Problems and methods in partial differential equations (¥).

by F. J. Bureav (Lidge, Belgium).

A Giovanni Sansone nel suo 70m° compleanno.

Summary. « Finite part and logarithmic part of some divergent integrals with applications
to the Caucny problem.

This report represents a part of a group of lectures given at Duke
University during the academic year 1955-56. It introduces the theory of
the finite part and the logarithmic part of some divergent integrals and
applies it to the study of the CAUcHY problem for simple partial differential
equations, namely, the wave equafion, the damped wave equation and the
singular equation of EULER-P0OISSON-DARBOUX.

I wish to express my heartfelt thanks to my Collegues of the Mathematical
Department of Duke University and particularly to Professors J. J. GERGEN,
Head of the Department, and F. G. DrEssEL, for their kindness and practical
assistance. Particular appreciation is due to Dr. E. J. PELLIcCIARO for his
friendly and invaluable assistance in the writing of this report.

I. Derivatlives of some improper integrals.

1. - Differentiation under the integral sign. Generalisation of the Leib-
nitz rule. In its classical form, LEIBNITZ'S rule is as follows. Let

(i) aft), bt e,
(if) f(t, ®) and aj%—@ €0C;

then

b b
d oA, « db d
@t e = [T oy gt 0y % — 0 %0
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226 TF. J. Bureau: Problems and methods in partial differential equations

In this rule, it is essential to suppose that f(f, ) is bounded in the closed
interval [a, b). Therefore, this rule cannot be applied to the integrals (even
though they are differentiable)

|2
t

dx

1. -—.:**::*-*2 t'—- =2 2,
Vt—w v v 0 V
t
dw
e =W,
f\/w(t—ﬂw)
t ¢ ¢
3. flg(t—~w)dx=—-(t-——x)1g(t—-—w) T
={lgi—1{,

the integrands being infinite for = { (and in 2 also for x = 0).

If the LmisNitz rule in applied, one would indeed obtain a difference
of two terms, each of which is infinite, and which difference has no sense.
For instance, from 1

t

1 __}/ dx
Vi— oy 2] (E—ap’

a

t
+f_‘_zﬁ.
opmel t"“w

Nevertheless, it is possible to compute the derivatives from the right hand

and from 3

lg(t—a)

1
side : for istance, for 1 and 3, one obtains respectively Vi and lgt.

To correct this situation, it is necessary to generalise LEIBNITZ'S rule.
We shall first study two typical examples.

2. Consider the integral

[ 4
(1) F(t):j W(_”)xdm,
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where A(x), A,{x) are continuous in the closed interval [0, #]. Setting x = yf,
one has

_dy
Fity= | Vidgl) —2—,
K f w9 Vi—y

which is uniformly convergent and therefore continuous. Its derivative with
respect to # is

@) @ = [5viawm

owing to the uniform convergence of this last integral. Consequently

aF _ 4 [ dy L[ dy
dt“zwf“” Vi—y wf el T

i
L dx
=5 [ 40
0

i

But,
xd tA,
— 2 = - —Vi— 2 A
Vi—xz Vi—= Vi—w
t4, - — A
— — o [Vl =2 4] - ——— .
Vi—g o Vi—=4 2Vi—=x
Hence,
aFr A(O)
5 ar _ [ &
dt + Vt v

To gain a betfer view, set

H{1wmg)

s dy e
_J[VtA(yt) T —fA(w) ,

Vi —

o

where 0 < ¢ < 1. We have

. dF d
4 = —_— e 1i ¢
4) Ft) 311{10 E.(t), = di 815_1:10 F{t).
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But, from (2)

1—c

AdF ) 2 ., dy . AdF(f)
5 o= : — it
(5) i Eh_l,nofgt [V Alyt)| V 3 EIlm0 TR

0

A comparison of (4} and (D) yiclds

AF _d o gy GE
dt—dtg_,', (_E_.o S dt

go that d and lim commute.

dt —

Therefore, to compute

dt"t')’ replace F(f) by F.f) and compute the deri-

vative with respect to ¢ using LuIBNITZ'S rule () and then let ¢ tend to
zero. This gives

H{1—e)
. daF., 2 1 ’ 1 —e
(6) ik [A( avro Rt e A[tL — ¢)).

a , one finds

. . 2
Integrating by parts, noting that =

t(1—ct)

dF, Afx) H1—s) da 1—¢
LI o o » ~ & ANl —
dt Vi—w|, +,[A Vt—a;+ vie Al —el
_ [ W de A0 1= Al
Vi—w T Ve “s U=l ==y

D

The last two terms become infinite When e — O; but their difference tends
to zero. Therefore, when & — 0, formula (3) is obtained.

REMARK I. - Note that one can also write [cf. (6)]
t(1—e) f1-¢)

dF. _ 2 1 1 [Af) — A) _
W_—A(t)faivt;:;&;dw 2/ —ap 0 2+ \/_ © AL — ¢

E

0

1 )
_ AW 1 [Al) — Al) t—e, . Al
T vi 2 f o @t g A==

[

() Note that the integrand is continuous in the closed interval [0, {1 —e¢)}.
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As a result,

t
aF _A() Alt) — Afw)
TV 2'[ i —a %

0

Remark II. - Suppose A(f, x) A f, x), A.{f, x) are continuous in the
closed rectangle @ <<f<<b, O <w<<{ and set

T Vi— =
O

Using the above method, one finds

dF(§)~At +[ Ay

3. Similar computations can be carried out for the integral

:fA(oc) lg (t — x)jdu,

0

where 4. A, are continuous on the closed interval [0, {|. Setting = yt and
glt, y) = tAy, tlg (Ll — y), it follows that

ag _ [?
VT f 96 Y)dy
0

t
~

1
= t‘f [A{x) + Alw) 1g (t — x) + wd, lg (¢ — )] dac.

]

But,

BS'Z{TA(%) lg (i—-w}} = (A -+ wa)}g(t__m} ___ t

= (4 +xd,)lg{t —x)+ (1 — 4~——) 4.
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Hence, integrating from 0 fo f—¢, ¢>¢ >0, lefting ¢~ 0, and noting
that lim elge =0,

g0

i
[{A-;—Alg(t-——w)—}—a;Aa,lg{t—x)]dm

[}
t—e

= lim [tA(t — glge+ ] t‘ﬂ”lc dw]

[ end

and therefore

-t
ag _ .. _ [ Alx)
(7 Et—__.el-l_&nﬂ/i(t e)lge + t_xdwl.
o
Further,
Afz)

d
— ™ -A(a})§&’1g(t — )

and, integrating by parts from O to / —z¢,

bt t—g

[ A2 g5 = — At —o)lge + 40) g+ [Au1g 1 — ) da.

Thus, from (7),

t
iF :
—d-Z_A(ougHjAmlg(t— x) dac.
0

We may also write [ef. (7)]

and find

|1 4

Alw) — AlY) 5
t - )

a§ ’
(8) E“; = A(t)1g? +-/ B(t, x)dx = Aft)1g¢ +/

[

If 0«<e<] and

1 #1—s)

§4) = [ glt, v)dy = [ Afw) g (t — 2,

@

¢ 0
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then
F(t) = lim &.(b),

§=—r0

—£

j lim 510 = J
d—iellﬂ F(f) = lim atgt y) dy

g w0

d{?"

a5 (t) H1mms)
. e
_—el—l—-o T —c-.odi[A x)1g (8 — x)dx.

An application of LEIBNITZ'S rule to the last integral gives

H{1—¢)

d ]
) 2840 = (1 — 01 — elllg te + | A) S 1g (1 — ) .
But,
Ha—e) 3 H1—e) 3
j Afx) 5 lg (§ — x)dx = —-fA(w) 33; g (t—x) da
3(1-—5)
4@ | +]A lg (t — =) da
H(1—¢)
(10) = AO)lgi — A[H(1 — )] lgte +wa lg (t — @) dac.

g

Combining (9) and (10), one has

H(1g)
% F()= A0)1g ¢ —}-fA:,c lg (t — o) d

0

4 (1 —g)A[H{Ll —e)]lgte — A[H{l —¢e)]lgte.

R

Here again, each of the last two terms becomes infinite when e — O while

their sum tends to zero.
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II. Finite part and logarithmic part of some
divergent integrals.

1. Simple integrals. - Let A(x) be a real function of the real single
variable x satisfying

(i) Alx) € C on an interval I;
(ii) A{x) € C* in a neighborhood U of {€ L
For e U,
k1
i ) =3 (= 10 2Dy By, a,
h=o (&

where Ay(f) is the h-fh derivative of A(x) at & = {, A,(f) = 4({), and

Bilt, ®) =,

U )y — 2p—d
t
Note that B¢, x) = O ([{ — x]f). Let the closed interval [a, {] be interior to I.
and consider
b
(2) I{l) = ] A@)(t — x)dw, s real.

a

I,(t) exists for s > —1; for values of s<< - 1, it may or may not be con-
vergent. It is the purpose here to define some useful expressions connected
with I,(#). First, the finite part (abbreviated pf) of I(#}, symbolically pf I}
is defined for @ € U, and then in terms of this definition, the more general
definition covering the case a¢ U is given. This is tollowed by a definition
of plI(t), the logarithmic part (abbreviated pl) of I,(f).

To abbreviate, write

& U lih(t;y e
. — N h IRV L ;
{3) Py; n, g+ 1= 2 (—1) Wb —g) n=0

so that

A e,

=
42

2
P,y; n, q+1):—-=32-/1’(y; n, q+1)=

o

Throughout, p is a real number such that 0 < p < 1 and %k is zero or
a positive integer.
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If a € U, the finite part of I(f) is defined as follows:

m PLO=LH, s>—1L

i

" Byt
o) o Las(l)=Pl—as k=1, b+ p+ | 200 de.
(©) pET ()= Pt —a; k—2, k) +(— I~ ggk_‘l‘)’” lg (¢ — a)

t
Bt
+ [l e (Pl—a; =1, ¢ +1)=0]

If it is not known that a € U, then let a’ be any point of U such that o’ < ¢
and define

a’ t

7) pf[A t—msdw~[+p£{

o o

For s > — 1, it is trivially true that pf I,({) is independent of the choice of a'.
To show that this is also true for s << — 1, let o < {, " € U. Then from (1)
and (3),

Byft, x)

8 Ayt —ay*r =Pt —x; k—1, k4 p )—i-(t poE

a’l

¢ N
pf fA(ac) (t — ) *rde ::f—{— pr

a ot

:(j_;_f )A(m}(t—w)*"—i*dw"f-}f’(t-' a's k—1, B+ p)

Bkl )
( +f>lt-—w)’”'L

a’t

But, with the aid of (8},

[A(w}(imw)“’“-i*dw=~—P(t-—-a"; E—1, k+p+Pl—a; k—1, k4t

+}(

o

Byt @)
{ — x)ete
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Hence,
t

@ 0w
[+ot)=f+w).

o’ a o’

In exactly the same way it can be shown that

f A
pffA(x){i-———m)""dm:f—}—pfj:/—i—pfjt.

[ a aflf
The logarithmic part of I(f) is defined by

Al _
N pLg= | CV o s= k=1

0, otherwise

where k is a positive integer.

Note that pl I,(¢) is the negative of the coefficient of lg({ —a) in pf L(f);
pl L,it) is zero when there is no lg(f — a) term in pf I,(f). Also, pl I,(f) depends
only on the values of A, (@) al the point x =1{ and consequently only on
the values of A(x) in a neighborhood of x =i This fact parallels the so
called HuvGgeN's principle (HUYGEN'S minor premise following HADAMARD'S
classification) in the theory of CaucHY’s problem for partial differential
cquations of the hyperbolic type.

Contrary to the purely local character of plI_,(/), it is clear that pt Z,(f)

is a global operator depending on all the values of A(x) on [a, £]. It is
t t

important to note too thaf, as symbols, pf f and pl f are each to be regard d
o a
as a « whole », as a single symbol.

