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Summary, - 4 new kind of « prediction problem s is defined and studied, first for certain
special distributions and then gemerally. The general resulis are connecled with conju-
gate trigonometric series.

§ 1. - Introduction.

1. Let p be a non-negative finite measure defined on the field of BorrL
subsets of the half-open interval [0, 2n). We form the HILBERT space L of
complex funections f = f(x) measurable for dp and such that

11 =[11dp <oty

The inner product of f and g is by definition

. 9) = [ fadp.

The trigonometric polynomials always form a dense linear subset of Li; pre-
diction theory is the theory of approximation by trigonometric polynomials
in the metric of that space.

We use do = do(x) to denote the measure dx/2n on [0, 2n). Then p has
a decomposition dp(x) = w(x)de{x) + dup(x) where w{x) is a non-negative sum-
mable function on the interval and p, is singular with respect to LEBESGUE
measure.

Let ¥, I, and P. be the closed linear manifolds in L; obtained, respec-
tively, by closing the sets of trigonometric polynomials of the form

(1.9 F(e®) = a,e® + a,e?* 4 6% - ...,
Piei#) == e~ | bye—2® |- he 3 4 ..
Py(e®) = ¢y + c,e7% 4 ce%® - ...

(*) The authors acknowledge the support of the ALrrED P. SroaxN Foundation and the
National Science Foundation, respectively.

{(*) The integrals in this paper are all extended from 0 to 2r, unless stated otherwise.
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We shall use F, P, and P, consistently to denote trigonometric polynomials
given by (1.1), (1.2), and (1.3} respectively. The function identically equal to
1 will be called I.

The first prediction problem, associated with KoLMoaoROFF, SzEGs, and
WIENER is to find the distance from I to F. The solution is given by the
following theorem of Szrado [6, 14] *):

(1.4) inf [[ I+ FPPdp= exp{ [1og w dc},

where the infimum is taken over all trigconometric polynomials F having the
form (1.1). In other words, the distance from I to J is exp; % [logwdcs i )

whose square is the geometric mean of w. If the right-hand expression in
{1.4) is zero, that is if [logw do= —oo, then I lies in ¥F; and indeed ¥

coincides with the wWhole space L. It is curious that the distance from I to
¥ does not depend at all on p,.

The second prediction problem is to determine the distance from I to the
smallest manifold containing JF and [P. KoLMOGOROFF has shown [, p. 83| that

(1.5) inf:[] I4 F+ PJdy 2([19—1686)-1

where F and P range over trigonometric polynomials {1.1) and (1.2), respecti-
vely. Hence the square of this distance is the harmonic mean of w, again
independent of p,. (If the right side of (1.5) is zero, I belongs to the closure
of the manifold.)

These theorems show that if w is not too «small», i, e. if the right-hand
means are positive, the exponentials e" possess a certain kind of indepen-
dence in L;. The purpose of this paper is to study a stronger notion of
independence than the two just considered.

2, Two manifolds in a HILBERT space are said to be af positive angle if

e=sup|(f, 9| <L,

where f and g range over the elements of the manifolds, respectively, with
norm at most 1.

The third prediction problem is to evaluate p for the manifolds J and )
in L’i In this case

(L6) o =sup| [ Fle) Py apio|

{2} This thoorem was originally proved by Szrui for the case where p is absolutely
continuous, and subsequently was extended by KOLMOGOROFF.
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where F' and P, range over the trigonometric polynomials (1.1) and (1.3).
respectively, subject to the restriction

) [irravst,  [1Fapst
Equivalently, ¢ is given by the expression

(1.8) 2«—2p=inf/[F+P1

*dy,

where now I’ and P, have norm exaoctly 1.

It is trivial that p <1. If for a measure p We have p <1, then (as one
can show in an elementary way) (1.4) and (1.5) are positive, so that this con-
dition of independence for the exponentials in L} is stronger than the con-
ditions of independence of the first two prediction problems.

3 In § 2 and § 3 we deal with the following three special cases:
(@) [w(x)]~* is a positive trigonometric polynomial,
(b) w(x) is a positive trigonometric polynomial,
{c) w(x) is the ratio of two positive trigonometric polynomials.

The interest of these cases lies in the fact that in all three instances
the determination of ¢ can be reduced to an algebraic problem, Whereas in
general it seems to be very difficult to evaluate p.

There is, however, a simple necessary and sufficient condition that
e <1, in other words that JF and [p, be at positive angle; this criterion is
developed in § 4.

4. A problem in trigonometric series which has been studied previously
is the following: For which measures p does there exist a constant K such

that, for every real trigonometric polynomial f with conjugate f, we have

(1.9) [ fdn < K* ] frdp?

It is shown in § b that the answer is affirmative for p if and only if ¥ and
. are at positive angle in L;. Therefore the preceding results of the paper
give a satisfactory solution to this question. We are indebted to Professor

A, ZyaMUND for references to other work connected with (1.9); this work is
discussed at the end of § b.
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In § 6 we consider the angle between j and [P (rather than ) in L;.

1t fw'ldc < oo, there is nothing new in the problem; without this assumption,
a general criterion for Jf and I to be at positive angle exists, but the solu-
tion is less satisfactory than in the case of Jf and P..

In § 7 we examine in detail a class of weight functions quite different
from those of § 2 and § 3, including the functions

W) = |« |* (—rle<rw, a>—1).

It is known that (1.9) holds for dp = w,ds if and only if —1<a<1; We
are able to determine the values of « such that Jf and [P are at positive angle

in Lfg@. Certain more complicated functions are discussed also.

§ 2. Distributions (a) and (b).

1. In dealing with the special cases (a) and () defined in the Introduction,
we shall make use of the following remark of HELLINGER-TOEPLITZ [9]: Let
(@) be a finite matrix; %, A =0, 1,..., n. We denote by ¢ the maximum of

n n
2.1) | 3 2 e
wam A=0
where «,. j, are complex numbers and Z|a, =Xy, "= 1. Then p* is the
maximum of the Hermitian form S3equuy; %, 2 =0, 1,,., #n; I |ul* =1,
where
" -
(22) Cy), =z 3 Win @i, o
j=0
The proof is immediate. Indeed Wwriting 7. = 3 oY, the maximum
h=0
n n
of | I ma,® as the y, are fixed and the x, change, will be X |7mP=

®=0 x==0

"

= X z Cx)ﬂxgk .

