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Summary. - Generalizations of principle awes are found for surfaces in E4. The singularities
generalize wmbilics. The generic indicies are compuied For these compuiations the Thom
Transversality Theorem as applizd by Feldman to geometry is used. Hower we «reduce
the group » vendering the caleulations more iractible. Also we show that a forus or
sphere cannot be immersed in E* with everywhere mnonzero curvature of the normal
bundle,

Introduction.

The principal aim of this paper is to study the local geometry of sab-
manifolds of higher dimension and codimension. We study the second order
invariants and develop a theory of the second fundamental form. Our local
constructions lead to global theorems on the existence of singularities, and
these are the main results of this paper. The simplest case, surfaces in E*,
admits a very complete freatment so we deal with it separately.

It was observed a long time ago that the second fundamental form is
a vector-valued quadratic form, Even for a surface in E* such an object is
algebraically rather complicated. However, WiLsoN and Moorg [17] have
shown that for a surface in E* the second fundamental form can be class-
fied by a configuration consisting of a point and an ellipse lying in the
normal space, They show that this configuration determines the second order
scalar invariants and leads to a theory of principal axes. These axes gene-
ralize the usual principal axes of surfaces in ordinary space. From this
theory one obtains global theorems. For example, if the surface has nonzero
EULER characteristic then there must be a point where the mean curvature
vector vanishes or an inflection point.

In higher dimensions there is also a classifying configuration, although
it has apparently escaped attention. It consists of a point and a VERONESE
manifold, or the projection of one.

The second order invariants are completely determined by this configu-
ration, though we have not worked them out explicitly. By studying the
VERONESE manifold, and here the classical algebraic geometry proved an
inspiration, we again obtain a theory of principal axes, This is the content

(*) Entrata in Redazione il 19 novembre 1968,
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of Chapter I1I. Constructions are prescribed which «in general» give principal
axes. Points where this construction fails are then regarded as singularities
of the field of axes. This leads to global theorems which state that if a
manifold does not admit a field of axes then it must have a singularity of
a given type. These theorems are found in Chapter IV. It is interesting to
note that several of the constructions made are independent of the codimen-
sion, provided only that it is high enough. These singularities exhibit a
certain stability, i.e. they remain generic even if the Euclidean space in which
the submanifold lies is imbedded in one of higher dimension.

We have also computed the generic dimension of the locus of the several
types of singularities. These computations are based on the work of E. FELDMAN
[6, 7]; however, in order to render the calculations fractible we were forced
to develop a more refined version of his theory. This matter occupies Chapter IL.
We were thus able to avoid the complications of the jet bundle and work
directly with our configuration.

The author wishes to thank W. PorL, under whose direction this paper
was written, for his interest and encouragement.

Coaprrer L
Surfaces in I*,

1. - Notation.

Consider an immersion X : M — E* of a compact, oriented, 2-dimensional
manifold M in E* We assume, unless it is stated explicitly to the contrary,
that all maps and manifolds are C%® Xeeseses will denote an orthonormal
frame at p, chosen so that e; and e, ave tangent vectors to M at p with the
frame ee;, agreeing with the orientation of the tangent space, and chosen so
that es; and e, are normal to the surface at p with the frame eie.eses agreeing
with a fixed chosen orientation of K% We shall use the following seven bun-
dles: TM, the tangent bundle of M; NM, the normal bundle of M; UTM =
= | Xe, } = the unit tangent bundle of M; UNM = { Xe;} = the unif normal
bundle of M; F.={Xee;} = the bundle of tangent frames; F, = { Xese, | =
the bundle of normal frames; and F = { Xeiesese, | == the bundle of all frames.
UTM and F, can be identified as can UNM and F,. These identifications
will often be made. Note that F, and F. are circle bundles and that F is
a bundle with the torus as fibre.

As usual, define the forms w, = dX.e; and ;= de;+¢;. The indicies
ran from 1 to 4. These forms are defined on the frame bundle, F. Since
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e+ 6; = &;; we see by differentiation that w; = — w;. Also because dX.e;=
=dX-e.=0 we have w; = w, = 0. By use of the PoINcARE formula dd = 0,
one obfains the equations of structure of MaAURER-CARTAIN:

d(.!)g s 2 (1)5]' /\ (l)j,
7
w = I oa A wy,
kb
where d is the exterior derivative. Since w; = w; = 0 we have

0=duws = w1 A 0 + 03 A\ v,
Ozdw,_L:(DM /\ (1)1’[‘-(1)4,2 /\ 0.

w; and o, are independent forms; in fact, w; \ w, is defined on M and is
the area element. Thus it follows by a lemma of CARTAN that

W13 = aw; -+ bw,,

gy == b(!)l "]L Cwsy,
(1

Wi == cw - fio,,

Wyy == f(l)l + gwsa.
The vector-valued quadratic form

(d2X - ex)es + (X - esle,

is the second fundamental form of the surface. By use of the above, the
second fandamental form may be written

(awﬁ + 26(01())2 "}*‘ szz}eg + (9(1)12 —1!— 2f(1)1(t)2 + gﬁ}gzj&;.
To see this, note that

de * @3 T e dX . d83 g ((1)161 + (.0262) . des -
= 01031 - @0z == 412 - b1, + cw,?.

Similarly for d2X . e,.
Let us note that wi; and ws, are the connection forms in the bundles F,

and F, respectively and that dw,; and dws, are the curvature forms in those
respective bundles.
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The GAUss curvature is an infrinsic invariant of any Riemannian surface,
depending only on the mefric and not on the imbedding. The forms w;, w,
and oz, which may be regarded as forms on F., depend only on the metric
w? 4+ w,? and the GAuss curvature may be found by using the formula

dwp == — Kuw; A w;.

The curvature form of F,, dws, is a well-defined 2-form on the base
and as such is a multiple of the area element. The ratio is therefore a scalar
invariant. We define the invariant N by the formula

d(!)34 I e Nun /\ s .

The similarity of K and N are to be noted.

2. ~ Local Invariants.

The local invariants of surfaces in E* have been rather thoroughly
studied [B, 9, 17, 18, 19]. It was found, [17], that the invariants are the in-
variants of a simple configuration; namely, a point and an ellipse in the
normal plane. To describe the configuration it is helpful to think of the
second fundamental form as giving a map, at each point p, from the tangent
circle to the normal space. We call the map v and refer to it as the normal
curvature vector.

n: S'— B2,

where S! is the tangent circle at p and E? is the normal space at p. 7 is
defined as follows. To cach point, e, of the unit tangent sphere at p let y(s)
be a curve, parameterized by arc length, through the point p and chosen so
that the tangent vector to vy at p is e. Then v is defined by letting 7(e) be
the projection of d’y|ds’p) on the normal space at p. This definition is
independent of the choice of v because we may write (as in the case of a
surface in E?)

n(e) = (@ cos? B 4 20 cos B 8in 0 4 ¢ sin? O)es 4-
+ (e cos? O - 2f cos 0 sin 6 - g sin® B)e,,

where e = cos fe, 4 sin fe,. (e1¢: is a fixed tangent frame).
Recall that the mean curvature vector, which we shall call #, is just

1
5 (@ dles -+ 5 (e + glew.
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It is an invariant vector. Using the trigonometric identities for double
angles we may write

7(0) = (% (@ — ¢) cos 26 - b sin 26) es
—{—(Tl)(e — g} cos 28 4 fsin 29)34 + XK.
As a matrix this takes the form

%(a — b) b cos 20
(n — H)(6) = )
5 e—g) f| |sin 26

Consequently, since the image of a circle under an affine transformation is
an ellipse we see that the normal curvature veclor moves on an ellipse in

the normal plane about the mean curvature vector. {cf. Figure 1), This ellipse
is called the curvature ellipse.

Pigure 1

The second fundamental form is defined on the frame bundle F, because
the functions @, b, ¢, ¢, f, g depend on the choice of tangent and normal
frame. However, using the curvature ellipse, we may easily determine the
scalar invariants. Since rotations in the tangent space map the unit tangent
circle onto itself, the curvature ellipse as a point set in the normal plane
is independent of rotations in the tangent space. Furthermore, any invariant
quantity of the curvature ellipse, invariant under rotations of the normal
plane about the origin, is invariant under rotations in the tangent and normal
space and is therefore a scalar invariant.

For example, the vector from the origin to the center of the ellipse is,
and invariant vector and is, as we have seen, the mean curvature vector.
Its length ¥? is thus a scalar invariant.

Annali di Matematica 34
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The area of the ellipse is a scalar invariant, To find it we use the fact
that under an affine transformation the area is multiplied by the determinant
of the transformation. Therefore, the area of the ellipse is

@—of — (e — g | = =

5 n| NY|.

€

L
2

DND] bt

It we let ¢ be the argument of %(0) — ¥ then we may check that dp/db has

the same sign as IV so that we may regard 5 nlN as the oriented area of the

ellipse, where the orientation is determined by the direction in which 7
traverses the ellipse.

Consider for a moment the general situation of an ellipse given as the
affine image of a circle, say

A Bl [cos 6
C Dj |sin &

If vectors are mapped into the semimajor and semiminor axes of the ellipse
then they must necessarily have been at right angles. To see this suppose
Y(6:) is along the major axis and Y0, is along the minor axis. Then
Y(8) = = dY /db o—p, = Y(01==90°) so that 8, = 8, == 90°.

Now in our case let us choose eie; so that n— ¥ at 6 =0 is the semi-
major axis vector 9, and 6 = 45° is the semiminor axis vector B.

1 1
%:é(amc)eg +§{e——g)e4;
B =b€3+f64.

It the ellipse is a circle choose any frame e, and choose 9 so that
9 = 7(0) — ¥. Using the above formulas it is a simple matter to check that
H? — K = %2 4 B> Since the area of an ellipseis n|%| |B| we have

(N|=2]%] D]
H— K =% 4 B~

These two equations show that | N| and H* — K serve completely to determine

the shape of the ellipse.

We expect yet another invariant; namely, a quantity which, expresses
how the ellipse is oriented with respect to the line through J¥. A further
invariant is
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o 2b ¢ 0
e 2f g 0
A=l :
40 & 2 0
0 e 2f 0

Before we show that A is an invariant it will be helpful to develop two
invariant quadratic forms. Write e = we; J- ye; and consider

de-es \ de-e,.

Now de = xde, -+ dxe, -+ yde; -+ dyes so that de « es = wwy3 -+ yws and de«es =
= wy4 -+ Yz, Thus, using equations (1), we may write

de - (23 /\ de . ey — S(w, y)ﬁh /\ (67}
where &(x, y) is a quadratic form in » and y, namely

S(w, y) = (af — bej” + (ag — cejey + (bg — cf )y

Nofice that a rotation in the fibre of F, will change de-e; A de.es only by
the determinant of the transformation, but that is 1. Hence the coetficients
of Slx, y) are defined on F.. A rotation in F. will leave w; A w, unchanged
but it will change (%, y) to («', &) by the adjoint of the rotation which sends
e1e; to eies. (Here e = xe; 4 ye. = w'e) 4= yed.) Thus S(x, y) is an invariantly
defined quadratic form. Its trace and determinant are scalar functions defined
on the manifold.

In a similar fashion consider a normal vector v. We write v = xe; 4+ ye.
and consider dv.e; A dvee;. As before we may define a quadratic form
Flx, 9) by

dv-.er A\ dv-es = F(x, y)o, A\ w2,
An easy computation shows that
F@, y) = (ac — BJa* + (ag + ce — 2bfley + (eg — [}y
In a fashion similar to our consideration of §(x, y), we may show that the
coefficients of Fiw, y) are functions defined on F, and that the determinant

and trace of Fwx, y) are scalar functions on the manifold.
One may with a simple computation show that

A =det§ = det 7,
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This then shows that A is an invariant. One also notices that N = trace &
and K = trace &.

Let us now try to describe A in terms of the configuration. In the
course of this disecussion it will become clear that A is independent of X?
K, N. A is the resultant of the two polynomials ax?® - 2bxy - ¢2* and
ex? + 2fxy + gy?, (¢, y) homogeneous coordinates of a point. Thus we see that
if the ellipse passes through the origin so that %(8) = O for some 6 then the
two polynomials have a common root, namely (cos 8, sin 6), so that A =0. In
fact, in this case the common root is real. Since roots of a quadratic are
either both real or both imaginary, they have a common real root only if
all four roots are real. The condition for this is that &* — ac =0, f? — eg = 0.
Hence K< 0 in order for the ellipse to pass through the origin. The above
reasoning may be reversed to show this is sufficient.

Next we ask what the condition A =0 and K >0 may mean. A=0
means the quadratic equations have a common roof and K >0 means at
least one root is imaginary. Since imaginary roots occur in conjugate pairs,
one equation must be a multiple of the other and hence the ellipse is a
radial line segment; i.e. the point is an inflection point. Since also at an
inflection point A =0 we see that

A =0 at a point if and only if the point is an inflection point or a
point where 7(8) =0 for some 6.

One may also check that if the point is not an inflection point then the
origin is inside, on, or outside the ellipse as A is respectively positive, zero,
or negative.

Suppose that A > 0 so that the origin lies outside the ellipse. Then we
may draw the tangent lines from the origin fo the ellipse. The tangent
directions 61, 6, such that %(8:) and 7(8) are tangent to the ellipse are called
the conjugate directions. The conjugate directions satisfy &(cos6, sin0) =0
and they are the only solutions mod 180°. Furthermore,

A
tan2(91 —_ 92) = E“Z .
If we let O be the angle at the origin subtended by the ellipse then we may
show that

. A
tanﬂzl?z.

The above formulas may be found in Wone [19].
Let us next consider the quadratic forms § and # We ask whether ¥,
§ and & are enough to determine the second fundamental form. That is, do
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the coefficients of ¥, & and & determine @, b, ¢, e, f, g? Without some
additional assumptions this is false. To see this, consider the case when
o=f=—c==cosf and b= —e=g=sinb Then ¥ =0, S, y) =a?+ y*
and F(x, y) = — a® — ¢* so that H, & and & are independent of 6. Also con-
sider the case when the surface really lies in some 3-space. Take e, normal

to that 3-space so that e = f= g = 0. In this case we have ¥ = % (& + cles,

Sx, y) =0, Flx, y) = (ac — b*)x* so that ¥, & and F determine only the mean
and GAUSS curvatures which in general do not determine a, b and c.

Notice that we have shown that if M lies in a 3-space then 8§ =0 for
a specific normal frame, but since the coefficients of § are defined on
F.,8 =0 in any frame. The question of whether the converse is true will be
taken up later.

THEOREM 1.1. - 4 o point where § 0 and H 4= 0 the second funda-
mental form is determined by H, & and &.
Proor. - Take e; in the direction of ¥. Then ¥ = % (@ +cles and e+ g=0.

Using the fact that e = — g, we may write ¢, f and ¢ in terms of the coeffi-
cients of § and ¥, namely

—{ag — ce) __ag—ce f_af—be-{bg——cf)
atc 9= ate¢’ - a4c )

e =

It e==f=0 then also g = — ¢ =0 and hence 8§ =0. Thus we may suppose
e+ f? 4= 0. Now

ag + ce — 2bf = — (@ — c)e — 2bf
af — be + bg 4 cof = (a — ¢)f — 2be

is a system of equations with unknowns @ —c¢ and b. The ecoefficients are
determined by ¥, & and & We may solve it for @ —c¢ and b, since the
determinant, e® + f?, is not zero. Thus @ — ¢ and b are determined and they,
together with a 4 ¢, give a, b and ¢. We have chosen special normal frames.
In another choice of frames we could rofate to find the coefficients of Jf, §
and & in the frames where e; is along J{. Then after finding a, b, ¢, ¢, f, g
in these frames, we could rotate back to find a, b, ¢, ¢, f, g in the original
frames.

We have seen that if the surface lies in a 3-space then § = 0 at every

point. The following theorem gives equivalent local conditions for the vani-
shing of & and & at a point.

TrEOREM 1.2. ~ Let pe M. The following four conditions are equivalent.

a) 8=0 at p;
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.

b

bl rank 1 at h @b oo
ank a <1 at p, where o = |, r g

c) p is an inflection point;
d) A=0and N =0 at p.

Also, the following five conditions are equivalent and imply the first set of
conditions.

a) F=0 at p;

.

b

c
b) rank B<<1 at p where § = ik
q

o o

f

¢} the tangential map, ¢: M —> G ., foails to be an immersion al p,
where G, is the Grassmanian of 2-planes through the origin in E* and o
maps o point of M fo its tangent plane translated to the origin;

d) 8=0 and K=0 at p;
ef A=0and K=0 ol p.

For the proof of the first part of Theorem 1.2 recall that an inflection
point is a point at which the second-order osculating space drops at least
one dimension. The second-order osculating space is generated by the vectors
X"s) and X'(s) where X(s) is a curve through X(p) and where the prime
indicates differentiation with respect to arc lenmgth. We have earlier seen
that the normal components of X’(s) are a cos?6 -+ 2b cos 6 sin 6 4 ¢ sin® 6 and
e cos?f - 2fcos 0sinf 4 gsin?6 where 0 is the argument of the tangent
vector X' with respect to some reference direction in the tangent plane. But
if rank « << 1 the direction of the normal component of X" is independent
of 8 and hence the second order osculating space has dimension at most
three. On the other hand, if the point is an inflection point then the vector
7(6) must move on a line through the origin so that its argument must be
constant, i.e. there exists a constant ) such that

@ c0s? 0 4 2b cos 0 sin 6 4 ¢ sin? 6 = A(e cos® 6 - 2f cos O sin B -}~ g sin® b)

which is impossible unless rank «<C1 because cos’6, cosfsin, sin? 0 are
independent functions. The remainder of the first part of Theorem 1.2 is
easily seen.

