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Summary. - I n  this paper we consider the question o] existence o/ optimal controls ]or a class 
o] systems governed by second order parabolic partial delay-di]]erential equations with ]irst 
boundary conditions and with controls appearing in  the coe]]icients. I n  Theorems 2.2 and 2.3 
we present existence and uniqueness o] solutions o] the ]irst boundary problems. I n  Theo- 
rems 3.1 and 3.2 we prove that whenever the coc]]icients o/ the system converge in  the w*- 
topology (L 1 topology on L ¢~) the corresponding solutions converge weakly in  an appropriate 
Sobolev space. Using these basic results we present two theevrems (The(~rems 4.1 and 4.2) on 
the existence o] optimal controls. 

1. - Introduction. 

I t  appears f rom the  recent  l i t e ra ture  on the existence of opt imal  controls for 
systems governed by  part ial  differential equations, tha t  there  are not  ma n y  results 
available, in case the system has control  dependent  coefficients with delayed ar- 
guments  (2, p. 262; 4). I n  this paper  we consider this question for a class of distrib- 
u ted  paramete r  systems governed by  second order part ial  delay-differential equations 
of parabolic type  with homogeneous boundary  conditions and with controls appearing 
in the coefficients. The coefficients associated with the second order terms are assumed 
to be continuous and those appearing in the  first and zero-order terms are assumed 
bounded  measurable and contain controls and  delays in their  arguments.  

In  Theorems 2.2 and 2.3 we present  the existence and uniqueness of solutions 
to the boundary  value problems. In  Theorems 3.1 and 3.2 we show tha t  whenever  
the coefficients of the problems converge in the  w*-sense in L ~ space equipped with 
w*-topology (L 1 topology on L ~) the  corresponding solutions converge weakly in 
the Sololev space W~ '~ (n -4- 2 < ~ < c~) giving a form of continuous dependence of 
solutions on parameters .  

Using these results~ we prove two existence theorems (Theorems 4.1 and 4.2) 
for opt imal  controls f rom the class of bounded  measurable functions for a control 
problem to be s ta ted later. 

(*) Entrata in Redazione il 21 gennaio 1978. 
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Let  ~ be a domain in n-dimensional Eucl idean space R ' ,  bounded  b y  a smooth 
surface 812 satisfying the  following propert ies:  each point  of 8 ~  is locally represent- 
able by  functions with t tSldcr  continuous second order part ial  derivatives. 

We denote  the  coordinates of a point  x in R ~ b y  xx, ..., x . ,  t ime b y  t. 
Le t  T be a fixed t ime instant ,  T <  c~, and h~, ( n =  0, 1, ..., v), be certain given 

numbers  such tha t  

0 : -  h o < h l < . . . <  h~< T .  

We denote  the  intervals 

L = [ - h ~ , 0 ] ,  I , = ( 0 ,  T), I , = [ - - ~ , £ ] .  

Now let us consider the  following second order linear delayed part ial  differential 
equations of parabolic t ype :  

(1) 

q,J=l  g=O i = 1  

• ~,(u)(x, t -  h~) 

+ ~ ~@, t -  h~, u(x, t -  h~))"v(~)(~, t -  ~)  
~ = 0  

+ ~ i@, t- h~, u(x, t- ~ . ) ) ,  
~t=O 

9 ( u ) ( x ,  t) = q~o(X, t) , 

~(u)(x, t) = 0,  

for (x~ t) ~ /2  x 11 

for (x, t) ~ ~ x Io 

for (x, t) ~ 8 ~  x I~ 

where 

~f, • ~ f  ~ 3YJ ~ 82Y~ ( i , j  = 1, n) 
8t ' ~ '  8x~ ' ~o:,:~ 8x~ 8@ ' "'" ' ' 

and D is the set of admissible controls to  be defined later. 
]bet ~ be a bounded  measurable funct ion from ~ x [ - - h p ,  0) into R ~ and let  U 

be a non-empty  compact  convex subset of R r. tgow let us define the  set of admissible 

controls on ~ x [-- h~, T]  by  

D --A {u: u measurable on ~ x  [-- h~, T], u(x, t ) =  4@, t) 

almost everywhere on ~ x [ - - h ~ ,  0) and u(x,  t )~  U 

atmost everywhere on ~ x  [0, T]}. 
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Wi th  this prepara t ion ,  we s ta te  the. op t imal  control  p rob lem considered in the  

present  paper ,  P, as: Given the  dynamic  sys tem (1), find a control uoED tha~ 
minimizes the  cost funct ional  

$2 × (0 ,T)  

where 

y. F~(x, t, u(x, t -  h~), ~(~,)(x, t - -  h~), ~(u)(x,  t -  t~)) = 
g ~ O  

- = =  ~= ~ ( x ,  t).u~(x, t - -  h~) -{- Vo(x , t).~(u)(x, t -- h~) -[-~=1 V~.(x, t)'cf~,(u)(x, t - -  hz) 

(l = 1, ..., r) and v7 ~ L~(9 × (o, r), n~), 

(z = 0, 1, ..., v; and  i =  ~, ..., n) . 

2. - Existence and uniqueness of  solutions. 

I n  this section, we shMi recall cer ta in results on the  existence and  uniqueness 
of solutions of the  sys tem (1) and  certain, other sys tems re la ted to it. 

"With reference to sys tem (1), it is assumed tha t ,  for each u ~ D ,  the coefficients 

and  da ta  are defined and  measurab le  on their  appropr ia t e  domains.  Before s ta t ing  
more  specific assumptions,  we shall in t roduce some useful notat ions.  

]01 denotes the  Lebesgue measure  of the measurab le  set 0 of any  finite dimensional  
Eucl idean  space. Le t  E be any  connected subset  of an s-dimensional  Eucl idean 
space R ~ and  denote  b y  C~(E) the class of all 1 t imes cont inuously  differentiable func- 
tions on E, where 1 < 1 < ~ is an integer.  Fur ther ,  let C~(E) be  the class of func- 
tions f rom C~(E) with compac t  suppor t  on E.  

Fo r  any  Z ~ R  ~, let IZf ~-A- Z ~ . Le t  z ~ [ z ~ ,  . . . ,z~ ] denote the  gradient  of 

the  scalar va lued  funct ion z on _R ~. 

Le t  E be as before and  denote  by  L~(E) the  Banaeh  space consisting of ali 

measurable  functions on E tha t  are dth-power ( d > l )  integrable  on E.  The no rm 
in it  is defined b y  the  equalities 

and  

[Iz[l~,~ = { f [z(y)l~@} "~ 
E 

for 1 < ~ <  c~ 

[izli~o,~ ess sup Iz(y)) for ~ = c ~ .  
E 



64 K. I~. T]~o - lq. U. A~I~E~): On the optimal controls o/ a class, etc. 

Measurabil i ty and integrabil i ty are to be understood in the  sense of Lebesgue. 
The elements of Le(E) are the equivalence classes of the functions on E (functions 
belonging to  the same equivalence class are equal almost everywhere).  

