2.6 in Q.

From (4.6) we have
lim#w, =w in C(Q)

Pp—r-+ oo

and from Th. 1.4 [17]

lw,— Blew < |95~ ¥l
then
(4.8) limw, =w in C().
p=>+ oo
We consider now the general case u,, ye C(Q).
Being

4.9) limy, =9 in C(Q)

P>+ o0

we have two sequences {y,.} {y:} such that

(4.10) lim y,, =y, in C(£2) uniformly in p.
B b 00

(4.11) limy, =y in O(Q)
T 4 00

(4.12) lim gy, =y, in 0(9).
P>t 08

We indicate now by w,, {w,) the solution to the problem
<prﬁk7 v— waﬂo> > <f7 Y waok>

(4.13,) Yo € H(Q) o(@) < Ppul®) a.e. in Q
w,.& HR(2) W, (X)) < Y,ul(®) a.e. in Q,

<Awu1 D — 'wk>><}t7 /e wk>

(4.13) Yve Hp(Q) v(®) < pul(®) a.e. in

| wie Hi(9) Wi () < wu(®) a.e. in Q) .
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From (4.10) and Th. 1.4 [17] we have

(4.14) lim w,, = w, in C(£) uniformly in p

koo

From {(4.11), (4.12) and Th. 1.4 [17] we have also

limw, =w in CQ)
k—>+oc

lim w,, = w, in C(Q).

k> -+ oo

(4.15)

From (4.14) and (4.15) we have

limw,=w in C(2) =

P>+ o0

We give now the proof of Th. 5.
From [9], [21] we have

(4.16) lim ) =«4* in £7(0)
P>+ o0

where

{4.17) A”u;’,: f.

From [18] we have |u)],.<Cst.,, 0<2 <1, then

(4.18) limaf =« in C(Q).

P>+ oo
We show now that

(4.19) lim u? = w* in O(Q)

p—>too
where «} is the golution to the problem.
<A”u:9 Y — “:>> <f7 v — u:> H

(4.20,) Yoe Hi(2) (@) < Mul™(») a.e. in 2,

ul € Hp(Q) i (@) < Mul () a.e in Q.

From (4.18) we have the result for n=0.

We suppose now the result for » —1 and we show the result for =.

Being

(4.21) lim w2t = 4™ in O(2)

p->+ oo
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we have
(4.22) lim My, = Mu™ in C(D)
P>t 00
then from Th. 1.4 [17]
(4.23) lim u) = «* in ().
Prip - 00

From the Th. 3 we have also

0<u,— u,< K0,
(4.24)

O<u"— u < KO,

where the constant K don®t depend on p, n.
From (4.23), (4.24) we have

limy,=% in C(2). m
P o 00

5. — Proof of Th. 6.

Let be B: HY2)—~ H™() an elliptic operator with constant coefficients; we
have [10], [15]:

Lemms 3. — Let be feLr(Q), r>n/2

gle) = Tnf (Inff(x + &), o) € £(Q)

E=0

where | is the prolongate of f to RY by 0.
Let be u the solution to the problem

Bu=g.

We suppose w(x)> — K, a.e. in £.
We consider the problem.

<Bu7 Cha u>> <7€; v— u’> H
{(b.1) Yoe H{S) »{x) < Mu(x) a.e. in 2,
uwe HY2) w(x) < Mu(z) a.e. in £2.

The problem (5.1) has a unique solution we W>*(2) and if we consiruct u* as in
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Th. 1 we have:

1Bung, <Max (|flg-, 19l¢.) -
LevmMA 4. — The vesult of Th. 3 is again valid for the problem

{Auyv—uy><fv—up
(5.2) Yoe H(D) v{x) < Mu{w) a.e. in 0
we H{O2) w(x) < Mu{z) a.e. in Q

{where A is as in Th. 3 and | as in the Lemma 3) if w(z)>— K, in Q.

We observe that «#(x) iz continuous being ge £2(2), then we have

(5.3) min u(z) > — K, .

ze
Let be w=u—u, w is the solution to the problem
Aw, v—w) ><f— g, v—w)

(b.4) Yo e Hy(£2) v(z) < M'w(x) e in Q2
we H}(82) wi(zr) < M w(x) a.e. in Q2

where

(8.5) Wplo) = Ko~ o) + Tof (ple + & + ul@ + 8) .
£20

Let be now

K(w; &) = Ko— u(@) +u(z+ ) .
From (5.3) we have
K(2;8)>06>0.