The above definitions are easily generalized by replacing A(x) by A(¢, x)
depending on {, it being understood that A,_,(x) is replaced by

gr—

a}él::-;zn A{t; w) ;

Ix:t

Agall, ) =

2. The problem of computing the derivates of improper integrals and
the method of singularities nsed extensively in the theory of partial diffe-
rential equations lead one to associate With

¢
[A(w)(t-— x)pde, (—1 <s<0),

@
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the integral

t—g

fA(w) {t — x)* duc,

a

¢ > 0 and small. In fact, this amounts to cutting off the singularity at x = ¢.
Using (1) and performing the integration, one finds

t—e

(10) ptL(Y) = lim [ A) (i — 2 dw, s> —1,

“ f—¢e
(1) pf Ly (t) = lim{ f A@)(t — @)+ dr + Ples k—1, & + ),
(12) ol I8 1g e + pf I_ysff)

f—s t
= Plesk —2, k) —{—fA(m) (¢t — o)~ *dx +[Bk(t, x) (t — )y ~*dax
o t—g
which clearly indicate the meaning of (4)... (9).
Considered in itself, the integral given by (2) may, and usually does,

diverge for s << — 1. Nevertheless, pf I(fj and pl I,{f) exist independently of e
and are finite.

3. In the preceding, the singularity of the integrand was at f, the upper
limit of the integral I (f). It is sometimes necessary to consider integrals

|4
Jsla) = [ Alx) (e — af de, (§ > a),

whose integrands have a singularity at the lower limit.
It is clear that the above definitions may be extended in a natural way,
to cover this case. Indeed with reference to (10), (11), (12), define [ < b; [¢, b] € I]

b
pf J,{¢) = lim [A{ac} fx — i) de, s>—1,
g==0
e

[]
P f) = im | [ Afw) o — h=5edi - 85 k=1, K+,

£=0

T4
pli_u(t) lge + ptJ_ult) =
b tte
= 8(e; k—2, k) + f Aw) (@ — )=* do + | By(t, ®) (@ — {)*dae
te i
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where

4. In connection with pf I (f) and pl I (¢), it is sometimes useful to con-
sider the integral
2
Jia) = | Al@) (t — a) dae
a
of the complex variable «. For (*) &#a > — 1, J{«} exists and is a holomorphic
function of «. Using (1},

t
Jo)=Plt —a; r—1, —a)+ /B,.(t, x)(t — x)*dx ;

&

the right hand side of the equality gives the analytic continuation F(«) of
J(z) for Ra =< —1. It shows that F(x) is meromorphic in the half plane
B> — (k4 1) and has simple poles at a=—1, —2,..., —k; it follows
that pl I(f) s equal fo the negative of the residue of F(a) at « =s and that

pf I—"—{L(t) = F("_ r— l"‘)y

— 1 pll_.(t) et Ayl
PRI {f) = lim | Fla) + ° 7 0 + (=) T et —a

Morcover, it is a simple matter to modify the above so that one has to con-

sider only holomorphic functions. To this end, note that the gamma function
T(«) is meromorphic in the « — plane and has simple poles at « = —mn

(—1)"

(=20, 1, ..} with residue il at x = — n. Therefore, the function fla)=
Fa)

= o £ 1) is holomorphic for &a > — (k - 1) and

(13) pl I“-k(t) = (ki- 1) 1 [f{“n%=-—k7

(14) pf I yit) = D=k — p 4 1) f(— k — p).

() When « is a complex number, we write as usual == Ko + iJx.
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In a similar way, we may obtain a comparable expression for pfI_,(/);
however, it is more complicated and not as easy to handle as the other
expressions.

These results show the connection between the RiEMANN~LIOUVILLE
integral

t
flo—1) = _I,(l“_} f Al)(t — w)y—dw

and pf, pl of some divergent integrals.

It must be noted that the RiEMaNN-LIOUVILLE integral introduces a
factor I'(— &k — p 4 1) different from zero if p =0 and which does not appear
in the final result. Moreover, the definitions for pf and pl are easily extended
to include some multiple integrals and as a matter of fact prove easier to
handle when actual computation is required. This will become clearer later on.

5. plLf) and pl L(f) exibit simple properties Which shall be very useful
later on. These properties are given below with proofs for those which are
not immediately evident. Throughout, it is assumed, unless otherwise stated,
that Afx) € C* on [a, t] This is no restriction in view of the fact that (7)
does not depend on a. Furthermore, since pf /)= I for s> —1, in
which case the known theory can be applied, the properties below will be
conocerned with the case s << — 1. Note that the case plI(t) =0, s 0, — 1,
~ 2, .., is considered trivial and discarded.

ProperrY 1. - pf [and pl {are linear operators with respect to A(x).

[+ o

DEFINITION. -~ Suppose that f(x)€C* j=1,2,.., n on [a, {]. Then by
definition

pf[k 1 (t—-"ﬂ'J)rk die = E pf[ m)" dzx.

ProPERTY 2. - If ¢ is such that a < ¢ < ¢, then
j [ [ t |1
pfj:f+pff and plf:pl[.

PropERTY 3. - Change of variable - pt I_,_,(f) is invariant under a change
% = x(y) of the variable of integration provided «(y) has enough derivatives

dx
and dy % 0, oo
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This condition due to HADAMARD is sufficient, not necessary.

ExAMPLE. - To find the changes of variable leaving

i

t
pf/m*dw:a—ta_ii, 150, ok —1
¢

invariant, set © = y*, u==0. Then

£/

t
Pfffmdm = pf [y(w»l)p—l dy =
o

[

{xt1

a4 1°

It is clear that we may put x =y*f(y), p =0 provided f(y) is regular and
£10) 0.

pl I(f) is also invariant under a suitably chosen change of variable

1
d4
carefully performed. As an example, considler[jE and set x =y/a, ¢ >0;

O
one has

«lgez.[?:'{;:lgamlgas =—Ilge,

£ ae

from which it is clear that the coefficient of lge, [ef. (12)], remains the same.

ProPERTY 4. - Integration by parts. If A(x) € C*** on [a, #], then

t
pt [ A(w)(t.— =) de
{

= 1y [A@) (¢ — o)+ pt [ Aot — oy i) s 1,
‘t o
— @) lg(t—a) + [ Alo)lg(t —2)dw, s5=—1.

a

Proor. - If s =-—Fk —p, use (11); if s=—k, use (12),
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PrOPERTY D. - Suppose that the functions A(f, x) and g(x) are both € C*
and that g(x) is given as a series

uniformly convergent on [a, f], With the property that Z gf“’( ), @ =1,.., k),

also converge uniformly ou [a, #], Then
® A t, xjgix
— W 7
f[t—mkw w-j;‘o Pff t——{,ck”‘“**

Proor. - From (5),

f A b, » Q;
(t— ) FC*HL
kS [A(t, @g,f@)]” (¢ — ap—r-rtr
= X (—1) et
h=o h'(h-——k__y‘_{_l)

i
Bk, {t’ (L‘)
+f{t _j m)k—f—p. dx

o

holds for § =0, 1, ... and also for g,lx) = glx).
Summing on j and then making use of the uniform convergence hypo

thesis, one obtains the desired result.

Note that

Butt, #) =" [ )ty — at—dy
xft, ) = (k-—-—l xY)y ) Y
t

so that we can safely commute integration and summation

PROPERTY 6. - A bound for pfI(i). Let M be chosen so that | 4,(x)|
(h =1, ..., k) on [a, t] Then from (5),

=M

ptl s ()< | Pll—a; k—1, k+ )|+ﬂ-ﬁ’i%ld
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2| Anll) | ( — )it / M(t — a)*

k(= )t d

S \‘
oo BI(E+ p—h — 1)

< M{ (t—ap—r-s (f— aw}

ok 1+ —h—1) T ETT— )

and from (6),

KAt —ap |lgi—a)|  l—a
pff—ktﬁ}SMLZozmk—h+l} E—11 TR

Thus. a bound for pf I({) is known if M and {— o are known.

6. Property 7. Differentiation. - If A{x)€ C*t* on [0, f], £ =0, 1, ..., then

_ Alx)
(15) aiP ffu o= P 3 = o
s o
16) dtpf.’( fj pdz 4 (— 1 ”
d [ Aw
(17) dtpl/‘t @ )) dm_plj ‘”%)mkdw

147

Note that (16) and (17) are trivially true for k= 0.

That {17) follows easily is seen in (9).

To establish {15), first a proof by direct calculation is given, then a
proof making sole use of repeated integration by parts, followed by a proof
by induction again using integration by parts as the core.

7. Proof of (15) by direct calculation. - Write

18) Bult, @) = (— 1" Agg“ (t — ) + Benlt, ),

el
Bult, o) = 1" [ 4 tolly — alray
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so that

9

g
(19) S Beult, 1) = — 1

k!

Arpalit — ).

Further, an easy calculation shows that

?

(20) T

P(t“a‘s 8, Q+ 1)
— 1y A a(f)(t —a)~?

—(q—[—l}P(t—-a;S‘f‘l;Q’f‘?)"f'( s+ 1)!

Indeed,

3 . 2 s An(B)(t — a)r—e
iP(t_a”siq-i—l) ai"zo(-'l)h hh'(h-Q)

_ % gpdralit—art s At — apet
o hio (=1 Y th— q) hio (=1 TRl

Stl (- Ah(t}(t _ a)k—q -1
h=1 (h—1)th - qg—1)

An{tit ——a)""q‘
+ 3 (a2 el

b g Al — @ (A (0 — a
R =R 1 sf?s—q)

— 114, ff)(t — a)*~
s+ 1)t

g+ P —a; 51, g+ 2) 4

Because of complications arising from the use of the symbol P(t —a;
k—1, k4 u) the case k =0 will be treated first as a special case ; then the
case k=1 will be considered.

a. In case k=0,

df Aw) Al Al
Ei] i—ap® dt/ t—m ax

_ A JAMB(E—ap—r | [Afx) — A)
= dt{ I—p +.[ i—ap 2°
i
Al At—ap—r  d [ Ax)— All)
- (t—a}l*+ 1 —p at] (t—up dx
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But, since
A(.’E)— /t )dy .
(t—w)** ="—ap = Ol
one has
t
d [Alx)—AW) . _ "4 Afw)— Alt
a_tf N Ja T__—x)u_ ) e
t
— “A(x) — A(f) A (¢ — ap—+
- I (t — a)rte dw — T i—p
Hence,

¢

t
a [ Afx) _ At — o) (@) — A(Y) ,
d—tfm d”“"”[ —p +f(t apre ¢

o

Li Alx)
dt ¢t — )L
b. When k> 1, consider
i .| Aw)
x
(21) ot / s 0

a

Byt =
—Pt—a; k—1, k+p)+dt (—t——h—(g)-ﬂ)_&*dw

(— 1A, (8) (£ — a)
— &+ Pl —a; k,k-]-p,+1)+ ) ;c(!)( a)—+

dt] (¢t — a‘)"ﬂ*
But, using (18) and noting that

i t
d 'Bk—}—l(ty .’.C) — i Bk+1(t7 w) d.
dt) (t—ax)tr S db (f—afete T
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one finds

]Bkt z)
dt t—-cc)’”‘&‘

d w0 (t — @y B,, A, )
:ﬂ[(“‘ly‘ R p— (g‘_ﬁmdw]
_ (=14 ) (E—ay— x Aal) (¢ — )

EN1—p) +(=1 3]

(t = wpete ;

t
Bk 1t x) Bk 1‘t, x)
+fd'5 +l (,"’+P)f(‘tj%)md“’
Which, upon ’using (19), gives

Bi(t, z
22) chtft—a;)kﬂL

ApalB(t — a)—v

_ AVt —a)r
=0 =y

k!

