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Summary. - A new kind of ,, prediction problem ~ is defined and studied, first for cer/,ain 
special distributions and then generally. The general r~sul~s are connected with conju- 
gate trigonometric series. 

§ 1. - I n t r o d u c t i o n .  

l. Let ~ be a non-negative finite measure defined on the field of BOREL 
2 subsets of the half-open interval [0, 2~:). We form the HILBER~: space L~ of 

complex functions f = f(w) measurable for d~ and such that 

I] f II~ = / I  f I ~ '~  < ~ (~). 

The inner product of f and g is by definition 

(f, = f 

The trigonometric polynomials always form ~ dense linear subset of L~; pro. 
diction theory is the theory of approximation b~ trigonometric polynomials 
in the metric of that space. 

We use d a -  da(~) to denote the measure dx/27: on [0, 2r:). Then ~ has 
a decomposition d ~ { x ) -  w(w)d¢~(x)+ d~ts(~) where w(w) is a non-negative sum- 
mable function on the interval and ~8 is singular with respect to L:EBES(~V]~ 
measure. 

Let J~, ~ ,  and ~ be the closed linear manifolds in L~ obtained, respec- 
tively, by closing the sets of trigonometric polynomials of the form 

(1.1) F ( d  ~) = ale i~ q- aze ~i'~ if- a~e ~i~ Jr- ..., 

(1.2) P(d  ~) " - -  b~e -i~ q- b~e -2~ q- b3e - ~  q- ..., 

(1.3) P~(d~ - -  Co ~- c~e - ~  -~ c~e -~i~ + .... 

(*) The authors acknowledge the support of the ALFRED P. SLOAN Foundation and the 
National  Science Foundation,  respectively.  

(t) The integrals  in this paper  are all extended from 0 to 27:, unless stated otherwise. 
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We shall use F, P, and P~ consistently to denote tr igonometric polynomials 
given by (1.1), (1.21, and (1.3t respectively. The funct ion identically equal to 
1 will be called I. 

The first prediction problem, associated with KOLMOGOROFF, SZEGii, and 
~VIE:NER is to find the distance from I to ill:. The solution is given by the 
following theorem of SZE(3(i [6, 14] I:): 

where  the inf imum is taken over all tr igonometric polynomials /7' having the 

form (1.1). In other words, the distance from I to ~ is exp 2 , logw d~ , 

whose square is the geometric mean of w. If the r igh t -hand expression in 

is zero, that is i[ [ l o g w d ~ = - - ~ ,  then I ties in f ;  and indeed ff It.41 

coincides with the whole space L~. It is curious that the distance from I to 
doos not depend at all on ~ .  

The secoJ;d predictio~ problem is to determine the distance from I to the 
smallest manifold containing :~ and ~ .  KOLMOGOROF~ has shown [5, p. 831 that 

l tl.5) inf I I + F-{- P 1 -~ d~ = w-~d~ 

where  /7' and /3 range over tr igonometric polynomials (i.1) and (1.2), respecti- 
vely. Hence the square of this distance is the harmonic  mean of w, again 
independent  of ~t~. (If the right side of tl.5) is zero, I belongs to the closure 
of the manifold.) 

These theorems show ~hat if w is not too (~small >>, i .e.  if the r igh t -hand 
means are positive~ the exponentials  e ";x possess a certain kind of indepen- 
dence in ].,,~. The purpose of this paper is to study a stronger notion of 
independence than the two jus t  considered. 

2. Two manifolds in a I-IILBERT space are said to be at positive angle if 

- -  sup I (f, g) l < 1, 

where f and g range over the elements of the manifolds, respectively, wi |h  
norm at most 1. 

The third prediction problem is to evaluate ~ for the manifolds ~ and 11~ 
in L~. In  this case 

(.2) This theorem was or ig ina l ly  p roved  by Sznt~5 for the case where  ~ is absolutely  
continuous,  and subsequen t ly  was  ex tended  by KOLMOGOROF~ '. 
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where  F and P~ range over the tr igonometric polynomials (1.1) and (1.3). 
respectively, subject to the restr ict ion 

Equiwdent ly,  ~ is given by the expression 

(1.S) 2 - -  = inf f [  F + G 12 dt , 

where  now F and P~ have norm exactly 1. 
It is trivial that ~ G 1 .  If for a measure ~ we have ~ < 1 ,  then (as one 

can show in an e lementary  way) (1.4} and (1.5) are positive, so that this con- 
dition of independence for the exponentials in L~ is stronger than the con- 
ditions of independence of the first two prediction problems. 

3 In § 2 and § 3 we deal with the following three special eases: 

(a) [w(x)] -~ is a positive tr igonometric polynomial, 

(b) w(x) is a positive tr igonometric polynomial, 

(c) w(x) is the ratio of two positive tr igonometric polynomials. 

The interest  of these cases lies in the fact that in all three instances 
the determinat ion of ~ can be reduced to an algebraic problem, whereas  in 
general  it seems to be very difficult  to evaluate ~. 

There  is, however, a simple necessary and sufficient condition that 
,a < 1, in other words that ~ and ~ be at positive angle;  this criterion is 
developed in § 4. 

4~. A problem in tr igonometric series which has been studied previously 
is the following: For which measures ~ does there exist a constant K such 

that, for every real tr igonometric polynomial f with conjugate f we have 

(t.9) f f2d  G K2 f f2d  ? 

It is shown in § b that the answer is affirmative for ~ if and only if : ~ a n d  
~ are at positive angle in L~. Therefore  the preceding results of the paper 
give a satisfactory solution to this question. We are indebted to Professor 
A. ZYGMV~D for references  to other work connected with 11.9); this work is 
discussed at the end of § 5. 
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In § 6 we consider the angle between ~ and I~ (rather than ~ )  in L~. 

If f v-ldz < ~ ,  there is nothing new in the problem; without this assumption, 
a general  criterion for ~ and ~ to be at positive angle exists, but the solu- 
tion is tess satisfactory than in the case of J~ and 1~1. 

In  § 7 we examine in detail  a class of weight functions quite different  
from those of § 2 and § 3, including the functions 

= I x  i ( - - r z g ~  < % a >  - -  1). 

It is known that (1.9)holds for d ~ t = w : d z  if and only if - - 1 < a < 1 ;  we 
are able to determine the values of a such that ~ and ~ arc at positive angle 

in L~,+. Certain more complicated functions are discussed also. 

§ 2. D i s t r i b u t i o n s  (a) a n d  (b). 

1. In dealing with the special cases (a) and tb) defined in the Introduciion,  
we shall make use of the following remark  of HELbI~GEt~-ToEPM~Z [9]: Let 
(a~.) be a finite matr ix;  ×, ), = 0 ,  1 .... , n. We denote by ~ the maximum of 

¢t 

(2.1) I Z ~ a~.x~y~l 

where  x~. y~. are complex numbers and Z I x ~ r = x - ' l  E y z l s = l .  Then ~ is the 
max imum of the Hermit ian  form E Zc~)u×u~; u, ~-----0, 1,,.., n; E lu~12--~ l, 
where  

] - -0  

The proof is immediate.  Indeed wri t ing ~ - -  

of I Z ~x~.l ~ as the y~. are fixed and the x~ change, will be 

x=O ),=O 

We shall deal first with Problem (a), then .wi th  Problem (b). 

a~yx, the max imum 

n 

2. Problem (a). - According to a theorem of L. FEz~rt-F. RIESz [6, p. 20] 
the positive tr igonometric polynomial [w{x)] -1 can be wri t ten as follows: 

(2.3) [,v(x)] -1 = k h ( z ) 1 2 =  I h*(z) z = 
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where  

(2.4) a(z~ = ho fi  (z - -  ~ ) ,  ho > O, 0 < / ~ l < 1. 

