Axiomatics of Newtonian Cosmology.

by RuporLr KUrTH (Atlanta, Georgia, U.S. A.)

Summary, - Four awxioms are assuwmed ivhich, essentially, state the exisience of a frequency
function, a qualitetive law cf gravitation, the conservation of mass (or probalility),
Newton’s law of motion and the «local» homogeneity of the Universe (§ 2). Theorems I
and II yield a complete survey over all the umiverses which satisfy these axioms and
an additional regulurity hypothesis (§ B). Some Ekinematical and thermodynamical
features of these universes are discussed in § 4.

§. 1 - Introduection.

Cosmology based on NEWTONIAN dynamics encounters the difficulty that
Newron’s law of gravitation and the « World Postulate » (< Cosmological
Principle ») are incompatible. According to this postulate the mass-density
is supposed to be independent of the position vector x (in the euclidean
3-space). Therefore the gravitational potential, V(x, ) (where ¢ denotes the
time variable), should be independent of x also. The potential V(x, {) and
the mass-density p(x | #), however, are related by PolssoN’s equation

AV(e, ) =4nGolx | )

(where A is the LAPLACE operator and G is the constant of gravitation) —
which implies that V(x, t) is a non-constant function of . (Cf. [5], [8], [9]).

This inconsistency could be removed, for example, by the following
modification of Poissox’s law:

AV(x, ) = 4n G. [p(a|t) — p(#)]

where p(f) is the « mean density of the universe at the time {». It admits
universes of which both the mass-density o(x|#) and the gravitional potential
Vi(x, t) are independent of the position x. In such a universe the mass-elements
move according to GALILEO’S law of inerfia.

It is, however, by no means necessary to specify the modified law of
gravitation: instead, it is sufficient to postulate that the gravitational force
is uniquely defermined by the mass-distribution of the universe. Then a
mags-density which is independent of the position 2 implies a gravitational
potential independent of x. It is the purpose of this note to discuss the

consequences of such a qualitative law of gravitation and a strictly local
world postulate.
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§ 2. - Axioms.

The term « universe s is taken as an undefined primitive notion. Its pro-
perties will formally be described by a number of definitions and axioms.
The following spaces are assigned to it:

(i) the «real space, X, i.e., the set of all «position vectors» a.
« Vector » means « column vector ». The number of dimensions, », of X is not
specified since nearly all results are independent of the particular value of n:

(i) the associate « velocity space» U, i.e., the set of all «velocity
vectors » #; both X and U are n-dimensional vector spaces:
(iii) the « phase spaces I'= U X X;
(iv) the «time-axis » 7 i.e., the set of all real numbers ¢;
(v) T'. an open interval of the time axis which contains the time
zero, £ =0
(vi) the cartesian products I' X 7 and I' X 7".
To any universe a « frequency function» f(u, a|f) is assigned which is

defined on I'X 7”. One intuitive interpretation of it reads: let M be any
measurable bounded subset of I'; then

fff(u, x| t)dudx

M

is the mass contained in M at the time £, Thus a universe is pictured by
a continuous material substratum which fills the phase space and has the
mass-density f(u, @' {) in I' X 1.

AxioMm I. The frequency function, f(u, x|#), of a universe is defined and
non-negative on ' X 7", and is positive for at least one value of (u, ) and

{ = 0. It has continuous derivatives of first order with respect to the compo-
nents of (u, x, ) everywhere in I' X T". The moments of the orders 0,1 and 2,

ff(%,mét)du,
U

[uf(u, x| fdu,
if

f‘u,-u,-f(u,m{i)du, 1=ij<mn,

1%

U
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exist and have continuous derivatives with respect to fhe components of
(w, §) everywhere in [' X T".

The existence of these moments is needed for the following definitions
of the « mass-density» p(x|?), the «mean velocity» 4(x, f), the « residual
velocities » v, the «pressure (tensor,» P(x, f)=1{ Py({x, #)} and the «tempe-

rature (tensor)» O(x, ) = { O;(wx, )} of the universe:
| p(w1t>=ff(u,w%t>du, \
7§
u(m#@:] wefu,lt)du:oxid),
J v for
| v=lvl=u—a(, ¢, [ el >0

Pij(w; t) = j”i’vjf(a(wa t) + v, & I t) d”:
Rn

B, 1) = Plx, §):p(w ¥

and x€X, t€1.

