Ideals in (m+ 1)-semigroups.

F. M. Siosox (University of Flovida}

Summary, - The following memoir is concerned mith various idealtheoretic aspecls of the
theory of polyadic semigroups. Many of the results are generalizations of known theo-
rems in the theory of ordinary or 2-semigroups.

1. Introduction. - The existence of extensive theories of groups, semi-
groups, and (m - 1)-groups has motivated the author [9], [10] to pursue the
analogous study of (m - 1)-semigroups. By an (m - 1)-semigroup is meant
an algebraic system (4, [+++])} with one (m -} 1)-ary operation

[e]: Am+ o 4

satisfying tho associative law

[[x1x2 see x,n+1]mm+2 ‘e m2n1+1] fr— [ml[wzws wer mm_H} e me_H]
= w0 = [0 . (@ 1%z o wzm—H]]
for any set of elements a,, @, ..., X2y €4. An (m + 1)-group, in parti-

cular, is an (m -+ 1)-semigroup possessing the additional property that for

each @y, .., i1, @1y, o, @4y, DEA, a unique solution in the indeter-
minate ¢, exists for the equation

{22 PR 7/ R aml]:b

for each ¢=1, 2, ..., m 4 1.
The following, for example, are (m - 1)-semigroups:

1o. - Trivially, if (S, -} is an ordinary semigroup (i.e. a 2-semigroup),
then (S, [+++]) is an (m 4+ l)-semigroup with

[6{319’)2 ses xm+1} _— Xz ... mm+1-
2°. ~ Let 8, S, ..., S,, be any collection of m pairwise disjoint sets.
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Consider the collection F(S;, S:, ..., S,) of all partial or full functions

f: @S{H@S,’

fm==l f==1

such that f(Si)E 8., f(S:) € S, oo, f(Sn) £ 8. Note that if f, fi, €
eF (S, 8, .., S,), then fifui(S) €8s, fifo(S) €8s, ... fifulS,) € S: so that
fif: ¢ F(S:, ..., Sy). On the other hand, if fi, fa, «, fmss are any m -1
elements belonging to F(Si, ..., Sy) then [fife foai] = fife fms1€ F(S1, s Siu)e
Thus, F(S:i, ..., Sw) forms an (m + 1)-semigroup under the operation of
composition of any m - 1 functions.

30, — More generally, ¢ be an arbitrary permutation of 1, 2, ..., m. As
in the preceding example, the colleetion F°(S,, ..., S.) of all functions

m m
f:US—US,
=1 i

=1

such that f(S,) < S, for each ¢=1, 2, ..., m, also constitute an (m -+ 1)-
semigroup under (m - 1)~composition. Example 2°, for instance, is a special
case of 3° when ¢ is the cyclic permutation (12 ... m).

40, - Let Rk, ks, ..., kw) be the collection of all m-tuples of matrices
A =(4,, 4, ..., 4,,) over a ring B, where 4; is k; by kiys, 1 =1, ..., m—1,
and A4, is k, by k.. Then Rk, k., ..., kw) is an (m 4 1)-semigroup under
the operation

[AP47 ... A7) = (AL .. Ayn, ARAL .. AT, L, AnAD . A0,

where
At = fw Aiz; ) A:nL i=1, 2 .., m+ 1.

We do not intend to pursue in this communication the general theory
of (m + 1)-semigroups in all its various ramifications, but instead we shall
devote our efforts mostly to certain ideal-theoretic results on the theory of
{m + 1)-semigroups. A large bulk of these results are extensions of those in
ordinary semigroups (2], [6], and [8].

It will be convenient in our later discussions to adopt at this point a
few simplifying conventions in notation. A sequence of symbols a2, ... o,
whether they be sets or individual elements, will be abbreviated fo af. With
this convention, the above associative law may mnow be more compactly
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written as
[l IS = (ol I = = [
When, in addition, 2 =2, = .. —=x; =, then we will write
Ly ... ¢, = x* = (2;)* for any j=1, 2, ..., i

Recursively, one may also define
a<0> — @, m<"+ 13 e [x<”:>wm]

for every natural number . The following exponential laws are then easily
verified for (m -+ 1)-semigroups:

{1) (w<’~">)<s> —_ m<rsm-{-r+s>’

(2} {ﬁ3< N> <>, ﬂ’}<rm+1>} =<t e 1, R

2. Ideals in Surjective (m -+ 1)-Semigroups. - We commence by stating
a few definitions. Any subset S of an (m 4 l)-semigroup 4 that forms an
(m 4 1)-semigroup under the same operation inh 4 will be called a sub-
(m -+ 1)-semigroup. In particular, a subset I of 4 is called an (i 4 1)-
ideal iff

[ATAm™ N < I,

¢=0, 1, .., m. By convention, [4°T4A™] = [T4A™], [A™IA°] = [4™]], and
[A°JA°) = 1. An (i 4 1)-ideal for each ¢=0, 1, .., m is simply called an
ideal.

The smallest (i 1)-ideal of an (m - 1)-semigroup A containing an
element aed (called the principal (i 4 1)-ideal generated by a) will be
denoted by (a)i1.. Constructively, this is given by

H

o0
(@i = U X,
n=0

where X, ={a}, X,y =[4'X,B"~¥]. 1f 4 is surjective, i.e. A<'> = 4, then
it may be written as

(@)ipr = U [A"g A"0n=0] U [[A™a)Am],

n=1
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where [4°@4°] = [@} and wi, n(m — i) respectively denote ni, n(m — 4)
reduced modulo m. While the union operation above is still applied inde-

finitely, it is easy fo s2e that only a finite numboer of the terms that appear
are actually distinot.

Note that an exception to the above statement occurs when we have m=2:
(@)= {a] U [ad%], (o) = (a} U[dad] U [4[4ad)4],
(@) = {a} U [4%a].
If S< A, then the (i 4 l)-ideal generated by S is given by

(S)ivr= U (®),41-
xe S

Corresponding remarks may be made for an ideal {a) generated by an
element ae 4.

That these various notions of ideals are not independent is shown by
the following

THEOREM 2.1. - Let A be a surjective (m -+ 1)-semigroup. If the g.c.d.
of i and m divides that of j and m, then (a);i. S (a)iya for each a€eA and
(@iyr 98 @ (f+ 1)~ideal of A.

PROOF. - Suppose that (i, m) divides (j, m). To prove that (@)1 S (@)i4a
it suffices to show that for each non-negative ,

nj = ki (mod m)
for some natural number k. Consider the congruence equation
jc=j (mod m).

By number theory, this always possesses a solution 2 =, since (4, m)
divides §. Hence

nj = (nx)é (mod m) and therefore

COROLLARY 2.2. - In a surjective (m -+ 1)-semigroup 4, ()i = (@)jts
for each ae A iff (s, m) = (4, m).



F. M. Sioson: Ideals in (m-+1)-semigroups 165

CoROLLARY 2.3. - Every (i 4 l)-~ideal of a surjective (m - 1)-semigroup
is a (§ -+ l)-ideal iff (i, m) = (4§, m).

CorOLLARY 24. - If m is prime, then every (i + 1)-ideal of a surjective
(m 4+ Ly-semigroup is also a (j -+ l)-ideal for all 4, j=1, 2, ..., m — 1.

COROLLARY 2.5. = Fvery (i 4 1)-ideal of a surjective (m -~ 1)-semigroup is
an (m — i 4 1)=ideal for each i =1, 2, ..., m — 1, and conversely.

CoROLLARY 2.6. - Each (i 4 l)-ideal of a surjective (m - 1)-semigroup
is contained in some 2-ideal (and hence in some m-ideal), i = 1,2, .., m—1;
moreover, every 2-ideal is an (¢ + li-ideal for each ¢=1, 2, ..., m — 1.

An element z ef an (m - 1)-semigroup A is called an (¢ 4 1)-zero ff
[A'24™ | = 7 and simply a zero (denoted by O) iff it is an (¢ - 1)-zero for
all ¢=0, 1, ..., m. An (i + l)-ideal (ideal) will be said to be wminimal ift
it contains properly no other (i 4 1)-ideal (ideal). When an (m 4 1)-semi-
group possesses no ideals except itself and possibly the ideal consisting of
the zero element, it is often called simple. If a simple (m -+ 1)-semigroup
is not isomorphic to an (m - 1)-semigroup of order two with a zero element
(ie. a fwo-element null (m 4 lj-semigroup), then it is said to be nullsimple.

TaeoreMm 2.7, - Every minimal (i+ l)-ideal M (i=1, 2, ..., m —1)
of a surjective (m -+ l)-semigroup A without zero element may be writlen in
the form

M = U [ATg Ao =5] U [[ Amag] 4]

for any xe A, the union running over all non-negative integers n such
that ni =0, nim —i) =0 (mod wm). On fthe other hand, every minimal
1 —ideal ((m + 1)-ideal) of an arbitrary (m -+ l)-semigroup (not necessarily
surjective) 4s of the form [xA™] ([A™x]), = being any element of the ideal.