The  rat ional  polynomial  h(z) sat isfying all the condit ions implied by (2.3) and  
(2.4), is uniquely  de te rmined ;  h*{z) represents ,  as always, the reciprocal  poly- 

q 

nomial  of h(z), h * ( z ) =  zq]~(z-1)- -ho II (1-/¢~z).  (Thus in the present  case 

D(z) - -[h*(z )]  -~ is the analyt ic  funct ion associated with the weight  funct ion 
w@) in the same way as in the general  case of § 4.) For the sake of sim. 
plici ty we assume that  the zeros o f  the p o l y n o m i a l  h(z) are  a l l  d is t inc t .  

We denote by I ~,,(z)1, m ~--0, 1, 2, ..., the or thonormal  polynomials  asso- 
ciated wi th  the weight  funct ion  w(x) on the uni t  circle z - - e  i~ [6, chapter  
2, p. 37]: 

7? 1/ 
(2.5) 2-~ ~(~)~-~)~v(z)d~ = ~ .  

In  the present  case we have, as easily shown [loc. cit. p. 43], %,,(z)= z" -qh( z ) ,  
m > q .  We note also that  [loc. t i t .  p. 41, (1)] 

q-1 __ h*(a)h*(z) - -  h(a)h(z) 
(2.6) ~ ~,~(a)%~(z)--  _ 

m=o I -- az 

5Tow 
77 

I (2.7) p ---- sup 

- - 7 ?  

whore F(z) and Pl(z) are rat ional  polynomials  in z, the first vanishing at 
z-----0; the following condit ions are to be satisfied:  

1j (2.8) 2~ IF(z) ]2w(x)dx - - - ~  [ PI(z)]~w(x)dx - -  1, z - "  e ;~ . 

- -7 ' f  - - ~  

We wri te  F ( z ) - - z f ( z ) ,  Pl(z)--~g(z) where  f(z) and g(z) are polynomials  and 

1/ 1/ 
2--~ If(z) t~w(x)dx = - ~  t 9(z) [~w(vc)dx = 1, z = e ~ . 

~ - - 7 :  
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The expansions  of f(z) and g(z) in terms of the orthogonal  polynomials  sug. 
gest the following decomposi t ions :  

(~..lo) f(z) --~ re(z) --[- h(z)f~(z), g(z) --go(z) -{- h(z)g~(z) 

where  

q--1 q - - i  

(2.111 fo(z)--~ Z x~.?~(z), go(Z)-" Z y),~,(z), 
X~O ),~0 

and f~(z), g~(z) are arbi t rary  polynomials .  Indeed,  f(z) being given, fo(Zl is 
identical  wi th  the uniquely  de te rmined  in terpola t ion polynomial  of degree 
q - - 1  coinciding wi th  f(z) at the points  a,; v--~ 1, 2,. . . ,  q; s imilarly go(z). We 
have~ z ---~ e ix, 

rf 

--~ Izl=l 

1 F zqdz q-: 
- -  21:i fo(Z}go(Z) h(z)h*(z} ×, ~o  

Izi=J 

a,~xzy~ 

where  

(2.13) 

A_ls% z --  eix~ 

1 f zqdz 
a'~" -" -~i~i ~(~):?~(~') h(z)h*(z)" 

T: 

1~ / fo(~) - - .  h(z)f~tz)w(x)dx --" 1 f f~(z) dz 2~-~ fo(z)zq-:, h*(z) - - 0  

since fo(zlzq-: is a polynomial  in z. F rom this we conclude that  

1/ 12 1/ 1 - - ~  Ire(z) w ( x ) d x + ~  I h(z)f:(z) w(x)dx 

1 /  i2 q-: ]2. > ~ f fo(z) ~v(x)dx = ~. t x,  

A similar  remark  holds for the components  of g(z). Hence the quant i ty  p 
will be the m a x i m u m  of the modulus  of (2.12) provided that  Z Ix~l~ =-Z ty~I 2 -  1. 
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3. W e  f o r m  

w h e r e  

q-~ q=~ [q-1 [= 

~, t=o  m=o i 

q-~ 1 f zqdz  
amiui  "-" i =0 ~-~ ] ~m(Z)U(~) h ( ~ ( ~ )  

i--:[ 

- ~= ~=(~)u(~ , )h ' (~*(~ , ) '  

q--1 
u(~) = y, ufpi(z), 

i=o 

so that ,  u s i n g  (2.6), (=) 

=, ~=o ,, ~=~ h'(a,)h~i-ai  " h ' (~)h*(~=)  " y~ %,(a,)W=.(%) 

M o r e o v e r  

h e n c e ,  z - -  d x, 

"2, h*(o~)h*(a~) 
,, ~=~ h (a,)h (a,) h ( % ) h  (%)  1 - -  :¢,% 

',, I~=~ h'(:¢~) h'(%} 1 - -  : ¢ ~  

u ( z ) -  q" u(~) h(z) 
-~=~ h~(-~:) ~ _ ~, 

q l = i / j . , . ) l  
==o ~, ~=1 h ' (~)  h'(%) 

--TT 

q u(a.,) u[al~ ) I 

in v i e w  of 

1 f 1 1 d x  

- -7?  

i ( 1 dz 1 
27:i z - -  a,~ l __ % z  1 - 

[z[----i ~ OIv OII'~ 

(a) I n  th is  a n d  o t h e r  s i m i l a r  f o r m u l a s  the  ba r  of con juga i ion  appl ies  to al l  fac tors  
in  bo th  n u m e r a t o r s  and  d e n o m i n a t o r s .  
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Writ ing u(~c~)~.A, we see that p2 is the maximum of h'(~,,) 

Z _ A~A~ 

under  the condition 

q 

1--" Y~ 

i .e .  [cf. for instance 6, p. 32], p-~ is the largest root of the determinantal equation 

(2.14) P~l - -  O, 
1 --  ~ %  j~ 

or, wri t ing p2:= 1 -  y, y is the smaUest root of the determinantal equation 

y q 

{2.t4't - - -  - -  ~ O ,  

I 1 - 1 

This reasoning needs only a slight modification if F(z) runs  over the 
polynomials containing all powers ~ a ,  and P~(z) over the polynomials con- 
taining all powers ~ b where  a and b are given non-negat ive integers. The 
equation determining 7 -  1 -  p~ is in this case~ instead of (2.14'): 

- 7 ]q 
(2.15) 1 - -  (av~,) q÷a ~--1 - -  i - ~  ~ - ~  1 = O. 

In  the case above a : 1, b ~-- 0. For  a = b = 0 we have 7 .~- 0, p = 1, see 
(1.8), in all other cases p < 1. 

