
I d e a l s  i n  (.~ + 1 ) - s e m i g r o u p s .  

~.  M. S~OSON ( U n i v e r s i t y  of F lo r ida )  

Summary .  - The fo lbwing  memoir is concerned atith various idealtheoretic aspects of  the 
theory of  polyadic semigroups. Many of the results are generalizations of  known theo. 
reins in  the theory of  ordinary or 2-semigroups. 

1 .  I n t r o d u c t i o n .  - The exis tence of extensive theories of groups,  semi- 
groups, and (m--[-1)-groups has mot ivated the author  [9], [10] to pursue  the 
analogous s tudy of (m -4- 1)-semigroups.  By an (m ~- 1)-semigroup is meant  
an algebraic system (.4., [ . . . ] )  wi th  one (m-t- 1)-ary operat ion 

[ . . . ] :  A m+l - -  A 

sat isfying tho associative law 

[[x~x~ ... x ,~+~]z ,~+~  ... ~ , , + ~ ]  = [ z~[~x~  ... xm+~]  ... ~ + ~ ]  

- - [ x , x ,  ... [ x ~ + ~ x , ~ + ~  ... x,,~+~]] 

for any set of e lements  xl ,  x2, ..., x2m+~eA. An ( m ~  1)-group, in parti- 
cular,  is an (m-{-1) -semigroup possessing the addit ional  proper ty  that  for 
each a~, ..., ai_1, a~+l, . . . ,  a m + l ,  b ~ A ,  a unique  solut ion in the indeter- 
minate  x~ exists for the equat ion 

[~i ... (~i--lgBiOti4-1 ... ~ml] --- b 

for each i =  1, 2, ..., m-4-1 .  

The  following, [or example,  are (m + 1)-semigroups:  

1% - Trivially,  if {S, .) is an ordinary semigroup {i.e. a 2-semigroup),  
then {S, [ . . . ]}  is an (m-~ 1)-semigroup with 

[~lX2 ... ~ m + i ]  ~--- Xlgg2 ... X r ~ ÷ l .  

2 0 . - Let  $1, $2 ..., S~  be any collection of m pairwise disjoint  sets. 
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Consider the collection F ( S ~ ,  S~, ..., S,,) of all part ial  or full funct ions 

r: 5 s, 5 s, 

such that f ( S ~ ) ~ S 2 ,  f ( S ~ )  ~ Ss ,  . . . ,  f ( S , ~ )  ~ S~. Note that if f l ,  f~, s 

s F ( S x ,  S~, . . . ,  S , , ) ,  then f~f~(Sx) ~ Ss ,  f~f2(S~) c~ S , ,  . . . .  f~f2(8,,) c so that 
f ~ f ~ $ F ( S ~ ,  . . . ,  Sin). On the other  hand, if f~, f2, . . . ,  f , ,+l  are any m +  1 
elements belonging to F ( S ~ ,  . . . ,  Sm) then [fff~ /,,+~] = f~f2 fm+~ e F(S~,  ..., 5,~). 
Thus, F ( S x ,  ..., S,~) forms an ( m +  l ) -semigroup under  the operation of 
composit ion of any m + 1 functions.  

3 o. - More generally, ¢~ be au arbi t rary  permutat ion of 1, 2, ..., m.  As 
in the preceding example,  the collection F~(S~ ,  ..., S,~) of all funct ions 

r: 5 5 s, 
i = I  i = l  

such that f ( S ~ ) ~  S~(~) for each i ~-1,  2, ..., m, also constitute an ( m +  1)- 
semigroup under  (m + 1)-composition. Example  2 °, for instance, is a special  
case of 3 o when , is the cyclic permutat ion (12 ... m). 

4 °. - Let  R ( k l ,  ks,  ..., k~) be the collection of all m- tuples  of matrices 
A ---- (A t ,  A2, . . . ,  A,~) over a ring R,  where Ai ii~ k~ by k i ÷ l ,  i - -  1, ..., m - - l ,  
and A,, is k,, by k~. Then R(k~,  ks,  . . . ,  k,~) is an ( m +  1)-semigroup under  

the operat ion 

1 ~ A1A ~ A . ,+ ,  A 1 A ~ ~,,,+1~ [A~A ~ ... A "+x]=(AxA2 ... Ax "~+~, ~ 8 ... ~ , ..., ,,, • . . . . .  ,,, 1, 

where  

A ' =  (A~, A~,  ..., A~) ,  i - - - 1 ,  2, . . . ,  m +  1. 

W e  do not intend to pursue  in this communicat ion the general  theory 
of (m-{-1)-semigroups  in all its var ious ramifications,  but  instead we shall 
devote our efforts mostly to certain ideal- theoret ic  results  on the theory of 
(m + 1)-semigroups. A large bulk  of these results  are extensions of those in 

ordinary semigroups [2], [5], and [8]. 

It will be convenient  in our later  discussions to adopt at this point a 
few simplifying conventions in notation. A sequence of symbols xlx~ ... x~, 
whether  they be sets or individual  elements, will be abbreviated to ~c~. Wi th  
this convention, the above associative law may now be more compact ly  
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wri t ten as 

[~ m-{1]0t~2~¢-}-l~ r r m + 2 l X 2 m + l  1 m 2tn-}-I 
l x ' -  J , ' , ,+2 J = lX,[Z~ J --+a .t = " "  = [ X ,  I x , , , , + ,  } ] .  

When, in addition, x~ - -  x~- -  --  ~i = x, then we will ~r i te  
xlx~ ... x , = x  i=(x j )  ~ for any j = l ,  2, ..., i. 

Recursively,  one may also define 

X<0> = ~;~ ~<n+l>  --- [~<,t>~rn] 

for every natural  number  n. The following exponential  laws are then easily 
verified for (m + 1)-semigroups:  

{1} (a~<r>)<s>__-- m<rs~+r+8>, 

(2) [~<~,>x<~,>... z<%,+,>]=z<~,~ . . . .  + % , + , + ~ > .  

2. Ideals in Sur jec t ive  (m + 1)-Semigroups. - W e  commence by stating 
a few definitions. Any subset  S of an (m + t ) -semigroup A that forms an 
( r o t  1)-semigroup under  the same operation in A will be called a sub- 
( m +  1)-semigroup. In  part icular ,  a subset  I of A is called an ( i +  1)- 
ideal iff 

[A*IA ~-t] _c I, 

i - - 0 ,  1, ..., m. By convention, [A°IA "~] = [IA'~], [A'~IA °] = [Am/], and 
[A°IA ° ] = L  An (i-{-1)-ideal  for each i = 0 ,  l, ..., m is simply called an 
ideal. 

The smallest ( i +  1)-ideal of an ( m +  1)-semigroup A containing an 
element a EA (called the principal (i + 1)-ideal generated by a) will be 
denoted by (a)~+l. Constructively,  this is given by 

(ah+, = u X,, ,  

where X o - - { a } ,  X , + I -  [A'X,,B'~-~]. If A is surjeetive, i.e. A < ~ > = A ,  then 
it may be wri t ten as 

{a)i+l --  U [A'taA "~-, ,]  0 [[Ar~a]A"], 
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where [A°aA °] = {a! and ni, n ( m ~ i )  respectively denote ni, n ( m - - i )  
reduced modulo m. Whi le  the union operat ion above is still applied inde- 
finitely, it is easy to sve that only a finite numb?r  of the terms that appear  
are actual ly distinct.  

Note that an exception to the above s~atemeat occurs when we h a r e m - - 2 :  

(ah = f a} U [aA~], (a)~ = t a } U lAnAI U [A[AaAjA], 

(a)3--{a} U [A~a]. 

If S~= A, then the (i-{- i)- ideal  generated by S is given by 

(St~+~ = U ~ s (x)' + ~- . 

Corresponding remarks  may be made for an ideal (a) generated by an 
element  a s  A. 

That  these various notions of ideals are not independent  is shown by 
the following 

TtIEORE]~I 2.1. - Let A be a surjective (m A- l)-semigroup. I f  the g.c.d. 
of i and m divides that of j and m, then (a)i~(a)~+~ for each a ~ A  and 
(a)~+~ is a (]+ 1)-ideal of A. 

PRooF. - Suppose that (i, m) divides (j, m). To prove that (a)i+~ ~ (a),+~ 
it suffices to show that for each non-negat ive  n, 

nj  =- ki (rood m) 

for some natural  number  k. Consider the congruence equation 

i x ~ j  (rood rot. 

By mtmber  theory, this a lways possesses a solution x ~ no since 

divides ]. Hence  

nj ~. (nxo)i (mod m) and therefore 

COROLLARY 2 . 2 . -  In a surjective (m + 1)-semigroup A, 
for each a e  A iff (i, m ) - - I  j, m). 

if, m) 

(a),+l = (a)i÷~ 
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COI~OLLAR¥ 2.3. - Every (i + U-ideal of a surjeclive (m + 1)-semigroup 
is a lj + D-ideal i f f  (i, m) -= (j, m). 

COROLr~At~Y 2 4. - I f  m is prime, thet~ every (i + U-ideal  of  a surjective 
(m-b  1)-sem(qroup is also a tj + 1)-ideal for all i, j -  l~ 2, ..., m -  1. 

GOROLI~ARY 2.5. - Every (i + 1)-ideal of a surjective (m + 1)-semigroup is 
an (m ~ i + 1)-ideal for each i - -  1, 2, ..., m -- 1, and conversely. 

GOROI~L£RY 2 . 6 . -  Each ( i +  1)-ideal of a surjective (m + 1)-semigroup 
is contained in some 2-ideal (and hence in some m-ideal), i --  1, 2, ..., m ~ 1; 
moreover, every 2-ideal is an (i-{- i)-ideal for each i - "  1, 2, ..., m -  1. 

An element z ef an (m-{- l ) - semigroup  A is called an (i + 1)-zero i f f  
[AlzA "*-~]-- z and simply a zero (denoted by 0) iff it is an (i -{-1)- zero for 
all i - - 0 ,  1, .... m. Au (i-[-~ [)-ideal (ideal) wil l  be said to be minimal  iff 
it contains properly no other ( i +  1)-ideal (ideal). When  an (m-{-1)-semi- 
group possesses no ideals except  itself and possibly the ideal consisting of 
the zero element,  it is o f t e n  called simple. If  a simple (m + 1)-semigroup 
is not isomorphic to an (m-{-1)-semigroup of order two with a zero element 
(ie. a two-element null (m Jr" 1)-semigroup), then it is said to be nullsimple. 

THEOREht 2.7. - .Every minimal  (i + 1)-ideal M (i --  1, 2, ..., m ~ 1 ) 
of  a surjective (m + i)-semigroup A without zero element may be written in 
the form 

M -  U [A'~'xA "('n -"] U [[A~x]A "] 

for any ~ce A, the union running over all non-negative integers n such 
that n i ~ O ~  n ( m - - i }  ~ 0 (rood m). On the other hand, every minimal  
1 - -  ideal ((m -{- 1)-ideal) of an arbitrary (m + 1)-semigroup (not necessarily 
surjective) is of the form [xA m] ([Amx]), ~ being any element of the ideal. 