+ (=1

[
Ak-{»l t_ 1 B 41 t,
_H~nﬁlkxmlflgﬁm+)er%ﬁ%@

Ay(l) (¢ — a)—» Bklt

Combining the results of (21) and (22), we have

4
d T Alz)
3P i

a

Byt
=— (k) |Plt—as b ktpt 1 +f—ﬂﬁﬁ£m

A, f A(=)
) pf/ —oyeren 9 =P | G e Ao



244 T. J. Bureau: Problems and methods in partial differential equations

8. Proof by repeated integration by parts. Infegrating by parts b4 1
times, we have

t
d f A=)
Tt pt T— o dz

o

_ AP el ar
T At g (1 —F—p) ek —F—p)

1
+ T | Al — g

_ K At — g
T 0= h—pa e —F—p—1)

1 t .
+ A=k—p).(— ‘L}af Apqalg){t — z)t de

— (& +p) pff M_Mldw

Alx)
9. Proof by induction using integration by parts. (15) holds for k = 0. For

i

it e

a

d (¢t — ap—+

t
+ i }_ p‘/A'(ac) (t — zp—rde

t

=A@t — o)+ [ : tf_‘”:}p dz

4

="*’“Pff 1+i»d”— ffdm_l)
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If (15) holds for ¥ — 1 =0,
d Alz)

(t — ajr—F—v 1
_cﬁtA()i—k—y. 1—Fk—

t
pﬁfﬁ@@—ﬂh“Mx

A'fe)

i
= Aa)(t — a) "+ 4 pf/m dz

““"—(k-l-llpff—”“qux

_ A(a)

and it holds for k.

10. In very much the same Wway, the three proofs used to show that (15)
holds for k=0 can be used to show that (16) holds for £ =1, k=0 regarded
as trivial. Only the proof by direct calculation is given below. The special
case k=1 arises, again due fo nofational difficulties. The special case is
treated first.

If k=1 and A(z) € C? then

4
d Alz)
dt pf]t — da

Pm@a*a fA t~@inMW—@@M

d
—a
A()

(#1g (¢t —a)— A[)— A"(}) (t — a)

dtfftA" kil

t—z

Because

| 49y — 5)ay = 01—
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it"follows that

x

— A" f / + A" )y

(t — z)*

A"(y)ly —
[/t t.fxx é

Thus,
d f Alz)
a

tore " —
= Al A’{t)lg(t—a)—l—j [i 40 x)dydx—A’(t)

t—a {t— @
- ff(t o — A1)
“pf[dti'““d — A1)

Now suppose A(z) € C*'t on [a, £], k= 2. Then

i f/”t Afz)

i P . i— o dx
=§z Pt —a; k—2, k) + (— 1) @4}“—1(33 g(t—a)
= — kP —a; k1, ko 1) (= 1 P g =0
. ;
Ayl

Ig (¢ a) 4 (— 1*

:———kP{f,-—-a,k—l,k‘i’”l)'*'(_l)k“l(k_”! 5
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da

Apis t) 1) [} Aealy)ly — 2)*dy
= +]dt z t E—ap

+(~
(beoause tf = O[(¢ — x)k+1]>

t
= —k|Pl—a) k=1 E+ 1+ (— 1 O =

Aty

which is the right hand side of (16).

11, Examples of differentiation. If A(z) € C*, then

¢

|3
d[ Al ., 1 Al1)
at Vt_xd”“‘épfftt—x)md”’

as indicated long ago by R. d’ ADHEMAR.
In general, if A(z)€ CFt, (O <p <1 understood)

dzx

t
ar [ Alz) _ Ty + k)
Zﬁ_k,[(t ~— ) de=(—1J" Ty j (¢ — z) "+P

because
g—; (t — 33)'_” = (“" l)kp,(p' ~+— 1) er (_p, + ) — 1) (t . x)—k—.u

Jetn 1
== T g e

From I, 3, form. 8, and from the definition of pfI_,(#), [II, 1, form. 6],
one deduces
i
Afx) — A

Fa— dx

(%j Alx)lg(t — x)de = At)lglt — a) + /

a
t

fft dm»pf[A( ) 9 1g (¢ — ) do.

12, Cauchy’s principal value of an integral. There is a close relation
between the CAUCHY principal value (abbreviated vp.) of a simple integral
and the finite parts associated with that integral. As we hope to develop
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this point of view on another occasion, it Wwill serve our purpose to consider
here the most simple case.
Let A(z) be a function having the properties described earlier (see 1I, 1).

We have
i

pf‘/,tA(sz dz = Aff) lg ( +]A ) — 2 —A0 4,
) b b
pf‘/‘xA_(f)t dz = A(l)1g (b — {) +'/"“”2 - tA(” dz,
i ‘t—s .b t
e 2 =i | [ 4] |24
@ o tie
b
= [ =t auney =
) b t
= pt [ gy —pt | 22 g
{ [:1

1t is not difficult to prove that vpf enjoys most of the properties of an
ordinary integral. In particular, using 1I, 6, (16), one has

d Az)

d /b' Alz)
dtz— 1

divp mdxmpf/

'w—w_ i Az — A1(t)

Pf[dtt 5 4o+ Al

Integrating by parts, one finds (A(z)€ C* on {a, b))

"d Alz)
”dm—t pf} dtxwtd

t

_ dx Ab)
= Pff Aoy 4T p— v
t

H

" d Alz) .
pf‘/ dt i — x(i’x:pi‘f Ay

dz Ala)
— 4 AL

{ — t—a
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and finally
b

b
d Alg) / de A
a_tvax——tdx_pft Aoy~ 53
: d Ala)
)] a
—Pfwa;:T‘t_a
[ 3

b
. dz Ab) . Ala)
_vP.[A”x—t_b~t+amt'

13. In order to facilitate a study of TRrcoMI's equation and ifs genera-
lization, it is desirable to introduce the finite pari of the usually divergent
integral

[4
§_ ()= f Alw) (t — 2y 1g (¢ — 2) da,

where O << p < 1, k is a positive integer, and A(z) € C* on [a, {].
Let us write

B An(t) g™ [ 1 1
s E—1 = 2 (— 12270 < 1] —_——
Qw; gt l= 2 (=0 =5 |8y — =y

and define the finite part of F_,_(f) as

lg (f — 2
t mx)k-t—p.

t
S ()= Qb —a; k—1, b+ y) +f Bilh, o), do (k= 1).

Should it be only known that 4(x)€ C on |a, t] and A(z) € C* in a neighborhood
U of { then let o’ €U, o/ <t and define

o’ 4
Pt F_py(t) = f +pt).

As for pEI,(f), it follows that §F_,_,(f) is unique for all choices of o'
In cases k is a non-positive integer and A(x) € C on [a, f], §_,_(f) exists
and we define

pt § s l) = Fs_(t).
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Clearly, defining Qy; k — 1, ¢+ 1) =0 for k=0, — 1, — 2, ... (in which
case A(z) € 0),

. . lg (£ —
(23) lim UA:J: gl k+&*dx— Qe; E— 1, k4 p)| = pf F_x_,()

£ 0

for any integer k.

pf §_x—,(f) enjoys the same properties that pf 7,(f) was shown to have,
namely properties 1-7. While most of these properiies follow rather easily,
integration by parts may require clarification and, as the fask is not a
trivial one, it may also be worthwhile to establish the rule for differentiafion.
These are treated below for k= 0.

14. Integration by parts of §_,_.(f). If A(x)€ C*+, k=0, then

¢
. lo (f —
pf _/ A(z) (-—————tg_(f )kf}); dz

t — a)i—k—r 1 lg (t — z)d.
=A(a)‘_1_—02:?: llg(t——a}——— 1+ f]A' ﬁ——)—k%_—”

Proor. - Use (23).

15. Differentiation with respect to ¢ of &, (). If k=0, 1,... and
A(z) € C¥12, then

: d lg(t —a)
(24) f[A k+u L da= Pfj Ale) {t — z)jFte dz,
a
Where, by agreement,
d 1 k + wlg(t—2)
pffA a— wd —pffA [ et dz
iy et —2)
=p f x)/,wﬂ —(k+ ) Pf/A( )(t—w dx

2

As in the case of pf],(#), three different proofs may be given. Only the
proof by direct calculation Will be given below.
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First, as a result of some elementary computations,

(25) dt@(t—a kF—1L g+ ) =—(g+1)Q¢t—a; k ¢+ 2)+

& An(t) (t—a)" ot ,

h=0

A0 —ape-rig t— o)

=—(Q+1)Q¢—a; k q+2)+Pt—a; k g+ 2)
+(— 1)k+1‘4*( )(t—- af—1—tlg (t —a), k> 1.

Formula (24), k > 1, is equivalent to

t
d ) d lg(t—x)
(26) EBQ(t—- a; k—1, k—l—}i)-l-jt[Bk(t, x)(T_ w)k+p.dx

Afx)

as may be seen using for instance (23).

Because
Bult, o) = (~ 1 51— 2+ Bt o),
d Ay
G Bult, o) = (— iyl gy

it is clear that (%)

[ Bult, o) A ) 4y = f Byaalt, )(]tg = 5 —_ P

+ (=1 ’”(f ”f———_“—)—f[l u—a)-—l—i@],
/t 0% [Bapalt, o] gig_(f—;)k%dm

= (— 1 el (tl—"_‘;i__ [1g(t —a)— ——i—u]

@) f (t— o) 1g (¢ ac)dac—-—( m)l 13 [ (t—w)——i—}]—ka
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Consequently,

t
d lg (t — )
(27) &'[Bk(t, z) 0o ;;d“’

t
Auld) 1g (¢ — a) d lg (t — )
k' (t — a)“‘ +L/ Bk‘"{ l(t’ x)m{t — x)if,}_l,‘ x

o

= (— 1)

Finally, using (25) and (27), the left hand member of (26) becomes
—k+yQl—a; b k+p+ 1)+ Pll—a; b k+p+1)

d lg(t — 2}
+ /Bk—}—l dt (—‘“")';';z; dz

t
lo(f —
—(k+u)[Qtt—a;k,k+#+1)+ka+1(t, o gl

+Pt—a; b E+p+1) +/ B"*‘)Z+fll dz

t
4
—— (k + p.) pf g:—-k—gx.—-l(i) + pf[(t _— ;;;c)% (1 dx

a

The above may easily be generalized by appropriately replacing A(z) by
A(t, z) depending on ¢ and =z.
16. Examples. i. Set
Do) = [ e=ogods, Rz >0,

0

It is well known that I'(x} may be continued analytically for Ha <O0; it is
a meromorphic function in the « — plane and has simple poles at o« = —n,

(n=0, 1,..) with the residue (-':&nIL

If « is real and 40, —1,..,, then

[(e¢) = pf [e—“x’l—lda; - fe"“’x““ldx;

0
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if » is a non-positive integer, then

@0 1 o«
iy — =1
pl'/e% d:c.wplf—}—.-——— T
0

0 1

Integrating by parts, one finds {x real and 54=0, — 1, ..)

\ + 51‘ pf / e~Tgridy

o

0

if by definition, we sef

Moreover, we have (x =2 -+ n)

o (— 1)
Pl —a) = ginmwa =~ sinwez

H

n a positive integer or zero; therefore,

' (1 4 n
(28) ) = =D g (e H Fo

Further, I"(1) = — C and

['{m + 1)

d 1 1
{%lgw“‘%‘l)z:m: m:—0+1+é++%,

where m is a positive integer and C the EULER constant.
ii. It is also useful to recall some properties of the Beta function B(r, s)
First, B(r, s) is defined by

1 1
(29 B(r, 8) ::fx"“‘(l — &)y = 2 / 221 — 2% dy
0 0
for », s positive and by
T'ir) I(s)
I'{r 4 s)
for r, s complex and » + 40, — 1, ....