4. Problem (b). With  the previous meaning of h(z) and h*(z) we have in 
the present  case: w(x) - -  Ih(z)2 ~ ]h*(z)I ~, z ~- e~; D(z)--~" h*(z). Writ ing again 
F(z)--~ zf(z), F~(z)~ g(z), the funct ional  in question will be now 

(2.i6~ 1 f h(z)h*(z) dz 
~ f(z)g(z) zq 

:zl=l 
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and ~ is the supremum of the modulus of (2.16) nnder the condition 

"ff T¢ 

(2.17) 2-~: I'f(z)h*(z) I~dx = 2~  I g(z)h*(z)  I~dx = 1, z --- e '~. 
- - T ;  - - ~  

In the present  case we shall not use orthogonal polynomials;  it is con- 
venient  to set 

(2.1s) f(z)h* (z) = fo(z) -}- zqf~{z), g(z)h*(z) - -  go(Z) + zqg~(z) 

where fo(z), go(z) are of degree q - - 1  and fl(z), g~(z) are arbitrary. Hence  (2.16) 
becomes 

(2.19) 1 (ro(o)~o(~) hto)h*t,)d~ = 1 ( h(~) ~z 
2~:i. (h*(z)) ~ z ~ -  ~ i  f°(z)g°(z)h*(z) ~ "  

izt =~ lzt=l 

Also 

i; i f  ~-4 folz)~f~(~)ax = ~ fo(~)z~-~f~(z)az = o. 
- - n  [zl=~ 

Thus, z "-- e i' ', 

(2.21) 
IT 7~ 

l _~  2~:  ---- 2~:  

- - I T  --T¢ 

Consequent ly the problem is reduced to the evaluation of the maximum of 
the modulus  of (2.19) under  the condition (2.21). 

5. Wri t ing  

fo(z ) - -  q l ~z~, go(z)--- ~1 y ~  

we have 

I q-' 1 l fz.,_ q h(z) (2.22) p - - m a x  ~.,~=oY~ 6+xx~y~ , t,n = - 2 ~  h-.(-)idz, 

under  the condition E Ix, I s - -  E l Y),I s--- 1. All tm are zero except  possibly 
those with m ~ q - -  1. 
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We in t roduce  now the expans ion  

(2.231 
h(z} 

h* ( z ) -  ho + h~z -~- h2z ~ + ... 

so that  tm- -ha- l - re .  H e n c e  

q--1 __ q--1 I q--1 1Z 

q-1 I q - l - - m  ~, 
= ~ t ~=~ 

c×) --- ~hq_l_,,_~hq_~_,,_~, 0 ~ m ~ min (q -- 1 - - x ,  q - -  1 - -  )~), 

(2.25) d×x--eq_l_×,q_l_)~ = Zh~_mh)_,~, O ~ m ~  min (x, ~). 

Consequent ly ,  ~2 is the largest root of the determinantal equation 

(..26t [ d , ) ,  - -  ~ ) , ] q o  - *  - -  0 .  

l t e m a r k s :  (I) The  same resu l t  can be concluded  f rom the re la t ion  (4.9) 
to be proved, in view of the fact  tha t  in the p resen t  case 

Hence  

e - ~  - -  D - S v  - -  ( h * ( z ) ) - ~ l h ( z ) l  ~ - -  h ( z )  e , ~ .  
• z ~ h * ( z ) '  z = 

[ h(z) zqA(z) ll A6  H% = i~ f  h*(~-----)- 

or ~ - - i n f  !] B(z)!1~ where  B 6 H ~ and the expans ion  of B(z) begins  wi th  the 
te rms  ho + h~z -~ ... -~ hq_~z q-~. This  is a w e l l - k n o w n  e x t r e m e m  problem [cf. 
6, pp. 158-159] the ~olut ion of w h i c h  is exac t ly  tha t  g iven above. 

(2) As in sect ion 3 we may  assume tha t  F(z) ranges  over the po lynomia ls  
con ta in ing  only powers  ~ a ,  Pl(z) over the po lynomia ls  con ta in ing  only  powers  

b where  a, b are n o n - n e g a t i v e  integers .  The  modif ied  resul t  is then  

(2.27) 

where  

[d'~ - -  p2~]qo-~ - -  0 

(2.28) d'~.x : Z h~-,,-~h~-,~-~, v = a + b - -  1 ; 0 _< m < rain (x --  v, )~ - -  v). 
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(If v - - - - l ,  we mus t  have  r e < q - - l ) .  I n  the case a--b-- - - -0 ,  v - - - - l ,  we 
have  p - -  1, see (l.8). I f  v ~ q, we have  ~ "---- 0. For  v --  q - -  1, we have  d'~ - -  0 
except  for  d~_l.q_~ - -  i ho I ~ so that  ~ --  I ho ]. Fo r  v - -  q -- 2, ~ can be computed  
expl ic i t ly  f rom a quadra t i c  equat ion .  

§ 3. - D i s t r i b u t i o n  (c). 

1. In  this sect ion we deal  wi th  Prob lem (c), i.e. wi th  the case w(x)--- 
---w1(~v)/w2(x) where  w~(x) and w~(~) are posi t ive t r igonometr ic  polynomials  of 
the precise  degree  p and  q, respect ively.  W e  use d i f fe ren t  methods  according  
as p<=q or p > q. The  resu l t s  general ize  those of § 2. 

W e  wr i te  

(3.1) wl(x) - -  l a(z)12, w2(x) = .I b(z) I z ---~- e i~ , 

where  a(z) and b(z) are ra t iona l  po lynomia ls  of the precise degree p and q, 
respect ively ,  whose  zeros are all  in 0 < I zi < 1, and in both  po lynomia ls  the 
coeff ic ient  of the h ighes t  power  of z is posit ive.  For  the sake of s impl ic i ty  
we as sume  aga in  tha t  the zeros of the polynomial b(z), say ~i, ..., ~q, are all 
distinct. Fina l ly  we assume tha t  a(zl and b(z) have no zeros in common.  

2. The  case p ~ q. W e  have  then  

(3.2) 1 

, =.upt ; 1 Iz!--=1 

where  f(z) and g(z) are po lynomia ls  sa t i s fy ing  the condi t ions  

(3.3) 

7~ 

12 
27: f ] f(z) a*(z)l~dx~biz) l 

7~ 

f a,(z)~ 2 - -  1, z - ' -  d ~. 

In  this  case as a genera l iza t ion  of (2.10) we set 

(3.4) f(z)a* (z) : fo(z) + b(z)fl(z), g(z)a* (z)--go(z) + b(z)g~(z) 

where  fo(z), go(Z) are of degree q -  1, and fi(z), gl(z) are arbi t rary .  Thus  

1 J a{z)zq-P dz 1 (3.5 t ~ - -  sup ~ fo(z)go(z) b(z)a*(zib*(z) " 
Izi-----1 
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so  t h a t  

(.'-1.7) l >_l_ ] I fo(z} l~ 1 J ~({~) I "~ = 27:  ~(z) dx, 1 _~ ~ .dx, z = d~. 

In order to compute (3.5) under  the condition (3.7), we write again fo{z) 
and go{z) in the form (2.11) where the system i p,,(z)} is associated with 
n,~(~)-----Ib(z) r, z - - e  ~. We proceed as in § 2, sections 2 and 3: 

a~. --  2~i %(z)~(z) b(z)a.tz)b,(z} dz 

q-~ 1 [ a{z)zq-P _ 
~=o 

a q -P  

qF1 
v,.; u,u) .  = 

.~,,~=~ b'(~.,)a* t~.~)b * (~.~) " b'~ ~ i~)a* (~,db* (~,~1 
b*(~)b*(~,~i 

q u(~)c~(~)~,~  - ~  ut~at~,~X -~ 1 

q a(~)~ -p a{~,~)~ -p A~AI~ .--. ~, 

where  we write again 

b'(~d ~,i~=1 1 - -  ~ %  
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Hence, ~2 is the largest root of the determinantal equation 

(3.s) l[ ~3~(~&)~-~ ~5- ~T,~- ~' ]~ 1 =o, 

This reduces to (2.14) when p - - 0 .  

a(~) 
a*(~)" 

3. The case p > q. We set p --q-----~ > 0. We denote again the (distinct) 
zeros of b(z) by ~ ,  ~2, ..., ~q, the orthonormal polynomials associated with 
t b(z) I ~, z - -  e% by i %,,(z)}. 