®==0 A=0

We shall deal first with Problem (a), then.with Problem (b).

2. Problem (a). - According to a theorem of L. FEstr-F. Rimsz [6, p. 20]
the positive trigonometric polynomial [w(x)]™* can be written as follows:

(2:3) [w(e))* = | (&) [* = | K"(2) 1, 2= o,
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Where

(2.4) Wey=hy, I (r—a) h>0, 0<|al<l.

y=1
The rational polynomial h{z) satisfying all the conditions implied by (2.3) and
(2.4), is uniquely determined; h*(z) represents, as always, the reciprocal poly-

nomial of hfz), h*(z) = 29h(z~Y) = h, il (L —a,2). (Thus in the present case
y=1

D(z) = [h*(z)]~" is the analytic function associated with the weight funection
w(x) in the same way as in the general case of § 4.) For the sake of sim-
plicity we assume that the zeros of the polynomial h(z) are all distinct.

We denote by {o,(2)}, m =0, 1, 2,..., the orthonormal polynomials asso-

ciated with the weight function wix) on the unit circle z=e* [6, chapter
2, p. 37]:

(2.5) %; j P 2)pa(R)wla)dac = 3.

In the present case we have, as easily shown [loc. cit. p. 43}, ¢,.(2) = 2" (2),
m 2> q. We note also that [loc. cit. p. 41, (1)]

0 5 aipnls) = T = M),

Now

(2.7) p = sup

3 | TP - wiolde

where F(z) and P,(z) are rational polynomials in 2, the first vanishing at
#=0; the following conditions are to be satisfied:

2.8) o f | Fle) Pofode = 5 '/‘|P1(z) )i = 1, 2 == &,

—n

We write F(z) = 2f(#), Pis) =g(2) Where f(z) and g(#) are polynomials and

2.9) 3w | 176 Ptk = o [ 1 gfe) nfede = 1, 2= e

—_T
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The expansions of fiz) and g(#) in terms of the orthogonal polynomials sug-
gest the following decompositions:

(2.10) 1(2) = folz) + Maf2(2),  gl2) = go(2) + Mf2)gu(z)
where

g—1 q—1
(2.11) Mg = 2 wpleh  gld)= 2 5e0),

and fi(2), g.(#) are arbitrary polynomials. Indeed, f{z) being given, fi(z) is
identical with the uniquely determined interpolation polynomial of degree
q — 1 coinciding with f(z) at the points a,; v=1, 2, ..., q; similarly g,(2). We
have, z = ¢,

1 i 7 29dz
9 il - — theid R
(2.12) 5 [ F(.«)Pl(z)w(x}dm-2m HET G e
-7 j&]==1
1 . Hde 937
=35 [ fo(@.‘go(z)m—m; | Gy
|2i=1
where
zqdz
9
{2.13) 27!:@ [‘?n h*( }

Also, 2z = ¢,
1 N
—~ /f( A et = [I i | il _

since fyz)27—* is a polynomial in z. From this We conclude that
1 kd 1 ™
—_— 2 — 2
=g [176) et + g [ e P ofelde

g%[mwwmmmgmm

A similar remark holds for the components of g(z). Hence the quantity ¢
will be the maximum of the modulus of (2.12) provided that Z|wx,|*=Z |y [ = 1.
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3. We form
5 5 |
2 oy = 3 Z amju;
%y A=0 m——Oll 0 I
where
q-i 1 29z
bA Wi = it
o™i = g | P
lzj=1
oy

) i (o)

u(z) = ‘2 ujcpl(z)i
j=0
so that, using (2.6), ()
gzt 4 ufe,)ad CEA =~
% Aty = X 7 . 7 - 2 vIYm
%, 1::00 A, v, p=1h(“v)h*(“v} h{“y)h*(“p} m—o(pm(cC )CP ( }
4 u(o)ed w(o g (o, )h*(a,)

e W) (2,) Wl h¥(e,) " 1 — L

(L
4 ufo)ed ufo,) osg 1

T Kl T W) 1= g,

Moreover

4 ulw) i)
=2 ) — o

hence, z = ei¥,

q—l 1 I Z l2 q 1
1 ik = X )
%==0 ! “ l 2m J I 2 l e Yy p=1 h (av) h (a}*) 7TC f

= § M) wm) 1
v, p=1 h( ) hr{au) 1— avap
in view of
1 1 dz 1
2ni | 2 —w, 1 &uz T — oy,

doc

(*) In this and other similar formulas the bar of conjugation applies to all factors

in both numerators and denominators.
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ufx,
Wi,

-

Writing

== 4, We see that p® is the maximum of

under the condition

(2.14) [L:—“-

or, Writing p*==1— v, v @s the smallest root of the determinantal equation

(2.14) r —lw) v r:—-. 0.

1 —au, 1 —aya,|,

This reasoning needs only a slight modification if F(z) runs over the
polynomials containing all powers >a, and Py(#) over the polynomials con-
taining all powers >b where o and b are given non-negative integers. The

equation determining y =1 — p? is in this case, instead of (2.14):

l— a, 1 — a0,

— (oo, )08 Fo=1 9
(2.15) [1 ()¢ . ﬂ}=o.

In the case above a=1, 6=0. For a =b=0 we have y==0, g =1, see
(1.8), in all other cases p < 1.