(30) Bir, ) =
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Let us now consider the integral
1
Fla) = [x"’"—‘(l — z*)*dz, r > 0,
0

regarded as a funection of the complex variable a, Ra > 0. Since
1
Fla)=, Br, a4 1), &2 >0, r > 0,
and Br, « + 1) is an analytic function of «, it follows that Bfr, « 4 1)

is the analytie continuation of F{«). Thus, making use of (23) and (12), if
r >0, m a non-negative integer and 0 < p < 1,

B(’I’, ""'/m'“‘gj"'i‘l}

DOt pet

1
pt [ oY1 — g?)~m—idy =

[+

which extends the range of the relations (29) and (30) to some divergent

integrals.
1

To caleunlate plfa;z""l(l — z%)~™dz, m a positive integer and > 0, observe
0

that this expression is equal to the negative of the residue of the analytic
continuation (in «) of

Fle) =[5~ — zpd

0

at « = — m, i. e., the negative of the residue of

i 1T+ 1)
2 B 2+ D =g, 10 1)

at o = — m Wwhich is taken to be zero when # —wm + 1 =0, —1,.... Bai, it
is also equal to the value of

(— 1)"B{r, « 4 1)
20(m)a + 1)

at @ — — mt.
Therefore,

(— 1)»T(r)
2(mil'(r + 1 — m)

(=0ifr+1—m=0, —1,..).

pl [x”‘—l{l — 2" dr =
o
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In particular, if p and wm are positive integers,
(—1e(p+3

20T (p - g‘“ m)‘

pl fa;“”'*"’{l — &' "dr =
o

It is also easy to evaluate, in terms of the gamma function,

1
A =pt / z# Y1 — )~ "dz,

0

r >0, m a positive integer. Indeed, making use of (12)

d = lim

a=—m

1
1 1 29 —1 2 19
0

=110

2 D) g

Mo + 1) T(m)
Tr+a+ 1)

(— 1) 1
Tirfi—m atm

from which upon applying (28}, it follows that

A==V DimT )
2 i)

iii. Let us denote by k& a positive integer, by r a positive number, and
by J; the Brsser function of order k, we have

Jk(z) _ C‘:‘) (— l)h (.z)zh-a-lc.

neo B! T(h + % + 1)\2
Because
’ 2(h+k)+1
pt |- - dp
o (L—p?f72
) (— 1fenlhb + & + 1)
=Bttt '_k+§)=2r(h+f’)r(h+’f)
and

sinz = V%zJ (2),

o~
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il follows that

k+1
1
L —-P')“?
=3 _.._._.w(_'ff__y}i___(f)m”’“k /‘ pi(h+h+1
=S reroe) P T

(T 1}[‘(-—?5-1-%)

_ ® _*_‘,(_—:i).’i__._ r ?h+k. \

o HTT(h +k+1)(2> 5 F(h-l-g)

T B L N
_gniohzf(h+g>l‘(k+é><g)

— 1 Vx
(=1 V= rk—igin 7.

__% (k—{-— ) wzkl‘(zg_;-%)

iv. To compute
%Pk"‘ ng«;. ; (?"p)
Lk,s = pl/ —(—1_:-'“—92)7‘;;{__? dp,

v}

where % is a positive integer such that 0 =<s <k, and r >0, use the expan

sion form of J, 4 (re) and the fact that
2

pl fpz(lo"‘k"'l)(l — Pz)—k—”'sdp

(1T (p+ k4 5)
2
(see above)

2F(k+1~s)l‘(p+s+g)

and obtain
— {fe+sFrpk—s
Le,s =(2k‘—'sl~'i{‘k' REANTL! §=0, 1,.., k.
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17. Maltiple integrals. The above definitions can be extended to some

mualtiple divergent integrals by the usual reduction of multiple integrals to
simple ones.

Before considering to some details this generalisation, we shall consider
several particular cases which will be useful in what follows.

Let z=(ry,.., ¢,) denote a point in p-dimensional euclidian space.
Let k>0 be an integer and, as is customary, dz = dx, ... dz,.

Consider the divergent integral [ 11—z }2)—’“" 2ds. To motivate a mea-

le<1

ning for pfj(l — |z ﬁ'k“%dx, apply to the integral ]{1 — |z ﬂ‘“"‘édx, the
lejs1

e =<1—e
spherical coordinate transformation

Zy, =1 cos f,

Ty == 7 8in 0; cos 6, ,

(31)
Tp—a=1rsinb; ...8inb,_,cosb, ,,
€, =rsinb; ..sin b, _,sin6,_,,
0<§;, ==, i=1,.., p—2 0=96, <2~
for which

. Azy, e, Ty
dr = g
=3, 64y, 0,0

drdb, ... d5,_,

= P~ 8in?~* 0, 8in?~* 0, ... sin 0,_, dr db, ... db,,_,
== 1"~ dr dow,.
This gives

Lomg

f(l — |z ?2)_"—% dz =’l.dwp‘/¢p—-1(1 _ ,rz)«-k— ;'dr

T <<1—s w 0
4

1w g

=uw, [r”‘l(l — r")"k' : dr,

0

A2

where o, = p represents the surface area of the p~dimensional unit sphere.
r(
2

Annali di Matematica 33
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It thus becomes natural to define

1
pt (L= |2 [ de = w, pt [ o=l — o dar
izls 0
w0 (— & 4 )
=%p® i I 2
== 2 2 ’ é -—T———"‘l"—r p even,
I\ (- — k4=
2 2
And because
T

we also have

. R
pt ’(1 —_ Imlz)_k_%dm = (= )=+ ) p even.

1 1
ot Pk +5)0(E—k+y)
In case k is a non-positive integer, take

pfj.(l e[ i = f(1 2P $ds, p even

(@)1 jel<1

Whenever k> 0 is an integer and p is odd, define

1
plj (I =z )y *de=w, plfr”“(l — r¥)~kdr

12| =1 0

oy — 1T (g) (= 1)my

=2I‘(k)1‘(€+ 1 «—k)_l‘(k)l‘@—k—{— 1) '

18. At this point, it is very useful to introduce the following definition.

A function g(z) of one or more independent variables is said to be regular
if it is continuous together with its derivates up to a certain order s. This
order will naturally depend upon the nature of the question. Although it is
often easy to indicate this order, wWe shall usually refrain from doing so in
order to avoid, being mainly concerned Wwith method, the somewhat tedious
precaution it would require.

For the remainder of the chapter, certain agreements as to notation are
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made. Let 2 =(x;,.., z,) denote a point in the p-dimensional euclidian
space E,. We define

r=ry=|s—y|=Ve.— ) + ..+ & —y)
and understand that
glz + ra) = glo, + rog, ..., o, + roy),
where

o, == co8 8,

o, == 8in 6, cos 0,,

Gy ==sin0;..8in6, ,cosb, ,,
ap,==sin b, ...s8in b, ,8inb,_,,
0<6,<n, i=1.,p—2 0<0,,<2n

d“ = Sinp"z 61 Sinp-‘a eg osx Sin 9p__2 del ses de})—i .

Further, @, is used to denote the hypersphere of center 2 and radius r, Q,
its surface area and dQ, its element of area; w, is nsed to denote the p~dimen-
sional unit sphere and dw, its surface element. w, is also used to denote the

. . 2n Pl
area of the unit sphere in E, so that w, ="

o
r(3)
Note that Q, =r?"'w, and that dQ, =r?'do,.
Now let (y = z - ra)

dio; 1) =Gples 1) =g [glw)a,
a

= i/g(:r: + rajdw,
W,
(.}p

be the mean value of the regular function g(y) on Q,, in E,.
It follows that (0 <e < )

t—e

. B ety -
.[g(y)(t- — 1) 2 dy = wpfg(ﬂc; 7) T

rr—t
dr.

gyl 2Bt —e 0
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As a result and in agreement with the definitions given above {cf. 11},
let us define

¢
rP—t

. pf [ . PN S T
{33) pl.{g{y}{t — 1yl 2 dy=uw, pl‘/g{m r}(t _mdr
0

Iyl =<t

depending on the value of p.
In particular,

t

(34) pl | gyl — r2,)'dy = o, pl Jdtw; w2 — vo)-sar
!:x; —ul =<t [+

t

= gl P dr ey
=0, pl | R T T

0

Thus,

¢

3t ,g (y)dy = '”"at /g(:o rrP=dr = w,t?g(z; 1)

|—yl =<t
=—2 pl‘} gyl — )" dy.
i@yl =t
Note also that
4

Io) = | gty — vy = w,,'} glw; Pre=H(E —redy

@yl =t [\

exists for B = — 1 and is a holomorphic function of the complexv ariable .
In accordance with II, 4, it is easy to find a relation between the
analytic continuation of 3«) for fa < — 1 (When it exists) and

=1
pf {g -—~r2 V7 2 dy.
lz—yl<t

This will be left to the reader.

19. Let g(y) be a regular (as defined earlier) function of ¥, g glz; r) the
mean value of g{y) on the hypersphere Qg ., k a positive integer or zero,
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p a real number such that 0 <p < 1. In conformity with the case of one
gsimple integral, the following definitions are obvious.

t
2 ke — - . rp—t
(36) pffg(y){i — ?‘iy) b dy = w, pfjg{x, 1) m dar,
le—yl=<t [
t
37 U gly) (& — 2 )* dy = o, pl | gla; 7) e d
(37) pl | gly)(F* —r;)~*dy = w, pl | glo; mr
le—y1=t o

These definitions are easily generalized by replacing g(y) by a regular
function g(f, y) depending on ¢ and .

It is not difficult to prove that the operators pf and pl just defined
enjoy most of the proporties proved for pf and pl of a simple integral. We
shall restrict ourselves to the consideration of the derivates of (36) and (37)

with respect to ¢ and x,, ..., z,.

20. Differentiation with respect to {. From the definitions (36), (37) and
from the properties of pf and pl of a simple integral, one deduces

t
. 0 : 2 - 9 re—
B8 et ol — iy = w, ot [ gle; 1) e dr
je—yi<t 0
2 9(y)
Y I T
ot VIR Ny
| —yl =t (8 — ray)H
Similarly,
) ) _ e (%)
39 L e B
|~ y|=t & ~y|=t

21. Differentiation with respect to z,. Under the conditions stated above,
we have

0 SN
(40) 30 PLI 90N — 7o) rdy = pt | gly) 5 (' — roy)*rdy,
Sxt . J az}i
-yt lg—y <t
41 9 ’ 2 2k ) 3 . -
(1) oz, Pl] g — rgy)~*dy = pl‘/ 9l 5 (' — v2)~*dy.

1yt le~—yl<t
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Proor. - First we note that with reference fo

glz; r) = 1 f g(@ + re)do, ,
Wy

b4
one has
3 ogle; r)_ O* =
i a o a0
k> 0 an integer.
Consider
H
3 ’ 2K ° - . e
2a, PL] 900 — 2=y = o pt [ gle; 1) e
le—yi<t 0

Because z; is a parvameter, it is clear from the definition of pf of a simple
integral (see II, 1, (3)) that
3 3
T yo—1 3 yp—1
a{:ﬂ; pf} g(ﬁ'}, ?") m dr = pfj a—;;l g{x, ?') ('t?j—: }E}k}!‘ dr.

<] 19

Set z + I == (x, + h, z2, ..., 2,); We have

3 - . noglzthir g7
3‘%9(33, T}—lhlg: A ’

. L Lo
ge+h; = o) / g(2)dR, = gf g(h + y)dQ,.;

&+ h—z]z=p lz—y|=r
consequently,
9 - 1. [ ght+y—90 o
'3‘3’5—19'(3?; 7’)-—9;(]’11__{1: A aQ,
gy
_ 1 3g1y)
. / 79 qe,
|a—y|=r
and

¢

i
2 - re-tdy . 1y 2gly) reidr
ax" pf‘, g(.’L, 7') (’tz -~ ’};‘2)k+i* dr = pf_[g‘,__, dg,. (——tz — rz)k‘{ ; .