We intend to evaluate 

1 , a ( ~ ) a * ( z ) z - :  
(3.9) 0---:-sup!~-~ / d z ,  f(~)g(~) ~ 1 

1 1 j I f{z) a~z~) t2 dx "-" ~ ,f l g(z) a * (z) dx 
- -  f f  - - 7 ~  

= 1, z - -  d ~, 

f(z), g(z) polynomials. For every polynomial f(z) we have the decomposition 

(3.10) f(z)a* (z) - -  fo(z) --1- z~b(z)f,(z) 

where fo(z), f,(z) are polynomials, the first of degree p - - 1 .  Indeed, fo(z)is the 
unique L_~ORANGn-HER~,T]~ interpolation polyngmial coinciding with the 
left-hand expression at the zeros of z~btz); for z - - 0  the usual convention, 
involving the derivatives up to the order ¢~ m 1, applies. A similar decompo- 
sition holds for g(z). Now 

( r°('i°°r,(°) = f o,-,ro(o) • f l ( z ) d z  = 0 

so that we may write:  

(3.11) i f a(z)z-~ ! 
~- max l~- ~ fo(z)go{Z) b(zJa*(z)b*(z)dz , 

(3.12) 
7"( 

1 rolo) L ' 2 
z:b(z) 

- -  TT - -  l l  

d x  - "  1 ,  ~ - -  e i x .  
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W e  set as before 

1 f a(z)z -~ 
(3.13) a,x --  -~i ~,(z) ¢?x(z) b(z)a*(z)b*(z) 

Izl =~ 
dz; ~ , ) , - -0 ,  1 , . . . , p - - I ,  

p--1 p--I 

u(z) - -  E uj?i(z), E l ui l ~ - -  1, 
i=o i--o 

so that 

PE'j=o amiuJ = ,,,~1 f a(z)z -~ ~'dz)u("~) b(z)a* (z)b* (z) 
Izl=l 

dz 

(3.14) . . o , u ( ~ . ) /  a(z)z-~ ~ _ 

a -o- 1 u a(~)~- :  d ~ . (~)  (~) , ~ 

where  t is posit ive and t < rain I ~ I .  

4. To the polynomial  u(z) of degree p - -  1 we apply the LAGRANGE-HER- 
~I[TE interpolat ion formula in the convenient  form result ing from the fact 
that for 0 < l z  I < l ,  z=#~.~, 0 < t < m i n  ( t ~ l ,  Izl) ,  

(3.15) 

+ y ,  
~)~b (~,~) 

1 f u(~)d~ 
+ '~ i  j (~2- ~)Pb(~i" 

i~l=t 

indeed, the le f t -hand integrand is regular  for I ~ I ~  1 and vanishes as ~-~ for 
- -  ~ since the numerator  is of degree p - -  1 and the denominator  of degree 

1 + ~ + q - - p - } -  1. Thus 

(3.16) u ( z ) _  ~ u(~) 1 
z%(z)-- E ~, z 1 I - , %  

l~I=t 

In the now familiar way  we conclude that ~2 is the largest eigenvalue of a 
certain Hermi t ian  form P - 9~Q where  P and Q ar6 obtained jus t  as before, 
with the aid of the expressions (3.14) and {3.16). As a convenient  choice of 
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the variables in the Hermi t i an  forms we set 

(3.17) u(~) _ A~, v _ 1, 2, ..., q, 
t ~ b (~) 

ul~) _ Bo~_ . + B ~ _ : +  ~ + ... + B .__~_  ~ + ... = B t 0  + . . .  

where  the terms not wr i t ten  oui contain non-nega t ive  powers of ~. The  varia- 
bles Bo, B~,..., B~_I are certain l inear  combinat ions  of the derivatives of 
u(~), ~=0 ,  up to the order ~ - - 1 .  (We may also use the al ternate notagion 
Aq+~+l ~ B~, ~ -- 0, 1, ..., ~ - -  1.) t t ence  

(3.18) 

1 f a(~} a~ 

(3.19} 

I~l=t 

Itt<l~!.  

5. Now, as in the above cases, 

, ~  ~ (~ (~ )  ~ ( ~(~! 
P - -  ,,,=o y' ~,~=~2 ~A~A~;¢m(~)%'(~t~)\a*(z)b*(z)P=~\a*(z)b*(z)]z=~ ~ 

( ~(0_& , f , a(;) -+- 2~ PY) ~ A~c~M~)\a,(z)b,(z)]~=~ ~ • 2-~i %~(~) (~)a*~)b-*(~) d ;  
~ 0  ~ 1  t~[=t 

- 1 ~ ~. . ('~1) a(~2) 

lql t 

?I 

1 [ u(~) 2 q A,.~ 
1 =  Q - - ~  ~ )  a~c-- Y, + 

q 

~ ~o v~ + B~-~,; -~ + ... + B~_~) + 

+ I B o ! ~ + l B l ! Z + . . . + l B ~ - l l  z 

Annali di Matematiea 16 
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where  z =  d x. Indeed, v, ~ - - 1 ,  2,. . . ,  q; x, k - - 0 ,  1,..., n - - 1 ,  

7~ 

L ] a~ 
2~: (~ - ~3~)(i-- ~) 

I I dz _ 1 
2r:i {z - -  t~)11 - -  J]Fz) 1 - -  ~-~ ' 

Vi=~ 

7? 1/  dx 1/~ dz 1 

1 /~ -°+~d~ ~_~_~ 

.g 

' f  d,t ' f  ,,~ , 
- ~ .  Izl=i 

i i , / / ::-°+~; -°+: - -  

6. In order to simplify P we note that ~la(z)=z~b(z), ~ ( z ) = b * ( z )  so that 
(el. (~.6)) 

p-~ . . . . .  b*(i~)S*(~p 
z ~.,(~j%.(~p = 

-=o 1 - -  ~ l ~  

p - ~  - -  b*(~,jb*(~) 

~ v t ~ O  

Hence  

p - ~  b * ( ~ ) b  * {~2i - (~Wb(~,)bI~) 
- = o  i - -  ~ 2  

P - .  E 
~.~=~ 1 - - ~  a*(~) a*(~1~) 

q .~ a(~3F) 1 ( . . . .  a(~) dE 
+ 2 ~  :~ 

, , / f  ....... a,:., a,~2, d~.~:. 
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since ~B(~} is regular  at ~ -  0. Thus ~2 is the largest root of the determi. 
nan la l  equation 

(3.20} [ P I ' -  - o. 