For the proof of the second part of Theorem 1.2 consider the following
diagram.
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F(M) ——— > 0/4)
FT{IM} — s V£,4
L

M — 5@,

0(4) is the orthogonal group and V,, is the STIRFEL manifold of 2-frames
in E* A choice of frame ee, in the tangent plane and ese,; normal to the
plane gives a cross-section o: G ,—> 0{4). Let o' be the induced cross-section,
o: M~ F(M). G54 is 04)/H where H is the isotropy group defined by
W13 == W3 = 0 = 0y, = 0. Therefore w3, i, ®u, ©, when pulled down via
g, become independent forms on @, .. The forms wy, ws, w1, ©y, which
are defined on 0O(4), may be pulled back to F(M) and via o to M. Since the
diagram commutes, they will be the same as the forms carried from G,, fo
M via ¢*. But equations (1) express wis, ®;3, W, ws as linear combinations
of w; and w, and hence the rank of ¢* is equal to the rank of the matrix §.
But the rank of ¢ is equal to the rank of ¢* because a matrix and its
transpose have the same rank. Consequently, ¢ fails to be an immersion if
and only if rank 3 < 1. The remainder the second part of Theorem 1.2 is
not difficult.

KoMMERELL [9] also discusses the local invariants of a surface in E*.
He shows that the polar conjugate of the ellipse wilh respect to the unit circle
in the normal plane is the locus of comnsecutive normal planes. The polar
conjugate of an ellipse 4 with respect to an ellipse B is the locus of the
poles of the tangent lines of 4 with respect to B. In the case B is a circle
this is the inverse in the circle of the pedal curve to A. It is a well-known
fact of projective geometry that the polar conjugate is a conie. In our case
this conic is known as the conic of KoMMERELL. Noteworthy is the fact that
the polar conjugate is a circle if and only if the center of the circle B is
a focus of the ellipse 4. Thus the conic of KoMMERELL is a cirle if and
only if the origin is a focus of the ellipse. Such a point is called a focal
point. We might also mention that the conic of KOMMERELL is an ellipse,
parabola or hyperbola, as the origin is respectively inside, on or outside
the ellipse.

3. - Local theory of surfaces in E*.

So far we have been concerned with the local invariants of surfaces in
E*. One might call this the theory «at a point». In this section we shall be
concerned with local theorems, or theorems true in a neighborhood of a point.

TaroREM 1.3.

a) =0 af every point of M if and only if the surface is locally
either developable or lies in a 3-space.
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b} & =0 al every point of M if and only if the surface is developable,

(LAN® [10] has shown that every point is an inflection point if and only
if the surface is developable or lies in a 3-space).

For the proof of Theorem 1.3 suppose & =0 at every point. Since each
point is an inflection point, we may choose e; so that the span of eewe; is
equal to or contains the second order osculating space. In these frames it
is easy to see that e = f= g = 0. Now choose a fixed tangent frame ee; so
that b = 0. The equations {1} then become

W13 = AW,
W23 = CWg,

Wy = gy == 0.

First assume that neither a nor ¢ is zero. Then using the structure
equations and the fact that dw;,, =0, and dww. =0, we see that ws = pw
and ws, = cw, for some p and ¢. But w; and w, are independent so wa = (.
Hence de, = 0 so that es is constant, and therefore the surface lies in a
3-space perpendicular to e,.

Consider now the case that one of a or ¢ is zero and the other is nof,
for definiteness ¢ = 0 and a == 0. In this case K = 0 and so by Theorem 1.2
F = 0. Now wy;; = 0 and using the structure equations together with dwys = 0,
we have w;; = tw; for some 7. On the integral curves of @ =0 we have
de; = 0 and de; = 0, that is, both e; and e, are constant. Since e; is tangent
to the curve and constant, the curve is a straight line; also, since e; and e,
are tangent vectors to the surface and constant along the line, the tangent
plane is constant along the line, so the surface is developable. Conversely, if
the surface is developable then tangential map ¢: M — G4 fails to be an
immersion at every point so that ¥ = 0 everywhere, Also, if the surface lies
in a 3-space then certainly every point is an inflection point so that & =0.

If @ =¢=0 it is not difficult to check that the surface is a plane.
Consider, for example, dle; A ¢s). This completes the proof the theorem.

We investigate, next, conditions which imply that two surfaces in E* are
congruent. Let us first review conditions for them to be isometric. By defi-
nition two surfaces M and M’ are isometric if there exists a map ¢: M~» M’
such that ¢¥(wi)? + (042) = (01)? 4 (®2}2. Here the prime indicates a quantity
defined for the manifold M'. M and M’ are isometric if and only if there
is a map . F.M—-> F. M’ such that ¢ (o)) = w1, ¢ (w)= w2, @ (wrz) = Wya»
¢, must then be a bundle map covering the isometry. This discussion does
not in fact depend on an immersion. However now assume that both M and
M’ are immersed. We discuss first the case when they are immersed in E°.
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X: M >E?
X M - E?.

Let us now assume that M and M’ are isometric. We say that ¢ perserves
the second fundamental form if

¥ (d2X . e3) = d2X - e5.

This is equivalent to
CP: {Uﬁs) = i3,

£43 (wés) = Ws3.

Hence if ¢ is an isomefry which perserves the second fundamental form then
of(wi) = w; and @}(wj) = w;. From this we conclude that ¢ is a congruence.
In the case where M and M’ are immersed in E*,

X: M- E*
X' M — E4,

in order to define preservation of the second fundamental form we must be
able to extend ¢ to a map between the frame bundles,

9p: (M)~ F(M').

In 3-space, of course, this problem did not arise. Once we have a bundle
map we may define preservation of the second fundamental form as for
surfaces in E®; namely, of (d®°X'.e5)=d*X +e;s and oF (d*X'. es) = d?°X « e,.
This is equivalent to requiring o {(0is) = w13, QF (0] = e, @F(0) = w4,
¢#(w) = @, As opposed to the situation in KE?, even though we have a
bundle map which preserves both first and second fundamental forms, we do
not know that @f(wi) = wss, i.e. that the conmection in the normal bundle
is preserved and hence we can not be sure of congruence. However we do
have the following.

LeMMa 1.4 - If 9r: FM — FM' is a bundle map covering ¢ which pre-
serves both first and second fundamental forms and if F never vanishes then
@ preserves the connection in the normal bundle and is consequently a congruence.

Proor. ~ We need only show that ¢f (03) = ws:. Now dws = @12 A @93 +
+ 0u A wis and also doi; = ¢f (dwls) = w2 A w2 + 013 A ¢#(wi). Subtracting,
we have wis A (03 — 9#(wjs)) = 0, so that wi — ¢F (i) depends on w,. In a
similar fashion, beginning with dw,s, dwi,, dw, we conclude that wy — @F (whs)
depends on @3, s, wi, wy. If any two of these are independent we see
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that w, = ¢f(ws). If they are all dependent then the 8 of Theorem 1.2 falls
in rank, i.e, F=0,

TarorREM 1.5. - If 9v: M — M' is an orienfation preserving isomelry of M
and M' and if neither M nor M’ is locally minimal then o can be exiended to
a bundle wmap ¢r, over at least a dense submanifold of M.

a) If or preserves the second fundamental form and if M is not locally
developable then o is a congruence.

b) If or preserves both & and & and if M is neither locally developable
nor lies locally in a 3-space then ¢ is a congruence.

Proor. - Let A = {we M| H(x) <=0} and 4" = {ye M'|H'(y) == 0}. Because
M and M’ are not locally minimal, 4 and 4’ are dense sets of M and M’
respectively. They are also opeun. Because ¢ is an isomefry ¢—'(4’) is a dense
open set of M. Let C =4 N ¢=4'). Then C is a dense open set of M. We
extend ¢ to a bundle map over C by requiring that the unit vector along X
map into the unit vector along J'. That is, choose frames ese, where es = /¥ |
and ee.eses agrees with the orientation of E*. In a similar way, because
H' == 0 on ¢(C), we may choose frames eze; over ¢(C). Then define ¢r over C
by sending e; to e; and e, to e, and extending linearly.

Suppose that ¢, preserves the second fundamental form and that M is
not locally developable. Let B={owreM|F =0 at x]. Because M is not
locally developable and by Theorem 1.3 B must be dense in M. Also B is
open. Thus BN C is a dense open set of M on which the second funda-
mental form is preserved and on which & & 0. By Lemma 1.4 ¢ restricted
to BN C is a congruence. However, since B N O is dense, M and M’ must
be congruent.

Suppose that ¢r preserves both § and & and M is peither locally deve-
lopable nor lies locally in a 3-space. Define D= {x € M |80 at w}. Then
because § =0 and K =0 if and only if F==0 we see that §==0 on D.
Also, since M is neither locally developable nor locally is in a 3-space, by
Theorem 1.3 D must be dense in M. Obviously D is open. Thus DN C is a
dense open set on which =0, §=+0, 0 and § and & are preserved.
By Theorem 1.1 since § %0 and X ==0 on DN C the second fundamental
form must be preserved. Thus by Lemma 1.4, since & % 0, ¢ restricted to
D N C is a congruence. However since D N C is dense, M and M’ must be
congruent.

Let us touch on the theory of minimal surfaces in E*. A surface is a
minimal surface if } =0 everywhere. Interesting examples of minimal
surfaces are the graphs of analytic functions. Eisexmart [5], has proved.
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THEOREM 1.6 — 4 surface immersed in E* is locally congruent to the graph
of an analytic function if and only if at each point the ellipse is a circle with
the origin as cenfer.

There are a great many other results known concerning minimal surfaces
in E*. One should be referred especially to Wona [19].

4. - It is well known that the EULER characteristic of a plane bundle
over an oriented surface is equal to the sum of the indices of a cross-section.
One can define indices for a line element field and for a field of pairs of
orthogonal lines. In this section we shall show that in these cases also the
sum of the indices is the EULER characteristic.

Perhaps it would be well to review some of the definitions of the index
of a cross-section of a plane bundle. Suppose that =: B— M is an oriented
plane bundle over a compact oriented surface. Let 6: M~ B be the zero
cross-section and let c: M — B be a cross-section transversal to 6(3M). Then
o{M}) meets O(M} at isolated points, say pi,.., p,. These points where
o(p) = B(p) we call singular points of o. The intersection number of oM)
and 6(M) at p; is then the index of ¢ at p;.

We give another definition of the index of a cross-section ¢ which has
isolated singular points. Suppose p is an isolated singular point of . Let C
be a circle about p such that p is the only singular point inside or on C,
and suppose that C lies in a neighborhood over which the bundle is trivial.
Thus locally o: U — U X R* and via projection on the second factor we
have a map o: C— R? such that o(p) &=0 for pe C. By normalizing we have
a map C— §' given by

The degree of this map is the index of o at p.

We give yet a third definition of the index of a cross-section. This
time we assume only that the singular locus L can be written L = UL,,
L; disjoint, where each L; lies in a neighborhood U, over which a non-zero
cross—-gection exists and where L N, U = I,;.

Let Br be the associated frame bundle of B, and let © be the connection
form on Br. {01, for F; and ws, for F,). The cross-section o of B induces a
cross-section or of Br over M — L. or is defined as follows: For pe M — L,
o(p) is a nonzero vector. Therefore, we may choose a vector 7(p) normal to
o{p} so that the frame

s(p) p)
lotp)| | (p)]
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agrees with the orientation of B. The index of ¢ at L; is

‘—}—fcpw—-fdw

Here D; is oriented to agree with M and 9D, takes its orientation from D;.
In the case that I; is an isolated point we take Die) to be a disk of radius
¢ abouf the point. Then the index is given by

As an application of these ideas let us show that

m:~%fm
M

where dw is the curvature form of Br. (D) is the KEULER characteristic of
B, i.e. the EULER class of B evaluated on the fundamental class of M. To
show the above formula take a cross-section or of Br over M —{pi}. {p:}
is a finite set of points. Such a cross section always exists. Then we have

C;

(1

where C; = 2Di(g). But 3(M — U D) = U C;. Thus by Stoxus’ Theorem

Z‘fc}“w = — | dofw
A H—yn;
and hence
m | dofuw.
*B) 2M&f
M-\ D,

But dofw is the curvature form of B. It is a well defined 2-form on M
independent of o

We now wish to discuss the case of line element fields and fields of
pairs of lines. In order to discuss both these cases together let us define a
more general r-cross field.

An r-cross is a set of # unit vectors in the plane such that their tips
form a regular polygon. Define C(B), the associated bundle of r-crosses, as
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follows: C/(B)={(x, C)|x€eM and C. is an r-cross in the plane over
®-}. A cross field is then defined to be a cross-section of this bundle.

Note that a 1-cross field is a vector field, a 2-cross field is a line
element field and a field of pairs of lines is a 4-cross field.

Let O, be the family of all r-crosses in the plame. Note that C, is
homeomorphic to S'.

A singular point of a cross field is a point where the cross field is not
defined. We may define the index of a singular point of a cross field
analogously to that of a vector field. Choose a neighborhood U about p
containing no singular points other than p, and such that over U the bundle
is trivial. Let C be a circle about p contained in U. Then the cross field
gives a map

U—{p}>U~—{p)XGC,

and by projection on the second factor, a map C— C,. We define the index
to be 1/r times the degree of this map. The definition can be shown to be
independent of the neighborhood and cirele.

Suppose that the cross field has isolated singular points p;. Let D; be
a disk about p; and C; =2D;. Here D; is a neighborhood about p; which
contains only the one singular point. Assume the radius of D; is €.

We construct an r-fold covering of M — U D; as follows: O(M — U D)) =
= {(x, vi)]x€ M — U D, and v, is a leg of the cross at x}. Assume now
that B has a connection form . Define n: C(M — U D)—» M — U D; by
n(x, vir) = @. Then n'(x) = { (@, vid), .. (®, v.)} and #~Y(C}) is homeomorphic to
r or fewer disjoint circles. We may, via =, draw the bundle B back to a
bundle, =B, over C(M — U Dj}. Let v, be the connection on this bundle
induced from o on B. Let dw be the curvature form of B. dw is defined on
M. Let dw, be the induced form on n—'B; dw, is defined on C(M — U D).

The cross field on M — U D; lifts to a vector field on C(M — U D). We
call this vector field v. It is a consequence of the definition that the index
of the cross field at p; is equal to

1 ..
— lim | v¥*w,
¥ eso

()

where v*w, is the pull down of w. defined on =—'B via the vector field w.
We have

2 Ind (p) = 1 Iing va*wc
i £ i
‘ﬂ—l(ci)
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and because ICM — UDy)} = U n~ ()

fou*mc = f dv*o,.

i

) &—yDny)
Also
fdv*wc = | dw, =+ | dw.
{um-yp)  Um—yp)  H-yp,
Thus
2Ind(p) = lim | do = fdm.
i gy
Meyp, M
But

dw = y(B)
M
80 that we have shown

Proposrrron 1.7. - I Index (p) = x(B). Note that if y(B]=0 then B

has a nonzero vector field and therefore certainly a crossfield.

Let us mention a lemma which will prove useful in the evaluation of
the index in the case that B is the tangent bundle. Let D be a disk about
an isolated singular point po over which TM is trivial. Let eie: be a field of
orthonormal tangent frames in this neighborhood, and let v; be one leg of
the cross. Define arg cross field = £ (v1, el). Arg cross field is well defined
modulo 2n/r, although it depends on the frames ee:.

Levma 1.8, - Suppose that ¢: D —> R* and that w « arg v = arg cross field
modulo 2n/r. Then if Jacobian of ¢ is not zero at po the index of the cross
field at po is Z=n. Moreover, the sign depends on the sign of the determinant
of the Jacobian of v at po. Here n may be a rational nwmber.

5. - Transversality.

This section is largely a summary of some of the results of Chapter II
which in turn is based on the work of Frrpmax [6, 7]. Recall the notation
established in Section 1. X: M —» E* is an immersion of a compact oriented
2-dimensional manifold, e, e: are tangent vectors, and es, es are normal
veetors at each point. Also, the second fundamental form is a vector valued
quadratic form defined on the frame bundle F. It may be written

(@w? 4+ 2bw,0, 4 colje, -+ (ew] + 2fw v, + goile,
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where a, b, ¢, ¢, [, g are real valued functions defined on the frame bundle
F. At each point p of F the second fundamental form gives a pair of qua-
dratic forms (a{pja® + 2b(pley + c(ply®, e(p)x® + 2f(play + gip)y’). Let Z be
the set of all such pairs of quadratic forms. (We may identify Z and REf).
Then the second fundamental form gives a map p: F — Z by sending a point
p of F into the pair of quadratic form.

The group S* X &' acts on Z. We describe the action as follows. Let
{6, v)e St X 8§, and let (u(x, y), v(x, y)) € Z. Write

u cos psing (o ] [ cosbsinb }
v|  |—singecosp|v ]’ y|  |—sinbcosd
Then (0, ¢)ux, y), vix, y) = (W, ¥), v(x, ¥)). Recall that the fibre of F' is

the torus, &' X 8%, so that the group S' X &' acts on each fibre. It is easy
to gee that p commutes with the action of §* X &%, i.e.

wl

¥l

10, 9)(ph =8, o)p(p)-

Thus in particular a fibre over a point of M is mapped, under p, onto an
orbit of Z under & X St

Let us now make several definitions. An algebraic subvariety, K, of Z,
invariant under the action of S X §', is called a model singularity. A point
p of M such that p (fibre of F over p) meets K is called a K singulor point
of M. If p(F) meets K transversally in Z all along the fibre over p, we say
that p is a K geometrically trasversal singular point of M.