Le t  2 be a reM number  such tha t  1 <  2 < ~ and denote by  W 2 ' I ( E )  the  Banach  
space of functions from La(E) having generalized derivatives of the form (O'/~t~)(O@x ~) 
with any r and s satisfying the inequali ty 2r + s < 2. The norm in it is defined by  
the equali ty 

Note  tha t  if z is only a funct ion of x defined in f2 then we denote W~(Q) the  Banach  
space of functions from L~(T2) having generalized derivatives of the form ~/Ox ~ with 
s = 0, 1, and 2. The norm in it  is defined b y  the equali ty 

I ~ , ~  • 4,=1 4,,~= 1 

For  any  nonintegral  positive number  2, H~'a/2(/~) denotes the Banach  space of 
functions z tha t  are continuous on E and have derivatives of the form 

) 
~ " ~ x ~  .. . ~ x ~  " ~ , ~= ~ ' = ~ ' 

fl~ nonnegat ive integer, 2 e +  fl < 2, and have a finite norm 

14 114'+ lI. ; .  
5=0 

Note  tha t  [2] denotes the largest integral par t  of 2 and 

II~ ~) ~ f~l~ )=  ma~ l.(x, t)l, 

zx ~ -fl (o) Ilzll~ > - -  y_, [Dt'l)~'z g , 

(~) a o . ( ~ -  [).l) 

(2~+fi=E~]) 

[Izll(/½ ~) ~ 2 It/):'-D~" z]l (~- z~-a),~ 
0<2--2~--fl<2 

(~,t),(~',t)E~ Ix - -  x '  [~" ' 

(~) ~' a x  l z ( x ,  t )  - z ( x ,  r)l 

0 < 9 ~ < 1 ,  

0 < 7 < 1 .  
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Throughout  this paper,  the  coefficients and data  of the  system (1) are assumed 
to  satisfy the  following assumptions which will be re/erred to collectively as (A).  

(i) a~j(., .), ( i , j  = 1, ..., n), are continuously on Q, where Q - - ~ / 2 x I ~  and Q 
is the  closure of Q; 

(ii) there  exist numbers  ~ >  a t >  0 such tha t  

~:lzl:> Z a.(x, t).z,.z,>~,, lap 
G J = I  

for all Z • R "  uniformly on ~) (uniformly parabolic), where lZ] ~ ~ ]Zd2; 
i = 1  

(iii) max  l a . ( x ,  t )  - a~(x', t') I < M ,  
1<i,~<~ [ t - t ' [÷  Ix-x'l 
where t , t ' • [O ,  T]; x, x ' • ~ ;  and M is a constant ;  

(iv) b~,~(., • -- h~, .), c~(., • -- h,, .), (i ---= 1, ..., n;  k = O, 1, ..., v), are bounded 
measurable on ~)x U and continuous on U for almost all (x, t ) • (2 ;  

(v) ~oe C~(t~ x [-- h~, 0]) and qo(x, t) = 0 for all x ~ t~o and t • [-- h~, 0], where ~90 
is a compact  subset of D. 

Consider a linear second order part ial  differential equat ion of parabolic type  
described by  

(2) 

L.  ~(x, t) = / ( x ,  t ) ,  (x, t) • Q 

~ ( . ,  o) = Oo(Z), x • 9 

~b(x, t) = 0 ,  (x, t) e a~9 × [0, T] 

where the operator  L is defined by  

L .  y~(x, t) = yJt(x, t) -- t). W~,.j(x, t) Jr ~ b~(x, t). yJ~(x, t) + c(x, t). F(x, t) . 
~,'= i = 1  

I t  is assumed tha t  ai~, ( i , j =  l ,  ..., n), satisfy the conditions (i), (ii) of (A); 
~bo a W~(/2), (A > n ~- 2), and such tha t  q~o(x) = 0 on ~9;  and bi, (i = 1, ..., n), c are 
bounded measurable on ~). These conditions will be re/erred to collectively as (A'). 

Fo r  brevi ty ,  the s ta tement :  (< C depends on the s t ructure  of the differential equa- 
t ion of the system (2) ~ will be used to mean  tha t  C is determined by  the quanti- 
ties as, a , ,  M, and the bounds of the functions b~, ( i =  1, ..., n), and e where az, a , ,  
and M are as defined in (A). 

Le t  E be a connected subset of Q and the s ta tement :  <( C depends on the s t ruc ture  
of the system (1) in E ~) will be used to  mean  tha t  C is determined by  the quanti t ies 
az, a~,, M,  and the bounds for the functions b~.o, ( i = l ,  . . . , n ) ,  and Co evaluated  
in E.  On the  other hand,  the s ta tement :  (( C depends on the s t ructure  of the 
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differential equat ion of the system (1) ~) will be used to mean tha t  C is determined 
by  the quantit ies g~, ~ ,  M, and the bounds for the functions b~,~, c~, (i----1, ..., n;  

x = O, 1, ..., ~). 
In  the sequel, we need 

DEFII'iITION 2.1. -- A funct ion q)e  Web'S(Q) with n ÷  2 ~ 2 ~ co is said to be a 
solution of the system (2) ff it  satisfies the first equat ion of (2) almost everywhere 
and the  rest  of the two equations everywhere.  We remark  tha t  a similar definition 
applies to system (1). 

In  this p~per, it  is understood tha t  ~p~ and ~,~j denote, respectively, the generalized 
derivat ive of ~ with respect to t and the generalized derivative of ~ ,  with respect to xj. 

Note  tha t  the existence and uniqueness of solutions in W~;~(Q), ( n ÷  2 < ~ <  oo) 
of the system (2) are known (1, Theorem 9.1, pp. 341-342). Fur ther ,  it  follows easily 
f rom (1, the estimate (9.3) of Theorem 9.1, p. 342 and the first est imate on the 
page 343) tha t  the solution of the system (2) satisfies two well-known a priori esti- 
mates given below in Theorem 2.2. 

THEOI~EM 2.2. - Consider the system (2). If  the assumption (A') is satisfied, then  
there  exists a unique solution q)EW~'~(Q). Fur ther ,  q) satisfies 

(3) 

and 

dr} 11~' (2) 
o 

1/z q) (2) , , l -'<M2[{ffli(x,t)l d dt / +II oll ,o] 
o 

for all X > n + 2  and # = 1 - - ( n + 2 ) / X ,  where, ff Q and ~Q are regarded as given, 
the constant  M1 depends only on the s t ructure  of the differential equat ion of the 

system (2) whereas the constant  Ms depends on M1 and ~. 