4. Problem (b). With the previous meaning of &(2) and h*(z) we have in
the present case: wix) = | h(z) " = | h*(2) [}, # = e'®; D(2) = h*(2). Writing again
F(2) = #fiz), Pi(2) = g(2), the functional in question Will be now

(2.16 on: | gt "5

jz|—_~1

d

®
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and p is the supremum of the modulus of (2.16) nnder the condition
e o /’Tl'f(z)h*(z) =5, /ﬁ'g(z)h*(z) Plz=1, s=es
- 2n 2n ’ ’

- —n

In the present case we shall not use orthogonal polynomials; it is con-
venient to set

(2.18) fie)h*(2) = fo(2) + #°filz),  gl2)h*(2) = gol2) + 2%9.(2)

where fo(2), go(2) are of degree ¢ — 1 and fi(2), g:(#) are arbitrary. Hence (2.16)
becomes

1 fo( g _ dz
219 2ni | (n () _é {f" 1908 e ) 2
Also
(2.20) 2-1- [ i) = 5 [ Fi@ef () de =
-0 |2]=1

Thus, 2= e,

1 ™
2.21) > [ ) e, 12 g [l P

Consequently the problem is reduced to the evaluation of the maximum of
the modulus of (2.19) under the condition (2.21).

5. Writing

fle)= X wxe, gl)= 2 ypo
w=0 =0
we have
— 5t L Jm—q M?)
(2.22) p = max Z_o bty |y tm = i / z h*(zj dz,
|

zl:l

under the condition Z|x, =2y, P=1. All {, are zero except possibly
those with m <q — 1.
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We introduce now the expansion

hiz}

(2.23) }},*(z) = h/o "}‘ klz + hggg + sax

so that ¢, =h, 4, . Hence

q—1 _ g—1 |} g—1 2
(224) Socommy = 3 { DI R
#, h=0 m=0 #=0 i
q—1 |g—1—m 2
= 2 2 hq—l——m—xux 4
m=0 =0
Gy = th——l«—m—xhq——lwm—-?\, O .._.._<_ m S min (q -1 e, Wy Q - 1 - 1)7

{2.25) Ao =Cy_1y, g1t = Z BB, 0<m < min (x, A)

Consequently, ¢° is the largest root of the determinantal equation
(2.26) [dg. — oBJ3— = 0.

Remarks: (1) The same result can be concluded from the relation (4.9)
to be proved, in view of the fact that in the present case

, . hiz) ]
i® e TI—2apy o) —2 s 2= 7 == t®,
e~ = D~ = (h*(z)) " | b{2} | = () e
Hence
—_— 1 h(ﬂ) — 224z A H
p = Inf ; h*(g) & {..1} éo 6 OO’

or p = inf || B(#) l|c Where B€ H® and the expansion of B(z) begins with the
terms fio + Bz + ... + B,277". This is a Well-known extremem problem [ef.
6, pp. 168-159] the solution of which is exactly that given above.

(2) As in section 3 we may assume that F(z) ranges over the polynomials
containing only powers >a, Pi(z) over the polynomials containing only powers
>b where a, b are non-negative integers. The modified result is then

(2.27) [da— ¢80 =0
where

(2-28) d;)\ = I hx—-;1z——vh~lmm-—~v) v=a-+ b— 1; 0 § m g min (M' -V A — V).
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(If v=—1, we must have m < ¢ — 1). In the case a =b=0, v=—1, we
have p =1, see (1.8). If v >¢q, We have p=0. For v=¢g—1, we have d;; =0
except for dy_, 4 = |he|* so that p = |k, |. For v=g¢— 2, p can be computed
explicitly from a quadratic equation.

§ 3. - Distribution (c)

1. In this section we deal with Problem (c), i.e. with the case w(x) =
= w,(x)/Ww,(x) Where w,(x) and w.(x) are positive trigonometric polynomials of
the precise degree p and g, respectively. We use different methods according
as p<<gq or p> q. The results generalize those of § 2.

We write

(3.1) i) = |a) [, wife)=[bl) [,  z=e,

where a(z) and b(z) are ratiopal polynomials of the precise degree p and g,
respectively, whose zeros are all in 0 <|#| <1, and in both polynomials the
coefficient of the highest power of z is positive. For the sake of simplicity
we assume again that the zeros of the polynomial biz), say B,,.., B,, are all
distinct. Finally we assume that a(z) and b(z) have no zeros in common.

2. The case p<q. We have then

1 Coafglare)

jzl==

(3.2 p == sup

U

where f(2) and g(#) are polynomials satisfying the conditions

2
de =1, 2= e,

(3.3) = [ e %‘g)—)

e 005

In this case as a generalization of (2.10) we set
(3-4) fe)a* (@) = fofe) + bE)f(2), gle)a*(e) = gole) + bi2)gu(2)
where fy(2), go(z) are of degree ¢ — 1, and fi(2), gi(¢) are arbitrary. Thus

afz)et—r

1
(3.5) =sup!§w‘a‘/ M) pjas e |

lzl==1
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Now, z = e,

L (el 1 1
(3.6) 9 [7;)((5_)’ filz)dx = i / folz )z i bf*‘( )) de =0
. )z'z
so that
D\ i (g
(3.7) 12.2%j ’;((:)’ da, 1> %—(f.? dx, 5 = eic

In order to compute (3.5) under the condition (3.7), we write again [, (2)
and go(#) in the form (2.11) where the system |g,(2)} is associated Wwith
wa(x) = | b(z) |°, 2=e". We proceed as in § 2, sections 2 and 3:

Mo =5 / 2:d2) () beja* @b ()
lg'=1
_ 1
'S oty = gy | o)
jefest
B )BCI“P
=X CPm(ﬁ 13) 58 e B 5 B’

T e S BBBIETT m:_» Rl BUAIEN
i wnthy Uy, == it b,(ﬁ )a,*‘p )b* (8.) b{ﬁlx) ﬁh)b*(ﬁui 1— ﬁvpu

— & ulfalB) @q_p u(Bulal Bu)éxx;p . 1

T OBJe*E) T VBIar By 1 — BB,

5 ﬁ_l_o alB, 53“29_ AvszL_
),uml G“*(@V} a (g ) 1“‘@\;33;
where we write again

u(B,) ¢ A4,
bl(pv) ' =v,;x:1 {— ocvo-zlh
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Hence, p*® is the largest root of the delerminantal equation

va ﬁvﬁpf q P 9 — a_(ﬁﬁ‘
(3.8) 1— ﬁp ) =0, Ty == (B

This reduces to (2.14) when p =0.