Proor. - Let M be any minimal (¢4 lj~ideal of 4, i=1, 2, ..., m—1,
and x€M. Then for all n such that wi <=0, n(m—i)+0 (mod m) the
union

I= U [A™gA"=0] U [[A™x]4™)
is an (¢ 4 1)-ideal. Moreover,
Ic®)c M

and hence by minimality of M one obtains I = M. The proof of the second
part is very similar.
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COROLLARY 2.8. - Hvery minimal 2-ideal (m—-ideal) of a surjective (m-1)-
semigroup A without zero is o minimal ideal.

Proor. - By Corollary 2.6, it will suffice to only show that a minimal
2-ideal is both a 1-ideal and an (m - 1)-ideal. By Proposition 2.7, we
know that

3

M= U [A%A"] U [[A™x]4™)]

i=1

The relations [MA™] < M and [A”M]<S M are easily verified.

3. Ideal Series in (m + 1)-Semigroups and the Jordan-Holder
Theorem. - The sequence of theorems that leads to the JORDAN-HOLDER
theorem for ideals in (m + 1)-semigroups will be derived in this section.
Conditions necessary and sufficient for the existence of a composition or
chief series in an (m - 1)-semigroup will be given. All these are extensions
of results in ordinary semigroups found in [2] and [8].

Before continuing, however, it will be necessary to clarify a few things.
Consider an (m -4 1)-semigroup 4 and the relation = defined on 4 by an
ideal I of A such that

x=y (I)

when and only when both a and y belong to I or x=y. It is easily
verified that = is an equivalence relation on 4. Moreover, if x, = y,!I) for
each ¢ =1, 2, .., m + 1, then [x»+]=[y»+}] (I). This means that = is a
congruence (relation) on A. The quotient (m 4 lj-semigroup A/= or 4/I
consists then of the disjoint classes I and all {x} for x€ A — 1. For
convenience we will not distinguish between {a} and x. Note also that I
is the zero element in A/L

TeEoREM 3.1. - If I is an ideal and S is a sub-(m -+ 1)-semigroup of
an (m -+ 1)-semigroup A, then IN S @ is an ideal of and IUS is a
sub-(m -+ 1)-semigroup of A such that

(TUs8)yr=8/InNS8).
Proor. - Note that
{IU S)<1>: U {[X:n-l_l]: Xo=1 or X1:S}_S_IU &8

and therefore I U S is a sub-(m 4 1)-semigroup of A.
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From the relationships

[SYI N §)S™—4 < [SUIS™~ T
and

[SYI N 8)Sm—i] < §<1>c 8,

which holds for all ¢=0, 1, ..., m, it follows also that I N § is an ideal
of 8. In exactly the same manner, it can be shown that I is an ideal of
IUS. Both (IUS)/I and S/(INS) are well-defined quotient (m 4 1)-
semigroups. Finally

(TUS)/I=(TUS—I)U[I}=(S—1I) Uil
S(S—TNUINSI=8—INSUINS|=8/{INS)

TaEOREM 3.2. - Let I be an ideal of an (m -+ l)-semigroup A and h:
A— A/I be the natural homomorphism of A onto A/l. Then h induces an
isomorphism h* on the lattice L of all ideals J of A containing I onio the
lattice L* of all ideals Ji1 of AJl. Moreover,

(AfIT) = A [

Proor. - Observe that the natural homomorphism % is the mapping that
sends each xel to the set I and all others to their singletons. If J is an
ideal of A containing I, then trivially A(J)=(J—1I) VU {I}=J/I so that
we may define h*: L - L* by h*(J)=J/I. If K is any ideal of A/I, then
h=(K)=J is clearly also an ideal of 4 containing I = h~*{l}) and there-

J—1CK—1I so that
J={J—-1)U{I|C(K—1)U {I}=K/L
This shows that the mapping h* is strictly inclusion preserving on the
lattice of all ideals J in A containing I onto the lattice of all ideals J/I of

A/I and therefore a lattice isomorphism. As such it is one-to-one and
therefore

(A/D/I/T) = (A/T— J/T) U {9/1)
=((4— 1) U{I})—((J—I) U {I}) U {/])

=(A—J) U {o/I)(4 — J) U [J} = A/J.
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COROLLARY 3.3. - If J* is an ideal of A/J such that S/ID J* DI/I, then
there exists an ideal J of A such that ADSDJIDI and J* =/l

TarEoREM 3.4. - If S: aud S, are sub-(m -+ 1)-semigroups of an (m - 1)-
semigroup A and I, I, are ideals of Si, S, respectively, then

(LU SN S)/L U (S: N L)) (L, U (S, N SY)/(L U (I N Sy))
Proor. - Since I, U (S5, N S,) €8, and

(LU (S N S L(L U (S 0 8™ 7] < [(S:)4(S:) "]

< 1I,, then I is an ideal of I, U (8 N S,). Since I, is an ideal of S,, then
[(S: N S8 N L)(S: N Sy)™ 1)

is contained both in S; and in I, for all ¢=0, 1, ..., m and therefore
in S; N I,. Hence, 8; N I, is an ideal of S5, N S,;. From these we obtain,
for all ¢=0, 1, ..., m,

(LU (S N ST U (8, N L) (L U (S N S
= U(Xr* :Xen =0 or X, =805, X;j=1L or X;=8NS,

for all other j==4¢}| <1, U (S, N ), which shows that 7, U(S, N 1,) is an
ideal of 1, U (8, N S, Now,

(LUSNL)US,NS)=1L U8, NS
and hence by Theorem 3.1,

(LU (S, N S/ U (S, N L)) ==

(391 ﬂ 82)/({11 U (Sl Q Ig)) m (Sl m Sg)).
On the other hand,

(LU (8. N L) N (S N Sy = (L N (S N Sa)) U (iS: N L) N (Sy N S

= (L N 8) VS N L)
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and hence

(L U (Sy N Sal) /(L U (SiNE) (S, N Sol/((h N Sa) U (S, N L)

In exactly the same way, one may show

(o U (S, N Sal /(L U (L N 8 =2 (8, N Sa)/((L N Sa) U (S, N L)

Whenece the resulf,

We introduce a few more terms. By a series of an (m - 1)-semigroup
4 is simply meant a sequence

A=A0£A1===...2Ar=g

of sub-(m - l)-semigroups of A such that for each 7=0, 1, .., r—1, 4,,,
is an ideal of A;. The quotient (m 4 1l)-semigroups

AO/Alp bR Ar«-l/Ar

are called the faclors of the series. A refinement of a series is another
series whose terms include those of the former. A series is said to be
proper iff all the inclusion relations occurring in the series are proper. A
composition series is a series which is proper and possesses no -proper
series refinements with more terms. A proper series of an (m 4 1)-semigroup
A every term of which is an ideal of 4 and which possesses no proper
series refiniment with the same property is called a chief series.

THEOREM 3.5. - Any fwo series of anm (m -+ 1)-semigroup A possesses
refiniments with isomorphic factors.

Proor. - Consider any two series
A:AQE:A],Q m iA,-zg,
A:-ng.Bl_i... DB‘,:ﬂ,

of A4 and their corresponding refinements

Annali di Matematioa 22
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defined by
dij= A, U (4, N By} and By = B;;, U (4; N By,
i=0,1 ., r—1, §=01, ... s—1.
Then by Theorem 3.3, we obtain
Ayl Ai,j4a 2 Byi/ By,
for all i=0,1,..,r—1 and j=0, 1, ... s— 1. The proof is thus com-
pleted.

COROLLARY 3.6.- Any two series of an (m -+ lj-semigroup A all of whose
terms are ideals of A possesses isomorphic vefinemenis all of whose ferns are
also ideals of A.

CoroLnarYy 3.7. - (Jordan-Holder Theorem). Any fwo composition series
(chief series) of an (m -+ 1)-semigroup have isomorphic refiniments.

THEOREM 3.8. - Any sub-(m -+ l)-semigroup I of an (m--1)-semigroup A
which occurs as a term in some series of A and which salisfies the property
I<1> =1 is an ideal of A.

Proor. - By hypothesis, A possesses a series
A=5L=2L>2 . 21, =1D0.
The result is obvious when n =0 or n=1. Suppose then that n is

greater than 1. Then it is sufficient to show that if 7 =17, is an ideal of
I, for any ¢ greater than 1, then I is also an ideal of I,_,. If I is an ideal

of I,, then
I=I<>=I1<>c () )ml s (I e 1
80 that I=[[()™I](I)™]. Hence, for each k=0, 1, ..., m,

(L P I(T i)™ = [ L) * [T ()™

I

= [[{Li— P I UL L) () )™

< BT e L

In

Thus, I is also an ideal of I,...
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Since I=1, is an ideal of I,_,, then by induction I= 1, must also
be an ideal of I, = 4.