PROOF. - Let  M be any minimal (i + 1t-ideal of A, i - -  1, 2, ..., m - - l ,  
and x e M .  Then for all n such that n i : ~ 0 ,  n ( m - - i )  6=0 (rood m) the 
union 

I---- U [A~xA "'m-°] U [[Amx]A m] 

is an (i + 1)-ideal. Moreover, 

and hence by minimali ty of M one obtains I =  M. The proof of the second 
part  is very similar. 
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COROLLARY 2 .8 . -  Every minimal 2-ideal (m-ideal} of a surjective ( m + l ) -  
semigroup A without zero is a minimal ideal. 

PROOF. - By Corollary 2.6, it will suffice to only show that a minimal 
2- ideal  is both a 1-ideal  and an (m--}-1)-ideal. By Proposi t ion 2.7, we 
know that 

M -  ~1 [A'xA 'n-*] U [[A"x]A"] 
i = l  

The relations [MA ~'] ~ M  and [ A " M ] ~ M  are easily verified. 

3. Ideal Series in (m ÷ I ) - S e m i g r o u p s  and the Jo rdan - l t i i l de r  
Theorem. - The sequence of theorems that leads to the JORD.aN-HOLDER 
theorem for ideals in (m-[-1)-semigroups  will be derived in this section. 
Conditions necessary and sufficient  for the existence of a composition or 
chief series in an (m-I-1)-semigroup will be given. All these are extensions 
of resul ts  in ordinary semigroups found in [2] and [8]. 

Before continuing, however,  it will be necessary to clarify a few things. 
Consider an (m ~ 1)-semigroup A and the relation ~ defined on A by an 
ideal I of A such that 

x ~ y  (I) 

when and only when both w and y belong to I or x - " y .  It is easily 
verif ied that _ is an equivalence relat ion on A. Moreover, if x, --= y~lI) for 
each i - -  1, 2, ..., m -[- 1, then [x~ "+l] --= [y~*~~] (I}. This means that ------- is a 
congruence ( re la t ion)on  A. The quotient  (ran t- l ) -semigroup A/=-- or A/I  
consists then of the disjoint  classes [ and all {x} for x e A - - L  For  
convenience we will not dist inguish be tween {x} and x .  Note also that I 
is the ~ero element in A/L 

T~,ORE~ 3.1. - I f  I is an ideal and S is a sub-(m ~ 1)-semigroup of 
an (m-t-1)-semigroup A, then I A S 4= O is an ideal of and 1 U S  is a 
sub-(m ~ 1)-semigroup of A such that 

( I n  S ) / I ~ S / ( I  n S). 

PROOF. - Note that 

( I U S } < l > =  U {[X~+I]: X 1 - - I  or . 3 2 1 - - S } ~ I U  S 

and therefore I O S is a sub- (m- t -1 ) - semigroup  of A. 
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From the relat ionships 

and 

[8,(I n s) s ~-~] 5 [~,1s"- ~] 5 

[SqI n S) s '--~] ~ S<'> S S, 

which holds for all i - - O ,  1, ..., m, it follows also that I N  S is an ideal 
of S. In exact ly the same manner,  it can be shown that I is an ideal of 
I U  S. Both ( I U  S ) / I  and S / ( I N  S) are wel l -def ined quotient  (m-[- 1)- 
semigroups.  Final ly  

( I U  S ) / I - - ( I t )  S - - I )  U {I} - - ( S - - I )  U tI! 

~ ( s - h  u ( z n  s} = s - ( ~  n ~I u [ ~ n s }  = S l ( z n  st. 

TH~.OI~E~ 3.2. - Let I be an ideal of an (m + 1)-semigroup ,4 and h: 
A ~ A / I  be the natural homomorphism of A onto A/I. Then h induces an 
isomorphism h* on the lattice L of all ideals J of A containing I onto the 
lattice L* of all ideals J/1 of A/L Moreover, 

(A/J)/(J/I) ~ A / J. 

P R O O F .  - Observe that the natural  homomorphism h is the mapping that 
sends each x e I  to the set I and all others to their singletons. If  J is an 
ideal of A containing L then trivially h ( J ) = ( J - - I ) U  { I } - - J / I  so that 
we may define h*: / . - ~  L* by h*(J)--'J/L I f  K is any ideal of A/1, then 
h-l(K) -- J is clearly also an ideal of A containing I - -  h-a( { 1}) and there- 
fore h*(J)=K. If I ~ J C K ,  where J and K are are ideals of A, then 
J - - 1 c K - - I  so that 

J /1 - -  (J--  I) U (I} c (K--  1) U {I} = KII. 

This shows that the mapping h* is strictly inclusion preserving on the 
lattice of all ideals J in A containing I onto the latt ice of all ideals J / I  of 
A/I  and therefore a latt ice isomorphism. As such it is one- to-one and 
therefore 

(A/I)/(J/I) -~ (A / I - -  J/I) U [O/I} 

= ((A --  I) U [ I } ) - -  ( ( J - -  I} U {I}) U (3/I} 

- ( A  --J) U t j / I } ~ ( A  - -  J) U {J} = A/J. 
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COROLLAnY 3.3. - If J* is an ideal of A/J  such that 8 / I  D J* DI/I, then 
there exists an ideal J of A such that A D S D J D I  and J * = J / L  

THEOREM 3.4. - I f  S, aud $2 are sub-(m ~- 1)-semigroups of an (m + 1)- 
semigroup A and I , ,  12 are ideals of S, ,  S~ respectively, then 

(& u (~, n &))/(z, u (0, n L ) ) = ( , u ~  z (0, n &))/(& u (z, n &)). 

PROOF. - Since /1 U ( 8 ,  ( ~ 8 2 ) ~ S ~  and 

/1, then 

is conta ined both in $I and 
in s ~ n / 2 .  Hence,  $ 1 n 1 2  is 
for all i = O, I, ..., m, 

[(~,u (s, n &)),z,(.~, u (s, n &))-,-,] 5 [(&)%(,s',)-,-~] 

I1 is an ideal of / 1 U ( S 1 A S 2 ) .  Since Is is an ideal of 83, then  

[(8, n &)'(O, n ±,)(0, n &)~- ' ]  

in I2 for all i = 0 ,  1, ..., m and therefore  
an ideal of S, (~ $2. F r o m  these we obtain, 

[(x, u (& n &)),(~r, u (s, n .~2)~ (~rl u (& n &)),,,-,] 

= U { [ X ~ + ' ] : X i + , = L  or X ~ + , = 8 ,  n I2, X i= / ' 1  or X i = S I N S 2  

for all other j = ~ i } ~ I , U ( S 1 A I s ) ,  which shows that  h U ( S ,  GI~} is 
ideal of 1, U (81 N $2). Now, 

(£ u (s, n h)) u (s, n 82) = L u (8, n &) 

and hence by Theorem 3.1, 

II, U (S, n 02))/(I, U (& n h)) 

(,v, n &)/((z, u (& n h)) n (s, n &)). 

a n  

On the other  hand,  

(X, U (& n h)) n (s, n s,) = (/1 n (s, n s,)) u ((s, n / 2 )  n (s, n &)) 

= Or, n s~_) u (o ,  n z,) 
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and hence 

(& u (& n &i)l(h w (8,n&))~ (& n &)l((I, n &) u (81 n 1,)). 

In exactly the same way, one m a y  show 

~h u (sl n &))/(h u (1~ n 8,)) ~ ~s~ n &)/((~, n &) u (8, n h)). 

Whence the result. 

We introduce a few more terms. By a series of an (m + 1)-semigroup 
A is simply meant  a sequence 

A = A o ~ A , ~ . . .  ~ A ~  = 0 

of sub-(m + 1)-semigroups of A such that for each i = 0, 1, ..., r - - 1 ,  A~+~ 
is an ideal of A~. The quotient (m + 1)-semigroups 

Ao/Ax, ..., A,._JA~ 

are called the factors of the series. A refinement of a series is another 
series whose terms include those of the former. A series is said to be 
proper iff all the inclusion relations occurr ing in the series" are proper. A 
composition series is a series which is proper and possesses no p rope r  
series refinements with more terms. A proper series of an (m + 1)-semigroup 
A every term of which is an ideal of A and which possesses no proper 
series ref inimcnt  with the same property is called a chief series, 

THEORE~ 3.5. - Any two series of an (m + 1)-semigroup A possesses 
refiniments with isomorphic factors. 

P~ooF. - Oonsider any two series 

A = A o ~ A I ~  .., ~ A , . = O ,  

A =  B o ~ B I ~ . . .  ~ B s = O ,  

of A and their corresponding refinements 

A ---- Aoo~ Aot :~ ... ~Ao,  = Axo ~ ... ~ A,., = 0-, 

A = Boo ~= B~o ~ ... ~=B~o = B o ~  ... ~= B,. ,  = O, 

anna~ a~ Matemat4oa 22 
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def ined  by 

A,i = A,+~ U (A~ (~ Bi) and B , j = B i + x  U (A~ N Bi) , 

i "-O, 1, .... r - - l ,  j = O, 1, ..., s - - 1 .  

Then  by Theorem 3.3, we obta in  

A~/A~, i+1 ~ B~i/Bi+~ ' j 

for  all  i = O ,  I, ..., r - - 1  and j = O ,  1, .... s - - 1 .  The  proof is thus  com- 
pleted.  

COROLLAnY 3 .6 . -  Any two series of an (m + 1)-semigroup A all of  whose 
terms are ideals of  A possesses isomorphic refinements all of  whose terms are 
also ideals of  A. 

COgOLLAnY 3.7. - (Jordan-Holder Theorem). Any  two composition series 
(chief series) of  an {m + 1)-semigroup have isomorphic refiniments. 

THEOREM 3.8. - Any sub-(m + 1)-semigroup I of an (m+l)-semigroup A 
which occurs as a term in some series of A and ~vhich satisfies the property 
I<~> = I is an ideal of  A. 

PROOF. - By hypothes is ,  A possesses a series 

A - = I o ~ I i ~ _  ... ~ . 1 ,  = I D O .  

The resu l t  is obvious when n - - 0  or n - - I .  Suppose  then  that  n is 
g rea te r  t han  1. Then  it is suf f ic ien t  to show that  if I - - I ,  is an  ideal  of 
It  for any  i g rea te r  th~n 1, then  I is also an  ideal  of I~_~. I f  I is an ideal  
of I~, then  

I = 1<1> = 1 < ' > S  [[(I ,)-~] ( I , ) ' ]  =~ [ I ( I , ) ' ]  ~ I 

so that I =  [[(I,)ml](I~)~]. Hence,  for  each  k----O, 1, ..., m, 

[(I,_1).I(~,_~) .~-~] = [ (I,_,)* [[ I~)~I]  (I,) ~] (i,_~)m-~] 

= [[ ( i ,_ l ) , ( i , )~_~+l](z , )~_l i (L) .~- ,_ l [ ( i~) ,+l( i ,_ . )m-~]]  

c= [ (k)~i(i,). ,-,] ~ i. 

