Analytic expressions for bounded solutions of
non-linear ordinary differential equations with
an irregular type singular point.

Dedicated to Professor Masuo Hukuhara on his sicty-third birthday

Masamiro Iwano {Tokyo, Japan) (*)

Summary, - We shall discuss how fo construct analytic expressions for bounded solutions of
nou-linear ordinary differential equations of the form {A) which fend f0 0 as = ap-
proaches the origin along the positive real axis.

§ 1. - Introduction.

In this paper we consider two systems of non-linear ordinary differential
equations of the form

(A) $G+1y, = f.z, Y, 2), xe = glz, ¥, ?) <’ = %);
where we assume fhat:
1) o is a positive inleger.

2) « is a complex independent variable, y and z are m-and n-column
vectors with elements {y;} and (2.} respectively.

3) flz, y, &) and gz, y, 2) are respectively m-and n-column vectors of
components |f;t and 1g:t which are holomorphic and bounded funclions of
(=, 9, 2) for

o<t lyl<d, fel<a  (ly]= max \y)
and we have {10, 0, 0) =0, ¢g(0, 0, 0) = 0.

4) An m>m matric & = £,0, 0, 0) with elements {(3f;/0Yrlemyms=o | 18
non-singular and has Jordaw's canonical form with upper triangular form.

{(*) Entrata in Redazione il 24 agosto 1968.
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Since ¢ is a non-singular matrix, we can assume withont loss of gene-
rality that:

5) The following relations hold:

(1.1) 1:0) = f£.0, 0, 0) =0, £:(0) = £2(0, 0, 0) =,
(1.2 gy(o) = gy(O, O; 0) = O:
where

fz(o) — ' (af]'/azh)x:y=z=0 ‘, gy(o) = 5 (agk/ayh)x=y=z=0 b

Iudeed, it (1.1) is not true, it is sufficient to make a linear transformation
with constant coefficients of the form

y=y— A7fL0% —xd7fL0), 2=z

where &' is the inverse matrix of &. If (1.2) is talse, it is sufficient to
make the change of variables

Y = y~, g = — x“gy(O}a—lg - z.

The last transformation does not disturb any components of the vector
g0, 0, 0) because f.(0) = 0.
We assume moreover that:

8) Al the eigenvalues pi of an n X n mairiz B = g0, 0, 0) with ele-

ments {(8g1/0%1)nmy=s=0} hQve positive real paris and B has Jovrdan's canonical
form:
(18) Repi>0 (k=1 ..., n)

The purpose of this paper is to solve a problem on constructing analytic
expressions for bounded solutions of equations (A) that tend to 0 as z ap-
proaches the origin along the positive real axis under further additional as.
sumptions (see Sections 3 and 4). The motivation of this study was the pro-
blem for the case of m == % =1 that Professor M. HUKUHARA proposed in
connection with the study of the boundary layer differential equation.

Previously the author developed, in his papers [3, 4], a general theory
to construct analytic expressions for bounded solutions for differential equa-
tions of the form

xlm(xT)y/ - A(w)?/ + x”T“f(m: Y), 10, O) = Oa
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where 1.(z7) is an m X m diagonal matrix with elements {z%| with non-ne-

gative integers t;, |t| denotes max (t), A(z) is an m X m diagonal matrix
j=1
whose components are polynomials of z of degree at most |<]— 1, flz, »)

is an sm-column vector function such that f,(0, 0) has JORDAN’S canonical form.

However, as will be shown below, our previous theory is ont always
useful for our purpose of this paper. Therefore there is need for an improve-
ment, if it is possible, on the method to construct analytic expressions for
bounded solutions. We have succeeded in improving the method for a special
case of equations (A).

1°0. ExaMPLE. -~ We shall illustrate a comparison between the previous
method and the improved method, which we are going to develop in this pa-
per, by the following example:

(Ay) $G+ly{ = flz, ¥, 2), x7 = pe (6> 0, p=E 0)7

where y and z are both scalars, f(z, 9, 2) is a holomorphic scalar funetion of
(z, ¥, #) at (0, 0, 0) and vanishes there.
Assume that

0, 0, 0)=v =0, flz, 0, 2) £ 0.

Obviously the equations (A;) have a form similar fo equations (A).