Notice that if an (m -+ 1)-semigroup A has a composition series, then its
last non-empty term in every composition series is a minimum ideal. For,
if K is this last therm in the composition series, then K<'> ig an ideal of
K and hence K = K<*>. By the preceding theorem, this means that K is
an ideal of A. Since K is however minimal the conclusion follows.

THEOREM 3.9. - An (m + 1)-semigroup A possesses a composition series if
and only if the following conditions hold:

(1) Awny proper series of A is finite;

(2) Any properly ascending sequence of ideals
S Ch C ... Cd,C ...

of an ideal J of A is finite.

Proor. ~ Sufficiency. - Suppose that conditions (1) and (2} hold. Write
A= 4dy,. It 4" is any ideal of 4, and A4,/4’ has no proper non-zero ideal,
then let A, == A’. Otherwise, if 4,/4" has a proper non-zero ideal, then
there exists, by Corollary 3.3, an ideal A” of A, such that 4'C 4”C 4,. Now,
it 4,/A” has no proper non-zero ideal, set 4; = A”. Otherwise, we repeat
the process indefinitely. By condition (2), one must eventually arrive after a
number of steps to an ideal A4; such that A4,/A4, possesses no proper non-
zero ideal.

The whole process is again repeted for A, unti} one obtains an ideal
4, such that 4,/4, has no proper non-zero ideal. In this manner, a descen-
ding sequence of sub-{m 4 1)-semigroups

A=A4,D4,D ...D04,D ..
is obtained such that each A4,,, is an ideal of A4, and 4;/4, ., possesses no

proper non-zero ideal. By condition (1), such a sequence can only have a
finite number of terms which thus form a composition series for A.

Necessity. - Assume that A has a composition series with % terms.
Consider any properly descending series of sub-(m + 1)~semigroups of A4:

A—_—Ao:)Alj ven DAI{'

By the JorpaN-HoLDER theorem, then % is less than or equal fo .
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The condition (1} thus holds. Let J then be any ideal of 4 and
ch_JZ‘C (AN CJm:J

be any propertly ascending sequence of ideals of J. By Theorem 3.5, the
series

A2JduwDdp—1D.2J4: D0

can be refined to a composition series of A. Hence, m <<% and condition
(2) is thus satisfied.

In exactly the same manner as the preceding the following result can
be easily demonstrated:

THEOREM 3.10. - An (m 4 1)-semigroup 4 possesses a chief series if and
only if the following conditions are satisfied:

(1) Any properly descending sequence of ideals of A is of finite lengih;
{2y Any properly ascending sequence of ideals of A is of finite length.

From our previous results, it is clear that if an (m--1j-semigroup
possesses a chief series, then any proper series of ideals of 4 can be refined
into a chief sevies of A. Similarly, if A has a composition series, then the
same series of ideals of 4 can be refined into a composition series of A.
This means that the length of any series of ideals of A is finite. Conse-
quently, if A possesses a composition series, then it must also possess a
chief series, It is known that a 2-semigroup may have a chief series without
necessarily having a composition series. Since any 2-semigroup may be
converted into an (m - 1)-semigroup, the same must also be true of (m - 1)-
semigroups.

An (m + 1)-semigroup will be called semisimple if and only if it
possesses a chief series all of whose factors are null-simple.

Note that, in general, any factor of a chief series of an (m 1)~
semigronp 4 is simple. For, by Corollary 3.3, if J* is an ideal of the factor
A/ Ay, such that

Aiga/ A CI*C A/ digas

then there exists an ideal J of 4 such that

A CIC A CA,
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contrary to assumption. More precisely, 4;/4,., is either nullsimple or iso-
morphic to a two-element null (m - 1)-semigroup. For, either

(Ai/Aiga)> = A/ A or A/ A1) = g/ i

Obviously, in the first case we have null-simplicity, while in the second
we obtain a two element null (m - 1)-semigroup. For suppose 0, is the zero

and o is any non-zero element of 4,/4,,,. Then (6,5} is a non-zerg
ideal of 4,/4,,, and hence

Ai/ iy, = {0, a).

The following supplies a condition when a composition series is also a
chief series:

Tarorem 3.11, - If A is a semisimple \m -+ l)-semigroup, then any series
of 4 is a composition series iff it is a chief series.

Proor. - Consider any chief series
A :A13A23 L DAu DAH—{—I - G

of an (m 4 1j-semigroup 4. We know that if for any i=1, 2, ..., n— 1,
there is an ideal I, of 4, such that

4; D01 2 A4y,

then I, = 4,,, since A;/A4,,, is simple. Thus the above series is also a
composition series,

Let now

A=A1DAzi§ :)An:)An—H:: 0}

be any composition series of A. To show that it is also a chief series, it
will suffice to show that 4,<'>=4; for each i=1, 2, .., n (by Theorem
3.8). One proceeds by backward finite induction. It is obvious that
Ay<'> = 4,.Suappose that 4,<*>= 4, for all k>4 -1, so that A< =A
in particular. Then

4i2 A2 2 44> = Ay
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On the other hand, A;<'> is an ideal of 4; and therefore
A2 = 4 or A = 4diy,.
The latter case implies that
(Ai/Ai 1 )<P> = A >/ Aiy = dig/ i

contrary to the wnullsimplicity of Ai/Air:. Hence 4;<'> = 4; and our
induction is complete.

CoROLLARY 3.12. ~ A semisimple (m - 1)~-semigroup is surjective.

It should be noted that by virtne of the previous theorem semisim.
plicity may just as well be characterized in terms of composition series
rather than its chief series.

TuroreM 3.13. - An (m 4 1)-semigroup A is semisimple if and only if
both A/ and I are semisimple for each ideal I of A.

Proo¥r. - If I is an improper ideal the result is obvious. Suppose then
that I is a proper ideal and A is semisimple.
The series 4 DI possesses a composition series refiniment

A=A4,24,D .. D4, =1ID .. D4, =0.
Thus,
A/1 = AJID A4/ D . DA/ =T/ID0

is a composition series of 4/I and by Theorem 3.2,

(di/ 1) /( A/ Ty 22 Aif Aigs,

the last quotient (m - 1)-semigroup being also nullsimple. Hence A/I is
semisimple. Moreover,

I=A4,D4,1D . DA, =0

is a composition series for [ such that Ai/divy, E=1r, .., n—1} 18 null-
simple and therefore A is semisimple.

Conversely, suppose that both I and 4/ are semisimple.

If then

A/T = A DA D DA =1/1
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is a composition series for A/I, then by a previous result, there must exist
a sequence of {m - 1}-semigroups

A=4,D04:D .. DA, =1
such that 4;., is an ideal of A; and A= 4;/1. Moreover,
Aif iy 2 AT /AL
and by hypothesis this is nullsimple. If
I=4,254,,.0..04,=0
is a composition series for.I, then
A=4,D04,D .. D24,D .. DA, 1 D4, =9

is a composition series for 4 and all its factors are nullsimple.

THEOREM 3.14. - An(m + l)-semigroup A which possesses a chief series
is semisimple if and only if every ideal I of A satisfies the condition I<*> = I.

Proor. - Let 4 be a semisimple (m 4 1)-semigroup and I be any ideal
of 4, By the previous thorem, then I is semisimple and hence surjective.

Conversely, let A possess the chief series
A=4¢D4:D .. D4, =90

and suppose that all ideals of 4 satisfy the given condition. If any factor,
say Ai/Aii., were a two-element null (m + 1)-semigroup, then

A=< 4,1, C 4
contrary to hypothesis. Thus all factors of the series must be nullsimple.

CoRoLLARY 3.15. — The collection of all ideals of a semisimple {m +- 1)~
semigroup A forms a commulative {m + l)-semigroup.

Proow. -~ Let Li{i=1,2,...,m + 1) be any m + 1 ideals of 4. Then

m1 w1
[I;n‘f'ljg ﬂ I = [ N ]H<1>E:; [I;n+1J.
i=1

Gy



176 F. M. Sioson: Ideals in (m--1)-semigroups

From this and the commutativity of the of the intersection operation,
we obtain

for all permutations ¢ of the integers 1, 2, ..., m + 1.

TaueoreM 3.16, - Let 4 be an (m - l)-semigroup possessing a chief
series. The collection X of all ideals I of A such that A/I is semisimple has
a wmintmum member, the ideal M contained in all members of X.

Proor. ~ Consider any pair J, € X. From Theorem 3.1,
(LU J)y/1=J/1N ).