Here the q-by -q  matrix (P~,--p*Q~) is exactly the same as the matr ix  cor- 
responding to (3.8), p -  q. Fur the r  we wri te  

aK) 
(3.21) a*(~) - -  ao + a ~  --b a ~  2 + ... 

so that the z -by-q  matr ix  ( P = -  ~ Q ~ ) - - ( P ~ 2 -  ~2Q~2), contains the elements 

(3.22) - "a -~-1-~. - ... _ - y~ op~ + a~g -~-~ + + a~_~_~) ~ ; - ' - ~ ,  

where  ~" has the same meaning as in (3.8). Reversing the order of the rows, 
see (2.25), we have the elements 

(3.23) - a ~ a ~ -~  ~'~( o~t~ + ~ + ... + a~} - -  ~ ~ ..., ~t~ ,  x - ' 0 ,  1,..., ~ - - 1 ;  ~ - - 1 ,  2, q. 

Finally,  the ~-by-~ matr ix  (P22~ ~2Q~2) has the elements c~z--9~$~.~ 
where  

(3.24) 

c~-~-~,~-~-x "- y, a~_,,,az_,, , 0 < m  ~-min  (x,).); 

% ),-"0, 1,..., ~ - - 1 .  

This is in agreement  with the result  (2.25), (2.26) of Problem 
seen by wri t ing q - :  0, p --  ¢~. 

(b) as can be 

§ 4. C r i t e r i o n  for  p o s i t i v e  a n g l e  b e t w e e n  ~ a n d  01. 

1. Theorem 1. - The mani fo lds  ~ and  D~ are at positive angle in  Lt~ 
i f  and  only i f  ~ is absolutely continuous (so that d ~ - - w d ~ )  and  

(4.1) w = e ~"; 

where u is a bounded real function,  and  v is the conjugate of a real funct ion 
v which is bounded and satisfies the condition ]i v ]]~ < u/2.  
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In order  to proceed direct ly to the main difficulty,  we shall assume first 
that  ~ is absolutely cont inuous.  Afterwards we show that  ~ and ~ are at 
zero angle if ~. has any s ingular  part. For  that  we shall need a fact stated 
as L e m m a  2, whose proof is however  convenient ly  postponed unti l  § 5. 

I t  is enough to consider  summable  funct ions  w for which l ogw is sum- 

mable ;  for if f log w d ~ - - - - ~ ,  the answer to the first  predict ion problem 

shows that  j~ and ~1 both coincide wi th  L~2~, and so are at zero angle. We 
form the FOURIER series 

oO 

log w(x) c,z v d,,e nix 
- - 0 0  

and define the analyt ic  funct ions  

D(z) ~- exp (do/2 -[- d~z -4- d2z ~ + ...), 

(4.2) Hlz) --[D(z)] ~. 

Both funct ions  are analyt ic  for [z I < l. Obviously D is of class H ~, H is of 
class H ~, and their  radial  l imits satisfy 

(4.3) ] D(d~) ]2 __ [ H(d~) l __ w{x) 

Moreover D and H are outer funct ions  [3, 10]: 

almost everywhere.  

(4.4) f log I D(d~)l d~(~c) = log D(0), 

with  a s imilar  equat ion  for H. La ter  we shall make use of the fact that (4.3) 
and [4.4) characterize D and H. 

We require  this fundamenta l  fact about  outer  funct ions [3]: the linear 
set of  p~nctions Pliei/i)D{d~), where 1)1 ranges over all trigonometric polynomials  
(1.3), is dense in  l l  2. More specifically, the set of  all such funct ions  for 

which 

f l P1D <= 1 

is dense in  the un i t  sphere of H ~. 

2. We are consider ing the quant i ty  ~ given by (1.6) and (1.7~. If we 
define ~ by w ~-D2e-i~, then (1.6) takes the form 
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As we have asserted above, the set of P~D appearing in (4.5) is dense in the 
unit  sphere of H "~. Let H~ be the subspace of H 2 consisting of those func- 
tions with mean value zero. Then similarly the functions /7D in (4.5) range 
over a dense subset  of the unit sphere of/--/~. Now it is wel l -known [t5, p. 275] 
that the set of products fg where f and g belong to the unit sphere of /-/~ 
exact ly covers the unit  sphere of H ~. Therefore the products  FP~D 2 of (4.5) 
range over a dense subset  of the unit sphere of H~0 (the subspaee of H ~ con- 
sisting of the functions with mean value zero). In place of the quadrat ic  func- 
tional (4.5) we now have the l inear expression 

(4.6) ¢ = s u p  fFe-' d ! 
where  F ranges over the functions with FOUmER series (1 .1)such that 
f l F l d ~ < l  ; and the supremum is the same if F is restricted to be a trigo- 
nometric polynomial.  

H~ is a closed subspace of L, the BASrAC~ space of complex functions 
summable  on the unit  circle. Evidently (4.6) expresses p as the norm of the 
linear funct ional  in H~0 defined on F by 

f Fe-~d~" 

Of course this integral gives a l inear functional in all of L which has norm 
l, but  its norm restr icted to H~ may be smaller. Indeed, if A is any bounded 
funct ion such that 

(4.7) f FAd~ = 0 (all F in H{), 

then clearly ~ =< It e-~'~ - -  A IL~. Tile HAHN-BANAClt extension theorem implies 
that the norm of the functional  in Hie is precisely the infimmn of such numbers.  
Now A satisfies {4.7) if and only if it has FOrmER series 

(4.s) A(d ~') c,~ ~o + ~1 d'~ + ~ e ~  + ".. ; 

that is to say, jus t  if A belongs to H %  Thus we deduce from (4.6) the dual 
relation 

(4.9) : inf [[ e - '  ~ - -  A []o~ (A e H~). 

This passage to the dual of the given problem was used by 2gEHAR~ [ll]  
in order to find the bounds of certain bil inear forms. In a s tady as yet un- 
published, M:ARv~ R O S E N B L U ~  has extended ~TEHARI~ S work to several varia- 
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bles, using the duali ty principle more explicit ly than NEgAR[. Our application 
of  BEURLING'  S Theorem seems to be new in this context~ and so is the ana- 
lysis of {4.9) which follows. 

3. Lemma I.  - I n  order that  ~ < 1 it is necessary a n d  su f f i c ien t  that  there 
exist  an  ~ > 0 a n d  a n  element A o f  H ~ such that  almost  everywhere 

(a) I A(d~) l ~ ~ a n d  

(b) 
7~ 

i - -  ~{x) -- arg A(d~)] ~ 2 - -  ~ (rood 2u). 

If  ~ < 1 ,  we take for A any fuuct ion in H =~ such that } l e - i v - - A l l c ¢ < l .  
It  is clear that (a) must  hold, and then (b) is geometrical ly obvious, perhaps 
with a smaller  value of E. Conversely, if A satisfies (at and {b), then one can 
verify that I1 e-i~ --)~A l~:~ < 1 for sufficiently small positive values of ), and 
so , o < 1 .  

4. By definition, H(d ~) ~ w(~cte~(~). Therefore the conditions of the lemma 
can be expressed as fol lows:  

i(e'*) l > 
(4.10) 

7~ 
I arg (A(e~*)H(d~)) [ ~  ~ - -  ~ (rood 27:). 

The second inequali ty states that A(ei'~)H(e~t, the boundary  function of 
: A(z)H(z) belonging to H 1, assumes its values in the sector S~: I arg ~l~_ 
7~ 

~ -  ~. But  A{z)H(z) is the PoIssoN integral of its boundary  values, and so 

A(z)H(z) lies in SE also for ! z  I < 1. It  follows that A(z)H(z) cannot vanish for 
I z l <  1 (since otherwise its values would cover a neighborhood of 0), and 
log(A(z)H(z}i is s ingle-valued and analytic in that circle. W e  can choose 
the argument  of A(OiH(O) so that the second inequali ty of (4.10)holds without  
the qualif icat ion modulo  27:. 