0 0 lz~—y! r

According to 1I, 2, (11), consider (0 <& <1)

t{1—e}
o1 gy o gly)  dy
J 9,’ R ey = dys (8 — i e

0 jT-~yl=r lz—y|<<t(1—s)
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Because
3gly) 1 9 9y) 3 2
. s T= | e D | e » e 62 — —k—P-
i (2 — vyl O [(£F — 1) o) ayi( "ay)

_ @ 9ly) K
3. [(t2 _ 'I’::y)k—Hj +aty) 3z, (=t

and on applying the divergence theorem, one finds

wa 2 2 \_k—p.
MY (B — gyl 98) gy (0 T ™0y

]x—y|$i(l-—£) le—y!<t(1—:)

[ %9(y) dy J

—j YN — ray)Fem,dQy,

|e—yi=t1—e)

where (r,, .., ™,) are the direction cosines of the inward normal to Q..

But

9 ., 2 g z; — Y
PR B VR e O IS, SN - A B
ng {{ ?’3«3) \k + P‘) (td _ '}‘;g}k”f’i" V1

so that

.. .
| g — i reay

|e—y|<t(1—z)

2k i
= 5 ot — ya2, - Lo

Combining these results and noting that #*— s, =2 —¢) on |z —y|=

= {1l — ¢}, one obtains

/‘ ogly) . dy
' 2 2 xh
& —yl<t(1—s) Wi (1 — 1)

1)

[ ety Ll
= j o j gy)z; — y)dQ,. (7 = rerin dr
o i

— i—'z(k‘f‘.‘*)s’k"i"(z ___'g)' k—pfg(y)ﬁldgt(l——e) .

|-y =t(11)
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This last term does not contribute to the pf because e*—+ becomes infinite

when & — 0; it remains
t
yp—

ax,p jgm T(t r)k!srdr

rp—1

o .
::pg;mLéf*”jgunmi—-yddar-ﬁ;:;;aaqa:dr
0 a,
2k + p) (=,
= Pf[g(y) ‘ {gz 2 )k—%—u—f—l ( . x )k+p.
Tyt lw“l)l<t

which proves (40).

22, The proof of formula (41) being along the same line, We only sketch
the proof.
Because z; is a parameter, We have again

p—1
a“ Pl ’9(3/)(':2 — rayl Ry = — Pl fg —7“_‘72‘)@ dr
l:c-—z <t

9 - re—t
=pl /é; glz; ) - T—— dr

t
(1 2y ot

/ E R
] B—Yl=r

Now, consider (0 <e < 1)

i{i—e)

_ 17 3gy et
GE”./ 57/ 3Y: dg"'(t’-ﬁ)‘fcd‘”’

o le—yi=r

We have

Y (2 — rgy)

je—y' = (1—e)

@?[ Wy

3 2 2 2 -
=[ 9 5, (1 — ray) *dy —“/Q(?IW — 1yl T AR
W § +

ettt (1mz) j—yte=t(1—e)

1
ap 1 — Tay)~Fdy — m[ gly)m ALy
w—ylssti—s) le—yi=t1—s)

=} 9ly) &
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The second term on the right hand side does not contribute to the pl; for,
it is obvious that that expression does not imply any term in lge. Finally,
we have

s
20t [ote —stgray = pl [ gl > (@ — rtray
e wylt

i. e. formula (41).

IIT. The Cauchy problem for the wave equation.

1. In the following, We consider real quantities =z, .., z,, {, u and
abbreviate

z=(Zy, e,y Ty), p=>1

w(x, 1) = wlz,, ..., T, i,

r=lz—yl, r >0,
*u Pu
Au:i—; + e + P
dz1 oz,

The CavucHY problem is: to find a solution of
(1) Lu = uy — Au =0,
(2) u(z, 0) = fiz), ez, 0) = g(z)

Where flz) and g(z) are regular functions (regular as defined earlier).

Assume that f(z) is identically zero and observe that v = (£ -—-r"}“lz?l is
a solution of (1). By making use of the properties of pf, pl and their evalua-
tions, the solution of the CAUCHY problem (1), (2) with fiz) =0 is obtained
in terms of v and g. This in turn leads to the solution of the general case,
fiz) not necessarily identically zero.

Two cases are considered according as p, the number of space variables,
is even or odd.

2. If p=2k 4 2 is even, the solution to the problem (f=0) is

. ot
{3 u,lz, t)= A, pf]g{y)(tz — )" 2 dy

oyt
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266 TF. J. Bureau: Problems and methods in partiel differential equations

where

1e 1
A __(_ ) 2 [‘(l)"-——").

= gmiiis | 9

That u,(z, f) satisfies (1) is clear since

Lu,= A, pt f gy Lt — r‘-’)"PTl dy
oyt
p—1
and L{f* —»*)" 2 =0.
To verify the initial coudition (2), sety ==z + fa Where o = (x;, ..., a,)
and da = dx, ... da, are given by (32) of chapter 1I; one has

uyz, ) = A,¢ pffg(w + ta)(1 — | |? )"?"zj do.

Joteit

— Ayt pt [ (1~ [«)~"F x4 0fF)

ja<1
= lg(x) + OF%)

because, When p==2k 4+ 2 is even,

ot (1 — )5 dn = pt (1 — o) da
{201 -

lal=a

I s U S S U i B
Crfra e gty ozt i

tegrE-ray) TG

p—2 pit
=0Ty
= et
i

Note that
S8y 1o/ 1 -
3. It p =2k 4- 8 is odd, the solution to the problem (f=0) is

i p—i
(4) uylz, 8} = By pl jg(mtéz — i) = dy
{w—pt

where

1)z 1
=12 o/p—
By = g ( 3 )
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As above, Lu, =0 and

p—1
wyle, )= Byt pl [glo + )1 — | a )5 de

e}t

== ty(s) + O(F")

in view of

pl[(l‘—[“!2)—22:10%‘:}31[(1—-[aiz)“k’ido&

lo|=<1 |21
(— LFtins (— 1) % ne -
- "*—MVW"—Z;"_’AA = E) __:_i‘ 3 ‘Bp
I‘(k+1)1‘(2~—k) r(_2~)r(2)

4. Now assume that f(z)==0 and g{z) = 0 i. e., the initial conditions (2) are
u(z, 0) = flz), ue(z, 0)=0.

It is easy to verify that the solution of the new CAucHY problem is % wz, {)

where u,(z, f), i8 obtained from (3) and (4) by replacing g by f. This result
confirms STOKE'S rule: «the terms of the solution of the CAvcHY problem
depending on the initial configuration are obtained from those depending on
the initial velocity by replacing the function giving the velocity by that giving
the displacement and then differentiating with respect fo time».

Finally, combining the above results, the solution of the original CavcHY
problem (1), (2) is seen to be

iz, t) = u,z, 1) +%u,{x, £).

5. The properties of the finite part and logarithmic part of divergent
integrals enable one to derive with ease the known solutions of the Cavcmy
problem under consideration.

Indeed, by using the mean value glr) of giz) on the hypersphere of center
z and radius », one has

¢
{ B i f - p—1
Pl Jate =7 ay =0, 2] [5i0) "o
0

— r?)@:ﬁf-ﬁ
—y|<t

Two cases arise according as p is even or odd.
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{iy 1f p =2k 4 2 is even,
t
f ,1,.216--‘—1
wlz, 8 = U= Ci pf/ ‘
e
where

1_1WF@+Q)
Yz ME+1)

Consider Uy as a fanction of k. For £ =0, one obtains

Ok =

Iad ¥
T
LW—IVF - glridr
differentiating U,_, with respect to { and writing ¢

CI/;; 1
et

®) 4 — 2k —1)Ups + 2kUs,

which determines U, starting from U,.

(i) T p=2k + 3 is odd.

’ y2R+2 -
u(m, )= Vy =Dy pl./ (tz_ rz)kug("}d?’
0
where
Dk_“_(_,__lk-uv + 1)

=)

= ({® —°) - r* yields

Again, consider Vj as a function of k. For £ =0, one has

riglry dr -
—_—2 1[15-}—7' == = Ig{t).

Repeating the method used for (i) gives the recursion formula

¢ Vk-—-z

(6) b= = — 2k Vi + b+ 1)V,

which determines V, starting from V.
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6. Recursion formulas (5) and (6) may be reduced to one equation by a
transformation of the unknown function. Indeed, setting

(7) Uk == k—I ‘n}k
relation (B) becomes
L dw,_

(8) Wy = kwy_, + 3 a; !
with

Wy = t_on .
By setting
9 2L

in (6), we again obtain (8) with w, = V,. Let us now write /=35 and hence

L d ::fd—; equation (8) becomes

2 di T ds
MWy
(10) wy=kw,_,+ s )
28
which admits the solution
*
(il} Wy = 'é;g—g(s 'n]g}

because if @ = §?~'w,, one has, using LEIBNITZ s rule,

4

(12) Wp:‘dgf,(

80y = s6'? 4 pa®—?

Thus, it follows that

1 pea+1
(13) Wy = K
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must satisfy (8). Indeed,

which upon applying (12), with o ::f..., becomes
°

atzn / + 2k ;;z:~ 1 / ]

Consequently, when p =2k + 3, (9) is applied to (13) With wya) = V() =
= ag(x) yielding the well known solution

. 1 ar—? [tz LI - d
(14) u(lﬁ, t) :(5:————25—!— *a—*t—i’“:}' ( — a2 OLg(OL) .
0

In a like manner it can be shown that

t

- Et 1 2%k

(15) P

=1 e €

]

%aé(oc)doc

is also a solution of (8) when w, = {~'U,. Indeed, rewrite (8) thus

1 t 2
t”.‘k = <k — 2) tu’k—-l + 2 ,—a%(t'n)k_,l)
and note that
k! X t
- i -
hwy, == k)1 N;jk./(ﬁ — 23" rag(n)da
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and that

aah
i f (# — )~ hagfa)da

J2R-1 S -
)5321:15 [(tz — o*)* 2ag(a)de

1

=2k — 1

a2k—-1

t
A2R—2 1
= (2]{2 —— 1) {t aiz&*_ﬁ_j-w "}‘ (27‘; 1) atzg-«zf }

[

¢
t 3 3%t 1) 9%~

0

Finally, when p =2k 4 2, the use of (7)

in (16) with w,=1{"U, gives
again (14).

7. In order to evaluate (13), set

(#? — B = — )t~ a 4 2o)®

E
= 2 C22){f — o)
i==0
so that
1 Yki i a{)k.’_l 2k
Wy = g1 > 210y - *1,/“ — a)2E byt o)
0
1 [ e 2
= gy o 2 Ci af'H-lt Aty [H( )]
1 ‘ ot
(16) =gy > 2 Ox(2k — 4! L )]
i==0
because

de
di‘[

1 »
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From LEmeyNrrz’ s formula, one has

- 3!

(1‘) I't(,’vo( )] . \ﬂ 0} _—;_,,, ti a"' 127u(t) )

ot j=o  (E— ! 1Al
Thus combining (16) and (17)

Wy, == L bitwl”,
4z=0

the coefficients b; being constants.
For a recursion relation among the b,’s, consider the polynomial

Pub) -~- > bt

and write symbolically
Wy = Pk[two],

(7

understanding that the power g is to be replaced by the derivative s, 7 and

W by iw,. Then. upon replacing w, by €, one has

, 1§22k —9)! at .
o ) i t
Pyle)=ou 2 =) ,dt,u [ef. (16)]
and
Wi(t) = e' Py(d) ;

but

d ; ’

Y [etPu(D)] = [Pa(t) + P’ y(B)]et

so that, combining with

t d
wn=Kip1 + 5 = Whoa [ef. (8)]

P,(#) satisfies the recursion formula
=2k + )Py, 4 Py, Py=1.
Therefore
2P, t) =8 + Tt 4
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to which correspond the solutions of (8), namely,

2w, = 2w, + ',

41’02 = 8700 + 767’0'0 + tzw”o-

The corresponding solutions of the wave equation are

1. It wo:.:tg](t), then for

p=3 = tg

A t -,
p=>5 u:t(g +39)

e 3 - 1 ,-,
p=T u::t‘\g +5tg +ﬁtg)
1 1'?