(I U J)/1 being an ideal of the semisimple {m - 1)-semigroup 4/I is itself
semisimple. Thus J/(I N J} is semisimple. Since Je X, then A/J is also
semisimple. From the relation

(A/I 0DV /(TN )2 A/

(see Theorem 3.2}, it follows that A/(I N J) is semisimple and therefore
INJeX By Zorn’s lemma, X possesses a minimal member M. For any
IeX then INM=M and therefore M < It M* is another minimal
element of X, then M*= M* N M = M. The result is now clear.

4. Certain Structure Space of an (m -+ 1)-Semigroup. - An ideal I in
an (i -+ 1)-semigroup A will be called irreducible iff for any pair of ideals
J and K in 4,

I JN K implies either I2J or I2K.

An ideal is complely prime itf [ eP implies x;e P forsome i=1,2,..., m+1
It is prime iff for any set of ideals I, I, .., Luya, if P17, then
P> for some i=1, 2, .., m+ L

CoroLLary 4.1. - An ideal P of an (m -+ 1)-semigroup A is completely
prime iff A— P is a sub-(m -+ l)-semigroup of A.

This is a mere translation of the definition in contrapositive terms.

An (m 4 1)-semigroup is said to be commutive iff for every set of
elements ,, %z, ... Tm, and each permutation ¢ of 1, 2, e, m+1,
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we have

{w;n—[wl Q {m+1)} .

I=lxgnyXp@) - 2@ umrn] = {%m

Taroreym 4.2. ~ The following are equivaleni conditions for a commutative
(m - 1)-semigroup A:

(1) P is a completely prime ideal of A;

(2) For any set. of elements @y, Gz, ..., Gpia €4, if
Pof(a)(az) .. (@mt1)], then P (ay) for some i=1, 2, .., m 4 L

(3) P is a prime ideal.

Proor. - Assume (1) and P 2 [(dy)(ds) .. Gmis)]. Hence [a)'JeP and
by (1) therefore a;e€ P for some ¢. This means that P2 (a;) for some ¢ To
prove its converse, note first that (a;)={a;}U[A™a,] for each ¢ =1,..,m 4 1.
Let [0} ]e P and assume (2).

If now [ ™ €[(0t)(ehs) o (Umy:)], then by virtue of commutativity
[o2+4) = [[a7 1]

for some elements y,..., yn € A so that [x™+]e P. This means P2 [(a)(az) ...
v (@m+1)] and hence by (2), P2 (a) for som é=1, .., m 4~ 1. Whence
a;e P for some i=1, 2, ..., m L.

That (3) implies (2) is clear. It thus remains to show that (1) implies (3).
Suppose (1) holds and P2 [I1"""] for any set of ideals I,, I, .., Iny, of
4, but PP I; for all j<=4i. Then for some x;€l; (j==14), x;¢ P. For any
x;€l;, then w;e P since [x™t+']eP. Whence it follows that P2I.

CoroLrary 4.3. - Every prime ideal P in an (m 4 l)-semigroup A is
trreducible.

Proor. - Let P21 N J for any pair of ideals in A.
Since I N J 2 [I*J"#*+*] for any non-negative k, then, by the previous
theorem 4.2 (3), we obtain P21 or P2J.

Consider now any subfamily 7 of the family of all irreducible ideals in
an (m -+ 1j-semigroup 4. For any xe 4, set

I.=1{I: Ie I and «fI}.

Tae topology generated by all these sets as subbase is the socalled
Stone-Gelfand topology on L

Annali di Matematica 23
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Tarorem 4.B. - The closure of any subset 8 of I under its Stone-Gelfand
topology is given by

S=(I: I=2nJ, Iel)
Jes

Proor. - Let §* be equal to the right side of the above relation. If I,

is a neighborhood of IeS$* then «¢I so that «¢ N J. This means that
Jes
for some ideal J,€ S8,

Jo2 N J and xé¢d,
Jes

and also J,el,. Hence I, N S== 0, in other words, Te S. Whence S*g'S.
To prove the other inclusion, choose any irreducible ideal I¢S* If
N J=@, then S*=71 and hence S S*. If N J==0, then NJ— 1= @. For any

JES JES Jes

xeNJ—1, then zeJ for all JeS but x¢I This means that Iel, but
Jes

J¢1I, for all JeS. Therefore we have I, N S=@ and I¢S. This com-
pletes the proof.

Tarorem 4.6. - The mapping S— S is a closure operation, that is lo
say,

=
t
N
wi

%]
(I
wll

(2) ;

3) S.C S, implies S, C S;;

with the additional properties:

(@) {L}= (I} implies I, =I,;
(5) S1U 52:§1U§2-
Proor. - (1) —(3) are clear.

4. - By (1) Lel(l)} and therefore {L}=2{L}

Similarly, {I,} 2 }I:}. Whence I, =1I..
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8). - From §; €5, US, and S, S S, U S, we obtain 5, S 5, U S, and
S: S8 US, and hence S, U S, C S, US, by (3. If P¢S,US* so that
P¢S and P¢S,, then PP N Jand PP NJ. If N J=0,then S,=1I and

JES, TJes: JGSZ.

Jes,
ideals, then

PPNJdyNd=nN J.
T Jes,  Jes, JesUs,

For, if otherwise, then by irreducibility of P, either

Pond or P2 N,

TIES: TIES,

contrary to assumption. Whence P¢ S, U §,. The proof is thus completed.

Turoren 4.7. - Awny subset S< I is dense in I iff

NJd=n4d.
Jes Jer
Proor. - Let S be dense in [, i.e. S=1I under the Sroxe-GeLFAND

topology. Thns,

{I: I2>2NJ and Ieli=1,
jes

which means that each Iel satisfies the condition 7> N J. Whence
—Jes

NJd2NJ

Jer T Jes

The other inclusion is obvious.

Conversely, suppose J — § == @. Then there is some irreducible ideal Te I
with I¢S. This means that for some I,, Iel, with I,NS=.In other words.

c
NdJdE=NdJ,

Jer Jjes

a contradiction!

Levmma 4.8. - If B is any sub-{m - 1)-semigroup of a commulative
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(m -} 1)-semigroup 4 disjoint from an ideal I of A, then there exists an ideal
M of A maximal wunder the property of being disjoint from B. In addition,
M is also prime.

Proor. - By Zorn’s lemma, the existence of M is assaured. If. thus
remains to show that A-—M is a sub-(m -4 l)-semigroup of 4. One proceeds
indirectly. Suppose @,. #, .., ®mis € A — M, but [x""]e M. Consider the
ideals I; generated by M U {a;}, for each ¢ =1, 2, ..., m + 1. Since M is
maximal with respect to its disjointness from I, then IN I;== @. Let
yieI N I;. Then [w~yw}{*]e M. To prove this, we shall proceed by induc-
tion on k, & being defined by,

(¢ 9]
L= U Y,
=0

where Y, =M U {a;} and Y, ., =[47'Y, 4", When y;€ Y, the result
is obvious. Suppose then that the result is true for all ;e Y, with F<n.
Consider now €Y, =[A"Y, A" ], Then y; =[] where

#HE Y, %1, ey Bmii € 4, [wi—lzimﬁ;‘;‘] e M.
Thus

[ ep 2] 2it] = (&0 [wi ey et € ML
By repeating the process on [wi~'ywj'}€ M instead of [w'*+]e M, we
will eventually arrive to the conclusion that [¢™+]e M, which is a
contradiction.

A prime ideal P is called a minimal prime ideal belonging lo the ideal
I iff I< P and no other prime ideal containing I is properly contained in P.

Tarorem 4.8. - A subset P of a commutative (m - 1)-semigroup A is a
minimal prime ideal belonging to an ideal I if and only if A — P is a sub-
(m + 1)-semigroup of A maximal with respect to the property of being disjoint
from 1.

Proor. - First, assume that P< 4 and 4 — P is a sub—(m - 1}-semi-
oroup of A maximal with respect to its property of disjointness from I. By
the preceding Lemma 4.7, then I is contained in a prime ideal M maximal
with respeet to its being disjoint from 4 — P. This means I MCP so
that 4 — P< A — M. On the other hand, A —M is a sub-{m -+ 1)-semi-
group of A disjoint from I, by virtue of Corollary 4.1. Hence A—M<cA—P
and therefore A —P=4— M or M= P.
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Conversely, suppose P is a minimal ideal belonging to the ideal I of A.
Then P is prime and hence 4 — P is a sub-(m -+ 1)-semigroup of A disjoint
from I. By Zorn’s lemma, then fhere is a maximal sub-(mw + l)-semigroup
B of A disjoint from I. By the preceding proof, then 4 — B is a minimal
prime ideal belonging to I so that €4 —B< P. Whence 4 — B =P and
A — P=DPB is a maximal sab-{m -4 1)-semigroup of A4 disjoint from I

By an application of Zorn’s lemma and the preceding theorem, we easily
derive the following

Coronnary 4.9. - If P is a prime ideal containing the ideal I of an
(m - 1)-semigroup A, then there exisis a minimal prime ideal belonging to 1
contained in P.