FeLpMAN has given definitions different from the above using jets. We
shall give his definitions in Chapter II. The model singualarities he uses are
not the same as those we have defined; however in Proposition 29 we show
that there is a 1 — 1 correspondence

¢: {jet model singularities | —» { geometric model singularities }.

Also, it is easy to see that his definition of a singular point is equivalent
to the one given above, i.e. p is a K singular point in the sense of the jets
it and only if it is a pK singular point. FELDMAN has also defined a K jet
transversal singular point. (His terminology is K generic singular point). We
have not been able to show that these delinitions are equivalent but in
Chapter 1I we show.

TaEoREM 1.9. - If a point is a K jet transversal singular poini then it
is also a pK geometrically transversal singular point,

We say that a map X: M — E* is K geometrically transversal (p—'K jet
transversal) if each K(p—'K) singular point of M is a geometrically tran-
sversal (jet transversal) singular point.
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Let Ox(M, E* be the set of C* maps from M into E* with a tfopology
to be defined in Chapter II. Convergence in this topology implies that the
fanctions and all their derivatives up to any given order converge uniformly
on the compact M. We may now state a result due to FELDMAN [7, p. 194},

TrroreM 1.10. -~ The K jet transversal {and hence the pK geometrically
transversal) immersions of M into E* are dense in C*(M, EY).

REMARK. - A remark is due on what it means for p to be transversal
to K if p(p) is a singular point of the algebraic variety K. We offer one
possible definition. Let sing K be the set of singular points of the algebraic
variety K. It is a fact that sing K is a proper algebraic subvariety of K.
Let J be a collection of varieties satisfying the following conditions.

1. KedH-

2, If Kied& then all the irreducible components of K, are in .
8. It Kied then sing K;e k.

4. If K, K;eh then Ki N Koe .

H is a well-defined finite collection of algebraic varieties. We say that p is
transversal to K at p if p is transversal to each K, e such that plp) is a
regular point of K;.

If K is a manifold or if codimension sing K > dim M then the K generic
immersions are open. In the case K is a manifold this is well enough
known. In the case that codimension sing K > dim M, by Theorem 1.11 and
the fact that transversality to K implies transversality to sing K we see
that the generic maps would not meet sing K at all. For the model singula-
rities we will consider, this is enough to establish that the generic maps
are both open and dense. However, it is hoped that the generic maps are
open and dense for any variety K without the above dimensionality restriction.

Another result from Chapter II is

TaroreM 1.11. - If X is a K geomelrically iransversal immersion of M
into E* then the codimension of the locus of K singular poinis in M is equal
to the codimension of K in Z.

Suppose that in a neighborhood U of K singular point p we choose
frames eiesese; on M. Let o: M —> F be the cross-section giving these frames.
Then functions a, b, ¢, e, f, g defined on F may be pulled down via these
frames to functions on M which we call &, b, ¢, ¢, [, g. Let us define p':
UsZ by W =(a, b, ¢, ¢, f,g) Then we may state the following.

LeMma 1.12 - p is a K geometrically {ransversal singular point if and
only if w is transversal to K at p. This is true for any choice of frawme
eiesese; on U,
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Proor. - Since p/'(U) C n{F(U})), ¢ transversal at p implies p is fransversal
at o{p). However, ¢ can be chosen arbitrarily so that p is transversal at
every point in the fibre over p. Thus we need only show that if p is tran-
sversal at p e F then | is transversal at w(p). Let us take coordinates u, v
in U and 8, ¢ in the fibres over U. Assume that at p 6 =¢ = 0. Let us
assume that p(p) is a regular point of K. Suppose that K is given by the
polynomials

C?i(a‘) b) G e, f; g) - 07 = 17 sy 1

By this we mean that ¢ are a basis for I(K), the ideal of all polynomials
vanishing on K. Let « be the column vector (a, b, ¢, e, f, g), and let H{f, ¢)
be the 6 X 6 matrix representing the action of 8 X 8! on Z. Define functions

Pigy(er) == @:( H(D, djor)

on Z., Then since K is invariant under 8 X &1, «€ K implies giya) = 0.
Thus iy € I{K), and hence there exist functions Ly, ¢} such that

2} qigyler) = 2]] Lif6, d)py(=).

Let J be the 2 X r matrix with first row ¢;/3u(p(p) and second row
o¢:/ev(i(p)). Then since p is transversal at p, J must be full rank at p. Let
J’ be the Jacobian of ¢{p'(u, v)) at =n(p). It we can show that J' has full
rank at wfp) then we are finished. But from 2) we see that

J = J(Lift, )

and since at p, where 6 = ¢ =0, we have L0, 0) = identity, J’ must have
full rank. We have been assuming that p(p) is a regular point of K; if not,
then we must apply the above argument to one, or several, proper subvarieties.

6. - Global Theery.

When is the ellipse a circle? From the fact that |N|=2|%||&B]| and
W — K = A B it is not difficult to see that | |=|&B| if and only if
#*— K =|N|. Thus a necessary and sufficient condition that the ellipse
be a circle is that }* — K = | N|. We include a point as a eircle.

It the ellipse is not a circle then the two ends of the major axis deter-
mine two well-defined, and in fact orthogonal lines in the tangent plane.
Remember each tangent line determines a point on the ellipse because
n(8) = (6 + 180°). But a compact surface has a field of pairs of lines if and
only if the EULER characteristic is zero. Hence we have

TrEOREM 1.13. - On any compact surface of non-vanishing Euler charac-
teristic there must be a point where H* — K = | N|.

Annali di Matematica 36
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The line through the mean curvature vector will meet the ellipse in two
points, These points determine a pair of lines, in fact orthogonal limes, in
the tangent plane. The only time this construction fails is either when 3{ =0
or else when the ellipse degenerates to a radial line segment, i.e. the point
is an inflection point. Observe that if the ellipse is a nonradial line segment
then the tip of # intersects the segment and this point also picks out a pair
of orthogonal lines. Again, because if a manifold bas a field of pairs of
lines then the EULER characteristic must be zero, we have the

TaroreM 1.14. - On any compact surface of non-vanishing Fuler charac-
teristic there wmust either be a point where the mean curvalure veclor vanishes
or else an inflection point.

The {lat torus is an example of an inflection-free surface with everywhere
non-zero mean curvature vector. To give a more general example, suppose
that o(f) = (p2(f), 9=(f)) and () = (xa(t), x2(f) are two inflection-free immersed
circles in the plane. The surface ¢ X x(u, v) = (g1{tt), @altr), ¥a(v), %a(v)) is
easily seen to be an inflection-free immersion of the torus with everywhere
nonzero mean curvature vector.

The normal curvature vector % maps antipodal points of the unit tangent
sphere into the same point of the ellipse. If the ellipse does not degenerate
to a line segment each point of the ellipse determines a unique pair of
antipodal points of the unit tangent circle and hence a unique tangent line.

v maps four points on the unit circle which form a cross, i.e. the vertices
of an inscribed square, into two diametrical points of the ellipse.

For any pair of diametrical points of an ellipse there is what we might
call a conjugate pair of diametrical points, namely points whose tangents
are parallel to the diameter line of the first pair.

Consider two crosses, one a rotation by 45° of the other; then the images
of the two crosses will be conjugate,

When the ellipse is a line segment the center of the segment is the
image of a cross. Each endpoint of the segment is the image of a pair of
antipodal points, both pairs forming a cross. The two crosses picked out by
the center and the endpoints differ by 45°.

Thus any wmethod of uniquely choosing a point of the ellipse, which depends
continuously on the configuration, defermines a f{angent line element field.
Points where the construction fails will be singular poinis of this field.

Also, any method of uniquely choosing a pair of diametrical points of the
ellipse will determine a field of tangent crosses.

A surface in F? may be viewed as a special case of a sarface in EB*.
The ellipse is of course always a line segment and the principal curvatures
are the distances from the origin to the endpoints of the segment. Since
every point is an inflection point Theorem 1.4 does not provide much informa-
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tion. However, Theorem 1.3 does indeed show that there exists a unique
cross field with singularities only when the line segment degenerates to a
point, i.e. an umbilic. Note that for a surface in E* there is no good way
to distinguish one end of the major axis and therefere pick out a line element
field. However, for the special case of a surface in E° we may choose the
smaller (or larger) principal curvature. This does pick out an endpoint of
the line segment which determines a unique tangent line.

It is, however, possible to obtain information about a surface in E® from
Theorem 1.13. To do this we need only project the surface stereographically
into 8. Let ¢: B°®-— §° be the sterographic projection,

ole, ¥, 2) zr_“l{:‘_”z (@, ¥, 2, 1),
where = 1/2(x* 4 y* + 2* — 1). Since ¢ is conformal, d¢ is a similarity.
Thus given orthonormal frames eieses in E®, dylei)do(es)dp(es) are orthogonal
frames tangent to S°. We may normalize them to obtain orthonormal frames
18265 and then choose e, to be the outward unit normal to S?.

Let X: M —s E?® be an immersion of a surface in E; and let X' =¢o X
be its stereographic projection. Suppose that eiezes are orthonormal frames
on X(M) so that ee; are tangent and e is normal. We choose ei1ez¢ses as frames
on X'(M).

Suppose that the second fundamental from for X(M) is

#*X - e, = av? 4 2bw v, 4 cw?
and the second fundamental form for X'(M) is
(@0 + 2000, + o), + (€0 + 2f v, + govlle,
where as usual o; = dX .6, vy =de ¢ and 0; = dX ¢, o) = de; + ;.

Then it is possible to show that

F b a’}m{(l—kt)amh (L+4b (L4 fo—h
e gl 1 0 1 ’

where h = X . ¢; is the support function for X(M). Note that 1 +£=>1/2 so
that it is never zero. Also note that umbilics are carried over into inflection
points and they give the only inflection points. The mean curvature veetor
is seen to have e, component equal to 1 so that it can never be zero. Thus
applying Theorem 1.14, we have the well-known result that a surface in I
of nonzero EULER characteristic must have an umbilie.
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It is also interesting to observe what happens to the principal frames
under stereographic projection. Let X, n be the mean and normal curvature
vectors for X(M) and H' %' be those for X'(M). Then we see that

N(8) — I = ({1/2(@ — ¢) c0s 20 4 b sin 20)e; and

7(0) — I = (1 + #)(1/2(@ — c) cos 20 + b sin 26)c,.

Thus we see that the directions picked oat by a point of the one segment
are the same as those picked out by the corresponding point of the other
segment, the correspondence given by multiplication by 1 - £ In particular,
the directions picked out by the midpoints of each ellipse are the same.
The principal axes chosen by the point where the mean curvature vector
meets the ellipse become, when the ellipse is a line segment, the axes picked
out by the midpoint. Thus the principal axes used in Theorem [.13 give,
for surfaces in H?, directions such that the curvatures in those directions
are equal to the mean curvature. These directions differ by 45° from the
nsual directions,

Let us now study the singular loci we have found in more detail. Accor-
ding to the previous section, we must study the model singularities. For
instance, to study the locus of points where 3 = 0 let K be the model singu-
larity given by

a4+ c=10, e4+g=0.

It is trival that this model singularity has codimension 2. Thus, by Theorem
1.11, if the immersion is generic then the locus where H = 0 is of dimension
zero, and consists of isolated points.

As another example, let the model singularity be given by #* — K = [ N|.
This means that the ellipse is a circle so that the configuration depends on
two parameters J* and N. The map n depends on four parameters, X*, N,
a choice of frame in the tangent space and a choice of frame in the normal
space. Thus the model singularity has dimension four. Consequently, the
generic locus is of dimension zero and consists of isolate points. Convenient
polynomials may be found if we observe thet the ellipse is a cirele if and
only if the matrix

(@—c) b

| b DOL =

e—g [

+

(]

is a dilatation. Thus We may write the model singularity as
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(@—cb+(e—gf =0
(%(a——c))2+<%(e—93>2=bz+f2-

This model singularity is reducible, namely
and

Using the previous theorems, it is easy to see that the locus where
H? — K = N =0 is generically empty.

As a further example, let the model singularity be the inflection points,
namely where

rank [a ¢

ML

Polynomials are then
af — be =0,

bg — ¢f =0,

ag — ce = 0,

The maximum rank of the Jacobian on this model singularity is two so
that the codimension is two. Hence the locus of inflection points consists,
generically, of isolated points.

Let us now return to our consideration of the ellipse. We have seen
that, except at inflection points or points where ¥ — 0, there is a field of
pairs of pairs of lines. Just as before, only being more careful this time,
we shall see that we may pick out a line element field. Let q: and g be
the two points, in the normal space in which the line through 3 meets the
ellipse. If the ellipse is not a segment, i.e. it N==0, then ¢ == ¢;, Moreover,
exactly one point, say ¢, is farther from the origin. Let us now assume a
generic situation; namely, the locus where N==0 is one dimensional; the
locus where ¥ = 0 consists of isolated points; and the inflection points are
also isolated points. Since being an inflection point implies N = 0, the isolated
inflection points lie on the curves N = 0. Let us now pick out a line element
field as follows. At a point where N> 0 (and 3 == 0) let us choose the point
¢ to pick the line, and at a point where N <O (and ¥ == 0} let us choose
the point g». Then we have determined a line element field everywhere
except on the locus N=0. We may extend the line element field from
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N> 0 to the curve N =0 (minus inflection points and from N <0 to N =0.
The extensions must either agree or differ by 90° because we have a cross
field throughout. However, the choice of ¢; for N> 0 and ¢ for N < 0 makes
them agree. Note that the sign of N gives the sense in which v traverses the
ellipse. When we cross the curve N =0 this sense changes, interchanging
¢: and ¢:. Thus we have proved the:

THEOREM 1.15. — There exislts on M a line element field with singularities
only at points where X =0 and ot inflection poinis.

We have shown the result in the generic case but by continuity this is
enough for the general case.
Let us show next, as one might guess, thaf the generic index of the

singularities of this line element field is ;:té. It is simpler to work with
the cross field, even though we have seen that it is composed of two line
element fields. If we show the generic index of the cross field is i;l) then
certainly the same will be true of the line element field. -

Suppose po is an isolated singular point of the cross field, i.e. either a
point where J = 0 or an inflection point. Let U be a coordinate neighborhood
containing no other singular points andlet ez be a field of orthonormal
tangent frames in this neighborhood. Let § be the argument of the cross
field; 0 is defined modulo 90°. (Actually since the cross field is composed of
two line element fields, we know that 6 could be defined modulo 180°, but
no matter). From our definition of the cross field we know that 6 satisfies
¥ A 7(0) =0. This gives the expression

(ag — ce) cos 26 — (af — be — (bg — cf)) sin 26 = 0,
and is well defined modulo 90° unless
ag —ce =20
af — be = bg — cf.
These conditions are equivalent to
a-+c=0 ag —ce =0
ed+g=0 or af—be=0
bg — cf =0,

and bence it is the model singularity of points where either X =0 or
points that are inflectional. They are generically isolated. To be specific,
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we assume the manifold is generic with respect to the model singularity
defined by

ag — ce = 0
8)

af — be = bg — cf.

Thus points where ¥ =0 and inflection point are distinet isolated points.
Notice also that af — be, ag — ce and bg — c¢f are coefficients of the form
S{x, y) and so are defined on F.. In fact, it is not difficult to check, by
differentiating §(cos 6, sin 8) with respect to 6, that the cross field is given
by the eigenvectors of the quadratic form 8. Now let us regard af — be,
ag — ce, bg — cf as defined on U via the field of frames eie; we have chosen.
Let ¢: U-—> B? be defined as follows:

¢ = (ag — ce, af — be — (bg — cf)).

Because X: M —s E* is generic with respect to the model singularity given
by 3), the map ¢ is regular at every point which maps to (0, 0), namely at
Po. Here we used Lemma 1.12. We are nearly ready to apply Lemma 1.8;
ie. if we can show that

nearge = 0 modulo 90°

then the index will be == n. But

ag — ce

20 —
tan 26 af — be — (bg — of)

= tan arg o.

Therefore arg ¢ = 20 modulo 90° so that we have shown:

TaEOREM 1.16. - The generic index of the singularities of the line element
field described in Theorem 1.15 is == 1/2.