P~ooF. - The proof of the theorem follows from [1, the est imate 9.3 of Theo- 

rem 9.1, p. 342 and the first est imate on page 343]. 
Wi th  the help of Theorem 2.2, the existence and uniqueness of solution of the 

system (1) together with two a priori est imates are proved in (5, Theorem 2.3). For  
convenience in fur ther  references, these results are quoted without  proof in the fol- 

lowing theorem. 

TItEORE:~i 2.3. -- Under  the assumption (A), the system (1) admits,  for each 
u ~D,  ~. unique solution ~(u) satisfying the following estimates: 

, (2) ~_~1 (5) ]l~(u~ ~,Q ; 
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and 

(6) t~(u) 1~ +~ < - ~  

for all 2 > n ~ 2 and /z ~ 1 -- (n -}- 2)/2, where the constants N~ and 2~2 depend only 
on n, )~, Q, ~ ,  the structure of the differential equation of the system (1), the bounds 
for the  functions f~, (u = 0, 1, ..., ~), 

(o) t 8~0o (o) 1~o1~×~_~,,o~, I Vxx~ ~×~-~.o~' (i = 1, ..., n) and tt~o(', O)~f~,b • 

3.  - Certa in  preparatory  results .  

Consider the following sequence of first boundary  value problems: 

(7) 

~ .  ~ ( x ,  t) = ]°(x, t) , 

~ ( x ,  o ) =  ¢g(x) , 

~ ( x ,  t) = 0 ,  

(x, t) e Q 

x ~ / 2  

(x, t) e 8£~ x [ o , / ' ] ,  

where the operator L" is defined by  

~t ~, 1 a~(x, t) ~x~ ~x5 
o } 

+ ~bT(x ,  t) ~(x, t) ~=~ ~ + c,(x, t) ~(x, t) . 

For each positive integer ~, let q~" denote the corresponding 
system (7). 

In  the sequel, we need 

solution of the 

THEOgE~ 3.1. - Consider the system (7). Suppose tha t  their coefficients and 
data  satisfy the assumption (A') uniformly with respect to a and tha t  b~, (i = 1, ..., n), 
c" and ]" converge, respectively, to b*, (i = 1, ..., n), c* and ]* in the weak . top- 
ology of L~(Q). Further ,  it is assumed tha t  

a 

~o -> ~o 

in the norm topology of L~(~), where ¢oeW~(~),  ~b~(x) = 0 on 8=(2, and n ~  2 < A ~ o o .  
Then there exists a subseqnence of i~b"t ~ (which is denoted by  the original sequence) (. ) a = I  

so t ha t  
~5 ~, q~, --> ~b*, q)* uniformly on Q,  (i = 1, ..., n ) ,  

and 

¢7, q~,~-~ ~b~, ¢ *  weakly in L~(Q), (i, j = 1, ..., n ) ,  
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where q)*e W~J(Q) is the solution of the system 

(8) 

{ j~=la/J(X, t) ¢*(x, t) - eG,(x ,  t) + b*(x, t) ¢:*(x, t) + 
i ,  - -  i = l  

÷ c*(x, t) ¢*(x, t)} = if(x, t) ,  (x, t) Q 

¢*(x,  o) = q)~(x) , x e S2 

¢*(x, t) = 0 ,  (x, t) e ~t2 x [o , / ' ] .  

P~ooF. - By  hypotheses, the coefficients ~nd data  of the systems (7)sat isfy the 
assumption (A') uniformly with respect to ~. Thus, it follows from Theorem 2.2 
that ,  for each positive integer ~, the system (7), admits a unique solution ~b ~ satisfying 
the following estimates. 

(9) 

and 

(10) 

l1 ~"II(G < Mdll.r'h,Q + II ~'$11(G} 

I~"1-~+" < M~{]I]~II~,~+ t lGIIG}, 

where n-k  2 < Z <  o% g = 1- -  (n ~- 2)/2, and M~, M~ are positive constants inde- 
pendent  of ~. 

Clearly, the estimate (10) implies tha t  for 0 < # < 1  and ~ =  ~b" or ~b" ( i =  1, ..., n), 

(1!) t~(~ t) - ? (x , ,  t,)j ~M, 
j$.(x,t)] + [ ] x - x ' p  ÷ I t - t ' l ]  ,*/2~ for all (x, t), x', t') ~ Q, 

! 

where the positive constant  M 2 is independent of a. 
Thus, it follows from Ascoli-Arzela Theorem tha t  we can extract  a system of 

subsequences {~b "~, q}~; i = 1, ..., n} c {q)~, ~b~,; i -- 1, ..., n} so tha t  

~b~-+ ¢ uniformly on ~), 

and 

¢~7__> ¢ i ,  ( i = 1 ,  ..., n), uniformly on ~), 

a8 ~ ---> c~. 
In  particular, they  converge to their corresponding limiting functions weakly 

in L~(Q), n ~ - 2  < 2 <  co. Further,  it is clear tha t  the limiting functions also satisfy 
the estimate (11). Later,  we will show tha t  q3i= ¢~,, ( i = 1 ,  . . . ,n) ,  and ¢ ~ q ~ *  
on Q, where qs* is the solution of the system (8). 
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Using the properties of the functions @o and ], it is e~sily seen that  the esti- 
mate (9) implies that  

where the positive constant M'~ is independent of ~. 
Obviously, {~ ' ,  @~j; i, j = 1,. . . ,  n} c {@~, q~,~,j; i, j = 1, ..., n} also satisfy the 

estimate {12). Thus, it is ~ system of bounded sequences in L~(Q), which is ~ reflexive 
Banach space as n-~ 2 < )~ ~ 0% and consequently there exists u system of sub- 
sequences {~-, ,  ~ ; ~ ;  i , j  = 1, ..., n} and a system of functions {W, ~ ;  i , j = l ,  ..., n}e 

L~(Q) so that 

a S  t ---> ~ .  

(W =-- weakly in L~(Q)) 

Recall that  the limiting functions ¢,  ¢~, 
mate (11). Further, for any zeO~(Q), 

Q Q 

ff.r',Ix,,) .(x,,)a. at-_-ff.%(.,,) .,¢., t)a.at, 
Q Q 

f ra~..o ,x t)z(x, t) dxdt  = -- f f . ;7(x ,  t)z.,(x, t) dx dt , 
Q 0 

{i~--1, ..., n), ~lso satisfy the esti- 

i ~ - - l , . . . , n ,  

i , j  : 1, ..., n .  

Since {q}%, q ~ ;  i =  1, ..., n} is a subsequence of {q~*, ~b~; i = 1, ..., n} and since q)~*, 
@~, (i~--1, ..., n), converge, respectively, to ¢,  ¢~, ( i ~ 1 ,  ..., n), uniformly on Q, 
it is clear that  ¢%,  @~, ( i = 1 ,  . . . ,n),  also converge, respectively, to ¢ ,¢~,  ( i =  
= 1, ..., n), uniformly on Q. 