The radical B(I) of an ideal I of an (m - 1)-semigroup A is defi-
ned as

B(I)={w: e A and for some n=0, x<*>el}.

Aun ideal I may be called radical iff I= R(I). As in [9] we will say
that A is a strongly reversible (m -+ 1)~semigroup iff for each wx,, w,
vy Tmi1€ A, there exists non-negative integers #, #,, .., n, such that

[@m+i]<n> = [x<”z(1)> s @ | x <”e(m+1>>]
i D) Z(2) B(mt1)

for any permutation @ of 1, 2, .., m 4 1. Note that any commutative
(m 4 1)-semigroup is strongly reversible. An (m -4 1)-semigroup A is said to
be homogenous when and only when for each ae 4, the coyclic (m -+ [)-
[a] generated by a contains an idempotent, i.e an element e such that
e<*> =e. Note that a cyclic (m 4 lj-semigroup or an (m 4 1)-group need
not possess an idempotent. The ecyclic (n4- 1}-semigroup generated by a
such that a<*> = a<*>, for instance, has no idempotent (see [9]).

Tuporem 4.10. ~ The radical R(I) of an ideal I of a strongly veversible
(m + 1)-semigroup A is an ideal.

Proor. - Let a;.,e€R(l) and a,, a, .., Omi: €A, Then for some
integer s,

a]'_!r1<s> e I

and by strong reversibility, there exist integers =, #;, .., #,., such
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that
gmt<n> — [g<ns)” (<" @7 | g S"omi”
[ar) ! @) B2 Bimtn) |
for any permutation ¢ of 1,2, .., m + 1. Then

([amh]<r>)<e> = ([a5he> oo aftie™ oo o)<

= [(agfm>)<> o (GFZIS  (S7)<0]

= [a/1<5>)<”1> ‘e (“f_:?} <M’j+i> ses {a’;i_i} < %?ae+i>} e I.

Whence [a™t']e R(I) and since j is arbitrary this shows that E(I) is an
ideal.

Taeoreym 4.11. - If I is an ideal of a strongly reversible and homoge-
nous (m - 1)-semigroup A and E is the collection of all idempotents of I,
then

Ril)=US,.
eC B
Proor. - If aeU S, so that aeS, for some eekl, then a<*> —e

e€E
for some integer s. Thus ae R{I) and therefore U S, < E(I). Conversely,
eek

suppose a€ R(I) so nhat a<*>eI for some integer s. Since for some non-

negative ¢, (a<*>)<!>=eeS, for some eek, then ae U S, Whence the
e €l
resulf.

Taporex 4.12. - The intersection of amny collection of prime ideals Pi,
ieT, of an (m 4 1)-semigroup is a radical ideal.

Proor. - Let I= N P;. Clearly I< R(I). For each xeR(I), there

ierT
exists an integer s>0 such that

x<s>el= N P;.

iE€T

Hence x<s>e P; for each i€ T. But then, since P; is a prime ideal,
xeP; for all e T. Hence x €l The final result is now clear.
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Tarorem 4.13. = The radical E(I) of any ideal 1 of a commulative
(m - 1)-semigroup is the inlersection of all minimal prime ideals belonging
fo L

Proor. - For any prime ideal P 2 I, more particularly, for any minimal
prime ideal P belonging to I, if xe€ E(I), then a<">eI< P for some non-
negative integer n. Thus R(I) is contained in the intersection of all minimal
prime ideals belonging to I. Suppose that the preceding inclusion is proper.
Then for some element x common to all minimal prime ideals belonging
to I we have x¢ E(I). Then the cyclic (m + 1)-semigroup [x] generated
by « is disjoint from I. By Zorn’s lemma there is a sub-(m - 1)-semigroup
B of A containing [x] which is maximal with respect to its being disjoint
from I. Hence, by Theorem 4.8, 4 — B is a minimal prime ideal belonging
to I with x¢4 — B. This is contradictory.

Leuma 4.14. - 4 prime ideal P containing an ideal I of a commutative
(m -+ 1)-semigroup A is a minimal prime ideal belonging fo 1 if and only if
for alt ye P, there exists elements x,, ®, ..., x;¢ P with i <m such that

[y iy<m>lel
for some n > 0.
Proor. - Suppose the above condition holds. Consider any prime ideal
@ such that IS QCP and choose ye P such that y¢ Q. Then, by hypo-
thesis, there exists for some t<m elements x, a;, ..., ;¢ P such that
Wﬁ ym—ly<n >} el
for some mn. Since @ is prime, y<">¢ Q, x,, x,, ..., ;¢ Q, then

(2l g™ ' y<">1¢ Q.

This last statement is a contradiction.

Conversely, suppose P is a minimal prime ideal belonging to I. Then
by Theorem 4.8, 4 — P is a sub-(m + l)semigroup of 4 which is maximal
with respect to its being disjoint from I. Choose any ye P and consider

B=(4—P)U {[aiymiy<r>]: i=1, .., m, 2, ..., ;;€ 4 — P,
n=20,1, 2, ..].

Then B is a sub~(m -+ 1)-semigroup of 4 containing 4 — P. By maxi-
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mality of 4 — P with respect to its being disjoint from I, there must exist,
therefore, some elements a,, .., x;¢ P such that [xiy™y<">]e L

Traworem 4.15. - The structure space M of all minimal prime ideals
belonging to an ideal I of a commutative (m + 1)-semigroup A is a comple-
tely regular and fotally disconnected fopological space.

Proos. = Theorem 4.5 (4) implies that M is a T,-space. To prove the
theorem it suffices then to show that the subbase members M, are clopen.
under the Stone-Grrraxp topology. Recall that

M,=i{P: PeM and x¢ Pl

Naturally, this is open under the Srone-GerLranp topology. Consider an
ideal Pe M such that P¢ M,. Then ye P and by Lemma 4.14, there exists
By, Ty, o, % ¢ P for some ¢<wm such that

[ziym—ty"le L

Hence,

B =M i i ooy = Me, N Mo, OV o O M, O My

Whence
PeM.,. "M, ... " M, csM—M,

and therefore M, is also closed.

Cororrary 4.16. = Th family of all minimal prime ideals (belonging lo
the ideal {(0)) of @ commutative (m -+ 1)-semigroup with O under its Stone-
Gelfand topology is a complelely regular and totally disconnected space.

A commutative (m - 1)-semigroup all of whose elements are idempotent
is designated as an (m 4 1)-semilaitice. The particular (m - 1)-semilattice
of interest to us is the family of all subbase elements

P, ={P: P a prime ideal, x¢ P},
under the operation defined by

o le;n+1j B

mt1

[P:‘Wl+l]:Pa'lmPJ'2m ver me

They obviously form an (m - l)-semilattice. A sub~(m -+ 1)-semilattice
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of the former is given by the family of all M, with x€ 4, where
M, ={M: M is a minimal prime ideal belonging to (0), x¢ Mj.

To distinguish this last (m -+ 1)-semilattice, it shall be called fhe dual
(m + 1)-semilattice of the (m 4 1)-semigroup A and will be denoted by D(4).
For each ideal I of an (m + 1)-semigroup A and each subset S of A set

I[S}:'—" {y: ye 4, [ySm]_E_I}

where by convention Ifx)=1I[{x}]. The radical of the ideal {(0) which is
the set of all (nilpotent) elements # such fthat x<"> =0 will be called for
short the wmilradical of A and is denoted by N = R(0).

Lmuma 4.17. - For any subcollection P of prime ideals of a commutative
(m 4+ 1)-semigroxp A, if I= N P, then I[x]= N P for each xe A.
PeP Pgp

Proor. - In case P, =@, that is to say, it'weP for all Pe P, then
obviously

N P=A

Pep,

and hence I[;r]%ﬂ P. Consider then the case when P, =+ @. If yel[x]
eP,

and P is an arbitrary element of P,, i.e. any PeP with x¢ P, then
[ye"]e l. By definition of I this means [yx™]e P for all Pe P. Since for
all PeP,, «x ¢ P, this in turn implies that ye P for all Pe P, and hence

ye N P. Thus in any case,
Pep,

Ilejes N P.
" Pep,
Conversely, suppose ye N P. Thus yeP for all Pep with x¢ P
Pep

and therefore (since P is an iﬁeal) [yx™)e P. When P¢ P, so that xe P,

then also [yx™]e P. Combining cases, then [yx™]e P for all Pe P. Whence
ye€ I[x]. The result now follows.