We next turn o our other cross field, the one picked out by the major
axis of the ellipse, and ask what’its generic index may be. Just as before,
it is simpler to consider the 8-cross field picked out by both the major and
minor axis. So suppose po is an isolated singularity of this field, and let U
be a coordinate neighborhood containing no other singularities. Let e, be
a field of frames in this neghborhood, and let 6 be the argument of the
8-cross field, defined modulo 45°. From our definition of the S-cross field
we know that its argument, 6, must satisfy d(|%(% — & 2/d0 = 0. This says
that the major and minor axes are extremes of |%(f) — J |. Using the fact
that df| 1(6) — I [*)/d = 2d(»(6) — X)/dg - (4(6) — X), we find, upon simplifying,
that the argument must satisfy

2

(Bla — ¢) - fle — g)) cos 46 — (@ @—of + (% (e — g))z— B — f2)sin 46 =0,
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Thus 9 is well-defined, modulo 45°, except on the model singularity given
by }#? — K = | N| which we have studied before. Because the vectors ae; + ees,
bes 4 fes, ce; -+ ges are mnormal vectors invariantly defined on F., we see
that the functions

b(a—-c)+f(e——~g),

L2

(30— +{3—0] —22—r:

are defined on F., and, as before, they may be regarded as defined on U
via the frames, eie;. Let 9: U—> R* be defined by

v =[ta—d+fe— ) (300 — o] + (3 —al] =& =)

Then because we are assuming X: M — E* generic with respect to the model
singularity ¥ — K = | N|, we see, by Lemma 1.12 that ¢ is regular at po.
Also arg ¢ == 46 modulo 45°, and thus by Lemma 1.8 we have shown:

THEOREM 1.17. = The generic index of the 4-cross field defined by picking
1

the points on the fangent circle which map inio the major awxis is ii’

We now turn out attention to the mean curvature vector, ¥, as a normal
vector field. By the discussion in Section 4, we know that the index of the
vector field ¥} at a point, p;, where ¥ = 0, is equal to

i I
'QTt im (.034 3
0
<

where ws; is the pull down of ws via X* to M and C; is a circle about p; of
radius ¢, small enough to contain no other singularity. We have also noted
that if J is transversal to the zero section then the singularities are isolated
and their index is == 1. In order to examine more fully transversality to the
zero section, let U be a neighborhood of p such that the normal bundle over
U is trivial, and assume C; is contained in this neighborhood. Thus we may
regard J{ as giving locally the map

H: U—-UX R~

It is transversal to the zero section if and only if wo ¥f: U—> BE? is transver-
sal to the origin, where = is projection of U R onfo the second factor.
Let ese; be normal frames giving the local triviality, i.e. such that n(w, es)=
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(1, 0) and =, es) = (0, 1). Then if we write Jf = % (@ 4 cjes + %(e -+ gles, we see

that Jf is transversal to the zero section if and only if the Jacobian

has full rank at p. Hence, by the results of Section 5, we see that X: M — E*
is generic with respect to the model singularity e +¢=0, e 4 g =0, if and
only if J{ is transversal to the zero section. Consequently, the generic index
of 3 as a normal vector field is == 1.

Since the sum of the indices of a normal vector field is the EULER
characterisitc of the normal bundle, we have the:

THEOREM 1.18, - y(N) =2 indices of }. In particular if X is never zero
then ¥(N) = 0.

Conversely, any orientable manifold may be imbedded with everywhere
nonzero J}. Just imbed in E® and use stereographic projection to imbed in
S%, Then since it lies in 8%, ¥ is never zero.

We come now to a rather interesting situation. Points where }{ = 0 are
singularities of the normal vector field J{, and also singularities of the tan-
gent line element field discussed in Theorem 1.15. In the one case the
generic index is == 1, and in the other case it is =1/2, Let us ask how
the signs might be related. As a normal vector field, the sign is determined
by the sign of the determinant of the Jacobian

dlato e+g

du, v) !
and in the other case by the sign of the determinant of the Jacobian

dag — ce, af — be — (bg — ¢f))
3w, v) ’

Here we have chosen frames in a neighborhood of the singular point p where
H =0, and we regard a, b, ¢, e, f, g as defined on M. Denote the first
Jacobian above by J and the second by J'. Then at p we see that

N
J__J(a _b).

Just differentiate and substitute ¢ = — @, ¢ = — g. The determinant of
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-

. 1
is equal to _QN at p. If ¥ =0 and N =0, we have an inflection point. If

we assume that inflection points and points where J vanishes are distinet,
which is certainly a generic situation, then we may assume N = 0. Thus
we have shown

TaEOREM 1.19. - A point p where =0 is a singularity of the normal
vector field with geweric index =1 and of a tangent line element field with
generic index = 1/2. The signs agree if N <0 and disagree if N > 0. Generi-
cally, we may assume that J{ =0 and N =0 do not occur at the same point,

TEEOREM 1.20. - Let X : M — E* be an immersion of a compact orientable
surface in E*. Suppose that N, the curvature of the connection im the normal
bundle, is everywhere positive (negative). Then X is an inflection free immersion
and furthermore Y(N) = — 2y(M) (y(N) = 2x{(M)).

PROOF. - A point where N > 0 is certainly not an inflection point. Let
us suppose that there are only a finite number of points where J vanishes.
This is the generic situation. Let p be such a point. Let Ind, (p) be the
index where p is regarded as a singular point of the normal vector field, and
let Ind: (p) be the index when p is regarded as a singular point of the tangent
line element field. Since N >0 we see by the previous theorem that
Ind, (p) = — 2 Ind; (p). Here again the previous theorem requires a generic
situation. But y(N)=Z Ind;(p). Also, since X is inflection free, the only
singularities of the tangent line element field are at points where J{ = 0.
Thus by Proposition 1.7 x(M)= Z Indy(p). The result now follows in the
generic case. Hence by continuity it is true in general. The case when
N < 0 is similar.

We state the following theorem for its general interest. Let X: M — E*
be an immersion of a compact oriented surface. The tangential degree is
the degree of the map e;: Fr — §* given by tramslating unit tangent vectors
to the origin.

THEOREM 1.21. - The tangential degree is equal lo the Euler characteristic
of the normal bundle. It is also equal to twice the algebraic number of double
poinis.

It the map X has only transversal double points and no friple points
then the algebraic number of double points is just the double points counted
with sign determined by their intersection numbers. With a suitable inter-
section theory, in order to be able to define the algebraic number of double
points, the theorem is true for an arbitrary immersion X. WaitNey [15] has
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made some of the original investigations concerning the algebraic number
of double points. For generalizations of this theorem and further references
consult LASHOF and SMALE [11] and WHITE [16].

‘We see using Theorem 1.21 that Theorem 1.20 may be rephrased to state
that if N <0 everywhere on a surface M in E* then x(M) is equal to the
algebraic number of double points and if N> 0 everywhere then y(M) is
minus the algebraic number of double points.

CoroLLAnY 1.22. - Bvery dmmersion of the torus or the sphere must
have a point where N = (.

1

2
where then x(N)>0 (or x(N)<0). By Theorem 1.20, if N> 0 (or N<0)
everywhere then (M) < 0. Consequently, we obtain a contradiction if M is
a torus or a sphere.

Proor. - Since y(N) —.:.——deA, we see that if N> 0 (or N<0) every-

In the light of Theorem 1.20 it would be interesting to know of examples
of immersions with everywhere positive N. We have not found any yet.

A sphere immersed in E*® must have generically 4 umbilics [8]. The
Caratheodory conjecture, which is only konown in the case of real analytic
surfaces, states that even in the non-generic case the surface must have 2
umbilics. Our computations of the generic indices give the generic number
of singular points. Namely, a sphere immersed in E* must have generically
8 points where the ellipse is a circle and 4 points which are either inflection
points or points where Jf = 0. One could then pose the Caratheodory type
of question and ask how many singular points there must be even in the
noungeneric case,

CraprER II.

General Position.

This chapter is concerned with general position or transversality argu-
ments. Motivation and a preliminary discussion has been provided in Section
5 of the preceding chapter. Our treatment will, however, be more general
than the discussion in Section 5. In particular we shall consider manifolds
of arbitrary dimension and singularities of arbitrary order. We wish to ackno-
wledge a heavy debt to FrrpMaN [6, 7] throughout this entire chapter. Also

we again assume, unless it is otherwise explicitly stated to the contrary, that
all maps and manifolds are O,
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1. = Introduction and review of Feldman’s results.

The abstract pfh order tangent bundle, T, M", of a differentiable mani-
fold M* is a vector bundle over M with fibre dimension

v(n, p)= S (n—;—?‘——l).

) ?

If @, ..., @, are local coerdinates on M then
3xrly, v, 33kaly, 32/0XE|,, O*[2:1022ly, ..., O*/BkEy, ..., BP[30Ely, ..., 37[wPl,

form a basis for the fibre over ¢. If #., ..., 4, is a second coordinate system
in a neighborhood of ¢ then the coordinate transformatiouns of the bundle are
given by
Au; = X duc;/ouid du;,
i
4)

92/9ui8%j= p axk/Quiax;fBujaz/amkax; + N ’c)%;;/’c)ubauf’c)/éxk,
k2 %

and so on, deriving the transformation law by successive differentiation. The
structural group of T,M" is the group of linear transformations in the fibre
induced by all possible coordinate changes on the base, This group we call
Jr(n). It is the group of invertible p jets from R* to K" with source and tar-
get the origin. This construction is functorial, namely if

fM—N

is a map between manifolds, then thero exists an induced map, T,(f), such
that the diagram
Tf):TpM — T,N

| |
fiM — N

commutes. Also the following sequence of vector bundles in exact and natural.
0 Tpud M — T, M —0rT\ M — O.
Suppose that M possesses a symmetric connection, for instance the Lmvi-

CIvIiTA connecbion in case M is a Riemannian manifold. Then this connec-
tion induces a map

D[i] TM— T, M
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which splits the sequence
0 I M >TiM— 0T M—0.

By composing the maps Du0Deo ...0D,, we get a map
D,:T,M—T M.

Consider the bundle Hom (T, M, T\ N), a vector bundle with base M X N
and fibre the linear transformations from 7,M, to T: N, where (g, r)e M X N.
Given a map f:M— N, the induced map D, T,(f): T,M — T» N is a vector bun-
dle homomorphism covering f. Let f~ Hom (T, M, T:N) be the bull-back bun-
dle induced by the map éd X f: M-—> M X N. It satisfies the commutative
diagram

f— Hom (T, M, I'N)—» Hom (T, M, T:N)
M XS > M X N.

The fact that D,T,(f) is a vector bundle homomorphism shows that f indu-
ces a cross-section of [~ Hom (T,M, T:N). This cross-section composed with
the map into Hom (7,M, T\ N) we call f.

f:M—sHom (T,M, T.N).

Assume f: M— E*. We note that the image of T,M under D,T,(f) is the
pth order osculating bundle and the image of each fibre is the pth order
osculating space. (For a map f: M- N we take this as the definition of the
osculating bundle). The pth order osculating space at ¢ is defined to be the
span of the (p — 1)-sf order osculating space at ¢ together with all the pih
derivatives at ¢ of curves through q.

Since 7,M is a bundle with group J7 and T'N* may be taken as a bun-
dle with group O(k) we see that Hom (7,M, T:N) is a bundle with group
J?7 X O). Let the fibre, Hom (T, M, TiN),, ., be called F. F is a vector space
of dimension v(n, p)-k on which the group J7 X O(k) acts. Suppose that K is
a subvariety of F invariant under J? X O%). Such a subvariety is called
mmodel singularity. By picking out this same subvariety in each fibre we have
a bundle K(M X N) over M X N with fibre K.

We define a point ge M to be a K singular point of f it f(g) meets
K(M X N). A point ¢ is called K jet transversal if f is transversal to
KM X N) at q. (Feldman’s terminology is «K generic»). If every point is
K jet transversal we say that the map f is K jet fransversal.

The following lemma will be of use; its proof is trivial.
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Lemyma 2.1. - Let K be a submanifold of F and G a manifold. Lel
. FX G I be the projection and let f:U—F X @ be a map of manifolds.
Then wof(U) is transversal to K if and only if f(U) is transversal to K X G.

Now let ¢ be o K singular point of f. Since being a singular point is
only local we may choose a neighborhood U of ¢ such that there is a neigh-
borhood V of f(g) such that U X V trivializes the bundle Hom (T, M, T.N)
Then over U X V the bundle has the form U x V x F. F the fibre. If we
let =:0U X VX F— F be the projection we see by Lemma 2.1 that ¢ is a K
jet transversal singular point if and only if nf is transversal to K at g.

Something should be said about what it means for nf to be transversal
if nf(g) is a singular point of the algebraic variety. Let us, however, give
only a few vague comments and reference FELDMAN (7, pp. 194] for a discus-
sion and further references. Transversality at a singular point of an alge-
braic variety is defined by choosing in some way (for example, as was
described in Chapter I, Section 5) a finite collection of submanifolds, and
then defining nf to be transversal to the variety at the singular point if and
only if it is transversal to each submanifold.

A result found in FELDMAN [7, pp. 185-186] but not stated as a theorem is:

TaroreEM 2.2. - If [ is K jet transversal then the locus of K singular
points has codimension in M equal to the codimension of K in F, where F
is the fibre of Hom(T,M, T:N).

We next review some topological notions. Let C°(M, N) be the continuous
functions from M to N with a topology to be described below. Here we still
assume that M and N are 0 manifolds. Choose a metric D on N. For each
continuous povitive real valued function, &, on M, let Nyf) = {g|D(g(x), flx) <
< 3()}. The topology is defined to be that given by taking the Ni(f) as basis.
It is independent of the choice of metric D on N, compatible of course with
the manifold topology. In contrast with the topology of uniform convergence
on compact sets, or, if you prefer, the compact open topology, we might call
this the fine topology of C°(M, N). It is equal to the compact open topology
if and only if M is compact.

We remark that f,—sf in this topology means that the sets U= {xlfi(x) =
= f(x)), from some ¢ on, are all contained in some compact set and that the
convergence is uniform on this set.

For each fe C®(M, N) we have the map T,(f):T,M~—s T,N. The fact that
this is a vector bundle homomorphism implies that there is a map

e,: O?(M, N)—> Co(M, Hom (T, M, T,N))

defined by e,(f)@)= T:(f). e, is clearly one to one. On C°(M, Hom (T, M, T,N))
place the fine topology described above, and let C?(M, N) have the topology
induced under the map e,.
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Note that Cr+' (M, N)< Cx(M, N) and that the inclusions are continuous
in the above described topologies. This gives an inverse limit system. We
define the topology on O=(M, N) to be the inverse limit topology.

This discussion of function space topologies is taken, with minor changes
from the appendix in FELDMAN [6, pp. 220-223]. We are now in a position
to state the following theorem due to FELDMAN (7, Prop. 32, p. 194].

THEOREM 2.3. — The set of functions in CP(M, N) which is K jel iran-
sversal is dense in C*<(M, N). K is, of course, a model singularity.

2. — The group J-.
Suppose that @, ..., x, are coordinates in a neighborhood of a point
g€ M. These coordinates give rise to a basis for the fibre of T,M,

o/exy, ..., orjdxr,

where we order the basis by taking the first derivatives, the second deriva-
tives, and so on, and among the derivatives of a given order we order them
lexicographically. Let us write

~ T o] -
—afsaaﬂl @2/3%18%2 ‘—ap/am{ 1
‘ .
X = X=| ...Xp=} .
| L
|_3/dw, /o ) I_or/dxt

and call the basis Xi, .., X,. Then an element L e€J? may be written as a
matrix which we also call L. The matrix L may be broken into blocks (I
where I; are defined by

ij)3
LX) = T I;X,.
J

Because L e J? we know that L(X;) will also form a basis, in fact, a basis
induced from coordinates, say wi, ..., .. The blocks I; may be found from
equations 4) and the successive equations generated by application of the
chain rule. From this it is obvious that l; =0 for ¢ <j. Now, of course,
X1, o, Xoy r<Zp is a basis for T,M, which may be regarded as a subspace
of T,M. That I; =0 for ¢ <j reflects the fact that each 7'M is an invariant
subspace of T,M under the action of J7. Another fact, readily seen by in-
duction, is that 7, = (37a; oui, ... du; ). Not quite so obvious is the fact that
it lo, ..., L are all zero at the point then I, .., ,,_, are also all zero.
To see this note that we may express the entries of 7, as a polynomial in the
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partial derivatives, x*/3; ... du;,, of orders upto and including », i.e. in the

entries of i1, I, ..., 1. These polynomials have integer coefficients. They,
of course, depend on which enfry is chosen but on nothing else. The may
be found by an inspection of equations 4) and the equations generated from
them by successive differentiation. Let a polynomial for some entry of /. be

8{33’7}‘/8%5, szk/auila%iz, wer s a’mk/augl ver buir) .

It may be shown by induction that these polynomials are homogeneous of
degree s and of weight r. That is

8(dwrfou;, v, t&ayOus ... OUs) = U8Qs/ui, ..., Tiek/oUi .. Ous)

and
8(@{1%/8%;, tzazxk/auilauiz, ey i’awk/auil e a%ir) eSS

= Q@ars/du;, ..., Foi/3u; ... JU,).

Now if I, .., L1 are all equal to zero then the partial derivatives from
the second through the (r — 1)-sf order are all zero at the point. Thus the
entry of /., has the form

8’(39{’;;/3%, 0, feey 0, B’mk/Quil cee ailir),

but since it is homogeneous of degree s and of weight # it must be zero.

The matrix J;, may be regarded as a linear transformation of T.M, via
the basis X;, namely the restriction of L to TWM,. Let & be the induced
linear transformation of the i-fold symmetric product of T:M,.

£, OT,M,— O'T,M, .

Via the basis 3/9;,0 ... 09/3x;,, j1 << ... <ji, ordered lexicographically, on 0T\M,,
the linear transformation ¥, is given by a matrix which is equal to l;. This
shows that Iy, = identity implies that ;= identity, and that if I is nonsin-
gular then /; is nonsingular for 1 <i<p.

3. - A-special choice of basis for F.

Recall that each point 4 of F is a linear transformation from T,M, to
T.N,, (g, ¥)€ M X N. We ask if we may choose a basis tor T,M, and for TN,
so that the matrix for A relative to these bases has an especially simple
form. Let us choose an orthonormal basis e, ..., e, on TWlV, in such a way
that e, .., e, is a basis for A(T:M,) for each 1 <<é=<s, where s<p and
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n; == dim A(T.M,). e, 41, ..., e just complete e, ..., e, to a basis for T\N,. We
partition the basis into Ei, ..., E.y1 where Hy=(ei, ..., &), Bi=(tn_1, ..., &),
t=2, .., s and Hoy1= (6,41, ..., ¢;) and refer to the basis as I, .., E.q.
A choice of coordinates @, ..., x, in a neighborhood of ge M induces a ba-

sis X1, ., X, for T,M,. In terms of these bases we may split the matrix

for 4 into blocks \
sed-1
AX)= 2 A;B.

je=1
We have now established the notation for

TuroreM 2.4. ~ For any element A€ F such that A restricted to T\M, is
1—1 and also for any orthonormal frame Ei, .., E4. on T.N, such that
By, ..., B spans A(T:M,) ¢=1, ..., s il is possible to choose a basis for T,M,
which is induced from coordinates in a neighborhood of ¢ and such that the
matric for A relative lo this pair of bases takes the form

I, 0 . . 0 -
0 A4y 0
f‘1s+1 Y
0 dp . . Ay

Furthermore, the basis for T,M, is unique.