Thus, it is easily verified that  ¢ ~ =  ¢.,~, ( i = 1 ,  ..., n), almost everywhere on Q 
and that  ~p and ¢~J ~re, respectively, the generalized derivative of ¢ with respect 
to t and the generalized derivative of ¢* with respect to xj. We will write ¢~,, q5 t 
and ¢ ~  instead of ¢~, W and W ~ respectively. 

In summary, we have already shown that 

uniformly on Q 

( i -~1 ,  . . . ,n) ,  uniformly on Q 

(W ~ weakly in ]2-(Q)) 

(i, j = 1, ..., n) 

where ¢ satisfies the stimates (1.1) and (12). 
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On the other hand, we note that  the coefficients and data of the system (8) 
satisfy the hypothesis (A'). Thus, it follows from Theorem 2.2 that  ~5*e~. i (Q)  
is the only solution. Therefore, it remains to show that ¢ e W~'I(Q) is also a solu- 
tion of the system (8). For then we can conclude immediately that  q3 _~ ~b* and 
the proof is thus complete. In order to do so, let us first show that ¢ satisfies the 
differential equation of the system (7). For this, we write 

i , ~ = 1  i = 1  

= ¢,- ~*¢~,+ 0*¢  - / * -  
i ,  - ¢ = 1  

I ° ~ } 
~ , j = l  i = 1  

i 

i, = i=1 

almost everywhere on Q. 
I~ecall that  both ¢"~, and ¢ satisfy the estimates (11) and (12). Thus, in particular, 

~ , ,  q ~  ~b~, q~,~, ( i , j = l ,  ..., n), q3, Ct, ¢~,, ~ , ~ ,  ( i , j = l ,  ..., n), are in L~(Q). 
Further, by  the assumptions on the coefficients and data of the systems (7) and (8), 
we note that  ai~, b*, b~'~, ( i , j  = 1, ..., n), 0", 0°% ]* and ] ' ,  are bounded measurable 
on Q. ~oreover,  IQI < co. Thus, it can be easily verified that  

~,~=1 ¢=1 

and 

" } 1 
i, -- ~=1 

are in Z~(Q), ( n ÷ 2 < ~ <  ~) .  
Then, if ~; is such that  1/~÷1/~'-=-1, it follows from the expression (13) that 

for all z zLZ(Q) ,  

(i4) 
o o } ] 

o ~, _ 1 a~¢~'~' + ~ b~ ¢ ~ ' ÷  °* ¢ ~ = 1  - / *  ~ dx d~ = 

Q i ,  ~=1 
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However, as it is shown above, we have 

qS°~, , *~,---> ~), ¢~  , i =  l ,  ..., n , 

uniformly on ~) and, in particular, weakly in L~(Q); and 

¢ ~ '  ---~¢t  ¢ , i , j = l ,  n q )7~ ,  - -~ ,~  , ~,~ . . . ,  , 

weakly in La(Q). Further ,  by  hypotheses, b~*,, (i--= 1, ..., n), c%, and /% converge 
respectively, to b*, (i----1, ..., n), c* and /* in the weak . topology of L~°(Q). 

Using these facts and the assumptions of the coefficients and forcing terms of 
the systems (7) and (8), we can easily show tha t  the expression on the right hand 
side of (14) converges to zero as t--> co. 

Thus, we have 

b~ q~ ,+ e*~  - - /*  z d x d t =  O 
Q i, = i ~ 1  

for all zeLZ'(Q) and, in particular, for all zeO(Q).  
Since, as shown above, 

is an L~(Q) function, i t  is easily shown tha t  ¢ satisfies the differential equation of 
the system (8) almost everywhere on Q. 

Next,  we shall show tha t  ~ satisfies the initial and the boundary conditions of 
the system (8). For  this, we first recall tha t  ~b%-~ ~ uniformly on Q as t--> co 
and ~b~(x, t ) =  0 on ~f2 × [0, T]. Thus, it is clear tha t  ¢(x, t ) ~  0 on ~ × [0, T], 
This implies tha t  ~ satisfies the boundary  condition of the system (7). To complete 
the proof, it  remains to show tha t  ¢(x, 0 ) =  ~bo(x ) on X2. For  this, let us consider 
the following system 

(16) 

f~= l(~ij (X ' '~' ~,(x, t) - t) v':~:~(x, t) + y.. b*(x, t)~%(x, t) ÷ 
i, - -  i=i 

t) T(x, t)} = 0 ,  (x, t) e Q ,  + C*(Z, 

T(x,  0) = ¢~(x) -- ¢(x,  0 ) ,  x e t~ ,  

T(x, t) = o ,  (x, t) ~ 8~9 × [o, T] .  
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Denoting ~ (~a~¢(x, t))/~x~--b*(x, t) by a*(x, t), we can write the system (16) as 
t = 1  

(16') 

Tt - -  ~ ~xj ~ aij(x, t)T~,(x, t) -- ~=la:(x, t)T~(x, t) + e*(x, t)T(x, t) = 0 ,  
i = l  i = 1  

(x, t) e Q 

T(x, o) = ¢~(x) - ¢(x ,  o ) ,  x e  z9 

T(x, t) = O, (x, t) e ~.Q x [0, T]. 

Note that  T --~ ~*- -  ¢ is the unique solution of the system (16) and hence the 
system (16'). Thus, it is also a global weak solution of the system (16') in the sense 
of ARo~so~ ([3], p. 622). Therefore, by letting ~ = 1 ,  s =  0 and # =  c¢ in ([3], 
Lemma 1, 13. 623), we deduce that 

(17) 

0 

s~ 

where the constant fl depends at most on n and the structure of the system (16') 
while the constant Ma depends at most on n, T and the structure of the system (16'). 

( is )  

However, we note that  

T 

Q 0 
T 

• d t =  
J te[0,T] \ J  

Thus, it follows from the estimates (17) and (18) that 

Further, the estimate (19) can be reduced to 

(20) f f i (x, d,<2M, { dx + f - ¢(x, 0)) dx} 
0 D Q 

By the hypothesis, q)g~,-+ qS~ in L~(f2). On the other hand, as shown before, ~°~, 
converges to ¢ uniformly on Q. Further, ]Q] < c~. Thus, it follows easily from 
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the  Lebesgue Bounded Convergence Theorem tha t  

lira f (q~g~,(x) --  T ( x ,  O))~dx = O . 
t -,-> cy:~ 

t 2  

Using these facts and noting tha t  T is differentiable on Q, we obtain easily shat 
[P(x, t) ------ 0 on Q. This implies tha t  ~*(x ,  t) = ¢ ( x ,  t) on Q, and in particular, ¢~(x) ----- 
= ¢(x, 0) on ~2. Thus, the proof is complete. 