The wnilradical N of ‘an (m 4 1)-semigroup with O determines a
congruence on A as follows. For each x, ye 4, define

x = y(N) if and only if Nix]= Ny].
It is easy to show that this is an equivalence relation. To show it is a
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congruence, suppose «x; =y;(N) for each ¢=1, 2, ..., m 4 1. This means
[z{x)™) e N iff [z(y)™] e N for each z€ 4, i=1, 2, ..., m+ 1. Then

ze N[[a7]] iff [zl eN

it [[... [ [2(2)™] (2)™] o] (@mmsa)™ € N

itf [[... [[e(es)™] (o)) oo [ (W)™ €N

it [ [[2(Hman)"] (@)") oo J@m)" € N

it [ [[2(Ymid)™] (22)"] oo ] (gm)™] € N

s Q. (L. (T2 @] o 1 ma)"] €N

iff [z[yf ™ e N iff zeN[[y0"]). Hence [ =y ""](N)

and therefore = is indeed a congruence. Let A/N be its quotient (m - 1)-
semigroup. Then

TeEOREM 4.18. - If A is a commutative (m -+ 1)-semigroup, (hen
4/N =2 D(4).

Proor. - Define a mapping h: D(4A)— A/N such that A(M,) = x/N,
where x/N denotes the equivalence class containing x. By Theorem 4.8,

note N'= N M. Thus by choosing I =N in the previous Lemma 4.17,
Mem
we have

x/N = N|x] ::MQM M.

£

This means that A is a well-defined funection. Furthermore,

h([Mzm+i]) = h(M

) = ETYN = [(w0/N) 0/ N) e @ /)]

= [ Ma) WMz} <. W Mopy)]s

so h is an epimorphism. If x/N = y/N so that W M = N M, then M,=M,.
MeM, MM,

Since each M, is however clopen, then M, = M, which shows that b is
also a monomorphism. Whence 4/N =2 D(4).

TaroREM 4.19. - Let A be a commutative (m - 1)-semigroup with 0 and
D = D(A) be its dual (m + 1)-semilattice. Then the space M4} of minimal
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prime ideals of A is homeomorphic with the space (D) of minimal prime
ideals of D wunder their respective Sitone-Gelfand topologies.

Proor. - Define h: M(A) — INUD) by WP) = IMp, where Mp={M,:
M,eD, P¢M,). By a previous lemma, since P is a minimal prime ideal
{belonging to (0)), then for each ye P and some 7 <m, there exist elements
®1, Xz, ., ¥;¢ P such that [xiy™~'y<#>]=0 for some natural number n.
This means that for M, eh(P) (ie. P¢M,), there exist My, My, ..., M.,
¢h(P) (ie. PeM,,, k=1, .., i) such that

[Mwi (M) M, <> =M =0

x [wiym—ly<" >]

for some natural number wn. By applying the same previous lemma, then
h(P)e DN (D) and h is well-defined. Suppose then that P == @. Since the
StoNE-GELFAND topology in M(4) is T,, this means that there exists
M., .., M”feD such that

PeMoy Mo, Mo, . "Ma), QEMy N May, D o D My,

Thus for at least one j=1,2, ...,4, Pe Mmj but Qé}ij. Consequently,
W(P)3+=h(Q) and kh is therefore a one-to—one mapping.. To show that it is
also onto, let M pedMD) and P={x: ved, M,eMp). If x;€P and
i=1,2, .., m+1 and o, ., ..., Tmis €4, then

M[wm+1] =M," M., moLN M, ., = [M:Z"“H] e Mp,
1

since OMUp is an ideal. Thus [m+i]e P and P is also an ideal of 4. If
[x+]€ P, then

My miz) = [MyH] € O,

which in turn implies M, edlp for some ¢=1, .., m+ 1, since Mp is
prime. Hence x;€ P for some 4 =1, ..., m 4+ 1. and therefore is also prime.
By a previous corollary, then there exists a minimal prime ideal P’ .of 4
contained in P. If M,eh(P'), then P'e M, or xe P and hence xeP or
M,ep. Whence h(P')<=OMp. Since h(P’) is also a prime ideal in D,
then by a reapplication of the same previous corollary we obtain A(P)=9p.
The bicontinuity now follows from the obvious relation

h(M,) = h(M(4)) ™ {9 p: ONpe (D), M, ¢ Mp)
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and the fact that the topologies of both M(4) and O (D) are extremally
disconnected.

5. Ideals in Topological (m -+ 1)-Semigroups. - This section deals with
cerfain generalizations of propositions given by A. D. WaALLAcE and his
school for ordinary topological semigroups. By a fopological (m-1)-semigroup
we mean an algebraic (m -+ 1)-semigroup. endowed with a topology under
which its (m 4 1)-ary operation is continuous. Thus, adjectives that modify
subsets of a topological space may now be used to modify subsets of a
topological (m +- 1)-semigroup foo.

For any subset S of a topological (m 4 1)-semigroup A, let

[S]n = U 8<k>,

k=—mn

Then

TaEOREM b.1. - (1} [8] =[S) és the smallest sub-(in 4 1)-semigroup of A
containing S;

2) {S’i"“] C [S™] so that in particular, if S is a sub-{m+ 1)-semi-
group of A then so is S.

(8) [S] is the smallest closed (m + 1)-semigroup of A containing S.
Proor. (11. - Note

[S]<5> = U S<ht o by 3> = S g<#> < [S].

kizo K==1
If ST and T<>< T (i.e. a sub~{m + 1)-semigroup), then S<>¢ T<>cT
and hence S<>< T<¥>c< T, in general. This means [S]€ T and ‘therefore
[S] is the smallest sab-{m + 1)-semigroup of A containing S.

(2) If f: Am+*— 4 is the mapping such that

fln, oy mga) =[],

then

[§m+3] = £(8y X oo X Smgr) =F(S1 X oo + Sma) €

S 78X o X Smpa) = [S7F.
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Thus, if S is a sub-(m - 1)~semigroup, then S<*> < 8§<>< §, so that § is
also a sub-{m - 1)-semigroup.

(8) From (2) it follows then that [S] is a sub=(m -4 1)-semigroup of
A containing 8. If T<>< T and ScT=T, then [S]ST so that
{75’—]2 T=T and [S] is the smallest closed {topological) sub-(m -+ l-semi-
group of A containig S.

THEOREM 5.2, - ( Gollschalk-Hedlund). Let X;, i =1, 2, ..., m + 1, and
Y be arbitrary fopological spaces and

f: XlXXZX 22 XXm_’..l"‘*Y

be a continuous function. If C; is a compact subset of X; for each
i=1,2 .., m+1 and W is a neighborhood of f{CiX 0, X .. X Oy
then there exist neighborhoods U; of C; for all i =1, 2, ..., m + 1 such that

f(UIX sz w X Um+1)_c___W

Proor. - The proof is by induction on m. If m =1, the proposition
reduces to a Lemma of GorrscHALK and HEDLUND (see page 3 of reference
[4]). Suppose that the result has already been shown for any function on a
cartesian product with m =% components. Consider then any collection of
k+1 compact subsets C; of X; (i=1,2, .., ¥+ 1) and a continuous
function

P XX Xo X oo X Xppa — ¥

together with any neighborhood W of f(C, X C; X ... X Cpra). Let g be the
nataral homeomorphism between (X, X ... X Xa) X Xyqpand X, X .. X X X Xirs
such that g((®y, .., @u), Bup) = (@1, o) @k, 2pa). The composition fg is
still a continuous function on Xy X .. X Xy) X Xpyps to Y and Wis a
neighborhood of (fg)((C: X ... X Cx) X Ciy,). By TYCHONOFF'S theorem
Ci X ... X Gy is also compact and hence by applying the ordinary GOTTSCHALK~-
HEpLUND lemma, there exist open sets V and Uwya containing O, X ... X O
and Oy, respectively such that

f9(V X Upa) € W.

Then applying our hypothesis of induction on the identity function
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defined on C; X ... X O, there exists open sefs U; containing C; such that

Uy X .. X U V.
Thus,
fo((Us X oo X Up) X Uppa) = LU X oo X Up X Ul € W.

Our induction is then complete.

CoROLLARY 5.3, (Wallace). - If X; are lopological spaces conlaining the
compact sets C; =1, 2, ..., m+ 1) and W is a neighborhood of C, X ..
we X Cpyy in the product space X; X ... X Xpr:, then there exist neigh-
borhoods U; of C; for each i such that

Uy XU X o X Upin & W.

THEOREM B.4. - (1} If C is a closed set, S,, ..., Sui. are arbitrary subseis
of a Hausdor[f topological (m -+ 1)-semigroup A, then for each i =1, ..., m,

{@: [SixSPE] < C) is closed.

(2) Under the same hypotheses, if S is an arbitrary subset of A and
Ciy oy Cuwys are compact subseis of A, thew for any i=0, 1, .., m,

(w: [CiwCTE"1 2 8) is closed.

Proor. - (1). Let ye€ A sunch that {SfySZ:;l}___CE C. Then there exist ele-
ments s;€8; (=1, 2, ..., m -+ 1) such that

[siyspttle A - C.