Proor. - The fact that T;M, is spanned by Xi, .., X; and A(T;M,) by
Ey, .., B;, j=1, ..., s shows that 4; =0 for ¢ <j. Because 4 restricted to
T'M, is 1 — 1, n=1mn, and the block 4y is an invertible # X n matrix. We
choose any coordinates on M and then make successive coordinate changes
until the desired coordinates have been found. Let us, therefore, examine
what happens to the matrix for 4 when the coordinates are changed. Suppose
X, vy Xp and By, .., By are «<old» bases for T,M, and 7.N, respectively.
Let L be a linear transformation of I,M, induced by a coordinate change
on M. Then, relative to the old bases, 4 and L are given by matrices we
call by te same name. We ask what is the matrix for 4 in the bases LiXy), ..
ey LX), By, ., Eopr. It is just LA.

Annali di Matematica 38



298 Joun A, Littie: On singularities of submanifolds, etc.

Notice that in this new basis 4;=0 for ¢ <j for exactly the same
reason. In block form LA looks like

0. . . 0 7 [4s O . . . 0 h
bn Lo .
0
Acan . . . Ao
0 . :
-Zpl ba : : bp _4p . : . Apeis

Since A. is invertible (4 restricted to T1M, is 1-1) we may choose I = A"
Then in the new matrix for 4 the A1 block will be the identity. Under a
fnrther change of coordinates since we wish to retain A4, =identity it is easy
to see that it is necessary that the block /i of the new matrix L be the iden-
tity. This implies also that I, .., l,, are all the identity. Under a basis
change such that /;; =identity, the 4, block becomes Iy 4 4. Also we may
choose I freely. It is the matrix of second partial derivatives and at a point
is independent of the first partials Thus let us choose ln=-— Ax. (They
are the same dimension). In the new coordinates the matrix for 4 has Au=
identity and A4s =0.

Suppose now that we have, by successive coordinate changes, achieved
Ay = identity, 45 =0, ..., 4,1 =0. In order to retain this much, it is not
difficult to see that it is necessary that Iy = indentity, In =0, .., 11 =0.
From our earlier remarks on L in Section 2 we note that if 7, ..., {; 11 are
all zero then I, are zero for 1 < < a=Cj. Thus in block form the matrix
LA looks like

“Id 0 0 -
0
i 0 0 Id

lj..l 1 . . . . lj+1j Id

i . e e paId
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“Id O . . . . O -
0 A4
0 0
f"ﬂ f4s+1 1
_An Ap o o Apep _

We gee that under such an L the block 4, becomes I; -} 4;. Again we are
free to choose l;; = — A,y so that we have now achieved, after this coordinate
change, 4, =0. Also in order to retain this much under the next coordinate
change, it is easy to check that we must have Il =identity, &, .., [n=0
Consequently continuing in this fashion the theorem is established.

Note that if we change not only the basis X;, ..., X, by L but also the
basis i, ..., H.a by an orthogonal transformation O of T\, the new mafrix
for 4 in terms of L(X)), .., I(X,) and OE), .., O(H.) is

L4,

where L, A and O are matrices for the linear transformations L, 4 and O in
the old basis.

4, - The orbits of Jz X O(%).

At this point we switch our point of view. We have until now considered a
fixed linear transformation 4 and tried to choose bases so that the corresponding
matrix had a particularly simple form. We now fix a pair of bases X, ..., X, and
I, ., B, for short (X, E), and consider the linear tranformations whose
matrices relative to this fixed choice of bases are particularly simple. Let
?mﬁ(nl, ..y %) be the subset of I consisting of those linear transforma-
tions, 4, such that dim A(T'M)=mn;, i=1, ..., s. We assume that n,=mn
and of course that #; << v(n, i), where v(n, 9) is the dimension of the fibre of
T M Let Z=Z(n, ..., n,) be the subset of F' consisting of elements 4 such
that the block matrix for 4 relative to the bases (X, E)is of the form 4, =
= identity, 4; =0 for ¢ <j, and 4, =0 for j=2, .., p. Then the above
theorem may be restated as follows,
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CoroLLARY 2.5. ~ Hvery orbit under J? X OF) of a point of 17’(%, By ery Wy
wmeets Z(n, nz, .., n). Conversely if an orbil meels Z(n, n., ..., n,) i must
lie in ﬁ’(n, gy seey W)

The converse follows because every point of F' belongs to F for some
choice of #1, 1s, ..., %, and because the numbers #,, Bz, ..., #, are invariant
under the action of Jr X O).

Let ug now show

TrEOREM 2.6. - If o member of Jr X OF) maps an element of Z again
into Z it leaves Z setwise fixed.

Proor. - Take 4, BeZ and suppose for (L, O)eJr X Ok) we have
LA'0O= B, or in block form

I1d 0 0o -
" 0. . . 0 ‘! -
. » . - l O
N i 0 A22
(') '[js-{-ls—l—l
— lpl . . . . ZPP _ . R .
- 0 Ap2 . . . AP s41
“Id 0 0 -
0 By
B 611 . . . 91 s41 -
= Bs+ls+1
| .
- eS-I—ll . . . 6s+1s+1 j{
- O sz . . . BP‘9+1

where we let 0 = ‘O for convenience. 6 is also orthogonal. The top row of
blocks of LAO is

(Tubu, abe, oy fnbiopa)

Thus 11,0, = identity, and since 71, is nonsingular so is 6,,. Also we see that
Inby; =0, 2=<j<s -1 so that, since /4 is nousingular, 8;;=0. But since 0
is orthogonal this implies that 6s, ..., 8,411 are also zero. Using these facts
we see that the left hand column of LA8 is
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Tl 07
In 61

- lpl 011 e

Therefore we must have 736, =0, 2<j<p. But 0, is nonsingular so
that /; =0, 2 <<j<p. Hence by the property of L discussed in Section 2
we also have 7 = 0 for 2<<j<<i.

We now show that 6; = O for ¢ ==j. Let us proceed by induction. Suppose
0;, =0 for ¢ or j < ¢, ¢ 3=4. The matrix LA0 now looks like

/S 07 "L, 0 .. . 0
0 . . . O A22 .
L A, 0
. .o 0 . Aspre
200 o0 0 L, L0 4n . o L dp
B 0 0 -
0 0 0
. 0 Qn v st+1
00 00 O o Begre

Consider the {~th row of blocks in LA68. It is
(O; lnALZQZZy vea gy lnAuen, luAnezz-[-l, wne g lttAtteta+l)-

Hence we must have 1,4,0;, =0 for { <i<<s 4 1. But I, is nonsingular
since L, was nonsingular. So we must have 4,8, =0 for { <i<<s-+ 1. Since
the maximum possible rank of 4; is n; — n,_; and since the matrix
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“Id 0. . . . 0"
0 d»
. . 0
_O A,gz ’ . . Ass__
has rank n, and is in block triangular form, we must have rank 4; = n;, —

— w1, =2, ..., 5. Thus 4, has full rank. So 8, =0 for t<i<s-1.
Because 0 is orthogonal, we must have 0, =0 for {<i=<s+ 2, and so we
have 0; = 0 for ¢ or j <t 1, ¢ ==4. The induction ends with { = s, however,
this is far enough to show that 8; =0 if ¢=4. Thus we see that L and 6
are block diagonal matrices and furthermore that /,;6;; = idenfity. This demon-
strates the theorem.

Since we showed that 6 must be in block diagonal form, all the blocks
themselves must be orthogonal. Since /.0, = identity, the matrix L is com-
pletely determined by 011, namely I; = 07 and [; =0, i5=4. In fact the
action of J? X O(k) is completely deseribed by saying that (8;'V4:8; = By,
or in terms of O

0. 4.0 =Bij.

[ 3 St 7 g ¥ 4

Here 1 <j < 4. Thus on Z the action of J? X O(k) reduces to an action of
Om) X Ong — 1) X . X OW;— n,—1) X Ok — n,)

which we, for short, call H(n, ns, .., n)= H. Therefore, we may state the
following

COROLLARY 2.9. - The subgroup of J¥ X OF) which leaves Z setwise fixed
is H.

Also notice that the elements of J? X O%) which leave a point of Z
fixed are a subgroup of H. Therefore, we have another

COROLLARY 2.8. - At a point of Z the isotropy group with respect to
JE X O) is equal to ihe isotropy group with respect to H.

By Corollary 2.5 and Theorem 2.6 we see that if K is an orbit of Vi
under J? X Ok) then K N Z is an orbit of Z under H.
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Also, if K is an invariant subvariety of F then K N Z is an invariant
subvariety of Z under H. Let us call the correspondence between invariant
subvarietes of F under J? X O%) and invariant subvarieties of Z under H
p. ¢ is given by oK)= K N Z. We claim that p is 1 — 1 and onto as a
correspondence of invariant subvarieties. To see that p is onto, let Ky be
an invariant subvariety of Z under H. Let K be the union of all orbits
under J? X O(k) which pass through K. K is the «closure» of Kz. This
idea of closure may be made precise as follows. Let all the invariant sub-
varieties of F under J? X O(k) be closed sets. Then one may check that the
union of two closed sets is again closed and the intersection of any family
of closed sets is closed. Thus we have a topology. The closure above is in
the sense of this topology. ¢ is 1 — 1 because the closure of a set is unique.
We may summarize these facts in:

ProposiTION 2 9. - The subvarieties of F(n, ns, ..., n,), invariant under
J? X O(k), and the subvarieties of Z(n, ny, ..., n,), invariant under H(n, n,,
vy W) are in 1 —1 correspondence by a correspondence p given by pK = K N Z.
Also, if K is an orbit of F under J* X O(F) then KN Z is an orbit of Z
under H.

Let us next turn to the infinitesimal version of Theorem 2.6, namely,
that if an infinitesimal element of J? X O(k) maps a point of Z into an infi-
nitesimally nearby point of Z fthen that element is already an infinitesimal
element of H. More precisely, we wish to prove:

TreoreM 2.10. - If an infinitesimal transformation of Jr X O%k) maps o
point of Z into a tangent vector to Z then the infinitesimal transformation is
an infinitismal transformation of H.

Proor. -~ Let d(L, 0) be an infinitesimal transformation of J# X o)
and let 4e€Z. By definition

AL, 0)4) = lim %[L(t)A'O(t)—A],

where (L(t), O(f)) is a one-parameter subgroup of J# X O(), beginning at the
identity, i.e. L(0) = indetity, 0.0) = identity.

The theorem and proof are very similar to the macroscopic version and
may possibly be a consequence of it on general principles.

We begin the proof with an infinitesimal version of Section 2.

Consider a one-parameter subgroup of J#, say L(f). Suppose L(0)= identity.
Write the infinitesimal transformation dI = lim Z(L(t} — 1d.); in bloek form

t-0
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“dl, 0 . . . 0 -~
dlay dly

. .0
Cdly Ay . . . db, |

dly; is the infinitesimal transformation along /u(f), where we regard In(f) as
a one-parameter subgroup of J'. Also dl; is the infinitesimal transformation
along U;(f) = (lu(f))'.

Hence if we can show that dl, is an infinitesimal transformation in
O(n) then dl;; will be an infinitesimal transformation of (O(n)); in fact, the
image of the same one parameter subgroup, only under a different repre-
sentation.

1t di., ..., dl, are all zero then also dl,z =0 for 1 <f < a<<p. To see
this, let a be a typical element of /..

Then by the discussion in Section 2, a = (L ..., la). By this we mean
that a is a polynomial in the entries of lu, ..., lu.

We know that § is homogeneous of degree § and weight «.

Consequently no term may contain only entries from Zi. Let o' be a
typical term of 8. Hence o' =bn where b is an entry of one of Iu, ..., 1.,
and = is a monomial in the entries of L, ..., L. Since L(0) = identity, the
elements of o1, ..., /y are zero at O and thus b{0) = 0. Consequently a(0)=0.
Thus it is euough to show that

lima—(t) = 0.

tso 1
But a/(f) = b()n(f) and if we linearize we have
b(t) = tdb,
n{t) = K 4 tdn,
where db, K, dn are just constants. Thus

nm%@ — Kdb.

30
Sinee dl, ..., dly are all zero and since db is an entry of one of them
we have db = 0 which by the above suffices to show that dl,z = 0.

To continue the proof let us suppose that (L({), O(#) is a one-parameter
subgroup of JP X O(k) beginning at the identity so that L{f) is a one-para-
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meter subgroup of J# and O(f) is a one-parameter subgroup of O(). Let dL

and dO be the corresponding infinitesimal transformations, namely

adl =lim

Li)—Id

tes0 3

d0 =lim

>0

Then one knows because our group acts like

where 6 =0 that

A4 - LAY,

d(L, O)4) = dLA + AdS.

oty — Id
e

df is the infinitesimal transformation defined by 'O(#), or df = — d0. Suppose

dC is a tangent vector to Z. Then the hypothesis is

or in block form:

- dlll O .

(”21 (Hgg ‘

_dly dly
“ld 0

0 4dn

20 4,

-0

Annali di Matematica

dLA4 + Adb = dC,

0
A sfIs+1

Aps+1

0.
aCy’

“Id 0. .

0 4y

- O Ap2

N deu

- das_—f«ll

d Op5+1

- 0
ACsy1512 ’

As+1s+l

4 pe-FL

d )1.9~+-1

ad!}s—i-ls-{—l _

39
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df is skew symmetric since 6 was orthogonal and since dfi; is a square
block on the diagonal, dbi; is also skew. Very similarly now to the previous
proof equate the top row of dLA4, AdO, and dC obtaining

dlll + d‘)ll == O

and db; =0, i=2, .., s+ 1.

Since df is skew symmetric this implies that df, =0, ¢=2, .., s+ 1L
Next equate the left hand columns of dLA, Adf, and dC, obtaining dl;; =0,
i=2, .., p. From this we conclude that di;; = 0 for 2 <j < i<<p. Next, as
before, proceed by induction, assuming that db; =0 for ¢ or j< ¥, i=7.
Then by a consideration of the {* row of blocks we see that

Aud@gi = O fOI‘ i < té 8 + 1.

and hence, as before, since A4, is full rank, db; =0 for i=¢41, .., s + L.
By the skew symmetry of df, d%.=0 for i=¢41, .., s4 1 and thus
db;; =0 for ¢ or j<t+ 1, i=j. Hence dL is a block diagonal maftrix with
diagonal blocks (dl;), df is a block diagonal matrix with diagonal blocks
d6;, all of which are skew symmetrie, and also dly - dbi = 0. From this
we conclude that d(L, 0) is an infinitesimal transformation of H.

Using the fact that KN Z is an orbit under H (Proposition 2.9) this
theorem may be restated as:

CoROLLARY 211, -« TKNTZ = T(K N Z) at any point of K N Z. Here
T means the tangent space al the point.

We now ask if the orbit of any point of F does not meet Z transversally.
Both Z and an orbit which meets Z lie in #; recall Corollary 2.5. This
means that the only possibility of transversality is transversality in F. Ho-
wever, jet transversality requires transversality in F. If F is open in F then,
of course, transversality in F and F are the same. For a choice of n, %, ..., %
such that F is not open in F there is no possibility of transversality in F
because dim F < dim F.

TaEOREM 2.12. - If #, W2, .., B, are chosen so that F(n, ns, ..., n) is
open in F then any orbit of F is transversal to Z(n, ns, ..., 0.

Proor. - Note that if for some 4, %, = v(n, j) then n; = v(n, 4) for 1 <i <4,
and that if for some j, ;=& then m =Fk for j<<i<s. Thus the possible
choices of n, ns, ..., n, which make F' open in F are

for some j, 1 <<j<<s, m;<<v(m, j) and n;4 =K.

Here if j = s the condition n;4: =k is vacuous.
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Let K be an orbit of F. If K does not meet Z then transversality is
trivial. So suppose K N Z = @. By Corollary 2.11 it remains only fo show
that

dim ¥ — dim K = dim Z — dim (Z N K).

Now dim K N Z = dim H — dim (isotropy group of a point of ZN K
with respect to H) and dim K = dim J? X Ok) — dim (isotropy group at the
same point with respect to J? X O(k)). Since these isotropy groups are equal
they certainly have the same dimension. Thus it is enough to show that

dim F — dim J* X O k) — dim Z + dim H = 0.

Let us use induction to check this. Suppose first that s =p = 1.
Then

dim F = nk;
dim J? X O(k) = n? + dim O(k);
dim Z = 0;
dim H = dim O(n) + dim Ok — n);

and by a simple computation the result is true.
Now suppose that s =p. We raise s and p together, leaving » and %k
fixed. As a preparation for the induction step we write

dim Z(p) = dim Z(p — 1) + (" +§ - 1) (np — 0);

dim J? X Ok) = dim J>~ X O(k) + (" +119)— 1>n.

b

dim F(p) = dim F(p — 1) +(” +£" 1)k;
dim H(p) = dim H(p — 1) + dim Ok, — n,_)
4 dim Ok — n,) — dim Ok — n,).

Here H(p — 1) = H(n, n:, ..., #,.1) and H{p) = H(n, n,, .., n,).
Similarly for Z(p) and Z(p — 1). By the induction it is enough to show that

[EE=t)e—{rp=t) (o

+ dim O(r, — 1,—) + dim O(k — n,) — dim Ok — n,—,) = O.