3. The case p>q. We set p — g=10> 0. We denote again the (distinct)
zeros of b(z) by B., B:, .., By, the orthonormal polynomials associated with
[bz) [*, 2 =1¢™, by {om?)}.

‘We intend to evaluate

ag)o*(z)z—°
(3.9) Sup] afz)a*({z)e 17

2m[ 19 =g epw e

|#l=1

{7
dac...-z—n/

T

o) e |

de=1, z = ¢,

1 [, a*@)]
5 j ‘f(z) )
f(2). g(z) polynomials. For every polynomial f(z) we have the decomposition

(8.10) flz)o*(2) = fol2) + #°ble)f(2)

where fy(#), fi(2) are polynomials, the first of degree p — 1. Indeed, fy(z) is the
unique LAGRANGE-HERMITE interpolation polynomial coinciding with the
left-hand expression at the zeros of 2z°b(z); for 2=0 the usual convention,
involving the derivatives up to the order ¢ — 1, applies. A similar decompo-
sition holds for g(z). Now

20 e 2P fO()
b(z)wfl(z)dw_/ ) - fle)dz =0

~—TT lgl==1

so that we may write:

) _,__)zz“ .
(3.11) [f@ "” 5 ( )b*(Z)dz!,

1 i fo(z) z 1 g go(z) ? J— — pix
(3.12) o j bie] de = 5 / 25(2) de =1, 2z = e,

S -7
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We set as before

8.13)  an= glﬂ‘z[*:p,,(z) ol )@?(f)(z;—*” de; w A =0, 1,..,p—1,
we) =3 ugfel, T |wp=1,
so that
o= | P
S

a(Q)g—
-+ i [@m(C)“(C}W ag

where { is positive and { < min |§,1.

4. To the polynomial u(z) of degree p — 1 we apply the LAGRANGE-HER-
MITE interpolation formula in the convenient form resulting from the fact
that for 0 <|z| <1, 238, 0 <f<min (|81, |2]),

. R S
(3.15) 0= 2 ) [ b wbie) T
a m /
+ 8 !
Y o

indeed, the left~hand integrand is regular for [{|>1 and vanishes as {~* for
{ — oo since the numerator is of degree p — 1 and the denominator of degree

1+o0+q=p-+ 1. Thus

: wle) _ g ) 11 w@db
(3.16) #b(e) 1 BB 2 =5, Fom f (z — §)Eb()

[o)e=st

In the now familiar way we conclude that p® is the largest eigenvalue of a
certain Hermitian form P — p*Q where P and @ aré obtained just as before,
with the aid of the expressions (3.14) and (3.16). As a convenient choice of
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the variables in the Hermitian forms we set

(3.17) B _ g v=1, 2

56, b

u(G) _
et = Bl 4 Bott b P et
b B + B + oo+ BotlH + Bt} +

where the terms noft wriften out contain non-negative powers of {. The varia-
bles B,, By,..., B, are cerfain linear combinations of the derivatives of
u((), =0, up to the order 6 — 1. (We may also use the alternate notation
Agrvta=DB,, =0, 1,.., c — 1) Hence

p—1 q a(Z)
(3.1 = amity = 2 dvenlb) i)+
1 a@) ..
+ R?}:‘i[r— @rra{C)B(g) a*(gb*{g) ds,
. M(z _ g B“’ "’ 2
(319 M-t A ,%/t @ Jti<iz)
)=

5. Now, as in the above cases,

P25 § d ket ), [

m=0 v,p=1 a*{ﬁ)b*(ﬁ)

T I o | (LI S [P T LB

=0 i (2)b*(2) Je= %;let a* (g )b*(S)
p=1| 1 P — aG) alG)
+nz§0 ’2_7‘;; ' Pm {“1)\?m \2} } Cz) ( ) Cl) a* }b*{gz)d‘nld&)
al=t [al=t
ot e, % A4
1=9= 27:_{ 76| T T 55, T

+ 28 3 A, (BB + BBl + o ++ By}

(J»._

+180f2 1 + +f o*‘li

Annali di Matematica 16
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where z = e'®. Indeed, v, p =1, 2,..., ¢; %, A =0, 1,.., a — 1,

n

,1m / de _L dz _ 1

2l —Ble— B 270 ) e —BIL—Be) BB
j dz 1

n (z_ﬁuz“ 27171:] 1(1_ﬁ1 d-C) 1'—B!LC’

1 / C_U+xdt; — RO—1—X
o | T 2 .. P ’
Zn?gz,l___tl — B,

k1Y
i / ___ga;_mw 1 dz _ 1
27{_;,, E—GWE—%) 20! —Gi—5) (-G8
O H—o -4
[ b Al = %
(6=t |{Gal==t §1 ?

6. In order to simplify P We note that g,z) =#¢"b(2), 95 (2) = b*(2} so that
(cf. (2.6))

S enlponie) = B,

"= 1— BV?’
T o Bl = B E
m;‘g‘?m(@p)‘?m(@) 1 gpg ,

1b 1G C.)ob(C,
"3 oGl = 1_(§c> (GB(C)

Hence

§ 44, af) af)
wp=t 1 — BB, @*(B) a*(By)

yog § 4 0B L ] By A 9E

- *(3,) 2mm=t a*() 1 — B¢
12 a(Cl) a‘Cz) dCldE
+|om BEIBE ot oGl T — o,
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since {°B(C) is regular at £ = 0. Thus p? is the largest root of the determi-
nanial equation

(3 20} Pu'—'PzQu P12‘""92Qx2 p_

=0.
Py — PQQ'A Py — Pzsz 1

Here the g-by-q¢ matrix (Py, — p*Q,,) is exactly the same as the matrix cor-
responding to (3.8), p = q. Further we write

(3.21) :jé) = to + 0% + @2 + o

so that the o-by-q matrix (P, — p*@Qa) = (Pi; — 0°Q1.)* contains the elements
(322) ?l‘(aogg’_l.—y’ + aIE;—Z—x + .+ aa-d—x) - 926:-_1—%}

where y has the same meaning as in (3.8). Reversing the order of the rows,
see (2.20), we have the elements

(8.23)  yuay Fafi T+ Fa) —oBr, x=0, L., 0—1; p=1 2,.., ¢

Finally, the o-by-¢ matrix (P, — ¢*@s) has the elements c¢,; — %%,
Where

(3.24) c¢p=2 R SP | <m<min(g -1 —x%, s —1—2),
Comimsy m1md = 2 Oymy—m . 0 < <min (x, A);
%, A=0,1,.., 6 — 1,
This is in agreement with the result (2.25), (2.26) of Problem (b) as can be
seen by writing ¢ =0, p=o.
§ 4. Criterion for positive angle between J and ..