2. It 7170‘—:; Ug =z/v—t2-."—;_.:.—rz£](r)dr, then for
g
p:2 u:Uo
1 ,
p=4 u:‘——:é(UO"*‘tUO}
p=6 "= é (8T + BT, + £U")

8. The method of descent. The solution of the Cavcmy problem for p
even involves apf, for p odd, apl. It is possible to obtain the solution of
the CAvcny problem for p — 1 from the solution for p by using the method
of descent. This method helps to explain the transition from pf to pl.

Assame p is even and that g = g(z) =gz, ..., %p—1) is independent of z,,.
Consider the CAucHY problem

32 32
ey — N == O Aee 21 L Z
tt ; = + o 39:;’

u(z, 0) =0, (@, 0) = gx) = g(x;, e, T,y

Annali di Matematicn
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which has for its solution

Pz 2 P o
e, )=(—1)2 ——F—pt [ gyt — " 2 dy,

2n 2 {wmmg) it

Where 7 = |z — y | == (2, — y.)* + ... + (2, — y,)" Note that

t
pt [ = w, pf j?] ) rP=1dp o — Ol

R » = P T o

jo—y=nt § ( — ﬁ)pz : T(p/2)

and remember that g does not depend on z,. Setting p* =1’ — (z, —¥,)*,
there exists a relation between g,(r) and g, ,(p). For, if dQ, , is used to
denote the surface element of the sphere in p-dimensional space With radius
r and center af z,

d
dQ,,, = dQ, 1, ——,

r cos & = Vr? — p?
so that

- re?”*
r?7lde, = —————duw,_,dp,

VTZ . 92

where dw, is the surface element for the unit sphere in p-dimensional space
with center at z, i. e., dw, =dQ, ;. Further,

pr?

Z.g?p-—1<9)d9-

wpgep(r) =20, 1 -
r TN
JVrr—op
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Therefore, the solution of the CAUCHY problem under consideration is

t r
2 frd/’- p—2 —
wiz, = (—1)z - pf t =3 sz = Jp—1(p)dp.
o (B—1rT

Now, with the above in mind, consider the function

2 ' pP*
I p— — rxd - d
OF f “”f\/r —Gp-sMle
go that
ue, ) = (— 1) 2ptr(—P2 1
Y Set(=t).

Assume $H2 > 0. Then, using DIRICHLET s formula for changing the order of
integration

t
(BE—r)erdr

t
I(w) zf PP Gpale)dp.
’ e

In the last integral on the right, set
2 — 1= (# — p*).
This gives

¢ 1

i
f-—...— Q(tz — pz)“‘%[xa(l —x)" édx

0
L, L 1
=5 — )+2B<a+1 2)

I‘(%}I‘(a-j— 1)

\ 3 (tz - Pz)“+%

and in turn

Ty = V= F(cc-{—l}f _p

T rferg)

i
o) 2g, i(e)dp
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Since p was assumed even, p — 1 is odd Suppose p — 1= 3 so that p= 4.

Note that for @ = — ;m}, o+ 1= _P ; 3 is not a negative integer while
o g =P _2_ 4 is. Because I'(z) has a simple pole at — E—_C;-l with the residue
p—4
(— 1)z
p—2
")
one has
Tet+ %7 (13:_2> r (_ p;::%)(“ I Bt )
r {a; + é} 2 2 2
4 2

On the other hand, consider

t
: .
’(iz — ") P =ig, _u(e)dp

[

and note that for o= — 2 ; 1, a—{——;:————;—? is a negative integer; the-
refore, the analytic continuation of the integral has a simple pole at
o4 1= b : 2 with the residue
1t p 2 1 »
b )
—pl [ —F o, gy-s(e)lp = — ——pl | goay,
. 5 2y - p-1 -
o (8 —p7) oy 't

where v=(* —°)~?~?* and the pl on the right is performed in p—1
dimensional space. Thus, its analytic continumation is equal fo

(s 425 [y w o)+ 0[x +257)

D

le—yl<t

Summing up, one has

722 Vn p—+ (p—2 —3\ 1 ’
u(z, )= —(— 1) ;t'\z/-;(—l)z I‘(p2 )I‘(——p . )wp_lpljgvdy.

le—yl=t



. J. Bureau: Problems and methods in partial differential cquations 277

Because

p— 1 p—1\ , 21
F(’”‘“’>r<"‘ )—-—(—- 1yPf g

it follows that
+ -
(— 1)?"2" 2I‘ (p~___2)

2
L

e —yl=st

wx, t) = —

which is formula (4) with p replaced by p— 1. The same method can be
applied to pass from apl to apf, i. e., to pass from the solution for an odd
number of space variables to the solution for an even number of space
variables.

The resunlt just obtained shows why «la méthode de descente se montre
done, en fin de compte, beaucoup moins artificielle qu’elle ne le semblait an
premier abord et apparait comme liée & la nature des choses »,

1V. The Cauchy problem for the damped wave equation.

1. The method used to solve the CAUCHY problem for the wave equation
may also be applied to find the solution of the CAUcHY problem for the
damped wave equation. In its simplest form, the problem is to determine
u(z, ) satisfying

(H Lu= L, w=u, — Au — u =0,
(2) u(z, O) = Oa ut(”} 0) = g(z)

where g(x) is a regular function (regular as defined earlier).
First of all, it is necessary to find an elementary solution v(z, ) of (1),
i. e, a solution having a singularity along the characteristic cone £ —r’ =0

[compare with the corresponding solution v of the wave equation). To do
this, write

r=VE—1, (@E>r
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and assume that the required solution w(z, #) of (1) depends only on vy. Let
viz, 1) =o(y); because (*)

_ 1 7
Te W?’ Yn—_—?—?;
7 1
Yr::”—%y Yrr:_?"!‘;éy
i S T A
”t:?va Y:c=?§” +<Y—‘?a)”,
’ rz ” 1 1'2 ;
ETT Tt —(ﬁ"?)”’
A'U-:'Urr‘l"p;—‘} Yy s
vttnAU:—?}"—i'p”)‘:
it is clear that ®(y) must be a solution of
: o - P _
3 @,,(v)=vw+:{vr—-v ~ Q.

1
To find the solution of (3), set v =?1v’, where # is an unknown func-

tion of v; one has

v = 110” L ' v = L w" 2 W'+ 2 W'
v Ty '8 v
1 p—2 p—2 1
&, W) = -~ w" + W' — Ww—=w
®) Y y? 'S Y

1d
= {, EiT( &y —a(w0).

Consequently, if w is a solation of (3) for a particular value p, of p. i. e. if

1
&pf10) =0, then v::{w' is a solution of &, ,,(v)=0. As a resulf, to deter-

(1) Since v =w(y), a funetion of v alone, we use v/, v, .. instead of vy, vyy, .. and
similarly for sv.
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mine the solutions of (8), we have only fo consider two cases, namely p =0
or 1.

1. p=2k 42 is even. It is well known that the equation &4v)=v"—v=0
has two independent solutions, namely chy and shy. Therefore, as a conse-
quence of the above, a pair of independent solutions of (3) is

(1 ayn (1 d>k+1 :
- on - 8 .
\'dy) LR O Y

Because the required solution v(y) must be singular for y = 0, we have

1 d\k+
==t 21
v(z, 1) =y ¢ dy
RSO
T\ydy) v T oldyd v

From the known formulas,
chy = cos (iy),

cg_s_f V ot
zdz 2 f2 k+!

where k is a positive integer or zero and Ji(#) the BESSEL function of order £,
it follows that

oz, )_(__1)k‘/_—k+;ﬂ_.

ket
v

ECTC

For p = 2, we note that

1
vz, ¥ ——_.-i; chy.
2. p =2k + 3 is odd. The equation
1
él(u):.:uw+%—u\,—u=0
has two independent solutions, namely
uy = Io(y) = Joliy),
Uy == Jy(éy) 1g v + holomorphic fanction of y? (%).

(%) This expression of u, is easily obtained by setting w—=Jy(iy)lgy 4w and ¥2=T
n the equation &,(u)=0.
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For convenience, set ' =1y®. Because %, is singular for y =0, the required
solution of (3) is

d ki1
’U(w, t) = 2ki1 {(-{?2—}] Us

k-] 1 -
(4 = 2k C%ll—,k—Jr]Jg(i\/l‘) lg T 4 holomorphic function of T\
It will be convenient to write this solution in another way.
Note that if ¢ and b arve regular functions of I'=—=+v? one has from
LEeIBNITZ 8 formula
déab X _xdia d¥-ib

W

are =2, 0 gri g
and because

dflg'I‘ d{:‘I‘l (——lj 1]_1>|I1j

AT
Aoy ( )j J,@y)
(dyy 2i) 7

solution (4) becomes

et
vz, §) =2 dci‘k+1 [7:éVT) Ig '} 4+ holomorphic function of T
e/
2 J,(0y)
= 24 0 1R 3 e

(— 8+ Tiga (i)
53 YR

s

_.l_.

Ig v* 4+ holomorphic function of v2

2. As a summary and for convenience, the elementary solutions (=, ?)
which will be used to solve the CAUCHY problem (1), (2) are given once again.

a. When p=1,
vz, ) = Joiy) gy 4+ el
where ,(y*) is a holomorphic function of y*

b. When p == 2,
vz, 1) =y echy.
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¢. When p=2k 4- 2,

- .
v(@, §)=(— 1) Vg’ . e 4l s
d., When p = 2k -+ 3;

oz, H)=uy) gy + oY) + @:v*),

where
o GYERL
,(Y) == ( ;) Y‘k—le-pl(i'Y)
— gk 3 L
heo B I DA+ & 4 2). 2%
) Ji{ey)
— 9% 1 ¢ s ;
vo(Y) =25k + 1)1 (— 1) ,_ 57, Gk + 1—9 2(Zc+13—.i’

es(Y?) is a holomorphic function of y°
For future reference, note that

(5) Ly, = O’
2 dv, 1
®) L(vs 4+ 0)) = — 2(}, W+ Z.’.._Y-é-.@l).
Indeed, set w = v, + ¢,; then
v=2ulgy +w,
— avl +201 + 2w
P S
/UY‘{_' a.Yz +Y aY 2 + aYz 3
Lo =2Lw,-1gy + Lw -+ - 4 ov, 32»(—1—7--2——-—1) v, = 0.

Y 3 Y

Taking into account the singularities of v, and w at y =0, one finds

L’UI::::O,
4dv, , 2(p—1)
Lw v, =0,
+Ydf + Yz 1
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3. The solution of the CAucHY problem (1), (2) is

a. When p=1,
. 2+t
w(w; )= | g HEVE—To — y Fldy.
&t
b. When p =2,
hVE — |z —u
Wz §) = f o) S Vz_:,.___li_ﬂzl dy.
le—yl<t - | r—Y ‘
¢. When p=2k 4 2,
M @rpPule; = pt [gyie —y; Hdy.
[2—y|=<t
d. When p =2k 4+ 3,
p—1
)] (2m) 2 u(z; b

= f gz — y; Hdy — pl f 9 yw.z —y; tHdy.

le—y|<t |yt

In cases o and b, the synthesis of the solution is easy and left to the

reader.
Cases ¢ and d are considered below,

4. p=2k + 2 is even. That u(z; f) given by (7) satisfies equation (1)
is clear since differentiation under the integral sign is permitted and
Ly vz—y; =0

To verify the initial conditions, set y == + fx, Where o = (0, .., 0p);
one has

2r)Pltuiz ; 1) = t* pt f gl -+ tayv(te ; t)de.

lol=1

‘When { — 0, the most important term of v({a; f) is
2kVn
r(—k+ -2)

—r—1
i ¢ ‘ % [?) k :
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consequently,
P(“"’k +§) ol (1 — | %) 2
1
M G .
- R p( 12) tg(a) + O(F)
1‘(-—-19—|— é) I‘(-z-—-k+2)

== (2m)?/%ig(z) + O(?).

5. p=2k 43 is odd. Let A and B be respectively the first and the
second terms of the right hand side of (8); the solution of the CavucHY
problem (1) (2) is

1

) @n) ® ulw; )= A — B.