)0, — m)
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This may be simplified to

n —1
{( +1; )(np—np_l)z(k——np):().
That is,
either <n+p o 1) = N, — Npei
P
or n, =£k.

If n,_1=F then also n,=Fk so the induction step is valid. If n,_.=v(n, p—1)
the above two conditions become

#n, == V(#, p) or N, =k

These are just the condition that F is open in F' so that again the in-
duction step is valid.

Now we use induction on p leaving s, & and » fixed. At the first step
of the induction, s is equal to p, which is the case we have just shown.
‘We use induction to raise p leaving s fixed. We may write

dim Z(p) = dim Z(p — 1) +(” +§ ’—1)(15—%);

dim J7 % O(k) = dim Jr—1 X O(%) + (” “*'é" - 1)% ;

dim F(p) = dim F(p — 1) + (” +£ - l)k;

dim H(p) = dim H(p — 1).

One easily checks that the induction step is satisfied which completes
the proof.
From now on we assume %, %», ..., #, chosen so that ¥ is open in F.

COROLLARY 2,13, - Any invariant subvariety, K of F under Jr X O)
meets Z(n, ns, ..., 0 transversally. The conditions of Theorem 2.12 are assu-
med for n, N, .., Ns.

Proor. - It K does meet Z the corollary is trivial. Thus suppose K
meets Z(n, N, ..., n). Let g€ KN Z be a regular point of K. Let L be the
orbit of ¢ under J? % Ok). Then L C F by Corollary 2.5 and, by Theorem 2.12,
L meets Z transversally. But L C K. Consequently, K also meets Z transver-
sally. If ¢ is a singular point of K then transversality is equivalent to being
transversal to a finite number of varities which are regular ot g. Thus, by
the above, the result is again frue,
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CoROLLARY 2.14. - The codimension of KN Z in Z is equal to the codi-
mension of the locus of K singular points for any map [. M-> N which is K
jet tramsversal. K is a subvariety of some F where the conditions of Theorem
212 apply to n, na, .., n,.

Proor. - This is a consequence of FELDMAN’S result, stated here as
Theorem 2.2, and Corollary 2.15.

Nore - In the case s =1 the hypotheses of Theorem 2.12 are satisfied
whenever f is an immersion,

In the case s=1, p =2, n =2, k=4 we see that Z cousists of matrices

of the. form
Id 0
O AZZ

where A3 is a 3 X 2 matrix. We will show in Proposition 2.16 that if
N = E* the matrix Az is equal to

a e
b f
c g},

where a, b, ¢, e, f, g are the coefficients of the second fundamental form as
described in Chapter I. Thus Corollary 2.14 contains oiir Theorem 1.11 of
the first chapter. Bear in mind the correspondence p given in Proposition 2.9.

5. - Consideration of a map f: M- N; N a manifold with symmetrie
connection.

The map f induces a map
Dpr: TPM"Q TIN

and also the map
?:M—»Hom(TE,M} T.N)

8o that f(g) € F, where F is the fibre of Hom (T,M, T'N) at (q, f(q). If we
assume [ is an immersion then ?(g) is 1—1 on T:M,. Hence we may-apply
Theorem 2.4, This says that given any orthonmormal basis K, ..., E., of
T:1Nyg such that E, .., E; spans ?(g‘,(TiMq) fori=1, .., s and E,;; com-
pletes E,, .., E; to an orthonormal basis for T:N,,. then there exists a
unique basis X1, .., X, of T,M, induced from coordinates in a neighborhood

L)

" of g such that the matrix for f(g) relative to the bases (X, B) has the form
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prescribed by the theorem. The family of matrices of this form we call Z.
(This Z is a family of matrices. The previous 7 is a family of linear tran-
sformations). Because the basis X is unique the matrix for f(g) of form Z
will also be unique.

For the purpose of studying transversality at a point ¢ we may assume
that M is just a small neighborhood of ¢ and that the bundle Hom (7, M, T.M)
is trivial over this neighborhood. In fact, according to Lemma 2.1 we may,
in order to study transversality at g, replace the map f: M — Hom (T,M,T; M)
be a map f:M — F, where F is the fibre of Hom (T,M, T.M). We make
these assumptions for the remainder of the chapter.

Let us suppose that for every point ge M the dim faXT:M) = n; for
i=1, .., s. Then by the above argument we have shown.

ProposiTION 2.15. - There exists a map p . O — Z, where © = On, nz, ..., W)
is the osculating frame bundle, such the diagram

otz
JERE
M— F

is commutative in the sense that a fibre of O is mapped, either way, onto an
orbit of Z under H. The map y is defined by saying that p(q, Ei, ..., Eip)
is the unique matric picked out by Theorem 2.4. Here (g, E:, .., BEi1)€O.

By ¢: F - Z is meant a map of points of F into orbits of Z under H.
It is defined by sending a point of F into the intersection of Z with the
orbit, under J? X O(k), of that point. This map p induces a map of orbits of
F, under J» X O(k) which is just the 1 —1 correspondence of Proposition 2.9.

The fact that the entries of Z are defined on © indicates that we ought
to be able to express the entries of Z in terms of the differential forms w;
and o;; by the method of E. CARTAN. (Assume for this discussion that
N* = E* Euclidean k-space). The map p:O-»Z given by Proposition 2.15
is defined as follows, Given a point (g, 1, .., e:) of O, pick nice coordinates
%1, ., %, by Theorem 2.4 and define plg, e1, ..., €i) to be the matrix for
D,T,f), in terms of the bases Xi, .., X,, induced from wu;, .., ., and
€1, ++, €z, Let the matrix p(g, e, .., es) be called 4. A has the block form
described in Proposition 2.4. We now show:

ProprositioN 2.16. — The block Az of A has coefficients which are nothing
but the coefficients of the second fundamental form.

Recall that the second fundamental form is
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k
T @ edes
fmend1
Sine df-e,=0 for ¢ >n we see that w;=0 for ¢>n; also, since
de.;ve;=0 for 1 <<iéi<<m and j > n:, we see that wy; =0 for i<<n, j > n..
Now d*f e, = — df - de;, 80

k n
d’fra=—df- T vye;= 3 o4;.
= j=1

Thus we may write the second fundamental form as

ny n
Y w6,
immnefel  j==1
Here ¢ is summed only to %; because w; =0 for ¢ > n., j << n. Since
0;=0 for j=n-+1, .., no we have dv;= ¥ w; A o;=0 and thus, since
®1, .., v, are independent forms on M, we have, by a lemma of CARTAN,

n
wj; = k21 a}kmk.

The second fundamental for may then be written

no n .

Y alwme..
iz§+1 k=1 TR
We wish to show

Azz = ((J/jbk) .

Now df = ¥, 8f/3u; du; where u1, .., u, are coordinates which are nice
at ¢. Let us write 3f/3u; = ¥ fye;. Thus

df:: ) z 1 ﬁjejd?fég .
i, j=

At g of/9u;=e; and the matrix f; is the identity. Also du;= w; at q.
Differentiating the above we have

a*f= )n: dfyedu; 4 Zn fydedu;
N ~

i, = i, j=1
but
de = ; ;6
k=1
80 d2f = %_1 (dfik -+ P f;ju),-k)ekdu;

j=1

4+ Y fiopedu;.

ksmn-b1 4, j=1
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At ¢, since d?f has no components in the tangent direction because of the
special properties of the coordinates w., ..., #. at q, we must have

dfik=—(0ik 7:,]6:1, sy R
and
"’2 n
d’f= 3 T wuwe.
iﬂn+1 =1
Since
Wy = % a;}cjcuk

everywhere and in particular at ¢, we have

ny n

df= X 3 oo

fsmnepl Q=1

But at g wi = du; "so
a’f = f T aiduduee; ab g.

p=n-tl f, k==l
This shows that

32’
s 1 n
Z‘)M]’ duy T EEMLE ajk) at q,

which establishes the result.

One may also describe the entries of the higher order blocks of 4 in
terms of the forms ®; and w;. The calculations are not very inspiring even
for the third order case however, for curves in E°® the calculations are not
so uninteresting.

If eese; are the Frenet frames, s the arc length and ¢ a coordinate
which is good at g then for the curve X(f) we have at ¢:

ax

a

azX

—dtz' == %ey,

azX dx

P PR

where » and t© are the curvature and torsion.

6. - In this section we prove that jet transversality implies geometric
transversality. The following rather technical lemma will be useful.
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LemMA 2.17. - Let I’ be the unit cube and {I™}, m < f, the parallel
linear spaces given by amy1 = comst., ..., ©; = const.

If a wmanifold Z wmeets each I™ transversally then we may choose coordi-
nates in some neighborhood of a point g€ Z so that each I™ remains parallel
linear and in addition Z is linear.

Proor. - Take coordinates about ¢ so that Z is a linear space, say
Y1, Yo Z is given by 241 = .. =yr= 0, where r = dim Z. We will show
that in some neighborhood of g, a1, ..., @, Yri1, vy Yr, Tutr, ., Ty arve a
system of coordinates, where [ =dim Z N I*. They will then obviously do
the job. Note that by transversality, m +r =14 f and 3/3x:, ..., 3/x: are
tangent to each Z M I". We may, by an affine change of coordinates which
preserves parallelism and linearity, assume that at ¢ 9/3w.., ..., 3/%%, are
tangent to I and normal to Z. To show that w1, ..., %, Yya, ooy Yry Bagrs ooy
.., Xy are a coordinate system we compute their Jacobian with respect fo
X1, .., 7. This will be nonsingalar if

W B
%1 oXr g
EZT.H a"_l/f

o, T dw,

is nonsingular. Note that since m -4 r =14 f, the above matrix is square.
Now

_a,_.—_:_;:)y_l .?W_{_ + %Y. o W 3 oy o
g Oy Ogn ' By Jyr | dwis dYran .1 Yy
i . ay1 9 ay, J Sy,_H e ayf 9
awln o awm 3(1/1 + " + 3a‘m ayr + awm ayr+1 + o + amm %.

At g, since 3/3x,_1, ..., 3/3%, are normal to Z and since /3%, .., 3/3y, are
vectors tangent to Z, we have

3 _ W 2 3y 8
ox 11 a-’l'z-]-l OYr i N dwrya Y
2 % 2 dyp 2
0y, M. OYeya - Bn Jyp
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Since obviously both 9/caiq., .., 9/, and 3/cy, .., 3/3y, are independent
sets of vectors, the needed Jacobian, at ¢, is nousingular. Hence it is non-
singular in a neighborhood of ¢, and thus our desired coordinate change is
valid.

For any Lim transformation group G which acts on a space F there is
a map from the Lie algebra of G to the family of continuouns vector fields
on F, given by sending each X e Lim algebra of G into the infinitesimal
transformation,

. exp tX « p} — .
This is a LiE algebra homomorphism; ie. [X+, Y*+|=[X, Y}+. See for in-
stance PaAnais [11]. Thus the family of infinitesimal transformations form a
completely integrable system and their integrals, the orbits, are the leaves
of a differential system.

TuroreM 2.18. - Suppose that M is a submanifold of F, not necessarily
invariant, which meels an invariant manifold K transversally. Then ol weels
e K transversally.

Proow. Take gepM N pK. Let L be the orbit under Jr X O(k) through
g. Then M N L == @. So take re M N L. Since r, g€ L there is an element
of the group Jr X O(k), say «, which sends » to ¢. « is a diffeomorphism
from a neighborhood of # to a neighborhood of g. Therefore M is transversal
to K at r if and only if «(M) is transversal to K at g. So, by replacing M
by «(M) if necessary, we may assume that qe M.

Since the orbits are leaves of a differential system we may, in a neigh-
borhood of g, choose coordinates so that the orbits are parallel linear spaces.
Since each orbit meets Z transversally, by Theorem 2.12, we may apply
Lemma 2.17. Thus we choose coordinates in a mneighborhood of ¢ so that
the orbits are parallel and linear and also Z is linear. We may, by an affine
transformation, assume that the orbits intersect Z orthogonally. Let =z be
the normal projection onto Z. Then, because =z is projection along the orbits
and because pK = K N Z, we see that

K = pK.

Also because of the definition of pM and the nice choice of coordinates we

have
ToM = TeL + Tn.M,

where L is the orbit through ¢, and where T means the tangent space at ¢.
Since M is transversal to K in F, nzM is transversal to nzK in Z. Thus
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TZ = TnzM 4+ Trn:K
but nzK = pK so
TZ = T’itzM+ TpK.

Also TeL C ToK because L C K. Thus TZ = TpL + Tr:M + TeK and, because
ToL 4 Tn;M = ToM, we see TZ — TpM - TeK, which implies that pM is
transversal to pK in Z.

Let K be a subvariety of F invariant under Jr and let oK be the corre-
sponding subvariety of Z invariant under H. A point ge M is called a K
geomelrically transversal singular point of M if n(O) meets pK transversally
all along the fibre of O over q.

COROLLARY 2.19. - Let K be a subvariety of F invariant under J° and
suppose F is open in F. Then if q is o K jet transversal singular point it
is also a pK geometrically transversal singular point.

ProOF. - Since ¢ is a jet transversal singular point f(M) meets K
transversally at ¢. By Theorem 2.18, since F is open in F, pM(M) meefs pK

transversally at ofig). But w (fibre over ¢) = pf(g) and p(O) = pr). Hence
w(©) meets pK transversally all along the fibre over q.

Consider the case p =2, s =1, (the frame bundle F of Chapter I is
now Q). Assume that N* = Ef. By Corollary 2.16 Z may be taken to be the
space of second fundamental forms at a point, ie. Z={(ZayTwx,, ..,
Saifx;v;)}. In this case H =0(n) X Ok — n) and its action on Z is induced
from rotations in the tangent and normal space. The map p: O — 7 is just
the second fundamental form, i.e., u(xe ... e;) is the second fundamental form
in the frame e, ... e, evaluated at the point x. Let us summarize the results
of this chapter in the second order case.

TasoreM 2.20. - Let f: M"— E* be an immersion. Let K be any subvariely
of Z invariant under H, where Z is the space of second fundamental forms.

The K geometrically iransversal functions are dense in C®(Mr, F).
If [ is K geometrically transversal then the codimension of the locus of
K singular points is equal to the codimension of K in Z.

PRrROOF. - Since s=1 F is open in F, so, by Corollary 219, jet transver
sality implies geometric transversality. Thus, by Theorem 2.3, the geometrically
transversal maps are dense in O®(M", E*. The second part is a restatement

of Corollary 2.14 bearing in mind the correspondence g given in Proposition
2.9.
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Craprer 111,
The Veronese Manifold.

In Chapter I we began by studying the local invariants of a surface in
E*. The invariants of the second fundamental form can be very well under-
stood by means of the curvature ellipse. (See Figure 1 in Chapter Ij. Studying
the invariants is equivalent to studying this configuration. It is therefore
quite natural to try and extend these ideas to higher dimensions. Are the
second order invariants the invariants associated to some configuration? If
8o, can we use this configuration to choose either tangent or mormal frames
as was done for surfaces in E*? It is with these questions that this chapter
is concerned.

We shall indeed find a configuration. In the case n =3 it is very well
known in classical algebraic geometry as the VERONESE surface. Our interest
is in the affine and metrical properties of the VERONESE surface, so that
our treatment must be independent of that of classical algebraic geometry.
We are also able to pick out «in general» principle axes in the tangent
space. This construction was inspired by the classical treatment. Thus although
we do not use algebraic geometric proofs, we do wish to acknowledge the
large inspirational debt. We refer to BAKER [1] and SEMPLE and RorH [14]
for the very rich literature on the VERONESE surface.

Our discussion admits a purely algebraic treatment. The motivation is,
of course, the study of the second fundamental form. We postpone, however,
a differential geometric interpretation until the concluding chapter.

DErFINITION 3.1. - Let

X: 81— EY
be the map given by
X, o, @)= (Za}jmimj, ey Eafj‘.’wiwj)

1 .
where N :én(n—{— 1), 24 ..+ 22=1, and (ailj), oy (af) are N symmetric
matrices. The indices 4 and j run from 1 to n. Let g, = (u}l., ey aﬁ;’) so that
we may write

X(:m, ey G‘}'n) = Zaijmiw,».
If the IV vectors @u, @z, -, G, Giz, -, Ou1, are independent we call the

image of S*' a VERONESE n — 1 manifold,
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Nore 3.2. - Since (%1, .., ®.) and (— &1, ..., —as) are mapped to the
same point, X gives a map

X : Pn-—l e EN,
of the real projective n — 1 plane.

PRropOSITION 3.3. — A4l Veronese n — 1 manifolds are affinely equivalent
in BN,

Proor. - Let 4 :EV—> E" be the affine (actually, linear) transformation
defined by sending

11 => €1y wvy Oup~> En, B2 => Cotyy ooy Qpenin —> €N,
where e, ..., ey are the standard basis in E”. Then the image of Xa,xw; is
@, ., @2, 2om,, ..., 200, x).

Since all VERONESE % — 1 manifolds are affinely equivalent to this particular
manifold, they are all equivalent to one another.

Thus to demonsirate that the VERONESE % — 1 manifolds have some
affine property it is necessary only to show it for some particular n — 1
manifold.

ProrosiTION 3.4. - 4 Veronese n — 1 manifold lies in an N — 1 dimen-
stonal linear space.

ProOOF. - 2} 4 ... 4+ a2 = 1. So

Zawx, = ) + (@, — a0 + ... 4 (@, — @) 4 2 E axx,.
=

Thus it lies in the space spanned by @u — @i, wvy G — Quiy Grz, ory Onin
which is an N — 1 dimensional space.