Axtom Il (law of gravitation). There is a function V(w, {) (the « gravita-
tional potential ») which js defined and has continuous derivatives with
respect to &y, ..., x, everywhere on [ X T'. It is uniquely determined by
the mass-density o(x|#) up to an additive function of { only.

Further we shall assume that the law of conservation of mass and
NEwTON’s equations of motion hold. In stellar dynamics it is shown (cf., e.g., [6])
that both these laws imply LIOUVILLE'S equation which we shall adopt as:

AxrtoMm IIT (Liouville’s equation).

o L3 U g AV _

o —
ot ' =i Bw; 1 =i duy duy

everywhere in I X 77,
Relationships of this kind will also be written by means of the following
matrix notation :

fet faosr — fus Vo= 0.

Asterisks will always indicate the interchange of rows and columns.
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Axrom IV (world postulate, homogeneity hypothesis). The «frequency
function of the residual velocities v >, f(it(x, ) 4+ v, ®|f), is independent of
the position 2.

Thus, where it is appropriate, it will be denoted by g(v | ).

The world postulate states. roughly. that the universes considered are
homogeneous in the following sense: the pictnre which any observer « moving
with the material of the universe » obtains about his immediate neighbourhood
(in the «real space ») is independent of his position .

These four axioms will be taken as granted throughout the following
discussion.

§. 3. - Theorems.

TrrEOREM I. Suppose that for the frequency function g(v ;#) of the residual
velocities v all the integrals

0 2

f@i [gv]|0)v,Jdv and f%i [g(v)]0)v,v,0,] dv
Br M

4 f, k, =1, 2,..., ») exist and vanish. (This is, for example, the case if

gw!0) vanishes for all sufficiently large values of jv). Then there are a

positive constant p,, a constant X n matrix C, a constant vector ¢(0) and a

normalized frequency function A(v) such that, for € 1",

@) flu, [ 8) =gl §)=po-h[J + Ctv]
= po + B[(J + Ctiu — Cax — ¢(0)]
where J denotes the n X n unit matrix;
() p(a! )= po-det(J+ COLT,
i)y a(x, ) = + Ct) 7 Ow 4 (J + Ct) =1 ¢(0) ;
(iv) O, §) =(J 4 CH™ 00,0 (J + C¥) .
h(v) has moments of up to the second order, and those of the first order vanish.
The proof is accomplished by the following steps.

LeMma 1.
i) e(w|h=re0]0),
(i) Ox, =00, 1),
(iii) P(x, ) = PO, 1),
(iv) Valx, ) =0,
) fitfau=0

everywhere on I' X 1",
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Proor. The homogeneity hypothesis (Axiom 1V) implies (i), (ii) and (iii).
Since p(ar|{) is invariant under the group of franslations of the sytem of
coordinates, V(a, ) is invariant also because of the «law of gravitation » (IT):
this implies (iv). Hence, and by LiouvILLE'S equation (III), (v).

LEMMA 2. The mean velocity #(x, ) satisfies the equation
wlm, ) =clw —t0(x, )
where ¢(x) is the mean velocity at the moment { = 0:
a{w, 0 =oclx).

Proor. Multiply LiouviLLE's equation (cf. Lemma 1(v)) by # and integrate
with respect to u: thus,

aR,

=0,
j=1 awl

<m+ufm+§

(Ct., e.g., [6]). By Lemma 1, P is independent of x. Hence, and since
plx |t >0 (by Axiom I),

U+ Apua=0.

The corresponding characteristic equations,

do _,
dt ’
dan

a =0

have the 2n independent integrals 4, & —#-t. (Cf., e.g., [2]). Hence the
statement of Lemma 2.