Thus,  I is also an ideal  of I,_1. 
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Since I - -  I,, is an ideal of L - ~ ,  then by induction I =  1,~ must also 
be an ideal of I o - - A .  

Notice that if an (m + t)-semigroup A has a composition series, then its 
last non-empty term in every composition series is a minimum ideal. For, 
if K is this last therm in the composition series, then K <1> is an ideal of 
/ (  and hence K =  K <t>. By the preceding theorem, this means that K is 
an ideal of A. Since K is however minimal the conclusion follows. 

THEOREM 3.9. - An Im + 1)-semigroup A possesses a composition series i f  
and only i f  the following conditions hold: 

(1 t Any proper series of A is finite; 

(2) Any properly ascending sequence of ideals 

J i c A c  . . .  c &  c... 

of an ideal d of  A is finite. 

PRooF. - Sufficiency. - Suppose that conditions (1) and 12) hold. Wri te  
A -- Ao. If  A' is any ideal of Ao and Ao/A' has no proper non-zero ideal, 
then let A1- -A ' .  Otherwise, if Ao/A' has a proper non-zero ideal, then 
there exists, by Corollary 3.3, an ideal A" of Ao such that A'C A ' C  Ao. Now, 
if Ao/A" has no proper non-zero ideal, set At = A". Otherwise, we repeat 
the process indefinitely. By condition (2), one must eventually arrive after a 
number  of steps to an ideal At such that Ao/At possesses no proper non-  
zero ideal. 

The whole process is again repeted for A1 until one obtains an ideal 
Az such that A1/A~ has no proper non-zero ideal. In this manner,  a descen- 
ding sequence of sub-(m + 1)-semigroups 

A ' - A o D A 1 D  ... D A ~ D  ... 

is obtained such that each A~+I is an ideal of Ai and Ai/Ai+t possesses no 
proper non-zero ideal. By condition (1), such a sequence can only have a 
finite number of terms which thus form a composition series for A. 

N e c e s s i t y .  - Assume that A has a composition series with n terms. 
Consider any properly descending series of sub-0n + 1)-semigroups of A: 

A -- AoD A1D ... D Ak. 

By the JORDAN-HOLDER theorem, then k is less than or equal to n. 



172 F. M. SmsoN: Ideals ~ (m+l)-semigroups 

The condition (1) thus holds. Let  d then be any ideal of A and 

J1C J~ C .,. Cal., = J  

be any propert ly  ascending sequence of ideals of J. By Theorem 3.5, the 
series 

AD J .~DJ .~ - ID . . .  D J 1 D  0 

can be refined to a composition series of A. Hence, ~n_~n and condition 
(2) is thus satisfied. 

In  exact ly the same manner  as the preceding the following result  can 
be easily demonst ra ted:  

TI~EOREM 3.10. - An {m + 1)-semigroup A possesses a chief series 'if and 
only i f  the following condition.s are satisfied: 

(1) Any properly descending sequence of ideals of A is of finite length; 

{21 Any properly ascending sequence of ideals of A is of finite length. 

From our previous results, it is clear that if an (m+l ) - s emig ronp  
possesses a chief se r ies ,  then any proper series of ideals of A can be refined 
into a chief series of A. Similarly, if A has a composition series, then the 
same series of ideals of A can be refined into a composit ion series of A. 
This means that the length of any series of ideals of A is finite. Conse- 
quently,  if A possesses a composition series, then it must also possess a 
chief series. It  is known that a 2-semigroup may have a chief series without 
necessari ly having a composition series. Since any 2-semigroup may be 
converted into an (m-+-1)-semigroup, the same must also be true of (m-+-1)- 
semigroups.  

h_n {m-{- l ) -semigroup will be called semisimple if and only if it 
possesses a chief series all of whose factors are null-simple.  

Note that, in general~ any factor of a chief series of an ( m + l ) -  
semigroup A is simple. For, by Corollazy 3.3, if J* is an ideal of the factor 
A~/At+~ such that 

Ai+l/A,+l C d* C A~/Ai+l, 

then there exists an ideal J of A such that 

A~+~ C J C  A~ C A, 
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contrary to assumption. More precisely, A~/A~+x is either nullsimple or iso- 
morphic to a two-element  null (m + 1)-semigroup. For, either 

(Ai/Ai+d <~> = Ai/A~+~ or (Ai/Ai+l) <~> = Ai+JAi+~.  

Obviously, in the first case we have null-simplici ty,  while in the second 

we obtain a two element null (m + 1)-semigroup. For  suppose t), is the zero 

and a is any non-zero element of A~/Ai+~. Then {0, a} is a non-zero 
ideal of Ai/Ai+~ and hence 

A~/A~+I = { O, a }. 

The following supplies a condition when a composition series is also a 
chief series : 

TI-IEOR:EM 3. i i .  - I f  A is a semisimple Ou + t)-semigroup, then any series 
of A is a composition series i f f  it is a chief series. 

P R o o F . -  Consider any chief series 

A = A I D A 2 D  ... DA,, DA,+~  = 0 

of an ( m + l ) - s e m i g r o u p  A. We  know that if for any i = l ,  2, ..., n - - l ~  
there is an ideal I~ of Ai such that 

Ai D li ~-- A~+I, 

then Ii = Ai+l since AdAi+l  is simple. Thus the above series is also a 
composition series. 

Let  now 

A = A1D A2 D ... D A ,  D A,+I  = 0 

be any composition series of A. To show that it is also a chief series, it 
will suffice to show that A~<I> = A~ for each i - - 1 ,  2, ..., n (by Theorem 
3.8}. One proceeds by backward  finite induction. It is Obvious that 
A,<~> -- A,,. Suppose that Ah <1>--  A~ for all k >= i + i, so that AI+I<~>=A~+I 
in part icular.  Then 

Ai ~= At <x> ~ A~+~<*> = Ai+~. 
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On the other hand, A~ <~> is an ideal of As and therefore 

Ai <~>-~ Ai or Ai <~> = A~+~. 

The latter case implies that 

(Ai/Ai+l) <1> = Ai<~>/Ai+~ = Ai+~/A,+I 

contrary to the nullsimplicity of Ai /Ai+l .  Hence A~<I>--A~ and our 
induction is complete. 

COROLLARY 3,12. - A semisimple (m + 1)-semigroup is surjective. 

It should be noted that by virtue of the previous theorem semisim. 
plicity may just  as well be characterized in terms of composition series 
rather than its chief series. 

THEOREM 3.13. - An  (m + l)-semigroup A is semisimple i f  and only i f  
both A / I  and  I are semisimple for each ideal [ of  A. 

PROOF. - If I is an improper ideal the result is obvious. Suppose then 
that [ is a proper ideal and A is semisimple. 

The series A D I  possesses a composition series refiniment 

Thus, 

A - ' A o D A 1 D  ... DA,------ID ... DA,, = 0 .  

A/1 = A # I  D A J I  D ... D A, . / I  = [ / I  D 0 

is a composition series of A / I  and by Theorem 3.2, 

( A # I  ~/(A~+~/I) ~ A~/A~+~, 

the last quotient ( m +  1)-semigroup being also nullsimple. 
semisimple. Moreover, 

I - "  A,. D A,.+I D ... D A ,  --  O 

Hence A / I  is 

is a composition series for I such that A,/A~+~ ( i - - r ,  ..., n - - 1 )  is null- 
simple and therefore A is semisimple. 

Conversely, suppose that both I and A / I  are semisimple. 

If then 

A / I - -  A* D A ;  D ... D A* =---1/1 



F. M. SIOSON: Ideals in (m+l)-semigroups 175 

is a composition series for A/I ,  then by a previous result,  there must  exist 
a sequence of (m + i}-semigroups 

A - - A o D A 1 D  ... D A , . = i  

such that A~+I is an ideal of A~ and A s * = A d I .  Moroover~ 

A~/A~+I=As / ~+1 

and by hypothesis  this is nullsimple. If 

I =  A, .DA~+ID. . .  D A ,  = O  

is a composition series for . / ,  then 

A = A o D A I  D ... DA , .D  ... D A , _ I D A ,  - 0  

is a composit ion series for A and all its factors are nullsimple. 

TI~EOREM 3 . 1 4 . -  A n i t a +  1)-semigroup A Which possesses ce chief series 
is semisimple i f  and only i f  every ideal I of  A satisfies the condition 1 <1> = I. 

PRooF. - Let  A be a semisimple (m + 1)-semigroup and I be any ideal 
of A, By the previous thereto, then I is semisimple and hence surjective.  

Conversely, let A possess the chief series 

A = A o D A 1 D  ... D A . = O  

and suppose that all ideals of A satisfy the given condition. If  any factor,  
say A~/Ai+~, were a two-e lement  null (m + 1)-semigroup, then 

A+<I> ~ A~+~ C Ai 

contrary to hypothesis.  Thus  all factors of the series must  be  nullsimple. 

COROLLARY 3.t5. - The collection of all ideals of a semisimple (m + 1)- 
semigroup A forms a commzdative (m + 1)-semigroup. 

PROOF. - Let I i ( i - -  1~ 2, . . . , m +  1} be any m +  1 ideats of A. Then 

m + l  m+~ 

[ ~ ] c = ( ~ L = [ A l d < l > 5 [ I ' ; ~ + ~ ] .  
~f=l i = l  
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From this and the commutativi ty of the of the intersection operation, 
we obtain 

m+l rT~ (re÷l), [I~ ]=L~¢~(I) j, 

for all permutat ions tZi of the integers 1, 2 . . . .  , m ~ i. 

TI~EO~EM 3.16. - Let A be an (m-~ [)-semigroup possessing a chief 
series. The collection X of all ideals I of A such that A / I  is semisimple has 
a minimum member, the ideal M contained in all members of X. 

Paoo~. - Consider any pair J, l e X .  From Theorem 3.1, 

(I U Jl/1 ~ J / t I  (~ J). 

(I U Jt/1 being an ideal of the semisimple {m-{-1)-semigroup A / I  is itself 
semisimple. Thus J/(I (~ J} is semisimple. Since J e X ,  then A / J  is also 
semisimple. From the relation 

{A/(I (h Jii/(4/tI (~ J)} ~ A / J  

~see Theorem 3.2~, it follows that A/(I(~ Jt is semisimple and there[ore 
I n  J e X .  By Zorn 's  lemma, X possesses a minimal member M. For any 
I e X .  then I N M - - M  and therefore M ~ L  If M* is another minimal 
element of X~ then M * - - M *  N M-----M. The result is now clear. 