Let us, from here on in, require only that s — @11, vvy Guw — G101, Gz, ery Goin
be independent. Note, under this assumption, that if @ + ... 4 @, = 0 then
any # —1 among Qu, ..., @, are independent,

TarorEM 3.5. - The Veronese manifold
X, oy ) = (2%, .., 22, V20, ..., V22 2),
hereafter called the standard manifold, lies on S"'. Consequently since it

lies in a hyperplane it lies in an SY—2 sphere. It also has the property thet
a rotation of 8 gives a Euclidean motion of EM. :
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Proor. - X+ X = (¥ 4 ... + &)® = | proves the first assertion.

Note that E"o E*, the symmetric tensor product of E" with itself, has
inner product

[y

(vom, ros8)=35(v 7w, 8)+ (v, s)(w, 7))

induced from Er. If e, ..., e, is the standard basis in E* then e oce, ..,
nctn, V2106, ..., V2,106, is an orthonormal basis for E*o E». Thus the
map which sends the above basis for E"o E” into the standard basis e,
for EV gives an isometry between "o E" and EV.

Note also that if §: E*— E* is an isometry then SoS: E"o Er— E"c B,
defined by So Swow) = Sv)oSw), is also an isometry. The standard VEro-
NESE manifold in terms of the orthonormal basis for E~o E” becomes X{ax:, ..., o)
= (X181 = oo - X08,) 0 (1181 + o F Xnes) o1, i V= e - 0 F K,

ey €N

X(v) =wvour.

Consider now an isometry §: E* — E”. Then X(8(v)) = Sw) o S(v) = SoSwev)=
So S§{X(v)). Hence the fact that SoS is an isomefry gives the result.

COROLLARY 3.6. - For the standard manifold any point and tangent frame
may be sent info any other point and frame by a inotion which maps the
Veronese manifold onfo itself.

TuroREM 3.7. -~ The Veronese wmanifold is an inflection-free imbedding
of P in EM1,

Proor. - It is enough to show this for the standard manifold. Note that
ww; = gy, 1<<i<<j<<n implies (@, .., %)= =2(y:, .., ¥) which shows
that the map is 1 — 1.

To check that X is an inflection free imbedding, we need only check
that the first and second derivatives are independent at one point, say X(e).

The previous theorem then gives the conclusion. Regard as, .., . as local
coordinates at e; so dx1/dx; = — a;/ay, ¢ = 2. The tangent space at X(e) is
spanned by

3X/3xien, =2,
which is equal to 2 e;o¢;, and the first normal space by
2X/3xHe)) and 32X/dw:dxfes),

which are 2(e;o e — e10e;) and 2¢ 0¢;,. Since these vectors are all independent
we have the result.
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Since X : 8! — EY we may also regard X as mapping a frame in E,
into » points in E¥.

Prorosition 3.8. - The image of every frame is a set of n independent
points with centroid X = }z(au + o ).

Proor. - For the standard manifold X(v). X(w)= (v.w)*> so that the

image of a frame is a frame. Thus for an arbitrary VERONESE manifold the
image of a frame is a set of independent points.

Let a1, ., @ be a frame in E* where a; = (01, ..., ;). Then
Xloa) + oo + X{on) = Zjo0m0 = :3.; (o) = t -+ oo + G,
because column vectors of the matrix («;) are also orthonormal. Thus
K= (Xo) + o+ X,

Remarx 8.9. - The map ¢: O(n) — O(N) given by p(S)= So § is a repre-
sentation of Ofn} by elements of O(N) with represenfation space Ero E” or,
because they are isometric, E". The standard VERONESE manifold is an orbit.

We ask if the representation is irreducible and if not what are the
invariant subspaces.

Prorosirion 3.10. - The line through ;12 (6306 + ... + euoe) which is X

for the standard Veronese manifold is left pointwise fixed.
1 1
Proor. - P(S)(J‘E) = So S(Jﬁ) =So S(’);, (61 o e —l— . -I— [ en)) = ;’I;(S(el) <] S(el)

+ ... 4 Sle,) o Slen)) :%(X(S(el)) + ... + X(S(e.))). But since S is orthogonal

S{es} ... Sle,} is a frame and thus by the previous proposition p(S)¥)=H.
Thus the line through X is left pointwise fixed.

Therefore, any orthogonal hyperplane to the line is also left fixed, in
particular the one containing the tip of J{. This kyperplane we call §. If
we restrict p to £ with origin now the tip of }{ we obtain a representation

of O(n) by elements of O(N — 1). We ask if this restricted representation is
irreducible,

ProrosiTioN 3.11. - o resiricted to § is irreducible. Hence the only point
of & left fixed by all elements of p(O(n)) is X.

This proposition is a very well known fact in the theory of group repre-
sentations, see foristance, BoErNER [2].

TuEOREM 3.12. - The centroid of the Veronese manifold is

¥ = % (@11 =~ .. [l,m).
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Proor. - Because the centroid is an affine invariant, it is enough fo
show that 1/n{e10e: -+ ...} e,0¢,) is the centroid of the standard manifold. The
linear space £ is the hyperplane in which the standard manifold lies. The
mofions of E" induced by rotations of S"' all leave J{ fixed, by Proposition
3.10. They are also motions which map the standard manifold onto itself.
Thus the centroid must be a point of £ left fixed by all motions induced from
rotations by S*—'. By the previous proposition such a point must be .

PropositioN 3.13. - Let 8! be a great ¢ — 1 dimensional sphere contained
in &1, i < n. Then X restricted 8™ is a Veronese i — 1 manifold.

Proor. - We may rotate any great S! sphere into the one given by
Xiy1 = «. = ®» = 0, and for this one the result is obvious.

Let us call X(S8—!) a sub-VERONESE manifold of X(S—).

ProrosirioN 3.14. - ¥ is not contained in the span of any strictly sub-
Veronese manifold.

This need only be checked for the standard manifold and the image of
the S given by %ip1 = ... = @, = 0.

We have previously seen that V*—! is an inflection-free imbedding
of P! in E® ' Thus each VERONESE submanifold of V*—! say Vi, i<mn,

is an ¢ — 1 dimensional submanifold contained in a%i(z’ +4 1) — 1 dimensional

linear space and infact imbedded in an inflection-free manner. The converse
is also true.

TarorEM 3.15. - Any i — 1 dimensional submanifold of V'—' which is

immersed in a ;—z‘(z‘ 4+ 1) — 1 dimensional linear space must be a sub-Veronese
manifold.

ProoF. - We may assume the VERONESE manifold, V*—!, is the standard
one, V=—.. By a rotation if necessary we may assume that X{e:) is a point of
the submanifold and that the tangent space to the submanifold at X(ei is
spanned by

EX/sz(el), veey aX/ail'g(&).

Regard @3, ..., ®, as coordinates for V*—' at X(e;) and denote the submani-

fold by M.
Since 9X/dwafer), ..., X/dxde) span the tangent space to M at X{e) we
may take a, ..., @ as coordinates for M. Furthermore, the second order

osculating space at X(e)) is contained in the a spanned by
3X/3wfe), =2, .., n and 3X/2wilwnle), 2Kk, m <.

Call this space L. Also the second order osculating space has maximon
dimension. The reason is that a submanifold of an inflection free manifold

is also inflection free.
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Thus the dimension of the second order osculating space to M at X(e)
is%i(z’+ 1) — 1. But M lies in a linear space of that dimension and hence

it must lie entirely in its second order osculating space at X{e)).
We will now show that
Vet N L= X(8Y)

where S is the sphere given by x4y = ... = o, = 0. The vectors 3*X/0x¥e,)
for £ >4 do not lie in L. But

32X/3mz(el) poaord 2(8[; o €@~ €10 31).
Now

X{m;, very Xp) = Ewixje; ce
=106 + Zwlfgoe; —e1oe) 4 2 I xmie o6
i<k
Thus the component of X{x1, ..., .) along ¢;0¢; — e 06, is w?. So, we must
have wiy; = ... =, =0 at a point of V-1 N L. '
Thus the manifold M is immersed in the sub-VERONESE manifold X{(S*).

Since they are both of dimension ¢ — 1 they must be equal, and this concludes
the proof.

COROLLARY 3.16. - An i — 1 dimensional submanifold of V> lies in a
linear space of dimension = %z‘(i +1)— 1
ProrositioN 3.17. - If an n—1 plane through the tip of H meels o

Veronese manifold V*—' in n poinis either they are the image of a frame or
they lie on a sub-Veronese manifold.

Proor. - Assume the n points do not lie on any sub-VERONESE manifold.
Thus the n points are images of n independent points of S, say ay, ..., a,.
Let o = (a1, ..., a). Notice that by a rotation of S$*—!, which just changes
the VERONESE manifold to some other one, we may assume that (a7} has
triangular form.

oy == (1, 0 cre 0},
&; == (C(,;l, nay CCiiO e O),

&y == (“nl, veey dun)-
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Since a1, ..., 2. are independent we must have au=3=0 for i =1,

Je=

X{O&i) — = Zl (ljj(zxi‘,)z + 2; z Ok iy == }&(au + cee a,m).

Also a2 =1—a} —... —a 80
X(oci) —_— J’f = au(l —_ (Zizz —y Oﬁi) —_2 Cl/jj(dil‘)2
j=2

: 1
+ 2 = a,-koc,-jocik —— (au + -I— an,,)
jo k=1 n

i

Y 1 ;
== .242 {a,-]- — a11) ((Otij)z - ;&) -+ 2 X OjiXij%ik

j=

Jo k==l
1 n
—_—— X (akk —_ (1«11}.
N p=it1

But Qy — 11, }.: 2, wey W and Qi j, k= 1, PP
X)) — K, .., X(on) — ¥ are dependent. Thus the matrix

-1

.y . Now

. B, j <k are independent and

i o. . . . . .0 -
" s e e s e e p )
(L.Z _ }_ » a% __l . }'". o _1_ 20&10(;2 res Qaii__lxgo O
i2 n it n n o
1 1
i G e O — 20,100 =1

falls in rank. Next, consider the square matrix of the first » —1
together with one of the last, say

CoC

J < n.

- anj"nn —_

columns
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Tts determinant, expanding via the last columns, is

1 1
n "
%nj%nn : ’ H
: 1 1
n—12 n " n

which is — 1/Ma, %% 151 .. %22 But since the determinant is equal to zero
and «; =0 we must have a,; =0, j <n. So a, = e,.
Similarly, by induction if you wish, we prove that a,_1 = e,—1, ..., a2 = e2.

COROLLARY 3.18. - If ¥ lies on the span of j<<n points of V' then
i =mn and the points are images of a frame.

Proor. - If j <n then the j points lie in a sub-VERONESE manifold,
and so ¥ cannot lie in their span. Thus § == n. If the points lay in a sub-
VERONESE manifold then X could not lie in their span; hence they lie in no

sub-VERONESE manifold and so, by the theorem above, the points are images
of a frame.

ProrositioN 3.19. - A Veronese manifold has no trisecants.
Proor. - Note that the standard manifold lies on a sphere.

CoroLLARY 3.20. - If a 2-plane through the tip of X meets V2 in 3
points, they are the image of o frame.

Proor. - If the 3 points are dependent they lie on a line, but the
VERONESE surface has no trisecants. Thus, they are independent, so that ¥

lies in their span. Thus, by the preceeding corollary, they are the image of
a frame.

Durpinmrion 3.21. - By an n-gon we mean the image of a frame, or n
points of V"' whose centroid is J.

TurorREM 3.22. - The n — 1 planes of all n-gons fill out the entire N — 1
space in which V! lies.

Proor. - It will be convenient for this proof to assume that the vectors
ay are all independent. If this is not the case we may translate V* so that
its linear span, £, does not contain the origin. Let b; be a dual to ay, i <j.
That is, b;+ au =0 unless ¢ =%, j =1, in which case, b;+a;=1. Let v be
the position vector of a point in £ We may write v as
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v= X (bij . v)aij.
i=j

Since the tip of v lies in £ we know that

Zhirv=1.
im=zl
Thus we see that (b;-v) is a symmetric matrix with trace = 1.
Here we define by = b;;. Let

X*(e) = Zbyees; .

X* also gives a VERONESE »n -— 1 manifold which we call V* the dual
VERONESE manifold. Consider

X*a) « v = Z{by - v)w;,

this is a quadratic form with matrix (b;-v). We may, by a rofation, diago-
nalize this quadratic form. Let the diagonalizing frame be ef..e,. In terms
of this frame lef us write

X(x) = Zaj; « wux;

and let b be dual to aj. Then (b} .v) will be in diagonal form. Also its trace
will remain 1. Thus we have bj;.v =0, i and b; - v =%, where Zli=1.
Hence
v= X (b vjay
=j

= 2 haj;, where
=1

j1

s =1
e}

i

This shows that the point v lies in the » — 1 plane through the points ai.
Since of course X{ei) = ai; we see that the point v lies in the span of an
# — | plane through an n-gon.

THEOREM 3.23. - Given a line through the centroid of V*—' lying in £,
the linear span of V', there is an n-gon whose n— 1 plane contains the
line. If the line does not pass through the span of a Veronese n — 3 submanifold
the n-gon is unigue.

PROOF. - As in the previous theorem we may assume that the a; are a
basis for EY. Let v be the position vector of a point on the line; v ==J.
Then by the previous theorem we may assume that the point v lies in the
n —1 plane of an wn-gon. Suppose that er..e. is a tangent frame which
gives the m-gon. Let @1, .., ®, be coordinates written in terms of ¢1...8,
and let

X(a) = S0 .
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Thus the n-gon is just au, .., @.. The n—1 plane, since it contains the
points v and J must contain the line passing through these two points.

Now suppose that v lies in the n — 1 plane of another nm-gon, with
frame €}...¢e,. In terms of this frame left us write

Xix) = Zajmwx; .

The n-gon is then is then given by an, ..., a.. and since v lies in its w — 1
plane we must have
v= % Nah, where 3 A =1,
im==l i=1

Let by and b; be dual bases for the bases a; and aj respectively. Then we
see that the matrices (b« v) and (b - v) are both in diagonal form. Furthermore
they are both matrices for the quadratic form X*.v with respect to these
two bases, X* is the dual VERoONESE manifold defined in the previous
theorem. Thus up to the order of the diagonal entries the matrices (b;- v)
and (b;+v) are the same. By reordering, if necessary, the basis ef, ..., e,
we may assume the matrices are identical. Notice that reordering the basis
e{, .., ¢, does not change the n-gon aii, .., a;.. If the eigenvalues are
distinet then the eigenvectors must be the same up to a sign, and hence
the two n-gons identical. However, we have assumed the two n-gons are
different.

Thus there must be at least two equal eigenvalues, say A; == %» = A.

This means that we may write

v = Ao + Aoz - é A,
i==3

where of course 2A - En A; = 1. But
i==3

n¥ = an + a2+ T a;.
i=3
Thus

v=ni} -+ é (i — k)a,-i,

i=3

where wA 4+ X (A, —3) =1, Let p= 3 (}i —2) and let b= é 5 (A — Aaa.
iz=3 =3 =3
Thus we may write

v = AnJ{ + pb, where Ain -+ p=1.

This means that v lies on the line joining J{ and b. But b is in the linear
span of the VERONESE » -— 3 submanifold which is the image of the great
n — 3 sphere containing es, ..., e.. Thus the desired conclusion is reached.
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REMARK 3.24. - Ewvery point in the span of a Veronese n—3 submanifold
lies on the span of two distinct n-gons.

Proor. - There is an n—2 gon of the submanifold whose span contains
the point. Complete the n —2 frame to an n-frame in two different ways
getting two distinet n~-gons.

The standard manifold has the property that the image of a frame is a
frame, see Proposition 3.8. Let us show the converse

ProrosrtioN 3.25. - If X = S a,x:x; maps frames lo frames then it is
congruent to the standard manifold.

Proor. - Since X(e) =a; and e;, ..., e, is a frame, we see that a;> =1
and a@; « a; = 0. Since any point belongs to some frame X.X =1, so the
manifold lies on the unit S,

It we write out X - X, using the fact that «f = 1 25 — ... — 3 to eliminate
powers of ; greater than one, then the monomials in @, .., «, are inde-
pendent. Equating coefficients and using the fact that nothing is special
about the index 1 we find

Aij » Qg == O;

Qi = Oy = (),

@i+ O+ 205 - Qi =0,
(@ — a:)* = 4o,

a,‘iz-': 1,

where the indices are distinct. Using the fact that ai+a; =0 we have a;* = 5"
Again, since frames map to frames, X(e) must be orthogonal to X(«),

n

where o is perpendicular to e;. Thus an-( ¥ agyra) =0, where
i, j=2

#; + ... + 2 = 1. Eliminating powers of x, greater than 1 we have an ex-
pression in which the monomials are independent. Thus we must have
o - ay; =0, i, j=2. By symmetry of the indices, ai-au = 0. This, together
with the above, shows that ay-a; = 0, and now the result readily follows.

COROLLARY 8.26. - All Veronese submanifolds of the standard manifold
are congruent to the standard manifolds of their dimension.

Another property of the standard manifold is stated in

PROPOSITION 3.27. — Let Vi—! be a Veronese submanifold of the standard
manifold. Then 82 N span V= is a sphere whose cenler is the centroid of
Vi—t. 852 4g the sphere in $ with center ¥ which conlains V..
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Proor. - The intersection is certainly a sphere since the intersection of
a linear space and a sphere is again a sphere. Also, since the submanifold is
congruent to a standard manifold, it lies on a sphere whose center is the
centroid. Let (= the center of the sphere S N span V*~'. If C is not
the centroid let L be the line through C and the centroid. Choose an é-gon
whose ¢ — 1 plane contains the line L. Then C is equidistant from the ver-
tices of a regular ¢-gon, lies in the ¢— 1 plane of the i-gon, and is not its
centroid. This is a contradiction.