1. Theorem 1. - The manifolds I and I, are at positive angle in L;
if and only if p is absolulely continuous (so that dp = wds) and

(4.1) W = ente

where u is a bounded real function, and v is the conjugate of a real funclion
v which is bounded and salisfies the condition || v|lo < n/2.
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In order to proceed directly to the main difficulty, we shall assume first
that p is absolutely continuous. Afterwards we show that Jf and ), are at
zero angle if p has any singular part. For that we shall need a fact stated
as Lemma 2, whose proof is however conveniently postponed until § 5.

It is enough to consider summable functions s for which logw is sum-
mable; for if / log wds = — oo, the answer to the first prediction problem
shows that Jf and [b both coincide with Li, and so are at zero angle. We

form the FOURIER series
CD .
log w(x)co X d,em*
—Q0

and define the analytic functions
D(z) = exp (do/2 + diz + dy2* + ..),

(4.2)
Hiz) = [D(Z)]Z

Both functions are analytic for |z| < L. Obviously D is of class H? H is of
class H*, and their radial limits satisfy

(4.3) | D(e*®) |* = | H(e'®) | = w(x) almost everywhere.

Moreover D and H are outer functions [3, 10]:
(4.4) / log | Die®) | do(x) = log D(0),

with a similar equation for H. Later we shall make use of the fact that (4.3)
and (4.4) characterize D and H.

We require this fundamental fact about outer functions [3]: the linear
set of functions P,(ei*)D(e'*), where P, ranges over all trigonometric polynomials
(1.3), is dense in IH° More specifically, the set of all such functions for
which

[ | P,D [*ds < 1
is dense in the unit sphere of H’.

2. We are considering the quantity p given by (1.6) and (1.7). If we
define p by w = D¢, then (1.6) takes the form

(4.5) o = sup / (FD)(P,D)e—i¢ds I\
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As we have asserted above, the set of P,D appearing in (4.5) is dense in the
unit sphere of H® Let H: be the subspace of H*® consisting of those funec-
tions with mean value zero. Then similarly the functions FD in (4.5) range
over a dense subset of the unit sphere of H. Now it is well-known [15, p. 275]
that the set of products fy where f and g belong to the wunit sphere of A*
exaectly covers the unit sphere of H'. Therefore the products FP,D* of (4.5)
range over a dense subset of the unit sphere of H (the subspace of H* con-
sisting of the functions with mean value zero). In place of the quadratic func-
tional (4.5) we now have the linear expression

(4.6) p= sup{ [ Fe‘""‘?dctl

where F ranges over the functions with FoURiER series (1.1) such that
[I| F|do<1; and the supremum is the same if F' is restricted to be a trigo-
mnometric polynomial.

H; is a closed subspace of L, the BanacH space of complex funections
summable on the unit circle. Evidently (4.6) expresses ¢ as the norm of the
linear functional in H defined on F by

[ Fe—ida,

Of course this integral gives a linear functional in all of L which has norm

1, but its norm restricted to H; may be smaller. Indeed, if 4 is any bounded
function such that

(4.7) f FAdo=0 (all F in HY),

then clearly p <||e%¢ — Al|,. The HAHEN-BANACH extension theorem implies
that the norm of the functional in H} is precisely the infimum of such numbers.
Now A4 satisfies (4.7) if and only if it has FOURIER series

4.8) Afe™) co ay 4 a,e™ - 0% 4 L ;

that is to say, just if 4 belongs to H®. Thus we deduce from (4.6) the dual
relation

(4.9) p=inflle-®*— A4l (AdeH™).
This passage to the dnal of the given problem was used by Nemarr [11]

in order to find the bounds of certain bilinear forms. In a study as yet un-
published, MARVIN RoseNBLUM has extended NEHARI’ & Work to several varia-
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bles, using the duality principle more explicitly than NeHARI. Oar application
of BEURLING' 8 Theorem seems to be new in this context, and so is the ana-
lysis of (4.9) which follows.

3. Lemma 1. - In order that p <1 it is necessary and sufficient that there
exist an € >0 and an element A of H® such that almmost everywhere

(@) |A{e®) | >c  and

(5) | — () — arg A(e¥)] < 32“_. ¢ (mod 2m).

If o <1, we take for 4 any fuuction in H>* such that [je=% — A, < L.
1t is clear that () must hold, and then (b) is geometrically obvious, perhaps
with a smaller value of e, Conversely, if 4 satisfies (@) and (b), then one can
verify that [le—% — A4 |, <1 for sufficiently small positive valnes of A, and
g0 o< 1.

4. By definition, H(e™) = w(x)e’o®. Therefore the conditions of the lemma
can be expressed as follows:

| Ae™) | >,
(4.10)

larg (A{ei)H(ew)) |gg_a (mod 2m).

The second inequality states that A(e’*)H(ei*), the boundary function of
{ = Alz)H(z) belonging to H', assumes its values in the sector S;:larg [

gg— e. But A(z)H(z) is the PorssoN integral of its boundary values, and so

A(5)H(2) lies in S, also for !z| < 1. It follows that A(z)H{z) cannot vanish for
|z| <1 (since otherwise its values would cover a mneighborhood of 0}, and
log (A(z)H(z)) is single-valued and analytic in that circle. We can choose
the argument of A(0}H(0) so that the second inequality of (4.10) holds Without
the qualification modulo 2w.