For  r < 1 and z - ~ r #  ~ we have 

log (A(z)H(z))--  log l A(z)H(z)l --1- i arg (A(z)H(z)). 

Thus arg (Atre~H(rd~)} is a function of x which, for fixed r < 1, is conjugate 
to log I A{re~}H{re~)l .  We have to conclude that the same relation holds for 
r ~- 1. This is indeed so because  A H  is an outer  funct ion It0, p. 469], but  it 
can be shown direct ly as follows. Since arg (AH} is bounded in the unit  
circle, it tends to i ts  boundary  function in the metric of L 2 (this is trivial); 
therefore the same is true for log I A H ! ,  and it follows that the boundary  
funct ions are conjugate.  
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So we have exhibi ted log I A(d:~)H(ei~)t as the conjugate of - -  arg (A(d~)H(d~:)), 

a funct ion with bound 2 - -  e. 

Therefore  
1 

w(x) = l A(e~) ] . I A(e~iH(e~)l --  e"+ "g 

is a representat ion for w of the desired form (4.1). W e  have inferred this 
representa t ion from the existence of an element A of H ~ satisfying conditions 
(a) and (b) of Lemma 1; there is such an element if y < 1. 

5. Conversely, suppose w has the form (4.1). ~Iultiplying w by a factor 
bounded from zero and from infinity does not change the property p < 1, and 
so we may assume u = 0. We  set 

K(e~) = e ~ ) - ~ ' ( ~ >  ; 

then w(x)~-IK(e~)l.  It is not difficult  to see that K belongs to H ~ and that 
D(z)------).[K(z)] ~/~ twhere ). is chosen so that k[K(0)]m > 0} is exactly the analytic 
funct ion associated with w by (4.2}. It suffices to show that (4.10) holds for 
H - - k ~ K  if A is chosen appropriately in H ~. Obviously A(e ~) ~--k -~ makes 
{4.10) true. Therefore ~ < 1, and this completes the proof for absolutely conti- 
nuous measures  ~, 

6. We still have to show that if ~ < 1, then IL is absolutely continuous. 
Actually a little more is t rue:  t~ is absolutely continuous merely under  the 
assumption that J~ and ~ are at positive angle (which is true afortiori  if 
and D~ are at positive angle). 

L e m m a  2. - J~ and ~1 are at positive angle if  and only i f  there is a 
constant K such that (1.9) holds for every real trigonometric polynomial f. 
and ~ are at positive angle if  and only i f  (1.9) is merely required to hold for 
those real trigonometric polyuomials f having mean value zero. 

The proof will be given in § 5. Assuming the lemma, we show that ~ is 
absolu'tely cont inuous if :~ and ~ are at positive angle. Let  E be any closed 
subset  of the circle l z ] = 1 with measure  zero. We  choose an arbi trary point 
e ~o not in E. According to a theorem of RUDIN [12], there is a function G(z) 
analytic for [ z l < l ,  cont inuous for I z l ~ l ,  and equal  to 1 on E but  0 at 
d ~o. Fur thermore ,  G can be chosen so that IG(dx) l <  1 for every point e i~ 
where  G(e ~) :#  1. iThe set where  G(e ~) = 1 may be larger than E, but it must  
have measure  zero since G is not constant.} If  G(0) - -  a, then t a I < 1 by the 
maximum principle.  
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Now we define the sequence of functions 

Hn(z) --" [G(z)]'* - -  a '~ (n = 1, 2, ... ). 

Each H,~ is ana.lytic in j z I < 1, continuous for I z l <  1, and vanishes at 0. If 

H,~(e ~) _.~f~(e '~) --if,~(e~,q with f,~, f,~ real, then f,,, [~ are conjugate functions 
with mean wdues  zero. We are assuming that J~ and ~ are at positive angle, 
so that ~1.9) holds for t r igonometric polynomials having mean value zero, and 
consequent ly  also for uniform limits of such functions. Therefore  we can 
find a constant K such that 

l - :  < f - -  
(4.11) f , d ~ _  K f~d~ (n 1, 2, ... ). 

From the construction of G it is clear that the functions H,~ are uniformly 
bounded, and that for each point d ~, H,~(d ~) tends ei ther to 1 or to 0 ;  
the first a l ternat ive holds if e/~ is in E. Therefore  f,~(e ~) tends to zero every- 
where  and boundedly, and f , (d ' )  tends to 1 at least on E. Consequently the 
right side of (4.11) tends to zero, but the left side has upper limit nt least 
tLIE}. Hence I~(E} ~ 0  for every closed set E with LE]~ESGUE measure  zero, 
, n d  this proves that it is absolutely continuous. 

1. Let 

5. - C o n j u g a t e  f u n c t i o n s .  

x~ ¢~nenix (5.1) 

be an arbi t rary tr igonometric series. Tile series conjugate to (5.1) is by 
nition 

deft- 

t5.2) E (-- i~,)a~e nix, ~,~ --- sgn n, 

and if {5.1) and {5.2j represent  functions f and / ' i n  some sense, then f i s  said 
to be conjugate to f. The convention that sgn 0 = 0 implies that every_conju-. 
gate function has mean value zero. If  f belongs to L ~ it is trivial that f exists 

in L -~ and 

(5.3) 

with 
states 

fFa: < ( I f J:d  

equali ty if and only if a o - - 0 .  A wel l -known ttmorem of M. Rlnsz 
that I5.3} holds with exponent  p for l < p  <cx~, provided a suitable 

constant factor is introduced on the right side. Indeed, it is known that the 
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BA:~AC~ space L p can be replaced by an 0RLICZ space of quite general type. 
It does not seem to be known, however, in what spaces L~ the operation of 
passing to the conjugate is continuou G even with p----2. Our contribution 
to this question is 

Theorem 2. - There is a constant K such that It f!l-_<= KII fll for every real 
trigonometric polynomial f, in the norm of L~, i f  and only i f  ~ and ~ are 
at positive angle in LI~. 

A necessary and sufficient condition is therefore given by Theorem I. 
A summary of previous work on the problem, mostly with p arbitrary, is 
given at the end of this section. 

~. Theorem 2 is simply the statement of Lemma 2 for the manifolds 
and i13~. We proceed now to the proof of both parts of the lemma. 

An operator T is defined on the set of all trigonometric polynomials by 
the formula 

T Y, ane nix-- -  ~ ane ni~. 
n~.o 

Using the characterization of positive angle given by (1.8), it is easy to verify 
that ~ and ~ are at positive angle in Lt2~ if and only if T is bounded in 
the norm of that space. Similarly, ~ and 1D are at positive angle just  if T 
is bounded on the smaller set of trigonometric polynomials such that a o -  0. 

Consider first the angle between ~ and ~ .  ]f 7' is bounded then 

lIFt! £ K l l  ~FI]  

for each trigonometric polynomial F of the form (1.1), where K is independent 

of /7' and the norm refers to the space L,~. 
Since trivially 

II  FI! <II  11, 

we have 

(5.4) I I < K ti a F  ii. 

Setting f :  ~F,  which is the general form of a real trigonometric polynomial 
having mean value zero, we have exactly (1.9). 