LeMMa 3. f(u, @ |f) = po- h{u —c(x —uf)] where h(v) is the normalized
frequency function of the residual velocities v at the time £ =0 and p, is

the densitity at { = 0. (<« Normalized » means: j hiv)dv = 1).
Rn

Proor. LIOUVILLE'S equation (Lemma 1(v)) has the 2n independent inte-
grals u, & — ui. Hence,

flu, @)= o, x— uf)
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for some function ¢. By the homogeneity hypothesis (1V), the function
ela(e, )+ v, @ —a(w, t)«t-—wv-{] is independent of . Differentiation with
respect to the components of o at the time { = 0 therefore yields

2 L 2
3, ¢u, )4+ 2 ‘“CP(%W)M

2o ci(w) =0, i=1, 2,.., n
7=1 7

For i=1 the resulting equation has the 2m — 1 independent integrals
Doy Xy, ey Ly Uy —Co(X), Uy — C2(X), ..., ¥, — C,(2). Thus ¢ is a function of
these integrals only. Similarly, when ¢ =2, it appears as a function of
X1, s, e, &,, W — c{x) only, etc. Hence, it is a function of u — c¢(z) only; i.e.,

e, 2)=po -h(u—c@)
where A(v) is a normalized frequency function and g, the densify at t =0. Thus,
f(u)xgt):(P(u9x'”"“t)x?0‘h’[u_o(x_ut)]

LeyMma 4. Let
=z — U, b)) ¢
and
e?) = c(®) — cue (0) 2.
Then,
hop (Ve (2)v =0

for all vectors v and #.

Proor. By Lemma 2,
| #=c(®),
? rz=z+c®-¢.
By the homogeneity hypothesis (IV), the frequency function of the residual
velocities v, i.e., by Lemma 3, the function A(#t 4+ v — c(x — vt — @+ f)] is
independent of z. Therefore, the function hlc(s) + v — c(2 — ot)] (obtained by

substituting z for z) is independent of #, and so is its derivative with respect
to t at t=0; i.e., hypW)cyr(2)v is independent of 2. Hence,

Togs (1) » [Cor (2) — C2(D)] e v =0

or all values of v and 2.
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LEMMA B, ¢(&)=c(0) 4+ Cz

where C is a constant n X 1 matrix.

Proor (first part). From

dh{v) 2e; (2

av,- az,-

2& @7‘:0

-~

(L.emma 4) we obtain

/ v dei(?) f () v;dv =0,
5 i ; 357‘ 34),'
Rn

b

-,

(o P

&g a’Ui

( z 3y %% [ &) vivg v dv = 0, 1l sk I=n
i 7 v
R»

These last integrals exist because of

2h(v)

2
30, PO vioen) = =3 % vyveo, 4 h ) By vev, + Bievyon 4 8,400
1 £

(where {8;;} is the unit matrix) and the additional assumption of Theorem I.
Thus, by partial integrations,

g E ARG =0,

(zz?@@@m+m&m+wa®:0
ij 9F
where
Viv; = fv;vik(v)dv {Def.y,
H’Z

and

. dex(2) de2)

(g, 0 25N )

.; ((’U]b 3% + v i ) =0

Taking the principal axes of the matrix {v0;} as the axes of coordinates,
we obtain

5;7 der(2)

~— e
2% +'I)k —— = 0.

2%
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Now we shall apply the following:

Lamma 6. Let g{0), ¢ =1,2,..., n, be n functions of { =(C;, &, ..., Gu)
which are defined and have continuous derivatives in (a non-empty open
subset of) B* and for which

¢ () ¢ () .
* A —
* ot m =0 hi=1 2,
for all vectors . Then,
Ei(C)—‘-‘-.Zl ;G + @i, i=1,.., n,
]:

where {e;;} is a skew-symmetric constant matrix and {e;} is a constant vector.

Proor oF LEMMA 6. Let § =14¢: thus,

dei(f) _
9% =0,

and () and 3¢;({) /3%, are independent of §;.

. A
Therefore, the derivatives 9 25 (G

exist and vanish identically. This

2% 3
implies, because of (*), that the second-order derivatives
3l _ 2
g 25 oG 9C;

exist and vanish also. Hence, the functions &;(§) are linear (or constant) in
each of the variables i, s,.., Gn and all their second-order derivatives

2 .
g;’a%i exist and are continuous. From
— a2'7(C) S —_ .3 as@(c) .
dsi(C) '—'? TC':“‘ ag = 4; ac}_ at

it now follows that

On the other hand, the hypothesis (¥) implies that

2 %@ 9 (.
M B T 9% G
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hence,

azsi(C) 0.
ot — O

i.e., all second-order derivatives vanish idenfically, and

&(8) = I ¢;§; + const
i

where e;; = const. Substituting the right-hand sides in (*) shows that {e;}
is skew-symmetric.