4. Certain S t ruc ture  Space of  an (m ~ 1)-Semigroup. - An ideal 1 in 
an (m ~ 1)-semigroup A will be called irreducible iff for any pair of ideals 

J and K in A, 

I ~ J O K implies either I ~ J or I ~ K. 

An ideal is eom~vlely prime iff [x~+l]eP implies ~c~ e P for some i - - t ,  2, ..., m +  t 

I t  is prime iff for any set of ideals /1, 12, ,.., I,~+1, if P ~ I  ~'+II~_L 1 j,  then 

P ~ I s  for some i - - l ,  2, ...; m-{ - t .  

COaOLLAaY 4.1. - An ideal P of an (m % 1)-semigroup A is completely 
prime i f f  A - -  P is a sub-(m ~ 1)-semigroup of A. 

This is a mere translation of the definition in contrapositive terms. 

An ( m - l - 1 ) - s e m i g r o u p  is said to be commutive iff for every set of 
elements x~, x2, .... x,~÷~ and each permutat ion gi of 1, 2, ..., m - I - i ,  
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we have 

[x l  '~+~] = [ x ~ . ~ ) x ~ ( ~ )  . . .  x ~ . ~ + l ) ]  = ~,~;~(, j .  

THEO~E~ 4.2.-  The following are equivalent conditions for a commutative 
(m ~- 1)-semigroup A : 

(1) P is a complelely prime ideal of A; 

(2) ~or any set. of elements a~, a2, ..., a,~+~eA, if 

P~[(a~)(az) .. (a,,~+~)], then P~=(a~) for some i-= i, 2, ..., m + l .  

(3) P is a prime ideal. 

mT~-I PR.OOF.- Assume ( 1 ) a n d  P~[(a~)(a~)... a,,+~)~. Hence [a~'  ] e P  and 
by (1} therefore a~eP  for some i. This means that P~(a~) for some i. To 
prove its converse, note first that (a~)--t a i}LP[A"a~] for each i " - l ,  ..., m + 1. 

Let [a~ ] e P  and assume (2). 
m~-x 

If now [~1 ]e[(a~)(az) ... (am+~)], then by virtue of commutat ivi ty 

[x~"+~] = [ [~a"+ ~ ]y~]" 

for some elements Yl, ..., y~ ~ A so that [x~+l] e P. This means P ~  [(al)(a2} ... 
... (am+l)] and hence by (2), P~(a i )  for sore i----1, ..., m - ~  1. Whence  
a ~ e P  for some i :  l, 2, ..., m - ~ l .  

That  (3) implies (2) is clear. It thus remains to show that (1} implies (3). 

Suppose (t} holds and P ~ [ I ~ + ~ ]  for any set of ideals 11, 1.2, . . ,  i,,+1 of 
A, but P ~ I  i for a l l j ~ i .  Then for some ~jeI]  ( ] # i ) ,  x j ~ P .  For any 
x~eI~  then x ~ e P  since [x~"+~]~P. Whence it follows that P ~ I ~ .  

COaOLL~RY 4.3. -- Every prime ideal P in an (m + 1)-semigroup A is 
irreducible. 

P~ooF. - Let  P ~ I  (~ J for any pair of ideals in A. 
Since I Q J ~  [I~J '~-~+~] for any non-negat ive  k, then, by the previous 

theorem 4.2 (3), we obtain P ~ I  or P ~ J .  

Consider now any subfamily I of the family of all i rreducible ideals in 
an (m-}- t ) -semigroup A. For  any x ~  A, set 

1 ~ - - { I :  1~ 1 and xgl} .  

The topology generated by all these sets as subbase is the socalled 
Stone-Gelfand topology on /. 

Annal i  di Matemat iva  23 
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TttEOREM 4.5. - The closure of any subset S of I under its Stone-Gelfand 
topology is given by 

S = t I :  I ~  N J, I e l } .  
J~s 

PRooF. - Let S* be equal  to the right side of the above relation. If  Ix 
is a ne ighborhood of I T S * ,  then x ( ~ I  so that  x(~ n J. This  means  that  

JES 
for some ideal Jo~S, 

J o ~  N J and x~Jo 
~ J ~ S  

and also Jo~lx. Hence  Ix N S ::t:= O, in other  words, I e S .  Whence  S * ~ S .  

To prove the other  inclusion,  choose any i r reducible  ideal  I ~  S*. I f  

N J - - 0 ,  then S * - - I  and hence S C__S*. If  N J ~ 0 ,  then  n J - - I ~  O. For  any 
J ~ S  J ~  S J G  S 

~ n J - - I ,  then x e J  for all J e S  but  x ~ I .  This  means  that  I e I ~  but  
J ~ 9  

J qIx for all J eS.  Therefore  we have I~ N S--~ 0 and I ~ 7 .  This  com- 
pletes the proof. 

T u E o R ~  4.6. - The mapping S ~  S is a closure operation, that is to 
say ,  

(1) S~S; 

s =  

(3) $1--c82 implies  $1_cS2;  

with the additional properties: 

(4) { /1}--{/2} implies  / 1 - -1 2 ;  

15) s l u  s 2 = s l u s . .  

P a o o F . -  ( 1 ) -  (3) are clear. 

(4). - By {1) /2~ (I1} and therefore  

Similarly,  t I1} ~ } I~ }. Whence  /1 ---- 13. 
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(5). - From S~-----S~U S~ and S ~ S ~ U  S~. we obtain S ~ _ S ~ U S ~  and 

S ~ S ~ U S ~  and hence S ~ U S ~ C S ~ U S ~  by (3}. If P i t S ~ U ~ 2  so that 

P i tS-  and P~S~ ,  then P~_~ ('/ J and P~__ NJ .  I f  n J~---0, then ~-----I and 
J~  S~ ~ J ~  S~ J~  S i 

S~ U $2- -$1-US2 .  Suppose then that N J ~ O ,  i :  1, 2. Since these are 
JE S i 

ideals~ then 

P:P N J  n N J =  N J. 
J~S1 J ~  J~glUS~ 

For, if otherwise, then by irreducibility of P, either 

P~NJ: or P~=nJ, 
J~  S~ J~  S2 

contrary to assumption. Whence Pi t  S~ U $2. The proof is thus completed. 

THEOREm: 4.7. - Any subset S ~ I is dense in I iff 

N J = N J .  
J e  S J ~ l  

PROOF. -- Let S be dense in L i.e. S - - L  under the Svo~-E-GzbsA~D 
topology. Thns, 

( I :  I :~  n J and I t l } - - L  
J ~ S  

which means that each I e l  satisfies the condition 1 2 N J. 
J~,.~ 

n J ~ O J .  
J ~ l  - - J ~ s  

Whence 

The other inclusion is obvious. 

Conversely, suppose 1 - - S  • O. Then there is some irreducible ideal I e  ! 

withli tS.  This means that for s o m e / x ,  I ~ I x w i t h  I x N S - - O .  In other words. 

n J @ n j ,  
J ~ l  J ~ S  

a contradiction ! 

LEMM• 4.8. - I f  B is any s u b - ( m +  1)-semigroup of a commutative 
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(m q- l)-semigroup A disjoint from an ideal I of A, then there exists a,n ideal 
M of A maximal under the properly of being disjoint from B. In addition, 
M is also prime. 

P a o o ~ . -  By Zor~'s lemma, the existence o~ M is assured. I t .  thus 
remains to show that A - - M  is a s u b - ( m +  1)-semigroup o[ A. One proceeds 

indirectly. Suppose x~, x.o, ..., x,~+~ e A - -  M, but [x~ '+ l j eM.  Consider ~he 
ideals L generated by MU{x~} ,  for each i - - l ,  2, ..., m - } - i .  Since M is 
maximal  with respect  to its disjointness from /, then [ ( 3  I ~  O. Let 
y~ e I (3 I~. Then cr~-~"'~'~+~~ s~ ~-t-~ ~ e M. To prove this, we shall proceed by induc- 
tion on k, k being defined oy, 

£ =  U ¥~, 

where Yo -~ M L.J {xil and Y,,+~ = ~FA~-IY,,~4"-'+~I~. When y i e  Yo the result  
is obvious. Suppose then that the result  is true for all y~e t~ with k ~ n .  
Consider now y~e Y,+~ = [A~-~Y,,A'~-~+~]. Then y~ ~- [z~ "+~] where 

Z~e ~,~, Zl, ,,,~ Zm.+16 A~ [xi-~z.lm+1]6M, 

Thus  

~--1 zm+l Xi÷ll ~ [Zi--IFXi--lz.xm-i llzm÷~l e ~I. 

By repeat ing the process on [x~ y~x~+ I ] J l  instead of [x~+l]e M~ we 
will eventual ly  arrive to tile conclusion that [y~+l]  e M~ which is a 
contradiction. 

A prime ideal P is called a minimal prime ideal belonging to the ideal 
I iff I ~ / 9  and no other prime ide~)l containing I t s  properly contained in P. 

TttEORE~ 4.8. " A subset P of a oommutalive (m -4- 1)-semigroup A is a 
minimal prime ideal belonging to an ideal I i f  and only i f  A --  P is a sub- 
(m q- 1)-semigroup of A maximal ~vith respect /o the properly of being disjoint 
from I. 

I)nooF. - First,  assume that P c  A and A - - P  is a s u b - ( m q - 1 ) - s e m i -  
group of A maximal  with respect  to its property of disjointness from L By 
the preceding Lemma 4.7, then I is contained in a prime ideal M maximal  
with respeet  to its being disjoint from A - - / 9 .  This means I ~ M c P  so 
that A - - p c  A - - M .  On the Other hand, A - - M  is a s u b - ( m ~  1)-semi- 
group of A disjoint from L by virtue of Corollary 4.1. I-Ience A - - - M ~ A - - P  
and therefore A - - P - ~  A -  M or l ~ l - - P .  
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Conversely, suppose P is a minimal ideal belonging to the ideal I of A. 
Then P is prime and hence A --  P is a sub-(m-l-  1)-semigroup of A disjoint 
from L By Zorn ' s  lemma, then there is a maximal  sub - (m- ] - l l - s emig rou  p 
B of A disjoint from L By the preceding proof, then A -  B is a minimal 
prime ideal belonging to I so that I ~ A - - B ~ P .  Whence  A - - B - - P  and 
A -  P - - B  is a maximal  sub-(m + 1)-semigroup of A disjoint from L 

By an applicat ion of Zorn's lemma and the preceding theorem, we easily 
derive the following 

CoRom~av 4.9. - I f  P is a prime ideal containing the ideal I of an 
(m-~ 1)-semigroup A, then there exists a minimal prime ideal belonging to I 
vontained in P. 

The radical t~(I) of an ideal I of an (m-l -1) -semigroup A is defi- 
ned as 

R ( I ) = t ~ :  x e A  and for some n ~ 0 ,  w<~>~I}.  