Conversely, if (5.4) is true for each F of the form t1.1), then 

il Fii  2 -  ii ~ F t i  2 + I I ~ F I I ~ (  K2 q- 1)tI~FIt  2, 

Annali di Matematica I7 



130 H. HELSON - G. SZE~5: A Problem in Prediction Theory 

so that  T is bounded  at least on the set of real  t r igonometr ic  polynomials  
having mean  value zero. But  if f =  f~ + if2 (where f~ and f_~ are real trigono- 
metr ic  polynomials  wi th  mean  value zero), then 

[I T(f~ + ~f~ [I =< i[ Tf~ [[ + [[ Tf~ it < B( [[ f~ ti + I[ f~ i!) ~ V2B [[ f~ + ~f~ i[. 

This completes  the proof for the manifolds  ~ and ~5. 
Now suppose  T is bounded on the set of all t r igonometr ic  polynomials .  

Then  

defines a second operator  which is also bounded  (because pass ing to the 
complex conjugate  leaves the norm of a funct ion  unchanged),  and consequent ly  

n t 0 

Suppose the t r igonometr ic  polynomial  on the r ight  side of (5.5)is real. Then,  
by what  has .just been proved, 

(,5.6) II Z (-- i ~ . ) a . e  ~ [I ~ K/i E a . e  "'~ [I. 
n i o  

Combining (5,5) and (5.6} we find, with  f ( x ) =  Ea.e "i'~, 

(5.7) II/7[[ < KC II f II. 

Final ly  suppose that  (5.7) holds for all real (and hence,  with  a new 
constant,  also complex) t r igonometr ic  polynomials  f. We have shown that  T 
is bounded  on the set of Complex t r igonometr ic  polynomials  having mean  
value  zero, and we only have to remove this res t r ic t ion on the domain  of I'. 
Apply the conjugacy  operat ion to f twice;  we obtain - - f +  ao. Therefore  a0 
is a bounded  funct ional  of f. and so 

[[ T f  [[ = [[ T t f  - -  ao) il <__ D [[ f - -  ao [i ~ E H f [[. 

This  completes  the proof of L e m m a  2, and so also of Theorem 2. The  proof 
of Theorem 1 is also finally complete  at this point.  

3. S~ill another  form of Theorem 1 may be ment ioned.  The funct ions  
l e"i~l are said to be a basis in LE2, if every e lement  f of the space has a 
un ique  expans ion  

co 

f(x) ~ ~ a.(f)e"% 
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convergent  in norm [2, p. 110]. It  is easy to show that the e~ponentials torm 
a basis in L~ i f  and only i f  the manifolds ~ and ~3~ are at positive angle. 

2 The question which spaces L~, have the exponentials for basis is therefore 
answered by Theorem 1. 

4. The history of these problems is ra ther  involved. HARDY and LITTLE- 

WOOD [7] showed that the conjugacy operation is bounded in L,~ if the weight 
function w has the form 

(5 . s )  = I x  I x (- < x < 

w i t h -  1 < ~ < 1. ( i c tuMly  this is a special case of their  theorem, which 
applies to L,~ with p > 1.) BABENKO [t] rediscovered their result, and applied 
it to the basis problem. N. BARI had asked essentially whether  the exponentials 
could be a basis in L~ if w were unbounded from zero or from infinity, and 
BABE:SKO showed that the weight functions (5.8) provide an affirmative answer. 

Recently GAPoS~;IN [4] proved a theorem which, for p -  2, states that 
the conjugaey operation is bounded if 

(5.9) ! (v I ~ kw 

for some constant k. (It is easy to apply this r e su l t  to the functions (5.8).) 
In  correspondence with us, GAPosK:~ has observed that his condition {5.9) 
is the same as our (4.1), i n  the following sense: w has a representation (4.1} 
i f  and only i f  there is a bounded function u~ such that 

where 

The paper  of Gieos-KI~ [4] contains the best results known for p :4: 2, 
but no condition has been found which is necessary and sufficient for the 
conjugacy operation to be bounded in L~ if p =[= 2. 

From (1.6) and (4.5) it is cleur that  the problem being studied can be 
stated as a problem about the bounds of certain bilinear forms. As we have 
mentioned, our methods are related to those used by INEHARI [11] to study 
bil inear forms, and to those of ROSENBLU!~ in work still unpublished. 
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§ 6. - T h e  a n g l e  b e t w e e n  ~ a n d  1~. 

1. If ~ and 113~ are at positive angle, it is t rue  a f o r t i o r i  that J~ and 
arc a,t positive angle (since ~ i~ contained in ~ ) ,  but the converse is not 
true. We have proved that ~ must 1)c absolutely continuous if Jr and ~ are 
at positive angle in L2~ and so we consider only such measures.  

Theorem 3. - I f  ] w--~dz < ~ ,  then ~ and  1~ are at positive angle in  L~, 

i f  and  only i f  ~ and ~ are at  positive a~gle. 
Suppose tha, t w -~ is summable and that ~ and ~ are at positive anglo 

in L~,,. From the solutien (t.5) of the second predict ion problem we know 
that there is a constant  A such that 

a I S A II -I- F-I-  P II 

for all constants a and tr igonometric polynomials F and P of the form (1.1) 
and l i.2i respectively.  ) foreover  

I[ F !I G B li F + P I! 

because ~ and l~ arc at positive angle. Therefore  

[ I F I ~ B " [ F + P I I < = B [ I r a ÷ F + P I [ W [ a I ~ I I } ! ] ~ C L I a + F + P [ [ '  

This shows that J~ and ll)~ are at positive anofle. 

2. If w -~ is not summable the situation may be very complicated. The 
a roument  u~ed to prove Theorem 1 can be repeated up to a certain point, 
and gives the following result. 

Theorem 4. - ~ and  ~ are at positive angle in  L,~ i f  and  only i f  w has 
the form 

{6.1) w --" e~ lK[  

where u is a bounded real function, and K belongs to H 1 and satisfies 

 6.2) 
r¢ 

i arg K(e ~x) - -  x I< ~ - -  ~ (rood 2n) 

for some ~ > O. 
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The [unctiott K is the same function as A H  in (4.10); but we cannot 
wave aside the qualification rood 2re as previously, and it may not be possible 
to choose K as an outer function. In spite of its similarity to (4.10}, (6.2) really 
gives much less information. 

If  K(z) has a zero inside the unit circle, then K can be replaced by a 
new function /<1 having the same modulus on tim boundary and satisfying 

Kl(ei")I~_:~--~, so that actually w has the form of Theorem 1. In the  arg 
representat ion {6.t) it suffices therefore to consider functions K without zeros 
in the circle, provided w -~ is not summable. 

The proof of Theorem 4 requires no new idea, and we omit it. A more 
satisfactory solution of the problem would depend on the deeper properties 
of inner and outer functions. An impressive but still incomplete treatment of 
that subject is given in [10]. 

§ 7. - S o m e  p a r t i c u l a r  w e i g h t  f u n c t i o n s .  

1. As we have mentioned, the validity of (1.9) for the weight functions 
w(x) ~ ] a~I ~ ( -- ~ ~ x  < 7:) has been studied before. For - -  1 < ~ < 1 it is easy 
to deduce that  ~ and ~ are at posilive angle from Theorem 1; for u outside 
this in terval  either w or w -~ is not summable, and so ~ and 115~ cannot 
be at positive angle. This is the extent of what was known about these 
weight functions. I t  is not obvious, however, for which values of :¢ the mani- 
folds J~ and ~ are a,t positive angle, and we consider that question now. In- 
stead of [x 1 ~ we shall deal with the periodic t:unetions 

= ! 1 + e L 

Theorem 5. - ~ and ~ are at positive angle in L~2% i f  - -  1 < ~ < t, and 
i f  1 < ~ < 3, but not for other values of ct. 