U co Tn-E0~E~ 3.2. - Le t  { z}~=~cD and let, for each positive integer l, q(u~) be the 
corresponding solution of the system (1). Suppose tha t  the assumption (A) is satis- 
fied. Then, there exists a subsequence {ul~ } c {ut} so tha t  bi,~(., • -- h~, u ~ ( . , . - -  h~)), 
c ~ ( . , .  - - h ~ ,  % ( . ,  • -- ~) ) , /~ . ( . ,  • - - h ~ ,  u ~ ( . ,  • - -  ~ ) ) ,  (i  = ~, ..., n ;  ~ = 0,  ~, ..., ~), c o n -  

* h * . . . ,  verge, respectively, to b~,~( . , .  --h.), v~(., • -- ~), ].( . , .  --h~), (i = 1, n;  n = O, 1, ..., v) 
in the weak . topology of Z~(Q). Further ,  

~ ( % )  - +  ~*  1 / q~,(ud) --> ~.~*, i = 1, ..., n 

%(%) ~ ~ 1 ] %,~(%)  - >  * ~***~, i ,  j = 1,  . . . ,  n 

uniformly on ~) 

weakly in Z~(Q) 

as t-->o% where 2 > n - [ - 2  and ~o*eW~'I(Q) is the unique solution of the system 

(21) 

~=i ~ = 0  i = l  

+ c:(x ,  t -  h~)~*(x, t -  h~) + y./*(x, t -  ~ ) ,  
~ 0  ~ = 0  

(x, t) ~ [2 × I~ , 

qD*(x, t) = %(x, t) , (x, 1) e Q × Io ,  

~*(x, t) = 0 ,  (x, t) E ~Y2 × I .  . 

l ~ E ~ K  3.3. -- B y  the definition of the class of admissible controls, D, we can 
easily show that ,  for almost all (x, t)E .(2× [ - -h . ,  0), 

b%(x, t) = b~,~(x, t, ~(x, t ) ) ,  ~*(x, t) = ~ (x ,  1, ~(x, t ) ) ,  

and 

/:(x, t) = / ~ ( x ,  t, ~(% t)) , 

where ~ = 1 ,  ..., ~; i ~ 1 ,  ..., n;  and ,~ is as defined in the definition of the class of 
admissible controls, D. 
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P~oo~ o~ Tn-EORE~ 3.2. -- By  the assumption (A), we note tha t  the system of 
sequences {b,.,(., .  -- h,,  u,(- , .  -- h~)), c~(.,. -- h~, u , ( . , .  -- h~)),/~(.,. -- h~, u , ( . , .  -- h~)) 
i = 1 ,  ..., n;  n ~ - 0 ,  1, ..., },=1 are bounded uniformly on Q. Thus, it  is compact in 
the weak . topology of Z~(Q). Therefore, there exists a system of subsequences 
{ b , , ~ ( . , .  - -  h~, u , , ( . , .  - -  hz ) ) ,  e z ( . , .  - -  h , ,  u , , ( . , .  - -  h~) ) ,  l , ( ' , "  - -  h~, ,a , , ( . , .  - -  h z ) ) :  

i :  1 , . . . ,  n;  ~ = 0, 1 , . . . ,  v} and ~ system of functions {b~*.(.,. -- h~), c*(-,. -- h,), 
]*(.,. - -h , ) :  i =  1, ..., n; z =  0, 1, ..., v} so tha t  

~,,~.(.,. - ~ ,  ~ , , ( . , .  - ~ ) ) ,  c , ( . , .  - s~,~, u , , ( . , .  - ~ , < ) ) ,  D < ( . , .  - s~,<, ~ , l ' , "  - s~,<)),  

( i =  1,  . . . ,  ; ~ =  O, 1, . . . ,  l,) ~ 

converge, respectively, to b~*~(.,. --h~), %(,* . . . . .  --h~), ]* ( ,  h~), ( i - -  1, ..., n; ~ = 0, 
1, ..., v), in the weak . topology of L~(Q), where the limiting functions are also 
bounded by the same bound for the original system of sequences of functions. In 
particular, b~.,(.,. - -h . ,  uz,('," --h~.)), c~(.,. --h~, u,,(.,.  -- h~)),/~(.,. -- h~, uz,(.,. -- h~)), 
(i ~ 1, ... , n ;  ~---- 0, 1, . . . ,~), converge, respectively, to 

b~**(.,. --h~),  e*(.,. - -h~),  ]*(.,. - -hz) ,  ( i - -  1, ..., n; n : 0, 1, ..., ~), 

in the weak . topology of L~(Q), where Q is any  subset of Q. By  Theorem 2.3, we 
note tha t  the system (21) admits a unique solution satisfying the estimates (5) 
and (6). Let  the solution be denoted by ~*. 

For  convenience, let us write down the sequence of the following systems 

(22) 

~ t  i , i  = 1 ~ X  i ~ ?  l u = 0 i = 1 

~ ( ~ , ) ( x ,  t -  h~) _ ~: ~ @ ,  t -  h~ ~ , ( x ,  t - -  h~)) ~(u~k(~, t - -  h~) 
8Xi u~O 

= :~ i~(x, t - h~, ~,(~, t - h~) ) ,  
u = O  

q~(u~,)(x, t)  = ~o(X,  t)  , 

q~(uz,)(x, t) = o ,  

(x, t) e ~9 x (0, T) 

(x, t) e 9 x [ -  h,, O] 

(x, t) ~ 8z9 x [-- h~, m]. 

We first consider the systems (22) on ~ x  [0, hi]. Tote  tha t  ~(u,,)(x, t)~-~oo(x, t) 
in ~ X [-- h~, 0] and ~(u~,)(x, t)~-- 0 in 8S2 x [-- h~, T], where t is any positive integer 
and ~o is a given function satisfying the property (v) of (A). Thus, ~(uz,)( ' , ' --h~), 
~,(uz,)( ' ," --h~), ( i : 1 ,  ..., n; u----l, ..., ~), are known continuous functions in 
~ X  [0, hl] and equal to zero for all x ~ ~o and t e [0, h~], where ~o is a compact 
subset of ~2 as defined in property (v) of (A). This implies tha t  the sequence of 
the systems (22) ir~ ~ x [ 0 ,  hi] is only a sequence of first boundary value problems 
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without t ime delayed arguments,  where its forcing t e rm is given by 

b , , s ( . , .  - 
u = l  i = 1  

Let  

• - a s ) )  ~ % ( " "  - ~)  
~x~ 

+ ~ ~ ( . , .  - ~s, ~(. , .  - ~)) ~o(.,. - M 

+ Y. - + 10(.,., , , , ,( . ,-)) _ l , , ( . , . ) s  - . 