We have to verify that u(z; ) given by (9) is a solution of L, s =0
First, consider the term B. Differentiation under the integral sign gives

Ly, B = pl[60)Le, e —y; iy

le—yl=t

Z2dv, p—1
——2 1]<‘-—‘ *——0) (y)d
P\ gy Ty &) o9y

lo—y| =t
where (6) is used.

Because regular terms contribute zero to the pl, it follows that

d
L, B = —2p — Lm(0) pl f 99 tT‘_;?L,,'.'z

& -yi=<t
where

1

WO= g e

Now, by using g(f) the mean value of g(z) on the hypersphere of center z
and radius {, one finds

dy 1 dy
pl f e —Q-tplf 99—

je—yl=i [o—y|=t

— E’)Jg —2, —_ lf
=—5 gl = —5 9(y)dQ,

lo—yl=t
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and therefore

—_»r—-1 1 f
Lw, tB — 21;*2[1(;‘; + 2) t— g(y)dgt .

@yl =t

Now, consider

(10 4= f gz — y; Hdy
fz—ylst

and take into account that v,(x — y; #) is a regular function of y° == — 1%

Differentiation with respect to £ gives

2 -yt
1y a,=[ g2 i D gy

-y <t

+ f gywule —y; DA
|eyl=t

. (e —ys b, / e n
= f 9Y) ———= W P gyl —y; 0, —,

|yt le—yl=<t

az e ; 1 9 1! ol . d
A, __._.[ o) M_%?Wy,_) dy__gplfg(y) ve—y; b)) dy

2t t—r
{@yt le—y|<t
: ay
+ pl fg(y)%(x —¥y; b =
[—y]=t

To determine A4,,, set z 4 h = (z: -+ h, @2, ..., z,) and Write

A, = lim A 1) — A@)
h=0 h’

where

Alx 4+ h) == f g2y {x 4+ h — z; t)dz.

|e-+h—zi<t

Observe that 2=y 4 h is a one to one transformation of |z + h — 2| =< on
Ae)

39 =1; consequently,

z—1y| =t
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Ao+ 1) =[ 9w + Wiz — 9 iy

le—yi<t
so that
. 1
A= lim 70W + B — gz — g5 Hay
= le—yl<i
29(y)
= f ag?Z o —y; Ddy.
le—yi<t
Because
°g olgu) __ 9v.__2(gvy) 3
8y1v = ay:, ay].— ay]_ +ga$1
and in view of the divergence theorem, one finds
v . o
Am=fg(y)5—-’dv ——fgay)vl(w —y; H%2ae,
Zy oz,
1Z—yl<t e—yl=t
——fg )«dy+p1/gJ)v1(w——y ooy W
P B b—
|e—yl=t lz—yl<i
%y [ 3_1)_1 ?_'rwy dy
M—fg(y) e 4y + 201 9@ 5 00
le—yl=t le—yi<t
rk () or dy
oyt —y; 0 e wf Y
+pl | gyl —y; 9 3 (8x1>(t—r)2
le—y|<z {e—yl<t

Noting that

2
5 (al>=1, pr=P—1
i=1 \0%; r

o av1 or p a_vl ﬂ 9,
dz; or oz’ i—1 d%; 3z or’
We obtain
AA—/g Avldy-[—Zplfg AL dy
ar t—
|e—y|=t le—yl =<t

+@— 09 fo) %+ ;2 + 0l oo, ;P

l@—y) St lz—yl=<t
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Finally, combining the above results

L,y A= . [ gL, 0.0y

lx—ylst

—vf P

[y =t

" 1 1 - 1
= [owLamay + [ [2(30+32)+25 2o swiac,

|-~y =<t l—yl=t

—1 —1
=2 7 f v,g(ydQ, = pﬁ— 2,(0) f 9y)dy = L., B

jp—yl=t je—yl=t

v, __1lavy

= — = - = —_—) =
because L, w, =0 in |z —y| <! and 5 + ar = t—7r)=0 on

lz—y|=1
Therefore, L, w4 = 0.

6. Let us now verify the initial conditions. First, note that When { tends
to zero, A and A, [ef. 10, 11] tend also to 7ero (set as usual y = 2 | fa), 8o
that it remains to consider the term B.

From the definition of pl ] , it is clear that the terms of v, giving a
logarithmic part different from zero are

)= P (= DF S 2 s
oo 1o PEHFIIA+ DI+ 1—7)

To compute the double sam (call it S), set I 4 j=s; s varying from 0
to k and j from O to s; one has

s=4 k4 1 3 (— 1y
T2 W [P D jl(s — i+ 1 —4)

From the formula

1 =0
22— 1) (2 —8) jmofl8—IE—5)
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one deduces (set 2 =F% - 1),

(— 1y —_ (—1y
E+1k..k+1—8 —ofls—NIE+1—)
_ (= 1P¥E —s)!

T k41!

and consequently

_ k(=1 —s)!
8 _sfo (b 4 1) 1 285 | y2kt1—s)?

g0 that
(-~ 1)s+E2E—25F . o) |

8 | Yz(k-i-l-—&')

k

§=

Therefore

B=(— 1)2*k | tg(z) pl f (1 — | & )~k da -+ O
loj<1
P2
= — 12%) 2 ig(z) + O(F)

from which it follows easily that u(z, 0) =0, u,(z, 0) = g(x).

V. The Cauchy Problem for the equation

of Euler-Poisson-Darboux.

1. The original form of the TrRIcOMI equation is
(1 Y U0 + 4y, =0,

Wwhere z, y are two independent variables and ¢ >0, an odd integer. When
Y >0, equation (1) is of elliptic type; when y <0, it is of hyperbolic type.
Therefore, when the variable y crosses the line y =0 (called the parabolic
line of the equation), equation (1) changes its type.

More generally, consider

@ Ly = y—%u,, 4+ Au.
'u o'u
An =3 + .+ aTa; ,

Where ¢ > 0 is an odd integer.
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In order to simplify equation (2), a change of the independent variable
is made. Two cases arise according as y >0 or y <0. Set

2 2k
t=1—Kly~* =71_%"
Because
ko dly]
My poemerd l y Il—ku't . dy 3
k
ly [”q“yy zzut = Uy
and
alyl__
dy - 1) ?f > 07
= 1; y< 07
one finds

k
L“x“n'l‘iut'{‘A“, y >0,
k
S"“u*g“t*l‘m% y < 0.

Note that éSk < 1.

2. Consider the so called EuLER-PoIssoN-DARBOUX equation (abbrevia-
ted E-P-D equation)

Lt == wyy ?u,—Au:O,

where k is any real number - oo <k <oco.
The CAUCHY problem dealt with below reads:

to find a solution u(z; f) of

satisfying

where f(z) is a regular function.
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‘When k=—=0, equation (1) reduces to the wave equation for which the
CAUCHY problem has been solved.

When k=0, the coefficient ki~ varies and becomes infinite on the
hyperplane {=—=0. Consequently, the existence and uniqueness theorems for
the regular CavcHY problem (i. e. for partial differential equation whose
coefficients are regular for {=20) cannot be applied to the current problem
3), (4. In fact, (3), 4) is a singular CATCHY problem.

3. To indicate the dependence of u on the parameter &, write u®) instead

of w. The solutions of equation Lxu®) = 0 exhibit the following recursion
formulas

(5) u x5 1) = tuk+ex; 1),

(6) uFz; §) = P—Fue—F)z ; §).

These formulas were used by various authors, among them EvuLkr and Dar-
BOUX; however their usefulness in the theory of the EULER-PoIssoN-DARBOUX
equation was fully recognized and emphasized by A. WEINSTEIN. Their ap-
plication can be extended to more general equations.

i. To prove (b), set w,={v Where w, as a function of {, € C°. By
elementary computations, one has

1 92 /*w kow
m(?ﬁfﬂ'ﬁ)
1122 E2 k-2
?[th(t”)+tat(t”)_"” R
and
12
t_i')t Lk%):Lk+Zv‘

du®
If w=u® then v = u*+2 and = fu(k+2),

ii. To prove (B), set

A=1t"* <Utt + 2 :k”t>
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and note that

a% () = By, 4 (1 — K)i—*n,

82
é? {tl——k’o) — tl—k?)“ + 2(1 — k‘)t-—k@t . k{l o k)t—k"l'v;

we have

82

A= 3 (#*v) ;c v, 4+ k(1 — k) t—*w

ko

._.._ai ~~F 7 (fi—k
=6 (070 + p 5 )

and therefore

Li(tr—*v) = %L, _xv.

It v = w5, then u* = fr—kyle—Fk),

4. In order to solve the CAvUcHY problem (3), (4), it is necessary to
determine a solution of (3) which corresponds to the elementary solufion of
the wave equation. To do this, observe that

k-j-p 1.
N W = (gt T r=lo—gy|

is a solution of (3). For, any solution of (3) depending on ¢ and r only is
a solution of

k —1
(8) Lk“Eutt%‘Zuz'—%-r—% . =0;

and, conversely, any solution of (8) is also a solution of (3). Thus,

_kitpta
o=~ +p—DUE—1)7 5
(k) 2/ 42 2 L kY 2 2 B r
V' =(k+p—LE-+p+1DEE—1r) 2 —E+p—1E—r)" "2,
E4p-+i

W= +p—Dr—1)" 2,

E+p-+1

_ktp+r — _
U =k +p—DE+p+ V=) 2 T EEp—DE =T s

and consequently, Liv*) = 0.
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From (6), it follows that

—p—1

9 u®) = frleg(e—k) = f—k(f2 — %) T

is again a solution of (3).
Now, consider [as usual r =1r,, =|z —y|]

Ketp
(10) UNa; t) = p—* [ fy @& —rz) — dy;
le—y =t

if Rk is large enough, Uz, #) is clearly a solution of (3); for, under these
circumstances, differentiation under the integral sign is permitted.
To verify the initial conditions, set as usual y = # 1 f«; one has

—1

Uz t}:j‘f(ac—}-toc)(lm{oc!z)kﬂf do

lo] =<1

k—p—1
=f<m>[<1 ey da 0

jo =1

= Axf(z) 4+ Ot)
Where
Tc?pI‘<—~———k — g +1 )
Ap = FF1
P55
since

TR
W%P(km§+1>
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To verify 8% Udz; 0) =0, set

o k—
W = ;-t- Bk — r?) = =k (f — r?) =

on differentiating under fthe integral sign, one obtains

= [k — 1 — pt];

U™ ow
=10y a
io—y)|=t
In view of
of(z)

f@ + ta) = flo )—HZ a; + O(%),

o

' E—p—1 .
/wdy:t—1/(1—|oc]2) 2 (& —1)|af — plda
—y! <t ol =1

1
—1

k—p
=f%@hwv4wﬁ—ﬂﬂ-43_?“ﬁﬂﬂm

E—p—1 k—p—1
L R

=0 (by elementary compufations);

J— t——l

k- p-—1 X
aft— 1) o f—pl —|a[) 2 du=0
al=1
ou®

(because of symmetry), we have = =0{) a d = U Efp; 0) =

Therefore, if &% is large enough, the solution of the CAucHY problem (8), (4) is

1y W@ = A6 [ FE — ) E dy
le—yi =t
b k—p+1
(12 M=“P(kj1 5
o(*5)

5. If k in (11) be permitted to range over the complex domain, the
function u®z; ) regarded as function of the complex variable k is an
analytic function of k for &k sufficiently large and hence may be analytically
continued. Consider the analytic continuation of u*(z; ¥).
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Because I'(#) has simple poles at 2 = —n, =0, 1,...), it is clear that
Ar is zero When k= — 2¢ — 1, ¢ > 0 an integer, and becomes infinite When
1

5 (k—g — 1) is a negative integer.
Therefore three cases arise according as k= —2¢ — 1, ¢ =0 an integer,
and as % (8 —p—1) is or is not a negative infeger.

i. k=—2¢—1, ¢ =0 an infeger. We shall consider later on these
exceptional values of k.

il. 5 (k—p — 1) is not a negative integer. Consider
k—p—1
(13) Wz )= A= p* pt / F)E —r2) 5 dy.
[y =t

On differentiating under the pf f sign and in view of preceding results, it is
obvious that w)z; #) given by (13) is a solution of the CAUCHY problem (3), (4).

iil. % k—p—1=—m, m=0, 1,..) is a negative integer. Clearly,

E < p -+ 1 Consider

k—p—1
(14 u®e; §) = B e pl [ fE —r)  dy
je—yl=t
where
— (— 1) norz
(15) qu—rp—-kﬁ-l F(k+1 .
e Aty
[Note that (see II, § 17)
pl f 1 —|a Prrde = (= Dt
lal 51 I'h) I‘(g —h+ 1)

h =0 an integer].