An ideal I may be called radical iff I - -  R(I). As in [9] we will say 
that A is a strongly reversible (m-l-1)-semigroup iff for each x~, ~ .. 
• .., ~vr~+,e A, there exists non-negat ive  integers n, n~, ..., n,, such that 

[x~+~] < '>  --  Ix <'~° <1)> w <nz (~)> x <~z(m+~)>] 
L ~(I) ~.(2) "' ~(m-~l) 

for any permutat ion ¢I of 1, 2, ..., m - l - 1 ,  h~ote that any commutat ive 
(m-{-1)-semigroup is strongly reversible.  An (m-[-1)-semigroup A is said to 
be homogenous when and only when for each a eA ,  the cyclic (m + i)- 
[a] generated by a contains an idempotent,  i .e  an element e such that 
e <~>- -  e. Note that a cyclic (m + 1)-semigroup or an ( m +  1)-group need 
not possess an idempotent.  The cyclic (n + 1)-semigroup generated by a 
such that a<~> _~ a<8>, for instance, has no idempotent  (see [9]). 

T~EOR~M 4.10. - The radical R(II of an ideal I of a strongly reversible 
(m + 1)-semigroup A is an ideal. 

PROOF. - Let  ai~_~R(1 ~ and al, a2, ..., a,~+IEA. Then for some 
integer s, 

ai+l <~> E I 

and by strong reversibil i ty,  there exist integers n, nl, ..., u,,+l such 
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tha t  

[ a~+q< '>  = [a<';~/~) > a < ~ ) >  a < ~ f " +  ~>] 
g)( ) ¢(~) " ' "  t2I(,,+,) 

for any  p e r m u t a t i o n  ¢ of 1, --,, ..., m + 1. Then  

... ~ < n m + ~ >  ] ~< s > ([a~,+q<,*>)<,> = ([a~+~j.,> a~+~j+,> ... , + ,  ,, 

= [(a<,, ,>)<~> .,. (a~j+~>)<~> .. ( a<%+,> )< '> ]  
m + l  

= [ a < , > ) < - , >  in<.* >~ <,~.+~> ,a<,>~ < %,+~>] e L "'" ~,,~'~-1 ~ " "  ~ m@l ~ 

W h e n c e  [a'~+~]ER(I) and since j is a rb i t r a ry  this shows that  R(I) is an 

ideal.  

THEOREM 4. i1. - I f  I is an ideal of a strongly reversible and homoge- 
nous (m + 1)-semigroup A and E is the collection of all idempotents of I, 
then 

R(1) = to & .  
e~E 

P~oo~. - I f  a e O  Se so that  a e S ~  for some e ~ E ,  then a < , > = e  
e ~ E  

for  some in teger  s. Thus  a e R ( I I  and the re fore  U Se~R(I ) .  Conversely,  
e ~ E  

suppose a e R ( I )  so nha t  a<'>eI  for some in teger  s. S ince  for some n o n -  
nega t ive  t, ( a < ~ > ) < t > = e e S e  for some e ~ E ,  then  ae  USe.  W h e n c e  the 

e e E  

resul t .  

TUEO~= 4.12. - The intersection of any collection of prime ideals Pi, 
i ~ T, of an (m + 1)-semigroup is a radical ideal. 

PnooF. - L e t  I =  A P~. Clearls~ I ~ R ( I } .  For  each mgR(I},  there  

exis ts  an  in teger  s > 0  such tha t  

m < s > e I =  CI Pi .  
i e T  

Hence  ~ < s > e P i  for each  l e T .  But  then, s ince Di is a pr ime ideal,  
x e P ~  for al l  ~ e T .  H e n c e  x e L  The f inal  resul t  is now clear.  
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T~E0aE~ 4 .13 . -  
(m ~ 1)-semigroup is 
lO I. 

The radical t~(I) of any ideal 1 of a commutative 
the intersection of all minimal  prime ideals belonging 

PnooF. - For any prime ideal P ~ I ,  more part icularly,  for any minimal  
prime ideal P belonging to /~ if a~eR(I), then ~ < ' > e I ~ P  for some non-  
negative integer n. Thus R(I) is contained in the intersection of all minimal 
prime ideals belonging to L Suppose that the preceding inclusion is proper. 
Then for some element  x common to all minimal prime ideals belonging 
to I we have ~c~R(I). Then the cyclic ( m +  1)-semigroup [a~] generated 
by x is disjoint from I. By Zorn 's  lemma there is a sub-(m --1- 1)-semigroup 
B of A containing [x] which is maximal  with respect  to its being disjoint 
from L Hence, by Theorem 4.8, A - - B  is a minimal prime ideal belonging 
to ir with x ~ A -  B. This is contradictory. 

L ~ A  4.14. - A prime ideal P containing an ideal I of  a commutative 
(m ~ 1)-semigroup A is a minimal  prime ideal belonging to 1 i f  and only i f  
for all y e P ,  there ex.ists elements ~cl, x~, ..., x ~ P  with i ~ m  such that 

[x,~l y '*-  ~y<'*:> ] ~ I 

for some n .~ O. 

PaooF. - Suppose the above condition holds. Consider any prime ideal 
Q such that I ~  Q C  P and choose y ~ P  such that y ~ Q. Then, by hypo- 
thesis, there exists for some i ~ m  elements x~, x2, ..., x i ~ P  such that 

[x~ ym-[y<, ,>]  e I 

for some n. Since Q is prime, y<~>q Q, xl, x~  ..., x ~  Q, then 

This last s tatement is a contradiction. 

Conversely, suppose P is a minimal primo ideal belonging to L Then 
by Theorem 4.8, A - - P  is a sub-(m + 1}semigroup of A which is maximal  
with respect  to its being disjoint from I. Choose any y e P  and consider 

B = (A P) U {[a~ ~ - '  <n> ... --  y y ]: i - - 1 ,  , m, ~1, ..., ~ e A - - P ,  

n - - O ,  1, 2, ...}. 

Then B is a sub-(m-{- 1)-semigroup of A containing A - -  P. By maxi- 
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reality of A - - P  with respect  to its being disjoint from L there must  exist, 
therefore,  some elements x~, ..., x i ~ P  such that [x~y~-~y<~>]eL 

T~nzOaE~t 4.15. - The structure spctce M of all minimal prime ideals 
belonging to an ideal [ of a commutative (m 4- 1)-semigroup A is a comple- 
tely regular and totally disconnected .topological space. 

Paoo,  ~. - Theorem 4.5 (4) implies that M is a To-space. To prove the 
theorem it suffices then to show that the subbase members  Mx are clopen. 
under  the STO~-GELFA~D topology, l:/ecall that 

M ~ - ' i P :  P e M  and x E P ! .  

l~aturally, this is open under  the STONE-C_xELYAI'CD topology. Consider an 
ideal P e M  such that Pf~Mu.  Then y ~ P  and by Lemma 4.14, there exists 
x~, xz, ..., x ~ P  for some i ~ m  such that 

[~  y~'-~ y~] e L 

I-Ienc e~ 

Whence  

and therefore M u is also closed. 

CoRoL~.~nY 4.16. - Th family of all minimal prime ideals (belonging to 
the ideal (Ot) of a commutative (m q-1)-semigroup with 0 under its Stone- 
Gelfand topology is a completely regular and totally disconnected space. 

A commutat ive (m q-1)-semigroup all of whose elements are idempotent  
is designated as an (m-}-1)-semilattice. The par t icular  (m q-1)-semilat t ice  
of interest  to us is the family of all subbase elements 

p x - - { P :  P a prime ideal, x ~ P } ,  

under  the operation defined by 

3" 1 

They obviously form an (m q-1)-semilat t ice.  A sub-(m q-1)-semilat t ice  



F. M. SlOSO~: ideals in (m+l)-semigroups 185 

of the former is given by the family of all M~ with ~ e A ,  where  

M s  ---- {M: M is a minimal prime ideal belonging to (0), x ~  M}. 

To dist inguish this last t m +  1)-semilattiee~ it shall be called the dual 
(m + 1)-semilattice of the (m + 1)-semigroup A and will be denoted by D(A). 

For each ideal I of an (m + 1)-semigroup A and each subset  S of A set 

I [S]={y:  y e A ,  [yS~]~I}, 

where by convention I[x] = l [ { x } ] .  The radical of the ideal (0) 
the set of all (nilpotent} elements x such that x<~> = 0 will be 
short the nilradical of A and is denoted by N - - R ( 0 ) .  

which is 
called for 

L ~ x  4.17. - For any subcollection P of prime ideals of a commutative 
(m+ l)-semigroxp A, i f  I - -  N I=', then I [vc]=  N P for each x e A .  

P ~ P  P~Px  
PROOF.- Irl case P~ " -0 ,  that is to say, if x e P  for all P e P ,  then 

obviously 

N P = A  
P~Px 

and hence I[x]c n P. Consider then the case when P ~ #  O. If  yeI[~] 

and P is a,n arbi t rar  S element of P~, i.e. any P ~ P  with x q P ,  then 
[yx "~] e I. By definition of I this means [yvc m] e P for all P e P .  Since for 
all P e P s ,  x $ P ,  this in turn implies that y e P  for all PePs: and hence 
y e  N P. Thus  in any case, 

PcP~ 

I[x] ~ N P. 

Conversely, suppose y e  N P. Thus y e P  for all P e p  with x q P  
P~Pz 

and therefore (since P is an ideal) [yvc~]EP. When  P SPx so that x eP,  
then also [ya~ ~] e P. Combining cases, then [yz ~] e P for all P e P. Whence  
y e I[~c]. The result  now follows. 

The nilradical 2¢ of "an ( m + l ) - s e m i g r o u p  with 0 determines a 
congruence on A as follows. For  each x, y e A ,  define 

-~ y(_N), if and only if N[x] - -  N[y].  

It is easy to show that this is an equivalence relation. To show it is a 
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congruence ,  suppose  x~ ~ yi{2/) for each i = 1, 2, ..., m-~- 1. This  means  
[z{x~)~]~2/iff [z(yi)~°]~2/ for each  z e A ,  i - -  1, 2, ..., m -~ 1. Then  

z e 2/[ [x~+~]] iff [z [w~+~] ~] e 2/ 

iff [[ ... [ [z(x,) ~] (x~) m] ... ] (w,n+~) ~] a N 

iff [[ ... [ [z(xzp] (x,2) ~] ... ] (y,~+,)~] ~ N 

iff [[ ... [ [z ly,~+~) n] (x~) ~] ... ](xm) n] ~ 2/ 

iff [[ ... [[z(y~+j~](x2) ~] . . . ] (y, , ) '~]~2/  

i f f  ....... [[ ... [ [ z(y~) "~] (y~)~] ... ] ty .~+ ~) '~ ] s 2 /  

iff [z[y~+~]~]~2/  iff z e2 / [ [y~+~] ] .  H e n c e  [oc~+~]~[y~ j (N)  

and the re fo re  ~ is indeed  a congruence .  Le t  A/2q be its quo t ien t  (m ~ 1)- 
semigroup .  Then  

TKEOnE~ 4 . 1 8 . -  
A / N ~ D ( A ) .  