]* (x,  t) A~ k k b< . (x,  t - -  h>t, q~(x, t - -  h.)) ~qgo(X, t - -  h~l) 
s = l  i = l  ' ~ X i  

+ ~: c.(x, t -  h., ~(~, t-- J~.)) Vo(x, t-- hs) + ~ is(x, ~-- ~,,, ~(~, ~-- M) + g(x, ~). 
~=I s = l  

i n  view of the assumption (A), we can easily verify tha t  ]* and f~, are bounded 
measurable on Q. Furthermore,  {]*,}~=1 is bounded uniformly with respect to t. 

Since b~.s(- , • --hs, ~( ' , .  --h~)), and es(', • --h~, ~(.,- --h~)), and fs( ' ,-  --hx, ~(.,- --hs)) 
( i - -  1, ..., n;  ~ ~ 1, ..., v), are independent  of t and ]o( ' , ' ,  u, ,( . , . ))  converges to 
f~(-,. ) in the  w e a k .  topology of 23~(9 × (0, h~)), it is clear tha t  ]q( . , . )  also converge 
to ]*(. , .  ) in the w e a k ,  topology of L~(/2 × (0, hi)). l~ecall tha t  a,j( . , .  ), ( i , j  = 1, ..., n), 
are independent  of t and tha t  b~.o(.,. , uz,( ' , ' )) ,  ( i =  1, ..., n), and Co(-,-, %(.,.)) 
converge respectively, to b~*o(.,.), ( i =  1, ..., n), and c~(.,.) in the weak . topology 
of/)~(~2 × (0, h~)). Fur ther ,  the system corresponding to these limiting functions is 
the  system (21) in .0× [0, h~]. Thus, it follows from Theorem 2.2 tha t  the  system (21) 
in ~ ×  [0, h~] admits a unique solution ~ satisfying the estimates (3) and (4) with Q 
and Q replaced, respectively, by  /2 × (0, h~) ~nd ~ ×  [0, h~]. This, in turn,  implies 
tha t  c~x(x, t ) ~  9*(x, t) in ~ ×  [0, h~]. l~ow, by Theorem 3.1, we have 

~(%) ~ 9" 1 
t ---> * , ( i = l ,  . . . ,  n )  ~=,(%) %, 

%,~,(~t,) ~,,~j ( i , j  == 1, ... n) 

f ~*(%) -+ 9" 

uniformly on ~ ×  [0, hi] ,  

we~kly in L~(O × (o, ~)) ,  

as t -+ c% where n ~- 2 </~ < c~. 
Fl~rther, we note tha t  

, (2) (2) llq; h,~ ×<o,~,)</~{!/]*h,<~ ~<o,~,)+ II ¢oh,~} 

and 

(2) < Cb (~) 
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Since {/~,} is bounded uniformly with respect to t, ]* is a bounded measurable func- 
tion on ~ × [0, h~], and q~o satisfies its corresponding condition of the  assumption (A'), 
it follows readily tha t  

t * (2) . ~ i (~)  h9 l!a,1}×(o,~,)<M~ and II¢(%~i,~,.×(o.~,)<M~ 

where the positive constant  M~ is independent of t. 
In  particular, we have 

(23) 
1} x (o,hd _o x (O,h l )  

' M 
~,~ = 1 ~X i aX ~ dx dt < , ,  

1} x ( O,h~ ) 

for all ~ { 9 " ,  9(%),  t = l ,  2, ...}, where n + 2 <  ~ <  oo and the constant  M,  are 
independent  of t. 

B y  the H61der inequglity for sum, the estimute (23) can be easily reduced to 

(24) 
hi 

÷ 
0 1} 

i ,~=1 
1} 

~¢(x ,  t) ~ d x l d t < ( n  ~ 4- bx~ ~x~ J 

where ~' is such tha t  1/~+1I~/= 1. 
! 

l~ow, we claim tha t  there exists ~n h~e (h~/2, h~) so tha t  

(25) f ie(x, h;)I~dx + 
1} 

f ~(x, h) 
1} 

+,~, ~ ~¢(~'ax, ~z~h;) dx<(n~ + n + 1).*'. M,*. h, 

for all ~ {~o*, ~o(u,,), t = l ,  2, ...}. 
Indeed, suppose it were false. 

so tha t  
Then, there exists an ¢ E {9", 9(%),  L = 1, 2, ...} 

hi 

0 1} 

hi 

hl/2 1} 1} 1} 

dt 
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hl 

hll2 

= (n~ + n + 1V ~'. ~ .  

dt 

A contradiction to the estimate (24), ~nd the  estimate (25) is proved. 
Next,  by using the estimate (25), we obtain readily tha t  

(26) h" l, (2) ~ (n 2 _~_ n -~- 1) l/;t''l/A/]1"4 ~2~l]A ( n2 Jr ~b -~- 1) I1~*(',-,~,~ \hJ 

: (n  ~: + n + 1) ()~÷2-1)/1~. M 4. (~-~-~ 1/~ a--- G 1 < c)o 
\hJ 

and 

(27) I1~(%)(',' (~) 

for all t. 
I~ow, let us consider the systems (21) and (22) on ~x[h '~,  h'~+hl]. Note tha t  

the system (21) on ~ X  [h'z, h'~ ~-h~] is only a non-homogeneous first boundary  value 
problem without  t ime delayed argument ,  while the systems (22) on ~ x [h'l, h'~ ~- hl] 
are a sequence of non-homogeneous first boundary  value problems without  t ime 
delayed argument.  The forcing terms for the system (21) on ~x[h'~,  h'a~h~] and 
the systems (22) on ~x[h'~,  h'~-h~] are given, respectively, by 

u=l i=l u=l 

÷ ~:/~(.,.-h~)+/~(.,.) ±]~(.,.) 

and 

u = l  i = 1  

• - - h ~ ,  %(. , . -  h~))~ (%,)(.,.--h.)÷ 

+ :~ c~(., .-~, %(.,. -h~))~(%)(.,.--~)+ 

+ Z l , ( . , .  -h~,  ~ , ( . , . - ~ ) )  +io( . , . ,  ~, ,( . , .))--1, ,( . ,  ~ ~ .) .  