For r <1 and 2z = re®” we have

log (A()H(z)) = log | A(2)H (2} | + ¢ arg (A(2)Hlz))-

Thus arg (4(rei*)H{re'*)} is a function ¢f x which, for fixed r < 1, is conjugate
to log | A(re)H(re’*)|. We have to conclude that the same relation holds for
r=1. This is indeed so because AH is an outer function {10, p. 469], but it
can be shown directly as follows, Since arg (4H) is bounded in the unit
circle, it tends to its boundary function in the metric of L* (this is trivial);
therefore the same is true for log | AH ', and it follows that the boundary
functions are conjugate,
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So we have exhibited log | A(e®*)H{e*) | as the conjugate of — arg (4(e**)H(e'*)).

a function with bound r_ £.

2
Therefore

| Al H(e) | = ovF

is a representation for w of the desired form (4.1}, We have inferred this
representation from the existence of an element 4 of H™ satisfying conditions
(@) and (b) of Lemma 1; there is such an element if p < 1.

5. Conversely, suppose s has the form (4.1). Multiplying w by a factor
bounded from zero and from infinity does not change the property p < 1, and
80 We may assume % = 0. We set

K(ei®) = gol@)—in(z) -

then wix) = | K(e®)|. 1t is not difficult to see that K belongs to H* and that
D(z) = AN K{z)['’* (where X is chosen so that A\[K(0)]*2 > 0) is exactly the analytic
fonction associated with w by (4.2). It suffices to show that (4.10) holds for
H = XK if A is chosen appropriately in H®. Obviously A(¢®*) = 1—* makes
(4.10) true. Therefore ¢ < 1, and this completes the proof for absolutely conti-
nuous measures .

6. We still have to show that if p <1, then p is absolutely continuous.
Actually a little more is true: p is absolutely econtinuous merely under the

assumption that Jf and [) are at positive angle (Which is true a fortiori if ¥
and I, are at positive angle).

Lemma 2. -  and [, are at positive angle if and only if there is a
constant K such that (1.9) holds for every real trigonometric polynomial f. I
and P are at positive angle if and only if (1.9) is merely required to hold for
those real irigonomelric polynomials [ having mean value zero.

The proof will be given in § 5. Assuming the lemma, We show that p is
absolutely continuous if Jf and [ are at positive angle. Let E be any closed
subset of the circle |z | =1 with measure zero. We choose an arbitrary point
e not in K. According to a theorem of RupIiN {12], there is a function G{?)
analytic for |z| <1, continuous for [2|<1, and equal to 1 on E but O at
e, Furthermore, G can be chosen so that [ G(e**)| <1 for every point e
where G{e?*)5=1. (The set where G(e¢*) = 1 may be larger than E, but it must

have measure zero since G is not constant.) If G(0) = a, then |a| <1 by the
maximum principle.



128 IT. Heusox - G, Szrci: A Problew in Prediction Theory

Now we define the sequence of functions
H,z) = [G(z)]" — a™ (=1, 2, ..)

Each H, is analytic in |2z| < 1, continuous for | 2| <1, and vanishes at 0. If
Hn{ei”}:ﬁ,(e*'m}—if,,(e”) with f., f. real, then f,, f, are conjugate functions
with mean values zero. We are assuming that Jf and [ are at positive angle,
so that {1.9) holds for trigonometric polynomials having mean value zero, and
consequently also for uniform limits of such functions. Therefore We can
find a constant K such that

(4.11) fffidpgli'[fédc =12, ..).

PFrom the consfruction of @ it is clear that the functions H, are uniformly
bounded, and that for each point e®, H,(e®*) tends either to 1 or to O;
the first alternative holds if ¢ is in K. Therefore f.(e**) tends to zero every-
where and boundedly, and f,(e') tends to 1 at least on E. Consequently the
right side of (4.11) tends to zero, but the left side has upper limit at least
wk). Hence p(E) =0 for every closed set K with LEBESGUE measure zero,
and this proves that p is absolutely continuous.

§ b. - Conjugate functions.

(5.1) S qeni

be an arbitrary trigonometric series. The series conjugate to (5.1) is by defi-
nition

{d.2) 5 {— e, )@, £, == SN N,

and if (D.1) and (5.2} represent functions [ and f in some sense, then f is said
to be conjugate to f. The conveniion that sgn 0= 0 implies that every conju
oate function has mean value zero. If f belongs to L7 it is trivial that femsts
in L° and

53) [1fraa< [ irFas

with equality if and only if @, =0. A well-known theorem of M. Rimsz
states that (5.3} holds with exponent p for 1 <p <oo prov;ded a suitable
constant factor is introduced on the right side. Indeed, it is known that the
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BaxNacH space LP can be replaced by an OrLicz space of quite general type.
It does not seem to be known, however, in what spaces Ly the operation of
passing to the conjugate is continuous, even With p = 2. Our contribution
to this question is

Theorem 2. - There is a constant K such that ||f|| < K| f| for every real
trigonometric polynomial f, in the norm of L;, if and only if ¥ and P, are
at positive angle in L.

A necessary and sufficient condition is therefore given by Theorem L.
A summary of previous work on the problem, mostly with p arbitrary, is
given at the end of this section.

2. Theorem 2 is simply the statement of Lemma 2 for the manifolds Jf
and P.. We proceed now to the proof of both parts of the lemma.

An operator T is defined on the set of all trigonometric polynomials by
the formula

T Z gue"* = 3 g,e"?,
n>>0

Using the characterization of positive angle given by (1.8), it is easy to verify
that J and B, are at positive angle in 1] if and only if T is bounded in
the norm of that space. Similarly, Jf and |p are at positive angle just if 7'
is bounded on the smaller set of trigonometric polynomials such that a, = 0.
Consider first the angle between J and P. If 7' is bounded then

| FIl< K &F |

for each trigonometric polynomial F of the form (1.1), where K is independent

of F and the norm refers to the space L.
Since trivially

I IFIE<| Fli,
We have
(5.4 |97 | < K| &F ).
Setting f = & F, which is the general form of a real trigonometric polynomial
having mean value zero, we have exactly (1.9).
Conversely, if (5.4) is true for each F of the form (1.1}, then

I FF=1&F* +[JF [ <(K*+ D[ KF |,

Annali di Matematica 17
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so that T is bounded at least on the set of real trigonometric polynomials
having mean value zero. But if f=f, 4 éf, (Where f, and f. are real trigono-
metric polynomials with mean value zero), then

I T+ | SUTA N+ TRTS B AT+ 1 1) < V2B fi +ife .