Since 4 is HAUSDORFF the sets {y]. {8} (=1, ..., m + 1) are compact
and hence by Theorem 5.2, there exist open sets U, .., Uuqs of A such
that

[siysrielsiUspi S Upt1 4 — G

This means that for each z€ U; ., we have

{s‘;zs;':j;]é C and henece [S;’zS;{@z‘l] @ C.
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Thus ye Uiy, S A — {a: [SiwSIt ]S €} so that this last set is open.
This proves our result.

(2) Let yed such that [CiyCr’]2S. Then for some se&S,
5¢ [CiyCrtY] and therefore

[GlyCE 4 —{s).

Again by Theorem 5.2, then there exists open sets Uy, .., Upy, in 4
such that

[CiyCs S [Ci UL Ol S [UY T 24 — {s)

so that yelU; €4 —|a: [CieClt' ]2 S| for some U;y,. This means
{x: [CixClt 2 8) is a closed set.

THEOREM B.5. - If S,, S., ..., Smia are compact subsets of o Hausdorff

(m + U-semigroup A, then [S™11] = [Sm+1].
Proow. ~ From Theorem 5.1, recall that [S7]2 [877]. Obviously,
(ST < (ST Y.

Since 4 is HAUSDORFF, the operation is continuous, and S, X ... X Sp 41
is compact (by TyoHONOFF’S theorem), then [Si"*'] is also compact and

therefore closed. Hence [81’”‘1}2 (S,

TuroreM 5.6. - If T; (i =1, 2, ..., m 4 1) are towers of compact sets in
a Housdorff (m - 1)-semigroup A, then

SET:  SET Syt € Ty SE€T S €T

m+i m+i

Proor. - This follows from the following result in topology [12]:

LemMMA 5.7. - Let f: X— Y be a function and T a filler base of closed
sels m X. If

(1) some Bel is compact and [~'(y) for each yeY is closed, or

(2) My for each ye Y is compact, then

flN 4= N0 f(4).
4eT 4eT
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Tarorexm D.8. - The following conditions for a subset S of an (m -4 1)-
semigroup A are equivalent:

(1) S ids an (m + 1)-group under the same operation in A, thai is to
say, @ sub—(m -+ l}-group;

{2y For all i=20, ..., m and each setl of elemenis

Lyy ey Xy Xigzy ooy Lpis €S, [F Sac:{fgﬂ: S
(8) For ome i=1, ..., m— 1 and each set of elements

Doy oy Xiy Tigzy oy T €S, [ Sfihl] = §;
4) For all

Ly ey B €S, ('S = 8§ =[Sl ];

(b} For all
xes, €8] = § = [§™x].
Proor. - The implications (1)=>(2)=>(3)=>(4)=>(5) are obvions.

{2) = (1) follows from the Post Coser Theorem. To comple the proof we
now show (B)=> (2.

For each i and set of elements x,, .., ®;, 42, «; Tm+s € S, We obtain
the following through applications of (), S<*> =S, and the law of asso-
ciativity :

(o) S P7) = [ood S<=> 5] = [l ™" [w,S™) S[S™ ] #¥is'] =
= [ Stk = [} PS> SS<> ] = [P [ S™] S [S" @, sl wiE] =
=[ei Sl = .. = S<> =8

TeroREM 5.9. - (1) If S is a non-empty subset of a Hausdorff (m + 1)-
semigroup A such that [S] is compact, then

is an ideal of the closed sub-(m - 1)-semigroup [S].
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Proor. - Note

([Shu[Shs o (S, ] = [Slus e om 41

and if Sy, .., Spi, are arbitrary subsets of [S], then [S7"™] =[S7*"*]. Hence
for each ¢=20, 1, ...,m, by Th. 5.7, 5.5

([SYTSI™4 = (81 A (81, (ST~ = A ([S¥ {8 (8"~ =
— ?j [[S]’ [S],, [S]m—‘] p— ?j [(kﬁj S<Ic>)i(k£j S<k”,‘>) (k§OS<k>}m—t]

jos) [es] [& o oo

n=0 Fk=ni1 n=0 n=0

Hence N is an ideal of [S].

TeroreM 5.10. - If S is a commulative subset of a Hausdosff (m + 1)~

semigroup A, then S is also commuiative; particularly, [a] is commutative for
each ae€A.

Proor. - Consider the function f: 4™+ — 4 X A4 defined by
F@1s s tugs) = (", (05 5])

for any permutation @ of 1, 2, .., m+ 1. If D is the diagonal of A4 X 4,
then note that a subset S of 4 is commutative iff f(§ X .. X S)<D.

On the other hand, D is a closed set. Since f is continuous, then f~4D)
is also closed. If S is therefore commutative, then S X ... X S< (D) so

that S X .. X S=38X .. X @g ~HD). Hence f( S .. X S’) c D and S is
also commutative,.

TuEOREM b.11. - If a belongs to a Hausdorff (m -+ 1)-semigroup A and
la] is compact, then N(a) is a maximal sub-(m -+ lj-group and minimal

ideal of [a].

Proor. - It is obvious that every [a]. and hence every (@], is a sub-

(m 4+ 1)-semigroup of [a]. Since [a] is commutative, then, by Theorem 5.10,
[@) is also a commutative (m + 1)-semigroup. Let {a: [aN"]=N}=H
where N = N{a). By Theorem 5.4, this is closed. Note also that for any

Annali di Matematica 25
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non-negative integer ,

w w W .
[a<v>N") = [a<v> A fay .. O fald = O oo O [a<>[a]; ... [ali)
j==0 k=0 j==0  k==0
o o o . o) ] o e -
= .. N[e<*>Uad>  Uag<>]=0N .. N U a<i>
j=0 k=0 fe=f i=k j=0 k=0 i=n-t-j4-... + k1

@0
= O [@piss = N

Thus, [#] € H and also [a] € H. In particular, N(@) < H and hence
N{a)<*> = N(a). Whence for any set of elements «,, ..., xn€ N(a) = N,

[2r'N] = [ N<1>) = [y T [ N N} = [a7' " N?| = [y "N<*>N]
= [a]  *[@m—s NN = ... =[x, N"] = N.

By Theorem 5.8, it follows then that N = N(a) is an (m - 1)-group. If G
is any (m + 1)-group and I is any ideal of @, then for each xe€l,

G — [Gime-——t] g [G(IG?)L—:] g IC G

Therefore I = G.

From Theorem 5.9, we know that N{a) is an ideal of [a] for each

a€ A. Suppose I is any ideal of [a]. Then
[(N(a)I(N(@)™f<1N N@ and IO N(a)= g,
and hence I N N(a) is also an ideal of N(a) since

[(MV@) (L O N{a)(Nla)"=] 1N Nia).

Thus N{a) N I = N(a) =1 and therefore N{a) is a minimal ideal of [a].

Let G be any sub-(m--1)-group of [a]. If N(a) N G:{:Qjand be Na)Na,
then forJeach element xe G and each ¢=0, 1,.., m, there exist elements
Ry vy Lyy ®iga, vy Lmpr € G such that

[} b7\ 1] = 2.

Since N(a) is an ideal of [a], then xe N{a). Whence G S N(a) and

N(a) is a maximal (m-1)-group in [a].
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COROLLARY D.12. — Under the same hypotheses of Theorem 5H.11, if [a]
is compact and connected, then it is an (m + 1)-group.

Proor. - Note that [a] = {a] U [a],. Since 4 is HAUSDORFF, then {a}
is closed like {a], and hence by connectedness aelal,. If for some smallest

integer p, a = a<r>, then [a] is the (m + l)-group consisting of the ele-
ments @, a<'>, .., a<p—>. Otherwise, since ae€ [a], = [a], U N(a), then

a € N{a). Then [a] < N(a) and [a]< N(a). Since N(a)<[a], then N(a)= [a].

TuroreM b.13. - The following conditions are equivalent for a compact
Hausdorff (m - l)-semigroup A:

{1} For each x&A and ecach neighborhood U of x, there exisits a
natural number wn such that e<r>eU;

(2) For each subset S of A, S<™>< 8§=38 implies §<1>=§;
(8) 4 is a union of (m -+ 1)}-groups.

Proor. - (1)=>(2). Let S<*>< S =S and suppose that there exists an
element xed — §<®>, Note

S 8> ... S<> o .
and hence 4 — § is an open set such that
4 -84 -8<>c . cd— S,

Thus 4 — S is some neighborhood of x such that x<»>¢ 4 — § for all
natural numbers n, contrary to (1).

(2)=(3). Assume (2). Then for each xe 4,

Tr— oo o0 oo o«
@]<> S o<t> = [U g<t> U p<k> .. U g<k>] = U <>
k=0 k=0 k=0 p

=[x}y S [x] so that []<*> = [z], = [x].