Note tha t  b~.~(.,. -- h~, uz,(.," -- h~)), (i---- 1, ..., n), c~(.," -- h~, ut,('," -- h~)),/~(.,. -- h~, 
us,( ' - ,"  h~)), and]0(.," u~,(.,. )) converge, respectively, to b*(.,. -h~),  ( i= 1,... ,n),c*(. , .-h~) 

6 - A n n a l i  d i  M a l e m a t i c a  
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co ? /*( . , - - -h~) ,  and /*(. ,-) in the  weak • topology of L (~2x (h ,  h~ q-h~)) as t -+  ~ .  
Further ,  as shown above,  ~,(u~,), ( i ~ 1 ,  ...~ n), and ~(u,,) converge uniformly on 
~ × [ 0 ,  h~] to ~ : ,  (i = l ,  ... , n), and ~* respectively. Thus, it follows easily tha t  
~,( . , .  ) converge to ]~(-,. ) in the weak . topology of L~(Y2 x (h~, h~ + hi)) as t -+ ~ .  

B y  hypotheses,  a , ( . , . ) ,  (i, j = 1, ..., n), are independent  of t. Further ,  b~.o ( . , . ,  
% ( . , . ) ) ,  ( i =  t ,  ..., n), and Co(.,., %(. , . ) )  converge, respectively, to b*o(.,.), ( i =  
= l , . . . , n ) ,  and g ( - , . )  in the weak • topology of L~(gx(h'~,h~q-h~))  as t-~c~. 
Further ,  we note that ,  corresponding to each integer t the  unique solution q(uz~) 
of the  system (22) is also the unique solution of the system (22) on ~ x  [h'~, h'~q-h~]. 
Similarly, the unique solution ~0" of the system (21) is also the unique solution of 
the system (21) on ~ × [ h ; ,  h~ff-h~]. 5Ioreover, ~(u~,) and ~* satisfy their corres- 
ponding versions of the estimates (3) and (4) with Q and ~) replaced, respectively, 
by  ~2 x (h;, h'~ -}- h~) and ~ x  [h'~, h'~ q- h~]. 

Thus, it follows from Theorem 3.1 that  

~(u,,) --+ ~* [ 

l ~v~,(uz,) --> ~ : , ,  ( i  = 1, . . . ,  n)  

I 

uniformly on ~ × [h~, h'~ -ff h~] 

W -~ weakly in 

~ ( ~  × (h~, h~ + l~), n + 2 < X < oo),  

B y  the same token, we consider the system (21) and the systems (22) in each 
g l I of the domains z9 × [hk+l, hk+ 1 q- hl], ( k = l ,  ..., ~), and ~ × [he+ 2 , T] successively, where 

h~+~, ( k = l ,  ..., ~q-1) ,  are chosen so that  

( h~ , ) ~ u h ' '"'2) ( k = l ,  ~oq-1), h~+la h ' ~ + ~ , h k q - h ~  and IJ¢( J ( ' ,  k+~ttl~.~, ." ,  

are bounded uniformly with respect to t, while II~*(', ~' ~ll(2) ( k = l ,  ~o~1), ' ~ k +  1 !/I ) ~ , ~ ,  """ ' 

~re also bounded.  Their bounds can be obtained b y  using the ar~wament similar 
to tha t  for the  est imate (27). Note  tha t  the  integer ~o is chosen so that  h~+ 2-~ h~> T, 
Since 2" is finite, it is obvious tha t  ~ is also finite. Thus, it follows from the same 
argument  that ,  for each k E {1, ..., ~}, 

qg(uz,) -+ q~* 

~j(uz~) z~ * 

a S  t---> c ~ .  

(i = 1, ..., n) 

(i, j = 1, ..., ~ )  

uniformly on ~ × ' ' [~k+t, h~+l q- hl] ,  

W -- weakly in 

L~(Q x (h'~+ 1, h'~+l + hl)), 

( n +  2 < ,l < ~ ) .  
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Finally, we again use the  same approach to consider the  system (21) and the 
! 

sys tem (22) in t )x[hq+e,  T]. Thus, b y  the same argument,  we show that  

~,,(%) --> ~ : ,  (i = 1, ..., n) 
I uniformly on ~x[ho+2 ,  T] 

(i, j = 1, ..., n) W -~ weakly in 

~(~9x (h'~+~, T)), (,~+ ~ < .~<oz). 

a S  t - + o z .  

Let  ~---9:,(uz~) or ~(u~) ,  ( i = 1 ,  ..., n) and ~ * ~ *  or ~*, ( i = 1 ,  ..., n). Then 

0 + 1  

l~,(x, t ) -  ¢*(x, t) l =  t(¢,(x, t ) -  ¢*(x, t)) z~0,h;)(t)+ ~ @,(x, t ) -  ~*(x, t)) z~,,;,~;÷,)(t)+ 

~- (e,(x, t ) -  ~*(x, t)) xr~;,,,r)(t)l ~< I(¢,(~, t) - ~*(~, t)) z[o,,,;)(t)l 
~ + 1  

-~ ~ j(¢,(x, t ) -  £*(x, t))Z:~,~,~:+,)(t)t ÷ t(~,(x, t ) -  ~*(x, t))Z[hS+.r)(t)l , 

where y.~(. ) is the  characteristic function of the measurable set E. Thus, it is clear tha t  

]$,(x, t) -- ~*(x, t) l< _max t~,(x, t) -- ~*(x, t)[ --~ ~ max [~,(x, t) -- ~*(x, t) l 

÷ _ m a x  j~,(x, t) -- ~*(x, t)] ~ 0 
D x [h~+~,T] 

a S  t - > o<>. 

This shows tha t  ~(u~,) and q~,(u~), (i = 1, ..., n), converge, respectively, to q~* 
and %*, ( i = 1 ,  ..., n), uniformly on ~). 

On the other hand, since F~ (u~ ) ,  ~*~, (i, j = - l ,  ..., n), q~t(u~) and  ~* are ete- 
merits of JSx(Q), ( n ~ - 2 < 2 <  oo), it follows that  if 2' is such that  1 / 2 ~ - 1 / 2 ' = 1 ,  
then, for any g~LZ(Q), 

[~,~j(u~)(x, t ) -  q~* ~(x, t)]g(x, t) 

and 

[%(u~,)(x, t ) -  F*(x, t)]g(x, t) 

are defined and belong to LI(Q). Thus, 

f f ~ [q~,.~(uz,)(x, t) -- ~x*,~j(x, t)]g(x, t)dxdt 
i , ~=1  

Q 

h', 

f f [q~,~,~j(%)@, t) * X -= -- q~,~( , t)]g(x, t )dxdt  
i , j  = l 

0 
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aS t - - ~ c ~  a n d  

ItS+ 1 

o÷' ff + ~ [q~.,.,(u~,)(x, t) - ~,~(x, t ) ] g ( x ,  t ) ~ a t  
~ = 1  i ,~ :=- 1 

T 

~ l f f  ~..,(,t)]-g(,,,t) @,.= [~.,~,(u~,)(x, t) - * x 

h~÷~ 

dx dt --> 0 

h l 

f f[~f , (%)(x,  t) * x - % ( ,  t)]g(~, t)~,~t = f  f[~,(%)(x, t ) -  ~(x, t)]g(x, t)a~ at + 
Q 0 

~+1 h.~+~ T 

+ z j 
~=I hi, ~9 h~+~ s~ 

aS l, --> oo. 