From (5.53) we have

(5.6) M'pe) = Inf (p(e + &) + K(@; £)) -
T+ SE
&z0

Finally we observe that f— g>0.
Then the Th. 3 is valid for the problem (5.4) and we have

(5.7) O<u"— w< K67

97
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where «° is the solution to the problem
(5.8) Awr=f—g¢g
and w» is the solution to the problem

CAwny v — wy > f— g, v—w™y,
(5.9) Yve H{(Q) v(x) < M'w1i(x) a.e. in Q,
wre Hy(2) w(x) < M'wr(x) a.e in Q.
From (5.5), (5.8), (5.9) we have

W= u"— U, Vn
then from (5.7)
O<u"— u< KOy . n

LeMMA 5. — Let be ue Hy™(2) we have Mue Hb®(Q) with
Mulp<0, | Mu|, <|v]; -
Let be we HY*(2), then Mue O(Q)[14] (12).
Let be », 2+ he,c L2, where ¢, is the unit vector in the direction of the x;, £ 0.

We can suppose h>0, the proof for A<0 is analogous.
If -+ & and 2+ he,+ & are in £ we have:

(5.10) lw(z -+ he,+ &) — u(z+ &) < Clh|
where O = [u, -

If o+ he;+E¢ Q, let be h=0h, 0< <1, the supremum of the n such that
the segment [x-+ &, x4 ne,+ & is in Q.

We x4 ke, £ 29 then wu(x-+he,+ &)= 0. We have

lu(m+ &)| = |u(@+ &) — u(@+he,+ &)| < C|h| < Olh| .

Being x-+he 2 there is & >0 such that x4+ k4 £'€ 002 then
(5.11) |+ e, -+ &) — w(w-+ £)] < O[] .

We can show analogously (5.11) in the case x4 &¢ Q, v+ he,+ € 2.
I o+ & x| he;+ E€ 002 we have

(5.12) (u(@+ he, + &) — ul+ £)]= 0.
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Then for @, x+ he,e 2, £>0, x--£€ 2 there is a §'>0 such that
(8.13) \u(w+ he,+ &) — ulw+ &) < Clh| .
The result of {5.13) is valid for #>0 or h<0, then

| Mu(e+ he;) — Mu(z)| < Clh]
then
I Mwfy, o< full;

Being now u|,= 0 we have for all xel’
Mu{r)<0. |
From [7], {8] we have

LEMMA B. — Let be we WY(Q), r> N; we consider the problems
<Aﬂum v— uw>> <f7 v— ua)>

(5.14,) Voe Hy(Q) v(x) <p(w) a.e, in 0

| %, € Hy(£) Uy (X) < p(®) a.e. in £

(A, v — wy > fy v— )
(.14) 3 Yoe HY(OQ) v{z) < p(x) a.e. in O

uwe HY02) w(z) < p(w) a.e. in 0

where A and A* is as in Th. B.
Let be u(u,) the solution to the problem (5.14), ((5.14,)) we have

H%ﬁ)_ uﬁgw < Gp“m(zwz-:‘z&)

where C is a constant dependent as «, § and |y|, A and & is an Holder ewponent for A», A

and W in the De Giorgi-Nash theorem.

Let be now u, the solution to the problem
(6.15) APu) = §
and ¥, n>1, the solution to the problem
CA up, v—ufd > fyv—u
(5.16) Yoe H (L) o(w) < Muy () a.e. in Q,

u, € HY (L) w,(#) < Mu) ) a.e. in Q.
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We show that
(6.17) Jup— g < Cmp =2 =2430 L 452y |
From [7] we have (5.17) for n=10.

We suppose now (5.17) valid for »—1.
We have

(5.18) | M — Murgw < O((n—1)p~ 2O —2480 1 pH)
Let be now %, the solution to the problem

Ay, v — W) > fy v — Uy
{5.19) Yoe H)(2) v{z) <My Yz,

weHND)  (r)< Muiz) .
From the lemma 3, B, 6 we have
(5.20) WZ‘“‘ Wge <O/p—&/2(zv—2+3&)

where O’ depends only on f, g and we can suppose C > (.
From Th. 1.4 [17] we have also

(5.21) up— w7 o < O((n— 1)p—-3/2(N~2+3&)+ p—%)
then
(h.22) U — e < O(np—&/z(zv—z+3&)+ pY).

From the lemma 4 we have also

I
5 — e <

(5.23) Ys > 0, n>7,
Jur — = <

where K is a constant independent on p.
From (5.22), (5.23) we have

1, — uljgew < Clnp™*2F=2530 4 o= L Kne,
Choosing n+* as the first integer <p **¥~2%3) we have

oty — ] < Op-&/«t(N»z—ks&) sis+1) &
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