Proceeding by induction, suppose that [x], = [x]. Then

] = [2I<*> = [[#lu[x]™] < [[]u[2]7] =

oo [o.0] oo o I [—
=[Uxd>U > | U <> = U <> = [y < 2]
kemn k=0 K0 k=nw1
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Hence [2],., =[x] and induction is completed. Therefore [x] = [xl, = N{x).
Applying Theorem 5.11, then N{x) is an (m-1)-group. Every element of 4
thus belongs to such an (m 4 1)-group.

(3)=(1). - Let xe 4 and G be the smallest closed sub-(m 4 1}-group
in 4 containing . Then G 2 [x]2 N{x). Since 4 is compact and HAUSDORFF,

then [x] is also compact and hence by Theorem b.11, N(x) is an (m -+ 1)-
group. Whence G = N(x). This means that xe N(x) for all xe 4. Condition
(1) now follows.

Lemma B.14. - If C, Ciy, are arbitrary non-empty subsets of a connected
Hausdorff (m - 1)-semigroup A, then -for each ¢=Fj(i, j =0, 1, ..., m), both

(43C; 1A U [47Cipn A ]
and

[AiC; L, A™ ] U [[A™C]A™]
are connecled.

Proor. - Without loss of generality, one may assume that ¢ is less
than j. For each xe€ (.., ye (U, and each set of elements x, .., @,
Ligzy ooy Ly Ljgzy ooey mm+1EA,

i ol o gt € [AlwAm—t] O [AiyAm~1]
and hence the latter set is non-empty. Since for each xe€ iy, and ye 0,

both [AixAd™ ] and [4/yA™ Y] are connected, then their union is also
connected, Moreover, since

[Alzd™ < N ([Aled™ 1] U [AMyA™=7])
Y€C; 4.,

so that the latfer set is again non-empty, then

[AfAm=1 U [490, A7) = | U ([died"—i] U [4Iydn=))

YELLy
is also connected. Continuing this argument, we conclude that
[4iC; o, A™H] U [A Oy 0 4™ ]

is connected. Taking j=m and C,,,=[CA™], we obtain the second con-
clusion,
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TrEOREM D.15. - If I is an (i 4+ 1)<ddeal i =0, 1, ..., m) of a fopological
Hausdorff (m -+ 1)-semigroup A, then one and only one component of I is an
(¢ - 1)-ideal.

Proor. ~ Consider

J = U [AnTAntm—i] U [[A™T]A™].

i

i Cs

Then J is clearly a connected (¢ 4 1)-ideal of A (by Lemma 5.14) and J is
contained in I. Let C be the component of I containing J. Thus

[4iCA™—i] < [41A™~i < J < C.

that is to say, the component C of I is also an (¢ + 1)-ideal. Note also
that

[Ai[AiCA™—i 4™~ € [AT04A™ ] < C.
If C and (' are therefore any two (¢ + 1)-ideal components of I, then

[AOA— O Am—i A ¥ S [A[ 4 Am i} Am—) < (40’ Am—] < O
and

[Ai[GAi"IO'Am‘éIAm—i] g [AiCAi—IG/Am—zi——x [Am+1]] g

S[AICAT Am—2 4] = [AICA™ < C
so that
[A[CATCA™- Q4™ < CN O £ 6.
This implies then that C= (" and I has exactly one (i 1)-ideal
component.

COROLLARY 5.16. - If I is an ideal of a Hausdor[f (m --1)-semigroup A,
then one and only one component of 1 is an ideal.

THEOREM 5.17. - If C is a closed subset of a Hausdorff (m -+ 1)-semi-
group A, then the union U;..,(C) of all (¢ + 1)-ideals of A contained in C is
a closed (i - 1)-ideal, i =0, ..., m.

Proor. - If Uy 1(C)= @, then the result is obvious. Othervise, if
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Ui+:(0) = U 5= @, then by Theorem (5.1(2),

[A’iUi_{_l A’ﬁ’l—i] g [Z;U;;Eﬂ::l] S__ ﬁi-‘:—l < C; e 0.

Thus [_7;-_.}_1 is also an (¢ + 1)-ideal contained in C and hence IZ—.H_g Uit
The other inclusion is evident. Whence U, is closed.

CorOLLARY D.18.  The wunion U{(C) of all ideals contained in a closed
subset C of o Hausdorff (i + 1)-semigroup is also a closed ideal.

THEOREM 5.19. - If O is an open subset of a compact Hausdorff (m + 1)-
semigroup A, then the union U, .(0) of all (i + l)-<ideals of A contained in
0 is also an open (i -+ 1)-ideal, 1 =0, 1, ..., m.

Proow. - It is easy to see that the union of any number of (¢4 1)~
ideals is also an (i 4 1)-ideal. If X, = {®}, Xu4.=1[4°X,4"7] for all natu-
ral numbers mn, since U;,(0) is an (¢ 4 1)~ideal, then

U X, € Uiga(0) € O.

n=0

Since A4 is compact and HAUSDORFF so that {o] is also compact, then
by Theorem 5.2, there exist an open neighborhood U of x such that

where Y, = U and Y,4,=[A4A'Y, A"~ for each natural number n. It is
easily verified that K is also an (i 4 1)-ideal of 4 and therefore is an
element of U; ,(0). Therefore xe€ U & U;y(0) and U,.(0) is also open.

TuroREM 5.20. - The union of all ideals contained in an open subset of
a compact Hausdorff (m - 1)-semigroup is an open ideal.

THEOREM B.16. - Any proper (i + 1)-ideal of a compact Hausdor[f (m -+ 1)-
semigroup A is contained in a maximal proper (i + 1)-ideal and each such
proper maximal (i -4 1l)-ideal is open.

PROOF. - Let I be any proper (i 4 1)-ideal of A. The family C of all
proper (i + 1)-ideals of A containing I is a partially ordered set under
inclusion every linearly ordered subfamily of which hag its nnion as an
upper bound. Hence, by ZorN’'s lemma the family C must possess a maxi-
mal member M. M is thus a proper maximal (4 4 1)-ideal of 4.

Let xeA — M and consider Ui (A — {®]). If ye Ui (4 — {x}) so that
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for some (¢4 1)~ideal IS A — |x}, yel, then for any set of elements
D1y ey Xiy Xigsy oy Lmyg €A, we have

[wiyaertilel € Ui, (4 — ()

it2

Moreover M < Uiy, (A — {@]) =4 and therefore M = U; (4 —{x]). M
is therefore an open (¢ -+ 1)-ideal.

CoROLLARY 0.22. - Any proper ideal of a compact Hausdorff (m - 1)-

semigroup A is contained in a maximal proper ideal and any such moaximal
ideal is open.

COoROLLARY D.23. - Any proper (i -+ 1l)-ideal of o compact Hausdorff
(m 4+ 1)-semigroup is confained in on open proper maximal ideal, i =0,
1, ., m.

This follows from the fact that every (¢ - 1)-ideal is contained in an
ideal (see ]10]) and the previous corollary.

From the fact that the closure of an ideal is also an ideal, the following
result is easily derived:

CororrLary 5.24. - A maximal proper ideal of a compact Hausdorff and
connected (m -+ 1)-semigroup is dense.

Turorem b5.25. - Hvery compact Hausdorff (m - 1)-semigroup A possesses
a minimal 1-ideal ((m -+ 1-ideal) and each such ideal is closed. If A is in
addition surjective, then it has a wminimal (¢ -+ 1)-~ideal for each i=1, 2, ...
wey 1 — 1 and each such ideal is also closed.

Proor. - We shall only prove the first part, since the proof of the
second part goes in exactly the same way.

Consider the collection of all closed (i -+ 1)-ideals of 4. This is non-

empty since it contains A itself. By Zorx’s lemma, it must have a maximal
tower T. Then

M=nNn1I

IeT

is a minimal closed (¢ 1)-ideal of A. M is also a closed minimal (54 1)-

ideal of 4. To see this consider an (i - 1)-ideal J contained in M with
x€J. Then

[AicA™f) € [AiJA™ e J< M
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and hence by induction

[Ai[AﬁmAn—(h?——i)[Am—v] = [ Al Fig 4 ntr) (m—ij] = [Ai]A™—1] < Jg M

for each natural number n. Hence

K = OO [AE’imAn(m—i)] U [[A™x] A™) < J < M.

=1

K is evidently an (¢ + 1)-ideal. Since 4 is compact HAUSDORFF, its opera-
tion is a closed mapping; since there are actually only a finite number of

distinet terms in the above union, and since each of the terms [ArixA®(m—9]
is closed, then K is also a closed (¢ + 1)-ideal. From the minimality of M
as a closed ideal, then M = K.

Now suppose N is any minimal (¢4 1)-ideal of 4 so that for each x€ N,

we have the relation [Alxd™—i] < N. Then by exactly the same procedure as
in the preceding K is an (i - 1)-ideal contained in N and hence K = N.
Thus any minimal (¢ -} 1)-ideal is always closed.
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