PrOO¥ OF LEMMA 5 (confinued). By Lemma 6 and the last equation
before Lemma 6,

0;(2) = I e;;2; -+ const
and e; = const. Hence,

Cer (8) — €+(0) = e 2) = {e;;} = const.

Letting 2 = 0, we obtain

and

where O = ¢ (0).

Proor or THEOREM I. (iii) By Lemma 2,
W= c{e — ul);

hence, by Lemma 5,

W= (J 4 O Cx + (J + Ctyc(0).
() fl,x|t) = po-hlu —c(x —uf)] (Lemma 4)
=g~ h{(J+ CHu — Cx — ¢ (0)] (Lemma 5)
=g/t = po+[(J + CT — Om — c(0) + (J + O]
= po- h[(J + Cho] (iii).
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i) e@ = [ g0 hav = idet + 051 ).
Rn

{iv) o0y = fv,-'u]-f(rrz + v, xl Hdw
R»
= fv,@jpoh[(ef—{— Chyvldv by (i).
Ir

Introducing the integration variable
w=(J 4+ Cho
yields, after a shorf computation,

O, ) =+ )+ 8(0,0) - (J + Cty=™,

and this completes the proof of Theorem 1.

CoroLLARY. The statements of Theorem I hold if its additional assum-
ption is replaced by the following one: the frequency function g(v|?#) of the
residual velocities v has, at v =0, { =0, second-order derivatives with
respect to the components of v and their matrix, g,»(0|0), is non-singular, i.e.,

det g 0 [0) = 0.

Proor. The additional assumption of Theorem I was used only in the
proof of Lemma 5. Thus it is sufficient to show that this lemma holds under

the new assumption also.
By Lemma 4,

hp(@es(®v=0.
Hence, by TavyLor’s Theorem,
T (0) 620 (2) 0 + 0% heon (0) € (8)v + 0( (0]} = 04f [v] — 0.
This implies that

By (0) oo (2) + €%, (2) o (0) = 0.
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Now take the principal axes of hu»(0) as the axes of coordinates and lef
B (0) = diag (A1, Az, vy An).

Then,

3ei(9)

365 (Z) .
)\1 ’ az,-

+ A =0

and, by Lemma 6,
ei(z) = L e;;#; -+ const .

The remainder of the proof is identical with that of Lemma 5. Hence the
Corollary.

The following reverse of Theorem I shows the consistency of the Axioms
I-1IV. It is proved by straight-forward verifications.

TarorEM II. Tet h(v) be any normalized frequency function of the
n-dimensional random variable v defined on R* and & (v) have continuous
derivatives and vanishing moments of first order; C be an arbitrary constant
n X n matrix, 7" be a neighbourhood of the time-zero, { =0, such that
(J + Ci* exists, ¢(0) be an arbitrary constant n~-vector, and g, be an arbitrary
positive constant sealar. Then the function

flu, 2| 8) = go « B[(J + Otyu — Cz — ¢(0)],

together with the corresponding density ¢(x|¢) and potential V(z, f). satisfies
the Axioms I -1V of § 2, except possibly those concerning the existence of
second-order moments of f(u, z | ).

§ 4. - Comments.

1. - Theorems I and II fogether yield a complete survey over the set of
universes which satisfy Axioms I-IV and the additional hypotheses of
Theorem I or its Corollary. These universes are, in a natural fashion, classi-
fied by their iunitial frequency functions, A(v), of the residual velocities »
and their initial «velocity matrices » C. BorH are entirely independent of
each other. The constants c(0) are inessential: they are removed by choosing
suitable systems of coordinates. The velocity matrix C need not be symme-
trie, i.e., there may be a «rigid-body rotation » of the universe with respect