ProposiTION 3.28. - Any Veronese manifold, V™, lies in a hyperquadric
Q"2 which has the property that the span of any Veronese submanifold Vi—'
meets Q¥* in a hyperquadric whose cenler is the centroid of Vi—'. Also the
cenler of Q"% is the centroid of V1.

Proo¥r. - The proposition is affine and the previous proposition verified
this proposition for the standard manifold.

DerFiviTioN 3.29. - Let us say that such a hyperquadric and manifold
belong to each other.

Turorem 3.30. - Every Veronese wmanifold has a wunique hyperquadric
belonging to il.

PROOF. — Since V™! can be mapped to the standard manifold by an
affine map of all of E¥, it is enough to show that S$"2 is the only hyper-
quadric belonging to the standard manifold. Again it is enough to show that
it V. belongs to S"* then V. is congruent to V.. For suppose V, belongs
to a @"—*, not a sphere. Let 4 be the affine map which takes Q"% to S¥-2
Then A(V.) beloﬁgs to A(Q"%) = §V-% Also A(V.) is not congruent to V,
because A4 is not a congruence. Thus if V., belongs to two hyperquadries
then two noncongruent manifolds A(V.) and V. belong to §¥2, The converse
is proved similarly.

We now show that if V, belongs to S"-? then V, is congruent to the
standard manifold. To see this, consider a 3-frame in S afy. Let X be

the map for V;. Let %1=%(X(oc)+X(§)+ X(y)). Let S* be the great two

sphere containing a, 8, y. Then J; is the centroid of the sub-Veronese ma-
nifold X(S8%. The span of X(S? is a bB-space which intersects S¥2 in a
4-sphere, say S% Then because S¥—2 belongs to V., the center of S*is Jf,.
Thus, because X(x), X(8), X(y) lie on S*, the vertices of the triangle X(a)
X(B) X(y) are equidistant from its centroid, and consequently it is equilateral.

Now given an n-gon X(«.), ..., X(a,) of Vi, we see that it must be re-
gular since any three vertices form an equilateral triangle, Since S¥2 belongs

to V,, the centroid of V, is the center of S§/2 = %271_2 Y eice;. Also, since
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ViC 8¥2C¢, the span V, = ¢ which is perpendicular to ¥. From this one
sees that X(ai), .., X(«,) is a frame. Consequently, V, has the property that
the image of every is again a frame, and so V, is congruent to V.. This
completes the proof.
Let us call the map
X 81— BN
given by
X@1, ooy %) = 5 iy

a configuration if the vectors ou, .., @,—1. are all independent.

We make this definition because we will need to distinguish between a
VERONESE manifold, X(8*), and the map X.

Let us also consider the map

X8 BV
given by
X(w1, oy )= X XX,
where a; = (a;, ..., a;) is a vector in EY', (Noftice K™™', not EM),
Assume that @, .., o}~ are N—1 symmetric matrices. If the N vectors

@11, .., On1, have maximal rank we call ¥ a projected configuration.

LeMMA 3.31. - A projected configuration is the projection of a configura-
tion {along ex).

Proor. - We may extend the N X N — 1 matrix (ag.) to an N X N ma-
trix (af) which again has maximal rank.

REMARK. -~ A projected configuration is of two types. Either the span
of X(8§) is all of E*', in which case X(S"!) is a VERONESE n — 1 mani-
fold and the vector X is contained in its span, or else X(S™') does not span
EM-1. In this case both ¥ and X(S™') together span E"'. In this second
case we call X(S*!) a Steiner variety.

Let X' be a projected configuration and X a configuration such that
no X = X', where = is projection along ey of EY onto E"'. Let V= X(§")
and £ =span V. Then X' is of the first type if and only if ey is not a di-
rection in § and otherwise X' is of the second type.

TaEoREM 3.32. - Let X' be a projected configuration, with X' = ¥ aa,
V' = X(S) and & = span V'. If the line through K’ does not wmeet the span
of X'(S3) for any greal S"3 conlained in S*— then we may uniquely choose
axes and furthermore the axes depend continuously on the configuration.

PrOOF. - If X’ is of the first type then V' is a VERONESE manifold, X'
lies in & and the tip of J’ is the centroid of V'. Also, by assumption, I’
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meets no 7 — 3 sub-VERONESE manifold. Thus using Theorem 3.23 we may
define a unique frame.

Suppose that X' is the projection of a configuration X, along ey, and that
n is the projection. = EY¥ — E¥'. Suppose ¥, £, V go with 7. Then
s =X, =9, aV=V, nc X=X,

Suppose that X is of the second type. Then ey is along £. Let 7 be the line in
the direction of ey through the tip of 3. We claim that 7 meets the span of no
VERONESE n — 3 submanifold. For if I did meet the span of some X(§*?),
nl = tip #' would meet the span of some X'(S8"?%), which is not the case.
Thus, by Theorem 3.23, I picks out a unique set of axes. It is these axes
that we choose in the case X' is of the second type. We must show that
they are independent of X and depend only on X'. Let & be the unique n —1
plane which meets V in % points and contains /. Since = is projection along
I, n8 is an » — 2 plane which meets V' in % points. Since mo X = X', these
n points are the images of the axes picked out by I. Suppose there exists
another n — 2 plane & through the tip of X' which meets V' in n points.
Then n—*(8) is an n — 1 plane which contains ! and meets V in #» points.
By the uniqueness of & we must have =—Y8) = & Hence & = n(8). Thus by
a construction depending solely on X’ we have uniquely chosen axes.

We next show that the axes depend continuously on the projected con-
figuration X. With notation as before assume that X' is of either type and
that wo X = X'. Let & be the 2-plane spanned by X and the line parallel to
ey through the tip of ¥ . This 2-plane is well defined, because if J{ were
along ey then nJ ==}’ would be the zero vector, which by the definition of
a projected configuration is not the case. Also n& is the line through X%/,
and hence n# meets the span of no X(S*?). Thus & meets the span of no
X(§3%). Also & meets £ in a unique line, say W. This is so because & does
not lie in £, because & contains J} and J}{ does not lie in £, and because
& meets £ at the tip of ¥ and so for dimensional reasons must meet § in
at least a line. Thus, since & meets the span of no sub-VERONESE # — 3
manifold of V, neither does W. Hence, by Theorem 3.23, W picks out a
unique set of axes. It is easy to see that these axes depend continunously
on the configuration X, regardless of whether ey is a direction in £ or not.

Thus it will be sufficient to show that under m the axes, picked out by
W are equal to the previously defined axes on X'. If X' is of the second
type this is trivial by the definition. If X' is of the first type then, since W
is not along ey, we have nW ==& =}’ and from this it readily follows.

Annall di Matematica 42
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Cuarrer 1V.
Principal Axes and Singularities.

For a surface in ordinary space the usual principal axes are defined
everywhere excepf, of course, at umbilics. A consequence of this is the fa-
miliar theorem that a surface in ordinary space of non-zero EuLEer chara-
cteristic must have an umbilic. We have seen in the first chapter that one may
also construet principal axes for surfaces in E* which generalize the constru-
ction made in K®. As a consequence, we were able to prove several global
theorems which generalize the situation for surfaces in E® It is the purpose
of this chapter to define principal axes for manifolds of arbitrary dimension
and to state resulting theorems concerning their singularities.

Let X:M"— E* be an immersion of a differentiable manifold in Eucli-
dean space. Let J{ be the mean ocurvature vector of the manifold and let &)
be the subset of the first normal space defined as follows: 9 is the set of
endpoints of curvature vectors of geodesics, parameterized by arc length,
which pass through p. The first normal space is the sum of the mean cur-
vature vector and the linear span of 9, which we call £. If the point is
not inflectional and if kzv.—:%%(n*}« 1) 4 n, this sum is dirvect. In this
case 9) is a VERONESE manifold, and the results of Chapter II1 apply. In
particular, J is the centroid of ©).

For the case k =v — 1 the situnation becomes more complicated.

At a non-inflectional point two different situations can obtain.

Either £ is all of the first normal space, in which case ©) is a VERONESE
manifold, or else both £ and J are needed to span the first normal space.
In this latter case ) is the projection of a VERONESE manifold.

It will be helpful to introduce a map v from the space of tangent lines
to M at p into the first normal space to M at p. Given a tangent line ! at
p, let v be a geodesic, parameterized by arc length, whose tangent vector
at p is along the given line. Then v(f) is the curvature vector of y at p. That
7 depends only on the line and not on the curve follows from a generalized
MEUSNIER’S theorem.

Note that v maps the space of tangent lines onto the space .

We now define principal axes for the case k=>v, ¥ will not «in general »
be perpendicular to £. Let ' be the projection of ¥ normally onto €. The
vector ¥’ will «in general» lie in a unique n — 1 plane which meets the
VERONESE manifold in exactly # distinet points. These points are the images
of n mutnally perpendicular tangent directions under the map 7.
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Notice that the principal axes are well defined at every point of the
manifold except at inflection points, at points where H} is perpendicular to
£, and at points where }' does not contain a unique n — 1 plane which
meets the VERONESE manifold in » points.

We define principal axes also for the case £ =v -—1. This includes
surfaces in H*% Assume that the point is not an inflection point. There are
two cases. The first case in when & is the entire first normal space. ¥ is
then contained in & so that «in general» there is a unique n —1 plane
through ¥ which meets 9 in exactly n points. These points are images
under v of » mutually orthogonal tangent lines, In the second case ) is
the projection of a VERONESE manifold and J{ does not lie in £ but meets &
at one point, namely the cenfroid of 9. «In general» there is a unique
n — 2 plane through the tip of ¥ which meets ) in exactly n points, and
again these points are the images under 7 of a set of mutually orthogonal
lines.

For k=v —1 the principal axes are defined at each point except in-
flection points and except those points where the n — 1 plane (in the second
case the 5 — 2 plane) through %, which meets 9, is not unique.

It should be noted that the axes depend continuously on the (a;.’;.) and
bhence the axes, where defined on M, are continuons. See Theorem 8.32.

We come now to the generic dimension of the singular locus of the va-

rious types of singular points in question. For this discussion we use Theorem
2.20 of Chapter II.

The condition that } be perpendicular to § requires %n(n+ 1)—1
conditions. Hence, except for »n =2, generically }{ is never perpendicular
to £. In the case » = 2, a surface in E° for example, the generic locus con-
sists of isolated points.

Inflection poinfs have been studied by FeLDMAN [7]. We mention that
for k= v the generic locus is codimension 1, that for k= v — 1 it is of co-
dimension 2 and that for k=v + n the generic locus of inflection points
is empty.

Consider next the locus of points where X', the projection of X onto £,
fails to contain a unique 7 — 1 plane which meets 9) in n points. In order
to describe these points let § be a subset of the first normal space at p
defined as follows

&= U span (S,

where the union is taken over all great S"* contained in the unit tangent
sphere to 7 at p. We may as well assume that p is not an inflection point,
since if it is we ftreat p as part of the locus of inflection points. In this
case @) is a VERONESE manifold and each 7(S"%) is ap 7 — 3 VERONESE
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submanifold of €. By Theorem 3.23 ¥’ contains a unique n — 1 plane which
meets € in »n points if and only if the line through ¥}’ does not meet §.

Let us now compute the dimension of §. There is a 2n — 4 parameter
family of n — 3 spheres on the n —1 sphere. Also, span 7(S™%) is the span

of a VERONESE 7 — 3 submanifold and is therefore of dimension %(72-—-«2)

{n —1)—1. Hence dim G=2n — 4 + %(n — 2)n — 1) — 1. The dimension of

all lines through the tip of X is %n(n 4 1) — 2. Thus it requires
1 , 1
5n(n 1) — 2 —(2n —4+§(7z —2n—1) —1) =2

conditions to insure that a line through the tip of ¥ does not pass through G.
Hence the generic locus is of codimension 2.

Lastly, let us examine, in the case where k=v —1, the points where
the frames are not uniquely defined. We do not consider inflection points
as they have been already dealt with. Define § as before. There are two
cases. In the case when £ is equal to the first normal space, by Theorem
3.23, the frame is unique when X fails to pass through £. This may be rep-
hrased to say that J does not lie in the second order osculating space of
any submanifold of codimension 2 which passes through the point. In the
second case, by Theorem 3.32, the frames are unique when the tip of ¥
fails to lie in §. This again may be rephrased to say that J{ does nof lie in
the second order osculating space of any submanifold of codimension 2. That
the frames are continuous where defined is also a consequence of Theorem 3.32.

We compute the dimension of the generic locus. In the first case, when
¢ is the entire first normal space, by the same argument as before, the
generic codimension is 2.

In the second case, as before,

dim @ = 2n—4+%(n—2)(n -1,
The dimension of ¢ is now %7@(% 4 1) — 2, and thus if requires
1 1 5
Q??(?’l 4+ 1) - 2 — (2%—4+§(n—-— 2 — 1 —1)=2

conditions to insure that the tip of ¥ does not lie in G. Hence, in this case
also the generic codimension is 2.
Define an & manifold to be a manifold which does not admit a field of

axes, i.e. a field of » mutually orthogonal tangent lines.
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Examples are simply connected nonparallelizable manifolds.

TEEOREM 4.1. - Let X : M — B> be an immersion of an & manifold in
1 .
Huclidean space of dimension v —1 where v == Q”(” 4~ 8). Then X has an in-

flection point or a point where the mean curvature vector lies in the second order
osculating space of some submanifold of codimension 2. The generic codimen-
 ston of the singular locus is 2.

Let a point be called a G point if X', the projection of } onto £, lies
in the subset G of the first normal space.

TaEOREM 4.2. - Let X:M"— Evt* be an immersion of an & wmanifold

into Euclidean v 4 & space, where v = ~%n(n + 3 and kz=0. Then X has either

an inflection point or a G poinl. The generic codimension of the locus of in-
flection points is k, and the generic codimension of the locus of G points is 2.
This shows that G singular points are stable under raising the codimension. For
the case k= n generically there are no inflection points so that the singular
points consist solely of those of type G.

Let us now ask if it is possible to construct axes in the first normal
space. We say that a hyperellipsoid, Q. «belongs»> to 9 if the following are
true. Let 8 be any great r-sphere contained in the unit tangent sphere.
Let £(S7) be the linear span of %(S"). Then @ belongs to &) if

vcoce,
centroid of ©) = center @,

centroid n(S7) = center £(SH M Q for r<<n — 1.

Note that £(S) N Q is again a hyperellipsoid. We mention that if » = 2
or 3 the first two conditions imply the third.

We have seen in Theorem 8.30 that there is a unique hyperellipsoid @
which belongs to ) in the case that ) is a VERONESE manifold. «In gene-
ral» @ will have a unique set of principal axes which span . These toge-
ther with the normal to £ in the first normal space give a set of axes which
span the first normal space.

Let us call a point a T point if Q at that point fails to have a unique
set of axes.

TerorEM 4.3. - Let X ; M" — B+, k=0 be an inflection free immersion
of a simply connecled n-manifold. The either the first normal bundle is trivial
or else there exists a T point. Furthermore, (he generic codimension of such

points is 2. We mention that if k = 0, the condition that the first normal bundle
8 trivial implies that M is a © manifold.
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Proow. - Since X is an inflection free immersion in Bt we know that
@) is a VERONESE manifold and not the projection of one. Thus by the pre-
vious discussion these are a set of axes whieh span the first normal space at
every point which is not a 7 point. Since M is simply connected, the exi-
stence of a set of such axes implies the existence of frames. Thus the first
normal bundle must be trivial if there are no I points.

To compute the generic codimension of T points, it is necessary only fo
find the codimension in the family of all hyperellipsoids of those with two
or more equal eigenvectors. This codimension is easily seen to be 2.

It may be shown that if 9 is the projection of a VERONESE manifold
then it still belongs to a unique hyperellipsoid. We may define, as before,
a T point to be a point at which @ fails to have a unique set of axes.

TaEOREM 4.4, — Let X : M~—s Ev-' be an inflection-free immersion of a
simply connected manifold which is not a = manifold. Then (here exisis a T
point. Furthermore, the generic codimension of such points is 2.

«In general> @ will have a unique principal axis of greatest lenght.
Sinee the center of @ is the tip of J{ this axis gives a line through the tip
of 3. «In general» this line will meet no VERONESE n — 3 submanifold.
Hence <in general » there is a unique # — 1 plane which contains this axis
and which meets 8 in n points. These points are the images of a frame by
Theorem 3.23. This gives an alternative construction of principal axes.

Let a point where such axes are not defined be called a U point.

TuporeM 4.5. - Let X : M — E+: k=0 be an immersion of an Cl-ma-
nifold. Then X has a U point. Furthermore, the generic codimension of the
locus of U poinis is 2.

ProOF. - We make a few comments about the generic dimension. Any
configuration is the image of the standard configuration (for the definition
see Theorem 3.5), and every affine map of the standard configuration gives
a different configuration. Thus any point of S¥=* (S in the hyperellipsoid
belonging to &,) may map into the major axis of @ if the proper affine
map is chosen. But also &, maps into & under this map. Thus if the preimage
of the major axis does not pass through &, then the major axis will not pass
through &. But 8, N 82 is a subset of S¥—* of codimension 2.

Also, the family of hyperellipsoids are determined by their prineipal
axes, including the lengths. If two axes have equal length, the degree of
freedom is reduced by 2, namely 1 because the axes are equal in length
and 1 because in the 2-plane of the two axes no angle is needed to specify
an orientation.

Since the model singularity for U points consists of the union of these
two singularities, the model singularity for U points must be of codimension 2,
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