On differentiating under the pl/ sign, one finds that u™(z; ¢) given by
(14) satisfies (3). As above, u®(z; f) satisfies (4); the formal proof is left to
the reader.

Again, nofe that By =0 for the exceptional values of & (see i),
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6. Remarks. i. On differentiating under the integral sign, it is easy to
verify that

w3 £ =

p(E+1
. 1 2 k+ 2n——p—-—1
:2—’!14-1(:4 [ E— 1_k( ) ff(y tz Tmy)
kE+1
r g +”) lo—yl =<t
where n =0, an integer, is such that &+ 2n > p — 1. That formula was

obtained by A. WEINSTEIN as a consequence of the recursion formulas (5), (6).

#) Consider u®(z; {) as a funection of p; call it u}k). The solution (13)
satisfies the recursion formula

(k)

dul
4 ——p—— + pu(k) = PUpy2

which determines u ) starting from ul® and ui®.

7. The exceptional values k= —2¢—1, ¢=0 an integer. For these
exceptional values of k, the solution of equation (3) Was considered by
A. WEINSTEIN (loc. cit.) Who emphasized the role of polyharmonic initial
values. For arbitrary initial values, the solution of (3), (4) Was first conside-
red by E. K. BLoMm.

In the following, we shall consider the same problem from another
viewpoint and use a ‘method suitable for further gereralization. When
k=—2¢—1, ¢g=0, an integer, u*(z; ) given by (13) or (14) becomes infi-
nite and is not a solution of the CAUCHY problem (3), (4).

To examine this situation, We use the recursion formulas

(5) ut(k) — tu(k+2),

(6) u(k) —_— tl_ku(z'—k),
From (6), it follows

(16) u(—ZQ—l) f— t2q+2u(2q+3).
Now set s =#*; then (D) yields

L

9
K) e O 7tk
atu =2 - u®,

(17) u(k+2) J—

|
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Set k =2q - 1; repeated applications of formula (17) give

Ly (1)
ue+s — 9 _a_u,(zq—i—n — 9q+1 9+tu®
os gge+t
and combining with (16),
g1, (1)
(18) w28 — 2¢-+1g9-+1 L Ld
dsa+t

Suppose that u‘~?¢-" given by (18) is a solution of the CAUCHY problem
Q+1u(1)

S remains finite

(3), (4) for an arbitrary initial function f(z); then s?+*

aq+lum

and not identically zero as s — O (or £ — 0). Therefore at s = 0, ey must
bave a singularity of type s~¢7%, i. e. at s =0, #™ must have a singularity
29+
o5+
we have u=2¢V(z; 0)=0.

A solufion of that sort is given below when p is odd.

‘When p is even, an analogous method or the method of descent (see III)
may be used; the formal proof is left to the reader.

of type logs; for, if is finite and not identically zero when s=0,

k+4p—1 L
8. Because (*—rz,)” ¢ and £ % (f#—¢h) 2 are solutions of
Lyuw =0, it is clear that

k ot
Uz ; t) = pt f flyX# —r®~ "2 dy,

|g—y| =t
L
U = 0= pf [l — )+ dy
|yl <t

are solutions of Lxu = 0. For, differentiation under the pf / sign is permitted.
Set k=1 --2¢, ¢ >0 and small; then

e )= U+ = pt [ fig(e — 5 ay,

le—y=t
U ; b) = UO+H(g, {) = t=* pt f Fly)E — 1?5y
l—-y| =t

are solutions of L, ,u —=0.
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.1 . , .
Again, 5 (uy — u;) is a solution of L,,,u =0; on setting

F(E) _— ts(tz _ 7,2)—5’
one finds

»1_, (u1 —Yy) = pfff(y)t'—e {F&ZEF'(—_‘S)} (t2 _ rz)——gdy

2e
lw—y| =<t

Now let ¢ tend to O under the pff sign; one gets

P
umu;t%=IﬁfﬂyMQt—Jg@“—er“—rﬂ'%w-
le—yl <t
It is hoped that this limiting expression, a formal solution of Ly =0, is
also an actual solution of L,u =0 having at { =0 the singularity described
above. That such is the case is proven below.

9. To prove that u®(z; t) satisfies L,u =0, it is necessary, since ditfe-
rentiation under the pf/ sign is permissible, only to show. that

=[lgf—lg@®—F*—r)" 2

is a solution of L,u =0,
Set

v=a—D>b
Further, note that
1 %u lgl,_l,
tot pdp’
ou
Du = uy, — Au = 2+faoy
13u _du p+13u
Lo =Du+ 3 37 =32 0 3’

Lb = — 2pp~#2,

To compute L,a, set ¢ =p~?, a=clgt and note that Lie=0; we find

2 ¢ .
Lla:(Llc)'lgt'}‘—p %‘2——2}7?—?— = Ib
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L;’U = Ll(a -_ b) = O-
10. To verify the initial conditions, set as usual y ==z + fa; one has

P
u® = 1gt pt [ f(@ + ta)1 — | & [y 7da

EIE:

—~ pt [ flo+ ta1 — [«[)Flg(d — | @ [)de.

la]=1
The second term on the right hand side is equal to

Af(=) + O0%)

where 4 is a consfant.
Further,

pf f f(@ 4 ta)l —| o) 2da = f(2) f (1 —|a| " de 4 0)

121=1 a1

(=D
N v
r(f)

Combining these results and setting s = ¢, We obtain

fl@)+ 0 = (— 17 3 0,f@) + 0

u®@; 1) = As) Ig s + B(s),

Where A(s) and B(s) are regular functions of s, 4(0)==0.
Finally, we have

w0z 5 1) = cA(s) + o(s)

where ¢ is a constant, not zero and lim o(s)=0.
t=o

Annali di Matematica 38



298 F. J. BURgAU: Problems and methods in partial differential cquations

BIBLIOGRAPHY

[1] B. p’ApaiMAR:

a) Sur une classe d’'égnations aux ddrivées pariielles du second ordre, du type hyperbo-
lique, & 3 ouw 4 variables indépendantes, «J. Math. Purcs Appl.», 8. 5, vol. 10, 1904,
pp. 181207,

b) Sur Uintégration des équations aux dérivées partielles du second ordre du type hyper-
bolique, 1bid., s. 6, vol. 2, 1906. pp. 857-379.

¢} Sur une dguation aux dérivées partielles du fype hyperboligue, « Rend. Circ. Matem.
Palermo », t. XX, 1905, pp 142-159.

d) Sur les dérivées des intégrales définies, « Annales de la Bociété scientifique de Bru-
xelles », t. XXIX, 1905, pp. 1-4.

e) Les équutions aux dérivées partielles & caraciéristiques rdelles, «Coll. Scientia »,
Paris, Gauthier-Villars, 1907,

2] B. K. BLom:

a) 4 uniqueness theorem of the Euler- Poisson-Darboux eguation, « Bull. Amer. Math.
Soc. », vol. 59, 1953, p. 345.

b} The Euler-Poisson-Darboux equalion in the excepfional cases, « Proe. Amer. Math,
Soc. », vol. 5, 1954, pp. 511-520.

¢} The solutions of the Euler-Poisson-Durboux equation for negative values of the para-
meter, « Duke Math. J.», vol. 21, 1954, pp. 257-270.

[3] F. J. Bursau:

a) Sur Uintégration de I dguation des ondes, «Bulletin Académie royale de Belgique.
Classe des Sciencess, s. 5, vol. 31, 1945, pp. 610-624, 651-658.

b} Sur I intégration des dguations linénires aux dérivies partielles simplement hyperbo,
ligues, par la méthode des singularités, 1oid., vol. 34, 1948, pp. 480-499,

¢) Sur Uintégration des équations lindaires auwx dérivées partielles du second ordre ef
du type hyperboligue normal, « Mémoires Société royale des Sciences », Liége; s. 4, vol. 3,
1938, pp, 1.67.

d) Divergent integrals and partial differential equations, « Comm. on pure and applied
Mathem. », t. VITI, 1935, pp. 148202, « Chinese translation in Advancement in Math.», t. 3,
1957, pp. 271.324.

o) Sur la représentation asympiotique de la fonction spectrale des opéraieurs elliptiques
du second ordre, « Comptes Rendus Acad. Sci. Paris», vol. 249, 1959, pp. 1071.1073.

f) Problems and wmethods in partial differential equations. Part I: The origin and
evolution of the theory, Duke University, AFOSR-TN-56-441; mimeographed.

[4] R. M. Davis:
a) The regular Cauchy problem for the Euler-Poisson-Darboux equation, « Bull. Amer.

Math, Soc. », vol. 60, 1954, p. 338,
b On a regular Cauchy problem for the Euler-Poisson-Darboux equation, « Annali di

Matematica », s. 4, t. XLII, 1956, pp. 205-226.

[5] T. B. Diaz, and WeNpErRGER, H. F.:
a) 4 solution of the singular initial value problem for the Euler-Poisson-Darboux

equation, « Proc. Amer. Math Soc.», vol. 4, 1953, pp. 703-718).



P. J. Bureau; Problems and methods in partiel differential equations 299

[6] J. HaDpAMARD :

a) Recherches sur les solutions fondamentales ef Uintégration des dguations limdaires
aux dérivées partielles, « Ann., Sci. Ecole Normale Sup.», s. 3, vol. 21, 1904; pp. 535.556;
vol. 22, 1005, pp. 101-141, 333.380.

b) Théorie des équations lindaires hyperboligues el le probiéme de Cauchy, « Acta Math. »,
vol. 81, 1908, pp. 333-380.

¢) Lectures on Cauchy’s problem in linear partial differential egquations, Yale Uni-
versity Press, New-York, 1923 ; Dover Publications, 1952.

d) Le probléme de Cauchy et les équations aux dérivées partielles lindaires hyperboliques,
Hermann, Paris, 1932,

{71 M. Brmsz:
a) I’ intégrale de Riemann-Liouville et le probléme de Cauchy, Conférences de la réu-
nion internationale des mathématiciens & DParis en juillet 1987, Paris, 1939, pp. 153-170.
b} I’ intégrale de Riemann-Liowville et le probléme de Cauchy, < Acta Math. », vol. 81,
1949, pp. 1.228.

[8] F. TricomI:
a) Sulle equazioni lineari alle derivate parziali di secondo ordine di tipo misto, « Atti
Accad. Naz, Lincei Rend.», s. 5, vol. 14, 1923, pp. 1-117.

19] A. WEINSTEIN :

a) Sur le probléme de Cauchy pour Véguation de Poisson et U'équation des ondes, « Com.
ptes Rendus Acad. Sci. Paris », vol. 234, 1952, pp. 2584-2585.

b) On the Cauchy problem for the Buler-Poisson-Darboux equation, « Bull. Amer. Math.
Boc.», vol. 59, 1953, p 4564.

¢} On the wave equation and the equation of Buler-Poisson, Proceedings of the Fifth
Symposium on Applied Mathematics, Mc¢ Graw-Hill, 1954

d) The singular solutions and the Cauchy problem for generalized Tricomi egquations,
« Comm. on pure and applicd Math. », vol. 7, 1954, pp. 105-116.

e) The generalized radiation problem and the Euler-Poisson-Darboux equation, « Summa
Brasiliensis Mathematicae », vol. 8, 1953, pp. 125-148.