Let K(z)--~ (1 4" z) a, a s ingle-valued analytic function in the unit  circle, 
taking the value 1 at the origin. For ~ >  ~ l ,  K belongs to H ~ and is an 
outer function. Its radial limits are 

K(e ix) - -  (1 + 

where arg (1 4" e~'~ ~ is defined to be zero for x ----- 0, continuous for - -  ~: < x, < 7:, 
with jump of ~ at x : ~ r : .  For - - 1  < a < l ,  K takes the place of H in 
(4.10) with A ~ 1, showing that ~ and 1~i are at positive angle, and therefore 
also Jr and ~ .  For 1 < ~z < 3, K satisfies (6.2) because 

arg (1 -I- ei~) " --: ~x/2 l - -  r~ < x < r:). 
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Hence  ~ and ~ are at positive angle, al though J~ and ~5~ are not. The more 
interest ing part  of the theorem is the negative part which remains. 

2. From {4.5) and the remarks  which followed, it is easy to see that 
and ~ are at positive angle in L~, if and only i[ 

(7.1) ~ - ' sup]  [ FGe-~dzl  1, 

where /f and G range over the tr igonometric polynomials of the form (1.1) with 

.] IFI  ~dz- -  f lG[~dz=l 

and ~ is the argument  of the function H associated with w~ by (4.2). Now 

, 0 5  

K(d ~) ~--- (1 -t- e~*) ~ -" we'd- ~ (--  u < x < re) 

is an outer  function, and must  therefore be the same as H. Hence in this case 

~(x) = ~ ~ 1--  7: < x < 7:) 

and t7.1) beconms 

(7.2) ~ = s u p  I FGe-'~'~d~[. 

The limits of integration are relevant because the integrand is not periodic. 
Suppose that 

F(e ~) ---- Z a,,e ''~'~, G(e ix) - -  Z b,e ~ .  

Using the formula 

we have from t7.2) 

/ e~,~,~d~(x) sin r~), (~' 4= O) 

sinT: r e + n - - , 2  
": = sup! Z a,,~b,~ 
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under  the restriction 

Replacing a.~ by { - - 1 ) ~ a . , ,  b~ by ( - - l ) ~ b . ,  we find the simpler expression 

s in~k  a , , , b . [ (  ~) 
(7.3) z = sup ~ 2 k = - -  

m,.>o m + n + ) ,  2 " 

It is wel l -known that the supremum is not diminished if we take b, = a~. 
~Ve denote by B(),) the bound of the bil inear form 

(7.4) E a,~a,~ 

for each real k such that ) ,-b 1 is not a negative integer. 

8. i t  is wel l -known [13] that B(),)<tT: cosec u k l f o r  all ),. (This merely 
says that % defined by t7.2), does not exceed 1, which is obvious here.)Moreo- 
ver B ( 0 ) =  ~, a fact which is known [S, p. 226] but more difficult  to prove. 
In computing B(),) from (7.4) it is clearly enough to consider non-negative a , ,  
so that B(),) is non-increasing,  for ), > ~ 2. Hence  

2 B(~) < 1 = cosec  ~:Z I ( - -  2 < ~, _< 0). 

It  follows that B ( - - 3 / 2 ) ~  ~, and therefore 

From (7.3) we find 

and in par t icular  

B(~) - -  7: ~-- 3 /2  < x < 0). 

s in -~- (0 =< ~ ~ 3), 

~-~ 1 f o r a - -  1, 3. 

Suppose now ~ < 1 for some a > 3. Then rewrite (7.2) with G(d ~) ~-- 

(7.5) = sup FGld~e-*-~d(~ , 
- - T T  

where  F ranges over the unit sphere of /-/~ as before, but G1 over the unit  
sphere of B ~. By (4.5), the supremum in (7.5} is the number ~ for the weight 
funct ion w e with ~---:~:--2.  But  w~ -t is not summable if ~ > 1 ,  and so it is 
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impossible that f~ < 1. This contradict ion means that z - - 1  for ~ >  3. This 
completes the proof of the theorem. 

[t is curious that J~ aud Ii~ are at positive angle for values of ~ close to 
i, but at zero angle if ~ - - 1 .  

4. We do not know whether  the local properties alone of w determine 

whether  J~ and ~ are at positive angle. Under  additional hypotheses, however, 
we can answer  the question, and thereby deal with certain new weight func. 
tions. 

Theorem 6. - Let w be a weight function with associated functions H and 

(7.6) ~(e ~'~) - -  lira arg H(rd% 
r t l  

Suppose that ~ is continuous except for jumps at a finite number of points. In 
order for J[ and ~ to be at positive angle in L,~., it is necessary and sufficient 
that each jump have magnitude smaller than ~. 

Let ~ have jumps  whose magnitudes are smaller than 7:. There is a con- 
tinuous, periodic function W~ such that for some e > 0 

(7.7) 1~ --W~ I S  2 2 '  

Indeed, define q;~ to be equal to ~ except near  the jumps  of q~; near  those 
points interpolate W~ so that (7.7) holds. The periodicity of W~ follows of itself. 

:Now we approximate W~ with error less than ~/2 by a continuously dif- 
ferentiable function W. Then the conjugate function W is continuous and 
periodic, and 

A(e i~) ~ e'i~(~)-i'l'(~) 

is the boundary function of A(z), analytic for ]zi < 1 and continuous in- 
I zl < 1. We have 

(a) t A(d~)t ~ inf e ~' > O, 

(b) i - -  q~(x) - -  arg A(e~) l-~ !-- ~(x} + W(x) l ~ 2 -- s. 

By Lemma 1, ~ and ~ are at positive angle. 
Conversely, suppose that ~ and ~ are at positive angle in L,~,, and 

that + has only simple discontinuities. For any Xo and real ~ the function 

is analytic in the circle, and has boundary funetion whose argument  is 
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l inear  except for a j ump  o[ magnitude r:a at d~o. Therefore we can choose 
points xj and weights % {j---1, 2, ..., n) so that 

q4 

t7.8) K(z) -- H(z) II ( e % -  z)~ 
1 

has a boundary function K(e ~) whose argument  is continuous everywhere.  
Moreover arg K(e ~) is the conjugate of log t K(d~)l (except for an additive 
constant). This fact is easy to verify by considering each factor in (7.8) sepa- 
rately, and referr ing to the definition of H given by {4.2). The continuity of 
arg K(e ~) implies that both K and K -~ belong to L q for every finite q 
[15, p. 254]. But if w has the form (4.1), as we are assuming, then w belongs 
to L ~ for some p > 1, so that the product H(e~)K-~(e~) is at least summable.  
We conclude from (7.8} that each a~ is smaller  than 1. Now if w has the 
form ~4.1), the same is true of w -~, and the associated outer  function is H -~, 
whose argument  has the same jumps  as those of H but of opposite sign. 
Therefore  each % is larger than - - 1 ,  and Theorem 6 is proved. 

Corollary. - f f  and ~ are at positive angle in L,~., where 

w(x) = II l e % -  d~ l~ 
1 

and the points e% are distinct on the circle, i f  and only i f  

I%1 < 1 (j  --  1, ..., n). 
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