P R O O F . -  Def ine  a 
whe re  x/2/  denotes  the 
note  N----- A M. Thus  

M~M 
we have  

I f  A is a commutative (m + l )-semigroup, then 

mapp ing  h: D ( A ) ~  A/2/  such  that  h(M~,) = x/2/, 
equ iva lence  class conta in ing  x. By  Theo rem 4.8, 

by  choos ing  I - - N  in the p rev ious  L e m m a  4.17, 

x / 2 / =  2 / [x]  = n ~ .  
M ~ M  x 

This  means  that  h is a w e l l - d e f i n e d  funct ion .  F u r t h e r m o r e ,  

h ( [ M ~ [ ~ + q )  - -  h(M[~7+l] } ~- [xF+I]/N -" [(x~/2/){x~/N} ... (x,,+~/N}] 

---- [h(M~,)h(M~.) ... h(Mx,,+, )], 

so h is an  ep imorph i sm.  I f  x / N =  y/2/  so that  (~ M - -  (~ M, then Mx--Mu .  
MeMz M~My 

~vhich shows that  h is S ince  each  • z  is h o w e v e r  elopen,  then M x - - M y  
also a monomorph i sm.  W h e n c e  A / 2 / ~  D(A). 

T~[EO~EM 4.19. - Let A be a commutative {m ~ 1)-semigroup with 0 and 
D ~ D(A) be its dual (m-Jr. 1)-semilattice. Then the space M4A} o f  minimal 
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prime ideals of A is homeomorphic with the space EriC(D) of minimal prime 
ideals of D under their respective Stone-Gelfand topologies. 

P:aooF. - Define h: M(A)~OFC(D) by h(P) = O1Lp, where O E p - -  {My: 
M u~D,  P EMy}. By a previous lemma, since P is a minimal prime ideal 
{belonging to (0)), then for each y e P  and some i < m ,  there exist elements 
~ ,  x=, ..., x~qP such that [x~y~'*-~y<">]--O for some natural  number  n. 
This means that for M v e h ( P }  (i.e. PqM~),  there exist M~ ,  M~,  ..., M ~  
~h(P)  {i.e. P E M ~ ,  k = l ,  ..., i) such that 

[ M ; ~ ( M , , ) " - ' : M , , < " > ]  = M t g  ~ .... ,~< .> j  = 

for some natural  number  n. By applying the same previous lemma, then 
h(P)~!3IL(D) and h is well-defined.  Suppose then that P ~ Q .  Since the 
S¢O~E-GELFAgD topology in M(A) is To, this means that there exists 
M~,, ..., M ~ . ~ D  such that 

P e M~, f "  M~= ~ M~ r" ... f "  M~ i, Q E M~, ~ M~, ~ ... "" M ~ .  

Thus for at least one j = 1, 2, ..., i, P c  M~¢ but Q EIM~j. Consequently,  

h(P) #-h(Q) and h is therefore a one- to-one  mapping?° To show that it is 
also onto, let ~315pe~)lI(D) and P - - { x "  x e A ,  M , ~ e ~ p } .  If x, l e P  and 
i - - 1 ,  2, ..., m + l  and xl,  x:, ..., x,,+~ cA ,  then 

. . . .  = [ M . ,  ]e°-Jl~p, M t C + ,  1 - M . . ' ~  M=.  ~ "" M,~,.+, ",.+, 

since !3Fgp is an ideal. Thus [ x ~ + l ] ~ P  and P is also an ideal of A. If 
[a~'+ 1] ~ P, then 

= [M=, ] s~r . ,p  M [ ~ , + , I  =.,+l , 

which in turn implies Mxi~!3lZ,, for some i----1, ..., m Jr 1, since Ol~p is 
prime. Hence  x i ~ P  for some i = [, ..., m of_ l, and therefore is also prime. 
By a previous corollary, then there exists a minimal prime ideal P '  of A 
contained in P. If  Mx6h(P') ,  then P ' e M x  or x ~ P '  and hence x E P  or 
Mx ~ {~ll'Cp. Whence  h (P') =~ ~FCe. Since h (P') is also a prime ideal in D, 
then by a reapplicat ion of the same previous corollary we obtain h(P')_--~Cp. 
The bicont inui ty  now follows from the obvious relation 

h(M~) = h(M(A)) f "  { Olg,,: OFCpe OE(D), Mx q gllge} 
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and the fact that  the topologies of both M(A) and ~115(D) are ext remal ly  
disconnected.  

5. Ideals  in Topological  (m- t -1 ) -Semigroups .  - This  section deals with 
certain generalizat ions of proposi t ions  given by A. D. WALLACE and his 
school for ord inary  topological  semigroups.  By a topological (m-}-l)-semigroup 
we mean  an algebraic ( m - t - 1 ) - s e m i g r o u p  endowed with a topology under  
wh ich  its tm ~ 1)-ary operat ion is cont inuous .  Thus,  adject ives that  modify 
subsets of a topological space may now be used to modify subsets of a 
topological (m -I- 1)-semigroup too. 

For  any subset S of a topological  (m-}-1) -semigroup A, let 

oo 

[8],, = U S<k>. 

Then  

TI~EOREM 5.1. - (1) [S] --  [S]o is the smallest sub-(m + 1}-semigroup of A 
containing S; 

~2) [S~+t] ~ [S~ +*] so that in particular, i f  S is a sub-(m-4r 1)-semi. 

group of A then so is S. 

{3) IS] is the smallest closed (m -~ 1)-semigroup of A containing S, 

PRooF. (I~. - Note 

oo 

[ 8 ] < , > =  U S<~;+'"+,~,~÷, + 1 > ' -  w 8 < ~ > 5 1 8 ] .  
k t _>~ o k = l  

'~ '< '> '=  < ' >  2. If  S ~ T and T <~ > ~ T (,i.e, a sub-~m + 1)-semigroup}, then _ _ T _ I' 
and hence  S < I > ~ T < k > ~  T, in general .  Tllis means [ S ] ~ T  and ' the re fo re  
[S] is the smallest  sub-(m + 1)-semigroup of A conta in ing  S. 

(2} If f: A'~+I--~A is the mapp ing  such that 

then 

f (~,,  ..., x,, ,+,} = [~ [ '+* ] ,  

[,:s'T+'] = f i s ,  × ... × 8,,,,+,) = fi,s', x ... + 8 , ,+ , }  5 

f ( &  x ... x 8,,,+,i = [,s'[,+,]. 
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Thus, if S is a sub-(m-t-  1)-semigroup, then S < 1 > ~ 8 < 1 > ~  ~', so that ,_~ is 
also a sub-(m-+-1)-semigroup.  

13) From (2) it follows then that [S] is a sub-(m-i-1}-semigroup of 

A containing S. If T < ~ > ~ T  and S ~ T - - T ,  then [S]=cT so that 

[S-]~ ~ ' =  T and [S--] is the smallest closed ( topologica l )sub-(m-+-1-semi-  
group of A eontainig S. 

T~EOREM 5.2. - { Gottschalk-Hedlu~d). Let X~, i = 1, 2, ..., m Jr- 1, and 
Y be arbitrary topological spaces and 

f :  X~ X X~ X ... X X,,+~ --.- Y 

be a continuous function. I f  C~ is a compact subset of X~ for each 
i - "  l, 2, ..., m Zr-1 and W is a neighborhood of  f~O~ X C2 X ... X C~,+~), 
then there exist neighborhoods U~ of  Ci for all i : i, 2, ..., m ~ 1 such that 

f(U1 X U, X ... X .U,,,,+,)£ W. 

PROOF. - The proof is by induct ion on m. If  m - - 1 ,  the proposition 
reduces  to a Lemma of GO~TSCHAT,]~ and I-IEDLUND {see page 3 of reference 
[4]). Suppose that the result  has already been shown for any function on a 
cartesian product with m -  k components. Consider then any collection of 
k + l  compact  subsets O~ of Xi ( i = t ,  2, ..., k + l }  and a continuous 
funct ion 

f: X, X X ~ X  ... X X k + , ~ Y  

together with any neighborhood W of f(C1 X C~ X ... X C~+1). Let g be the 
natura l  homeomorphism between (Xt X ... X X~) X Xk+l and X1 X ... X X X Xk+~ 
such that g((x~, ..., x~), x ~ + l ) :  (xl, ..., xk, xk+l). The composition fg is 
still a continuous function on (X1 X ... X Xk) Y X~+I to Y and W is a 
neighborhood of (fg)((C~ X ... X C~)X Cz+l). By TYc~oz~oz~F'S theorem 
Q X ... X Ck is also compact and hence by applying the ordinary GOTTSC~.~LK- 
I::IEDLU:ND lemma, there exist open sets V and Uk+~ containing C~ X ... X Ck 
and C~+~ respectively such that 

fg (v  x uk+~) a= w. 

Then applying our hypothesis of induction on the identity funcUon 
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def ined  on C~ X ... X Ch, there exis ts  open sets U~ c o n t a i n i n g  Ci such that  

U , X  ... X y , , 5  v. 

Thus ,  

fg((U1 x ... x u , , ) x  uk+,)=f(U,x ... x u ,~x  ~,E+,t£ w. 

Our induc t ion  is then  complete .  

COnOLLARY 5,3. ~Wallace). - I f  X~ are topological spaces containing the 
compact sets C~ (i = l, 2, ..., m - F 1 )  and W is a neighborhood of C~ X ... 
• .. X C,~+~ in  the product space X1 X ... X X,~+~, then there exist neigh- 
borhoods U~ of  Ci for each i Such that 

u1X u,,x ... X u , ~ + ~ £  w .  

T~EOREM 5.4. - (lt I f  C is a closed set, S~, ..., S,~+~ are arbitrary subsets 
of  a Hausdorf f  topological (m + 1)-semigroup A, then for each i = 1, ..., m, 

m-}-I { x: [S~ xSi+2 ] ~ C } is closed. 

(2) Under the same hypotheses, i f  S is an arbitrary subset of A and 
C~, ..., C,,+~ are compact subsets of  A, then for any i = O, 1, ..., m, 

~'~i C"+~I S} is closed. 

PROOF. - (1). Le t  y e A  such tha t  [S~yS~+2~]~ C. Then there exist  ele- 

men t s  s ~ e S  i ( ] = I ,  2, ..., r e + l )  such  tha t  

[s~ ~s '+~l  e A - -  C. i + 2  J 

Since  A is HAUSDORFF the sets IY}, {si} { J - - i ,  ..., m +  1)a re  compact  
and hence  by Theorem 5.2, there exis t  open sets U~, ..., U,~+~ of A such 

tha t  

[.d ~Js,~+11 e ro~ U- .  s '~+11 ~ [5]"~ 1] = A - -  C. 
~i ° i + 2  J L~1 ~tl i~}~2 j 

This  means  tha t  for each z e Ui+l we have  

rRizS,,,+11 el: C. r.d zs~+tl ~ C and hence  L-1 ~+~ J Lvl  i + 2  J 
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Thus y e  Ui+~ ~ A {x: [ S ~ ? ' ~ + ~ =  = - -  ~,~+~ j ~  C} so that this last set is open. 
This proves our result. 