This completes the proof for the manifolds J and P.
Now suppose T is bounded on the set of all trigonometric polynomials,

Then
Ty B axe™ = ¥ quev'*
n<y

defines a second operator which is also bounded (because passing to the
complex conjugate leaves the norm of a function unchanged), and consequently

(b.5) I 3; ane™ | < Ol T ane™|.
140

Suppose the trigonometric polynomial on the right side of (5.5) is real. Then,
by what has just been proved,

(5:6) | S (—den)anem= | < K| S agen]].
nio

Combining (5.5) and (5.6) we find, with f(x) = Za.e",

(5.7) I Fli<ECITIL

Finally suppose that (5.7) holds for all real (and hence, With a new
constant, also complex) trigonometric polynomials f. We have shown that T
is bounded on the set of complex ftrigonometric polynomials having mean
value zero, and We only have to remove this restriction on the domain of 7.
Apply the conjugacy operation to f twice; We obtain — f 4 a,. Therefore a,
is a bounded functional of f. and so

LIl =ITf—a) | S D] —a | E|f]

This completes the proof of Lemma 2, and so also of Theorem 2. The proot
of Theorem 1 is also finally complete at this point.

3. Still another form of Theorem 1 may be mentioned. The functions
{emw| are said to be a basis in L; if every element [ of the space has a

unique expansion

fix) C\D_}; an(f)e=,
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convergent in morm (2, p. 110]. It is easy to show that the exponentials torm
a basis in L; if and only if the manifolds J and B, are at positive angle.
The question Which spaces Lﬁ have the exponentials for basis is therefore
answered by Theorem 1.

4, The history of these problems is rather involved. HARDY and LITTLE-

wooD [7] showed that the conjugacy operation is bounded in L, if the weight
function w has the form

(5.8) w(x) = | | (—m <@ < m),

with — 1 <« < 1. {Actunally this is a special case of their theorem, which
applies to L} with p > 1.) BABENKO [1] rediscovered their result, and applied
it to the basis problem. N. BARI had asked essentially whether the exponentials
could be a basis in L., if w Were unbounded from zero or from infinity, and
BapeNko showed that the weight functions (5.8) provide an affirmative answer.

Recently GAPOSKIN [4] proved a theorem Which, for p = 2, states that
the conjugacy operation is bounded if

(5.9) | < kw

for some constant k. (It is easy to apply this ‘result to the functions (5.8).)
In correspondence with us, GAPOSKIN has observed that his condition (5.9)
is the same as our (4.1), in the following sense: w has a representation (4.1)
if and only if there is a bounded function w, such that

|y | < kwy,

where

Wy == e~ i,

The paper of GAPOSKIN [4] contains the best results known for p =2,
but no condition has been found which is necessary and sufficient for the
conjugacy operation to be bounded in LI if p == 2.

From (1.6) and (4.5) it is clear that the problem being studied can be
stated as a problem about the bounds of certain bilinear forms. As we have
mentioned, our methods are related fo those used by NEHARI [11] to study
bilinear forms, and to those of ROSENBLUM in work still unpublished.
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b

$ 6. - The angle between Jf and P.

1. 1t FF and P, are at positive angle, it is trune a fortiors that Jf and P
are at positive angle {since I is contained in ), but the converse is not
trne. We have proved that p must be absolutely continanous if JF and P are
at positive angle in L} and so We consider only such measures.

Theorem 3. - If | w=ids < oo, then I and | are at positive angle in L,
if and only if JF and D, are at positive angle.

Suppose that o= is summable and that J and ) are at positive angle
in L. ¥rom the soluticn (1.5) of the second prediction problem we know
that there is a constant A such that

a|<Afa+ F+4P|

for all constants ¢ and trigonometric polynomials F and P of the form (1.1}
and {1.2) respectively. Morcover

I Fi<B|F+ P

because Jf and P are at positive angle. Therelore
|FISBIF+Pi<Bllla+ T+ Pl+lal|II]<Cla+F+ PJ.

This shows that Jf and [P, are at positive angle,

2, Tf w—* is not summable the situation may be very complicated. The
argument used to prove Theorem 1 can be repeated up fo a certain point,
and gives the following result.

Theorem 4. - J and D are at positive angle in L}, if and only if w has
the form

(6.1) w=c|K|

where u is a bounded real function, and K belongs to H* and satlisfies

T
5 — &

6.2 jarg K{e*) — x| gz

(mod 2r)

for some e > 0.
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The function K is the same function as AH in (4.10); but we cannot
wave aside the qualification med 2n as previously, and it may not be possible
to choose K as an outer function. In spite of its similarity to (4.10), (6.2) really
gives much less information.

It K{z) has a zero inside the unit circle, then K can be replaced by a
new funetion K, having the same modulus on the boundary and satisfying

|arg K (e') ] <g— e, so that actunally w has the form of Theorem 1. In the
representation (6.1} it suffices therefore to consider functions K without zeros
in the circle, provided w— is not summable.

The proof of Theorem 4 requires no new idea, and We omit ift. A more

satisfactory solution of the problem would depend on the deeper properties

of inner and outer functions. An impressive but still incomplete treatment of
that subject is given in [10].

§ 7. - Some particular weight functions.

1. As we have mentioned, the validity of (1.9) for the weight functions
wle) =|x|* {— < x <n) has been studied before. For — 1 <« < 1 it is easy
to deduce that J and [, are at positive angle from Theorem 1; for o outside
this interval either # or =~ is not summable, and so JJ and [P, cannot
be at positive angle. This is the extent of what was known about these
weight functions. It is not obvious, however, for which values of « the mani-
folds Jf and P are at positive angle, and We consider that question now. In-
stead of [« |* we shall deal with the periodic Functions

Wofee) =1 1 4 ei* |7,
Theorem 5. - J and D are at positive angle in Lf% if —l<a<l1, and
if 1 <a<3, but not for other values of «.