Annali di Matematica &
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to any «inertial system of coordinates» (i.e., a system for which NEwroN's
equation of motion hold). Such an (apparent) rotation is by no means at
variance with the uniform (« Galileian ») motions of the mass-elements of
the wuniverse: the mean velocity (2, f) is defined as a mean value of the
velocities of mass-elements at any given place and time, rather than as such
a velocity itself: there need mnot be any mass-element at the point z and
the time ¢ which has the velocity w(z, #). In the literature it is somefimes
assumed that this «rotation» can be eliminated by choosing a new system
of coordinates which « rotates with the universe » (cf., e.g., [1]). But such a
new system is not an inertial system and, therefore, inadmissible. A permanent
« pure rotation », however, is indeed not possible: the velocity matrix
(J + Oty ~* C is skew-symmetric if and only if C is skew-symmetric and ¢ =0.
« Pure dilatation », on the other hand, is permanent. This implies that rota-
tion (though not « pure rotation ») is permanent also.

The directions of « purely radial motions»> are permanent. I.e., the
vectors z and #(z, t) are (for ¢(0) = 0) collinear if and only if the vectors
z and i (z, 0) ase collinear. For,

Cr = yx
for some vector x and some scalar constant y implies that
JH+C'z=1+Fv 'z
and, since
C(J+ Ct/ " =(J+ Ct)y~ C,
(f + O 0z =(1 + vty 'ye.

as has been asserted.

2. - In the hydrodynamical cosmologies it is assumed that the density
and pressure are independent of the position vector z (« microscopie homo-
geneity postulate ») and the relative mean velocity d(z + Az, §) — @ (z, 1), is
also independent of z (« macroscopic homogeneity postulate »). In the stellar
dynamical approach of §§ 2-3 macroscopic homogeneity is a consequence of
microscopic homogeneity. The reverse, however, need not he true: this is
demonstrated by a frequency function of the form

by + Ciyu — Ciz] + ho(J + Cot) o — COoz]

for suitable fnnctions hy, h, and matrices C;, Os. « Microseopic isotropy »
(i-e., glv |1 is spherically symmetrical) and « macroscopic isotropy » (i.e., the



R. Kurra: Axiomatics of Newtonian Cosmology 43

relative mean velocities, @ (x -+ Az, f) — @ (z, ), and the relative position vectors,
Az, are collinear) are not related to each other.

3. - Let the field of mean velocities be «isotropic in r dimensions »
0=r<mn),ie,

", 0
C=k-{y 0)

where J, denotes a v X v unit matrix, the other elements of C vanish and k=0
is a scalar constanf (the « Hubble constant»). Let » and & be the scalar
pressure and temperature, defined by

o

p = , trace P,

| o=

M

trace ©

[WLTIEE

{cf. [7]), and p, and &, be their values at the time ¢ = 0. Then,

(P =po- (LK,

\ &= dy - (1 -+ R,
P =p, - (1 -+ kt)—7-+2.

Hence, if > 0,

P N o )1+2/v‘ .
P (Po ’

i.e., the material of the universe behaves like a polytropic gas of the index r/2.
In particular, if n =» =3,

p _(95’8
P PO> )

This is the equation which describes adiabatic, or isentropic, changes
of state of a monatomic ideal gas. The number r (which corresponds to the
number of degrees of freedom in the theory of gases), however, is determined
by the matrix O rather than by the function h(v) — i.e., by the properties
of the macroscopic motions rather than those of the microscopic motions of
the material. In this respect the thermodynamics of the universe appears
significantly different from that of an ideal gas,



44 R. Kurra: Awiomatics of Newitonian Cosmology

4. ~ In § 2 the integral ]{ flu, z|f)ydudz was interpreted as the mass
M

contained in the set M at the time #. The following, different, interpretation
may appear preferable. Suppose that (i) the material of the universe eonsists
of a countable number of particles, (ii) the number actually contained in the
set .M at the time ¢ is a PoissoN random variable with the mean value

po= /]'f(u, z |t du dz, and (iii), Axioms I-IV hold with this interpretation
M

of fiu, z|t) also. Thus the particle structure of the real universe is taken
into account. For example, a set M with a corresponding Po1ssoN mean p
should, with the probability 1 — e, contain wo & V@ particles where ¢ is any
real number between (0 and 1 and &. denotes the corresponding quantile of
the standardized PorssoN distribution. (Cf, e.g. [3]).
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