(2) Let y ~ A  such that [~,ly~+~ j ~ S .  Then for some s ~ S ,  
i m-l-~ s ~ [CxyC~+~ ] and therefore 

['~ C " - ~  = A s }. 

Again by Theorem 5.2, then there exists open sets U~, ..., U,~+~ in A 
such that 

G i C m+l~ c i m-~l m ÷ z  

,'~ (~'~+~1--, S} for some U~+I  This means so that y ~ l ~ i ~ A - - I x :  [,~c~,~+2 j ~  

[C~xC~+2 ~ S  1 is a closed set. { ~  : i m-F1 

TnEoIil~M 5.5. - I f  S~, S~, ..., Sm+~ are compact subsets of a Hausdorff 

(m + l)-sem~group A, then [8~ +~] = [S~+1]. 

P t ¢ o o ~ . -  From Theorem 5.1, recall  that [S~ +~] ~[S~+~].  Obviously, 

Since A is HXUSDORFF, the operation is continuous, and S~ X ... X S,~+~ 

is compact (by T¥OI~ONO~F'S theorem), then [S~+1] is also compact and 

therefore closed. Hence [8~+~]~[S~+1]. 

T~Eonn~ 5.6. - I f  Ti (i = 1, 2, ..., m -~ 1) are towers of compact sets in 
a Hausdorff (m Jr-l}-semigroup A, then 

sets 

[ n s , ) (  n s~). . .  ~ n s , .+ l ) j  = n ... n [st"+' ] .  
(s,e T. S,e T. .,+~e r~+,  " S,~ r, S . ~  Tin+ ~ 

PROOF. - This follows from the following result  in topology [12]: 

LE~MA 5.7. - Let f: X- -~  Y be a function and T a filter base of closed 
in X. I f  

(1) some B e  T is compact and f-l(y} for each y e Y is closed, or 

(2) f-l(y) for each y ~ Y is compact, then 

f( N A ) - -  N flA). 
A~ T A~ T 
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T ~ n o a ~  5.8. - The following conditions for a subset S of an (m -~ 1)- 
semigroup A are equivalent: 

(1} S is an (m ~- 1)-group under  the same operation in A, that is to 
say, a sub i m +  l)-group; 

~2) For all i =  O, ..., m and  each set o[ elements 

~e~, ..., x~, x~+~, ..., x,~+~ ~ S, [x[Sx~+~]  = S:  

(3} For one i - - 1 ,  ..., m - - 1  and each set of elements 

i m + l  
x~, ..., x~, x~+~, ..., x ~ + ~ e S ,  [x~Sx;+~] = S;  

(4) For all 

x~ . . . .  , x ~  ~ S, [~e~S] = S = IS~:~ ]: 

i5) For all 

x e S,  [xS  '~] = S = [S~x] .  

PROOF. - The implications ( 1 ) ~ ( 2 )  => (3) => (4) :=> (5) are obvious. 
~2)=>(1) follows from the P o s t  COSE~ Theorem. To comple the proof we 
n o w  s h o w  (5) ~ (2}. 

For each i and set of elements x~, ..., x,~, x~+2, ..., x~+~ e S, we obtain 
the following through applications of (5), S < ~ > = S ,  and the law of asso- 
ciativity : 

[ ~ 1  1.~ i -~2  ] ' - ' -  k 1 ~-~2 ] "--" ~ i n u S  J - - "  

• m - I -  11 r ~-1  ~3 ,,+11 [x~ 1 ~ < ~ >  e S < ~ > x ~  +1~ = [x l  -~  [ x ~ _ ~ 8  ~ 1 S  3 [ S ~ x ~ + , ]  ~ + ,  ~ = 

T:~EO~E~[ 5.9. - (1) I f  S is a non-empty subset of a Hausdor f f  (m-1- i)- 

semiqroup A such that IS] is compact, then 

N = i v ( s )  = ~ [ 8 ] .  

is an ideal of  the closed sub-(m + 1)-semigroup [S]. 
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PROOF. - Note 

[[S]~3S], ~ ... IS], +,] = [S],. + .... ,,,,,=,+, 

and if S~, ..., S,~+~ are arbi t rary subsets of [S], then [S~+~] -~-t=~ = [$1 ]. Hence  
for each i - - 0 ,  1, ...,m, by Th. 5.7, 5.5 

c o  

[[s] ,2,~[sF-,} = [ [s] ,  n [ s ] .  [ s F - ' ]  = n [ [ , ] ,  [ s ] .  [sV ~-,1 = 
~ 0  ~ 0  

= n [[8], [8]. IS] ~- ,]  = n [( u s<k>), ( u s<~>) ( u 8<k>) ~-,]  
n ~  D ~ 0  k ~ 0  k ~  k = 0 

= n u 8 < ~ > =  n [ 8 ] . + . =  n [ s ] . = l v .  
n = o  k ~ n - ~ l  n = o  n ~ o  

Hence A T is an ideal of [S]. 

TttEOREM 5.10. - If S is a commutative subset of  a Hausdosff  (m + 1)- 

semigroup A, then -S is also commutative; parlicularly, [a--] is commutative for 
each a ~ A. 

PROOF. - Consider the funct ion f:  A ~ + ~  A X A defined by 

f(x~, ..., x~+~) {[x~ '+~] ,  r z ( ' ~ + ' ) ~  ~-- [ ~  (1) J ! 

for any permutat ion ~ of 1, 2, ..., m + l .  If D is the diagonal of A X A ,  
then note that a subset S of A is commutat ive iff f ( S X  ... X S ) ~ D .  

On the other hand, D is a closed set. Since f is continuous, then f-~(D) 
is also closed. If S is therefore commutative,  then S X ... X S ~  f-~(D) so 

that S X . . .  X S :  5 ' X . . .  X S~f-~(D). Hence  f ( , g X  ... X , ~ ) ~ D  and S is 
also commutative.  

THEORE~ 5.11. - I f  a belongs to a Hausdorff  (m + 1)=semigroup A and 

[a] is compact, then N{a) is a maximal sub-(m + 1)-group and minimal 

ideal of  [a]. 

PROOF. - It is obvious that every [a],, and hence every [~], is a sub-  

(m + 1)-semigroup of [a]. Since [a] is commutative,  then, by Theorem 5.10, 
I 

[a] is also a commutat ive ( m + l ) - s e m i g r o u p .  Let {x: [ x 2 ¢ ~ ] = N } = H  
where  N - - N ( a ) .  By Theorem 5.4, this is closed. Note also that for any 
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non-negat ive  integer n, 

[ a < ~ > X ~ ]  = [a<*> n [a]~ ... n [a]k] = n . .  n [~<~> [a]j ... [~]k] 
]:-o k=o  j = o  ~=o 

co zo (~ ~ zo ~ co 
--  N . .  N [a<~> a<~> ... a< ~>] = N .., N U a<~> 

y=o k=o  i=] ~=/¢ /=(,  /~---o i=nq-]q-...+kq-1 

CO 

: N [a] .+~ ,~  = .hT. 

Thus, [a] ~ H  and also [a] c H. In particular~ N ( a ) ~  H and hence 
N(a) <~> : / V ( a ) .  Whence  for any set of elements x~, ..., x~ e lV (a ) - -N ,  

[ ~F2~] = [xFN<~ >] = [x~ -~ [ x . ~  ~] lV ] = [ x ~ - ~ ' ]  = [x~"- "N<~ >2~] 

m - - 2  m 2 = [ .~  [ x ~ . _ ~  ] ~  ] - - [x~T~]  = N .  

By Theorem 5.8, it follows then that N------N(a) is an (m + 1)-group. If G 
is any ( m ~ l ) - g r o u p  and I i s  any ideal of G, then for each x e / ,  

G -- [G'xe ~-'] 5 [ G'IG~'~-*] ~ I ~ G. 

Therefore  I = G. 

From Theorem 5.9, we know that N ( a ) i s  an ideal o[ [a] for each 

s e A .  Suppose I is any ideal of [a]. Then 

[(N(a))*I(N(a)) ~-~] ~ 1  A N(a) and 1 (~ N(a) 4 O, 

and hence I A N(a) is also ~n ideal of N(a) since 

[ (~'(a))' ~I n h~{a))(:~ta)V ~-']  ~ z n :~7(a). 

Thus N(a) N I :  N(a) c I and therefore N(a) is a minimal ideal of [a]. 

Let  G be aay  sub- (m-~l ) -group  of [a-]. If  N(a) (h G ~ O : a n d  beN(a)NG, 
ther~ for :eaeh  element x e  G and each i = 0, 1, ..., m, there exist elements 
$~, ..., x~, x~+~, ..., x,~+, e G such that 

~4-~ j "-" 2;. 

Since N(a) is an ideal of [a], then x e~(a) .  Whence  G~N(a}  and 

N(a) is a maximal  ( m + l ) - g r o u p  in [a]. 
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COROLLARY 5 . 1 2 . -  Under the same hypotheses of Theorem 5.1t ,  i f  [a] 
is compact and connected, then it is an (m + 1)-group. 

PROOF. - :Note that  [a] - -  {a } U [a]~. S ince  A is ~7~AUSDORFF, then fa} 

is c losed  l ike [a]t and hence  by connec t edness  a e [ a l ~ .  I f  for some smal les t  

in teger  p, a = a<p >, then [a] is the I m +  1)-group consist ing'  of the ele- 

men t s  a, a <~>, ..., a<p -~>. Otherwise ,  s ince  a e  [a]~ - -  [a]~ O 2V(a), then 

a~N(a). T h e n  [ a ] ~ 2 V ( a ) a n d  [a]~hT(a).  S ince  N ( a ) ~ [ a ] ,  then N ( a ) = [ a ] .  

TKEORE~ 5.I3. - Th.e following conditions are equivalent for a compact 
Hausdorff (m + l)-semigroup A: 

{1) For each x ~ A  and each neighborhood U of x, there exists a 
natural number n such that m<n>~ U; 

(2) For each subset S of A, S<~> ~ S - - S  implies S < , >  = S; 

(3) A is a union of (m + 1)-groups. 

PROOl~. - ( 1 ) ~ ( 2 ) .  Le t  S <~> ¢ S = S and suppose  that  there  exis ts  an 
e lement  x e A - -  S <°>. Note  

S B S < , >  B ... 8 < - >  ~=... 

and hence  A - - S  is an open set such  that 

A - - S e A -  S < ~ > c  ... c A - - S < * ~ > c  .... 

Thus  A - - S  is some ne ighborhood  o f  x such  that  vc<'> q A - - S  
na tu ra l  n u m b e r s  n, con t ra ry  to (1). 