These two conclusions imply tha t  q),,~(u,,), (i,j--= 1, ..., n),  an4 ~,(u,,) converge, 
respectively, to * % ~ ,  (i, j =- 1 , . . . ,  n),  and ~0" in the  weak topology of La(Q) as t ---> c~, 
where n @ 2 < 2 < ~ .  This completes the  proof. 

4. - Existence of optimal controls of the problem P. 

In  this section, we shall apply the  results presented in sections 2 and 3 to prove  
the  existence of an optimal control  for the  problem P. However ,  i t  m a y  be no ted  
t ha t  the  results to be presented in Theorems 4.1 and 4.2 below only cover the  case 
in which the first and zero order coefficients and the forcing t e rm of the system of 
the problem P are linear in control  variables. 

THEORE~ 4.1. - Consider the problem P and suppose the  assumption (A) is sat- 
isfied. I f  b~.~, e, ,J~,  ( i = 1 ,  ..., n;  n =  0 ,1 ,  . . . ,~), are linear in u, then the prob- 
lem P has a solution. 

P ~ o o F . -  Le t  {uz} c D be a minimizing sequence for J .  Since U is compact  
and convex, there  exists a subsequence {u~,} c {u~} so tha t  u~, tends to a limit u* 
in the weak . topology of LC~(Q), where u*(x, t ) e  U almost everywhere  on Q. 

B y  hypotheses,  the  first and zero order coefficients and the forcing t e rm are 
linear in u. Thus, b~,~(.,. - -  hs, u~,(.,.  - -  ]~)), e~(. , .  - -  h~, u~,(.,. - -  h,)) ,  and ]~(-,- --  h~, 
u~,(.~. - -h , ) ) ,  ( i =  l ,  ..., n;  g-= O, 1, ..., r), converge, respectively, to b~,~(.,. - - h , ,  
u * ( . , . -  h~)), c~(.,. --h~, u * ( . , . -  h~)), f~ ( . , - - -h~ ,  u * ( . , . -  h~.)), ( i = 1 ,  ..., n;  ~ =  0,1, 
..., ~) in the w e a k .  topology of Z~(Q). Fur ther ,  the  second order coefficients of the  
systems (1) are independent  of t. Therefore,  it  follows f rom Theorem 3.2 t h a t  q)(e~,) 
and q)~,(uz,), ( i ~ 1 ,  ..., n),  converge, respectively, to ~0" and ~0", ( i ~ 1 ,  ..., n),  uni- 
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formly on ~), where ~* is the unique solution of the system (41) with its first and 
zero order coefficients and forcing te rm replaced, respectively, by  bi.~(.," --  h, ,  
u*( . , .  -- h~)), c~(' , .  -- h~, u*( ' , .  --  h~)), and ]~(., .  --  h~, u*( . , -  --  h~)), ( i =  1, ..., n;  

---- 0, 1, ..., v). By  the definition of the cost integrand given in section 2 and the 
facts just  established above~ we deduce tha t  

ff{. o )1 J(u~,) = F~(x, t, ul~(x, t - -  h~)~ ~f(u~)(x, t - -  h~), cf~(u~,)(x, t --  h~) dxd t  --> 
Q 

Q 

a S  ~ - ~  o~ .  

Since {u~} is a minimizing sequence, we conclude t h a t u *  is an optimal con t ro l  
This completes the proof. 

T I ~ o ~ E ~  4.2. - Consider the problem P' ,  which consists of the system (1) and 
the cost funct ion J given by  

J (u )  = I~ --  cyl~dxdt  + _ (cf~-- ~ ) ~ l  dxd t  + (N(x ,  t )u(x ,  t), u(x, t)) d x d t ,  
Q Q O 

where ~ is a fixed (desired) element f rom W~'°(Q) and N is a (r ×r)  mat r ix  valued 
funct ion with N * = N  and there  exists an ~ > 0  so tha t  (N(x , t )~ ,  ~)>~I~P uni- 
formly on Q for all ~ e R ~. Suppose ~11 the other assumptions of Theorem 4.1 
regarding the system (1) hold. Then there exists an optimul control  u tha t  imposes 

min imum to the cost funct ion ] .  

P~ooF.  - Since D is a w*-compact subset of L~, it suffices to show tha t  ] is 
w*-lower semicontinuous. Le t  u~--~ u. Then we know from Theorem 3.2 tha t  ~(u~) 
and q~,(u~), (i = 1, 2, ..., n), converge uniformly on ~) to F(u) and ~ , (u) ,  (i ~ 1, 
2, ..., n), respectively and tha t  they  belong to L~'(Q). Le t  J~ denote the first two 
components  of o ~. Since ~(u~) and ~,(u~), ( i - ~ 1 ,  ..., n),  converge uniformly on ~), 
it follows from the Fa tou  Lemma  tha t  

and 

Thus 

f f lira lim ~" 1" T 

o Q 

ff ( 
Q O 

Jim ~ 

Jl (u)  ~< -7-  Jl(u~) • 

dx dt 
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F u r t h e r  since ]~(u) ~ f ( N u ,  u) dx dt is quadra t i c  and  N is pos i t ive  semidefinite,  i t  is 
clear t h a t  Q 

Therefore  we conclude t h a t  

lira 

l im 

Y(u) < T Y(u,) 

comple t ing  the  proof.  

RE~Aa~Z. - I n  T he o re m  4.2, if a is s t r ic t ly  posit iv% then  the  op t ima l  control  

is also un ique  since ~o is s t r ic t ly  convex.  

REFERENCES 

[1] O. A. LADYZHENSKAYA - V. A. SOLONNIKOV - N. N. URAL'C]~VA, Linear and Quasilinear 
Equations o] Parabolic Type, Translations of Mathematical Monographs, American Mono- 
graphs, American Mathematical Society, Providence, 1968. 

[2] J. L. LIO~TS, Optimal Control o] Systems Governed by .Partial Di]]erential Equations, 
Springer-Verlag, Berlin, Heidelberg, New York, 1971. 

[3] D. G. ARONSON, Nonnegative solutions o] linear parabolic equations, Ann. Scuola Norm. 
Sup. Pisa, 22 (1968), pp. 607-694. 

[4] P. K. C. WO~G, Optimal control o] parabolic systems with boundary conditions involving 
time delays, SIAM Journal on Control, 13 (1975), pp. 274-293. 

[5] K. L. TEo, Second order linear partial di]]erential equations o] parabolic type with delayed 
arguments, Nan~a Mathematiea, l 0  (1978), pp. 119-130. 