Let Kiz) = (1 -+ 2)#, a single-valued analytic fanction in the unit circle,
taking the value 1 at the origin. For « > — 1, K belongs to H* and is an
outer function. Its radial limits are

Kie*) = (1 + o)

where arg (1 + ¢'#* is defined to be zero for & = 0, continuous for —n <2 < 7,
with jump of ne at x ===n, For —1 <a<1, K takes the place of H in
(4.10) with 4 = 1, showing that Jf and [, are at positive angle, and therefore
also J and P. For 1 <a <3, K satisfies {6.2) because

arg (1 + e®)s = ax/2 (—r <2< m).
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Hence J and [ are at positive angle, although J and [P, are not. The more
interesting part of the theorem is the negative part which remains.

2. From (4.5) and the remarks which followed, it is easy to see that ¥
and [D are at positive angle in L}, if and only if

(7.1) T == Bup / FGe-%ds| < 1,

o

where F and @ range over the trigonometric polynomials of the form (1.1) with
[ 1Fpas= [1 @ Pdo = 1

and ¢ is the argument of the function H associated with w, by (4.2). Now
Kle®) = (1 + ¢} = we'e " (—r<ax<T

is an outer function, and must therefore be the same as H. Hence in this case

s =2z (—n<w<n)

LR

and {7.1) hecomes
(7.2) T = sup| / FGe™ 2" do .

—

The limits of integration are relevant because the integrand is not periodic.
Suppose that

Flei) = Y a,e"~, Gle®) = X b,em>.
7o 1W>0
Using the formula
n »
sin A

/ pidolr) = (4 0)

we have from {7.2)

-

. o

smn(m—}-n—,;j-)

BN ~
T=sup. N Qb

24
", #>0 n(m—l—n——é)
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under the restriction

S anff= 3 |buP =1

Replacing ., by (— 1)@y, by by {— 1)*b,, We find the simpler expression

. . sin A A _a
o = n| =)

It is well-known that the supremum is not diminished if we take b, = a,.
We denote by B()) the bound of the bilinear form

_ Omle s
i m,§>om+%+k’ Sla. =1

for each real A such that A 4 1 is not a negative integer.

8. It is well-known [13] that B(}) <|= cosec =) |for all A. (This merely
says that t, defined by (7.2), does not exceed 1, which is obvious here.) Moreo-
ver Bl0)=m, a fact which is known [8, p. 226] but more difficult to prove.
In computing B(A) from (7.4) it is clearly enough to consider non-negative a.,
so that B(A) is non-increasing, for A > — 2. Hence

m < B(A) < | m cosec mA | (—2<x<0).

It follows that B(— 3/2) ==, and therefore

Bl == (—3/2<x<0)
From (7.3) we [ind

T o=

iy 0<e<s),

and in particular
t=1fora=1, 3.
Suppose now t <1 for some o> 3. Then rewrite (7.2) with G(e*) =
= e (y{e") :
} FGleixe"igwdc ,

—T

{7.5) T = sup

where F ranges over the unit sphere of H; as before, but G, over the unit
sphere of H* By (4.5), the supremum in (7.5} is the number p for the weight
function wp With § ==« — 2. But wz" is not summable if $>1, and so it is
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impossible that p < 1. This contradiction means that T=1 for «> 3. This
completes the proof of the theorem.

It is curious that Jf and [ are at positive angle for values of « close to
1, but at zero angle if o =1.

4. We do not know whether the local properties alone of w determine
whether J and [P, are at positive angle. Under additional hypotheses, however,
we can answer the question, and thereby deal with certain new weight fune-
tions.

Theorem 6. ~ Let w be o weight function with associated functions H and

(7.6) o(e*) = lim arg Hire™).
r4l

Suppose that p is continuous except for jumps at a finite number of points. In
order for F and I, to be at positive angle in L},, it is necessary and sufficient
that each jump have wmagnitude smaller than .

Let ¢ have jumps Whose magnitudes are smaller than m. There is a con-
tinuous, periodic function ¥, such that for some ¢ >0

T &
(@.7) P — W< — s

-

Indeed, define W, to be equal to ¢ except near the jumps of p; near those
points interpolate W, so that (7.7) holds. The periodicity of W, follows of itself.

Now we approximate W, with error less than ¢/2 by a continuously dif-
ferentiable function W. Then the conjugate function W is continuous and
periodic. and

Ale) = e T () =il ()

is the boundary function of Afz), analytic for |2| <1 and continuous in-
2] <1. We have

(a) | Ae®) | > inf e’ > 0,

() | — o) — arg A(e*) [= | — () + W) [ < 5 — e
By Lemma 1, J and [, are at positive angle.

Conversely, suppose that Jf and [, are at positive angle in Lj, and
that ¢ has only simple discontinuities. For any x, and real o the function

(et’x@ — S}x

is analytic in the ecircle, and has boundary fanction whose argument is



H. Hurson - G. Szrad: A Problem in Prédiction Theory 137

linear except for a jump of magnitude me at e**. Therefore wWe can choose
points «; and weights o, (j =1, 2, ..., nj so that

(7.8) Kie) = Hig) 11 (6% — )%

has a boundary function K{e*®) whose argument is continuous everywhere.
Moreover arg K{e**) is the conjugate of log | K(e®)| (except for an additive
constant). This fact is easy to verify by considering each factor in (7.8) sepa-
rately, and referring to the definition of I given by (4.2). The continuity of
arg K{e'*) implies that both K and K~ belong to L? for every finite q
(15, p. 254]. But if w has the form (4.1), as We are assuming, then w belongs
to L? for some p > 1, so that the product H{e!*)K~*(e*} is at least summable.
We conclude from (7.8) that each «; is smaller than 1. Now if w has the
form (4.1), the same is true of w~?, and the associated outer function is H -,
whose argument has the same jumps as those of H but of opposite sign.
Therefore each «; is larger than — 1, and Theorem 6 is proved.
Corvollary. - ¥ and I, are af positive angle in L., where

n
wix) = 11 el — e |%
1
and the points ¢ are distinct on the circle, if and only if

|aj‘<1 (jzl)"')n)'
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