(2)=:> (3). A s s u m e  (2). Then  for  each  x e A, 

for  all 

[x ]<">  ,= ~<1>  __ [ U  x < ~ >  U x < ' ~ >  ... U ~<k>]  - -  U x<k>  
k=o k=o 7¢=o k = l  

: [ m ] ~ [ x ]  so that  [ x ] < ~ > = [ x ] ~ = [ x ] .  

P r o c e e d i n g  by induction~ suppose  that  [x--)~ = [~c~. Then  

[~:1 = [ z ]< '>  = [[x]~[x]"] 5 [[x]. [x] ~] = 

= [ W x < ~ >  W a~<~> ... U x<l~>] = W ~ < ~ >  = [ x ] . + l  ~ [x-l. 
k=:n k=o k=0 k = n + l  
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Hence [m],+~ : [aq and induct ion is completed.  Therefore  [x] = [x]~ : N(x). 
Applying Theorem 5.11, then N(z) is an (m+l ) -g roup .  Every element of A 
thus belongs to such an (m-I-1)-group.  

( 3 ) ~  (1). - Let  x e A  and G be the smallest  closed sub-(m + 1)-group 

in A containing x. Then G ~ [x ]  ~ N(~c). Since A is compact  and HAUSDORF:F, 
then [x] is also compact  and hence by Theorem 5.11, N(~) is an (m + 1)- 
group. Whence  G--N(x) .  This means that x~N(~v) for all ~ e  A. Condition 
(l) now follows. 

L E ~ i  5.14. - I f  C, C~+~ are arbitrary non-empty subsets of a connected 
Hausdorf[ (m + 1)-semigroup A, then .for each i ~ j ( i ,  j -- O, 1, ..., m), both 

and 

are connected. 

[A~C~+IA ~-~] U [A~Ci+~A ~-~] 

[AiCiEiA~ m-t] U [[A.me]a m] 

P R o o ~ . -  Wi thout  loss of generality, one 
than j. For  each x e C~+~, y e C]+~ and each 

may assume that i is tess 
set of elements x~, ..., ~v~, 

[x~ xx~+~ [A ~A+~-q N Y~j+~ ] ~ [AJyA°~-q 

and hence the lat ter  set is non-empty.  Since for each x e  C~+l and y e  Ct+~ 
both [A%A+-q and [A¢yA'~-;] are connected, then their union is also 
connected. Moreover, since 

[A,xA~-~] c n ([A'xA ~-'] U [AJyA È~-j ] ) 
=uecj+~ 

so that  the la t ter  set is again non-empty,  then 

[A~xA ~-'] U [A~C~+IA '~-~] = U ([A%A~'~-q U [A3yA ~-~] 
y'~ C~.4_ 1 

is also connected. Continuing this argument,  we conclude that 

~i ui-{-i zl l 

is connected. Taking j = m and Cm+l= [CA'~], we obtain the second con- 

clusion. 
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THEOREM 5.15. - I f  I is an (i + 1)-ideal (i ~ 0, 1, .... m) of a topological 
Hausdorff (m + 1)-semigroup A, then one and only one component of I is an 
(i + 1)-ideal. 

PROOF. - Consider 

(Y5 

J - -  [2 [A"ilA'(m-~)] U [[A~IIA~]. 

Then J is clearly a connected (i + 1)-ideal of A (by Lemma 5.14) and J is 
contained in L Let  C be the component  of I containing J.  Thus 

[AiOA ~-~] ~ [AilA ~-i] ~ J ~ C. 

that is to say, the component  C of I is also an (i + 1)-ideal. Note also 
that 

[A~[AiCA~-i]A ~-~] c [A~CA~-~] ~ C. 

If O and C' are therefore any two (i + 1)-ideal components of /,  then 

[A~[CA ~-~ C'A "~-~] A "~ ~] ~ [A~[A~C'A"=qA ... .  ~] ~ [A~O'A'~=q ~ 0' 

and 

[A s [CA~-~C'Am-~IA ~-~] ~ [AiCA*-~C'A'~-2i-I [A~+~]] 

[A~CA~-~Am-2*A] = [A~CA~-q c C 

so that 

[A~[CA~-~C'A~ i]A'~-i] ~ C (5 C' ~ O. 

This implies then that C =  C' and I ha:s exact ly one ( i +  1)-ideal 
component.  

COROLLARY 5.16. - I f  I is an ideal of a tlausdorff (m + l)-semigroup A, 
then one and only one component of 1 is an ideal. 

TItEORE~[ 5 . 1 7 . -  I f  C is a closed subset of a Hausdorff (m + l)-semi- 
group A, then the union Ui+~(C) of all (i + 1) ideals of A contained in C is 
a closed (i + 1)-ideal, .i -- 0, ..., m. 

PROOF. - If  Ui+I(C)-~ O, then the result  is obvious. 0thervise,  if 
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U~+~(C) = U~+~ ~ O, then by Theorem (5.1(2), 

[A(~+IA*~-q ~ [A~U~+~A~-li c U,+I ~ C = C. 

Thus Uil=~ is also an (i q -1) - idea l  contained in C and hence U i + ~  Ui+, 
The other inclusion is evident. Whence  b~+_~ is closed. 

COROLLARY 5.18. The union U(C) of all ideals contained in a closed 
subset C of a Hausdorf[ (m ~ 1)-semigroup is also a closed ideal. 

T~EORE=~I 5.19. - I f  0 is an open subset of  a compact Hausdorff  (m + 1)- 
semigroup A, then the union U~+~(0} of all (i + 1)-ideals of  A contained in 
0 is also an open ( i+l ) - idea l ,  i = O ,  1, ..., m. 

P R O O f . -  It is easy to see that the union of any number  of {i ~ 1)- 
ideals is also an (i-{-1)-ideal.  If  X o -  {w}, X,~+I = [A~X+~A +~-~] for all natu.  
ral nnmbers  n, since U~+~(O) is an (i n u 1)-ideal, then 

u x , , 5  5"~+~(o)~ o. 

Since A is compact  and HAUSDOn~F SO that {x} is also compact, then 
by Theorem 5.2, there exist an open neighborhood U of x such that 

K =  U Y , ~  0. 

where ] ~ - - U  and :~+1----[A~t~ A~-~] for each natural  number  n. It  is 
easily verif ied that K is also an (i-{--1}-ideal of A and therefore is an 
element of U~+I(O). Therefore  x e  U ~ U~+I(O) and U~ ~I(O} is also open. 

TItEORE~[ 5.20. - The union of all ideals contained in an open subset of  
a compact Hausdorff  (m-~ 1)-semigroup is an open ideal. 

TI-IEORE~/I 5. [6. - Any  proper ti ~ 1)-ideal of a compact Hausdor]7 (m ~ 1)- 
semigroup A is contained in a maximal  proper (i ~ 1}=ideal and each such 
proper maximal  (i ~ 1)-ideal is open. 

PnooF.  - Let  I be any proper ( i-}-1)-ideal  of A. The family C of all 
proper  (i + 1)-ideals of A containing I is a part ial ly ordered set under 
inclusion every l inearly ordered subfamily of which has its union as an 
upper  bound. Hence,  by ZoR~ ' s  lemma the family C must possess a maxi- 
mal member  2/. M is thus a proper  maximal (i ~-1) - idea l  of A. 

Let  x e A - - M  and consider U~+~(A--Ix}}. If y e U i + ~ ( A - I x } )  so that 



F. M. Sloso~: Ideals in (m+l).semigroups 

for some ( i + l ) - i d e a l  I ~ A - - ( x } ,  y ~ I ,  then for any 
x~, ..., xi, xi+2, ..., xm+~ e A ,  we have 

[x i~,~+~! e I c U~+~(A - -  {X }). 
I ">~i--[-2 I 
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set of elements 

Moreover M ~  Ui+~(A-- {x}) =@A and therefore .M = UI+~(A-- Ix}).  M 
is therefore an open (i + 1)-ideal. 

COROLLARY 5.22. - A n y  proper ideal of a compact Hausdor]7 (m + 1)- 
semigroup A is contained in  a maximal  proper ideal and any such ma.~imal 
ideal is open. 

ConoI~LAnY 5.23. - A n y  proper (i + 1)-ideal of  a compact Hausdor/T 
(in-{--1)-semigroup is contained in  an open proper maximal  ideal, i - - 0 ,  
1, ..., m. 

This follows from the fact that every ( i +  1)-ideal is contained in an 
ideal (see ]10]) and the previous corollary. 

From the fact that the closure of an ideal is also an ideal, the following 
result  is easily der ived:  

COROLLARY 5.24. - A maximal  proper ideal of a compact t:Iausdorff and 
connected (m + 1}-semigroup is dense. 

T~EORE)f 5.25. - Every compact Hausdorff  (m + l)-semigroup A possesses 
a minimal  1-ideal ((m + 1-ideal) and each such ideal is closed. I f  A is in  
addition subjective, then it has a minimal  (i + 1)-ideal for each i -  I, 2, ... 
..., m -  1 and each such ideal is also closed. 

PROOF.- We shall only prove the first part, since the proof of the 
second par t  goes in exact ly  the same way. 

Consider the collection of all closed (i-~-1)-ideals of A. This is non-  
empty since it contains A itself. By ZOR~'S leinma, it must have a maximal  
tower  Y. Then 

M - - Q I  
I ~ T  

is a minimal closed (i + 1)-ideal of A. M is also a closed minimal i i +  1)- 
ideal of A. To see this consider an (i + 1)-ideal J contained in M with  
x a J. Then 

[A~xA ~-i] c [A~JA ~-~] c J c M 
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and hence by induction 

[Ai[A~A.(.~-~)[A ~-~] - -  ]A(~,+~)ixA(~+~) (.,-o] ~ [A~JA~-~] c J c M 

for each natural  number  n. Hence 

O0 :._ 
K --  U [A"~xA "(m-~)] U [[A'~x]A ~] c = J ~ M .  

K is ev iden t ly  an ( i -~  1)-ideal .  S ince  A is c o m p a c t  HAUSDOI~FF, its opera- 
t ion is a closed m a p p i n g ;  s ince  the re  are  a c t u a l l y  on ly  a f in i te  n u m b e r  of 

d i s t inc t  t e rms  in ~he above union,  and  s ince each  of the t e rms  [A"~xA "('-~)] 

is closed,  t hen  K is also a c losed ( i -~  1)-ideal.  F r o m  the m i n i m a l i t y  of M 
as a c losed ideal ,  t hen  M - - K .  

Now suppose  N is any  mi n i ma l  ( i ~  1)- ideal  of A so tha t  for  each  x ~ 2v, 
we have  the r e l a t i on  [A%A~-q  ~ N. T h e n  by  e x a c t l y  the same p r o c e d u r e  as 
in the p r e c e d i n g  K is an (i ~ l ) - i d e a l  c o n t a i n e d  in N and  h e n c e  K - - N .  
T h u s  any  min ima l  ( i -~  1)- ideal  is a lways  closed.  
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