It is expected that, if v > O and p > 0, equations (A;) have a general so-
lution which tends to O as x approaches the origin along the positive real axis.
However, our previous theory does not give any information about the ex-
istence of such a solution. The reason is that, when we construct an analytic
expression for a particular solution of equations (A;) which tends fo 0 as z
approaches the origin through some sector, say ® < arg z <@®, the opening
angle of this sector is too small to contain the positive real axis. Indeed, by
applying directly our previous theory to equations (A;), we can get the follow-
ing resulf:

Hguations (A,) have a particular solution of the form | ®{(r, x+C"), 2+,
whenever the values of x and x¢C' satisfy inequalities of the form

(1.4 O<z| <8, @< arg = <@, |0 < ¥,

where the angles @ and @ are given by either

1 - 1
(1.5) @za(arg y —arg p) -+ ¢&", @:E(arg v — arg p - 2rx)-—e”
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or

(1.6 0= i—(arg y—arg p—2mn) 4 ¢, 0= -Gl-(arg vy —arg u)—e”’

for a sufficiently small positive constant . d(z, 2) is expanded to a uniformily
convergent power series of z for

(1.7 O<lz|<E, @< arg 2 <@, |2] <¥

whose coefficients are functions admitling asymplolic expansions in powers of
x as x tends to O through the secior 8 < arg z <®. 0" is an arbitrary constant.

If v>0 and p >0, the sectors @< arg # <@ With (1.5) and (1.6) can
never contain the positive real axis. To explain how to determine the angles
® and ®, we shall state a lemma which, in onr previous theory, played a
fundamental role in constructing the solution @&, «#C"), z+C"|. The lemma
can be stated as follows:

LuMuMa L. - Lef Az) = — v/oz?. We can delermine a function w(¢), which
is strictly positive valued, bounded and continuous for ©® = ¢ = @, in such a
way that:

For any point (., 2%) in o domain of the form
(1.8 0<|z] <fwlarg z), < arg z < @, |#| <?",
there exists a curve I'., joining the point x, with the origin, which salisfies

the following two conditions:

i) The curve ¥, s entirely conlained im the domain (1.8) except for
the origin.

i1y As z wmoves on the curve I',, we have an inequality of the form
d

(1.9 age“gel‘("} Z ||t e RAW Iy e
and, moreover, an inequality of the form
(1.10) (%1:590"{ Z | el [ple  (O"=a7re).

Here s is the arc length of the curve ., measured from the origin to the var-
iable point z and > 0 is a sufficiently small constant.

In other words, the existence of a function w(p) and a curve I, with the
above specified properties is the condition to determine the sector @ < arg
z < @. Obviously a domain of the form (1.8) is equivalent to a domain of the
form (1.7).

However the above lemma can not always be extended to the higher di-
mensional case of equations (A:) such as

(As) wU‘H?/, = f(z, Y, 2) xy = 1,;(@)2,
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where ¥ is an m~column vector, # is an #~column vector, f(z, y, 2) is an m-col-
umn vector whose components are holomorphic functions of (z, y, 2) af
(0, 0, 0) and satisfies f(0, 0, 0)= 0 and det f0, 0, 0)==0, 1.(p) is an » X n
diagonal matrix with elements {p;! such that Rep; > 0. Therefore, we studied
a sufficient condition, which the author called «Hypothése By » in Section 40
in [4], in order that we can construct a function with the properties similar
to w(p) for a non-empty sector @ <arg z<@'

2°, IMPROVEMENT ON THE METHOD. - Since z = 0 is an irregular type sin-
gular point of equations (Ay), an inequality of the form (1.9) plays an essen-
tial role for constructing bounded solutions of equations (Ai). As can be easily
seen, an inequality of the form (1.10) shows that a solution Z(rx, z:, 2') =
= .¥{(z; '2') of the equation z¢' = pe satisfying initial conditions z==¢' af
=z is in absolute value a monotone increasing function of s for zel.,.
However, as we have already remarked (See « Théoréme 5> in Section 44 in
[4]), the inequality (1.10) is not always necessary, but it seems to be sufficient
that there exist an angular domain A in the z-plane and a simply connected
bounded domain ® in the vicinity of #==0 in the z-plane such that:

We have always |z, Z(x, z., 2)} €A X D when z moves on a curve I,
‘except for the origin) on which an inequalily of the form (1.9) is satisfied, no
matter how we choose the initial values z, and 2z' in A X D. Moreover, the
boundary of ® may depend on arg =z for x€ A provided that D confains a
circle |2| = p with small radius p independent of .

To have Z(z, x1, ¢)€9D for zel, it is necessary that, as ¢ moves on I,
the function |Z(z, 1, 2')/2'|, considered as a function of (#, 1, 2%, is uni-
formly bounded for z €I, no matter how we choose z; and 2* in A X D.

Thus the anthor [6] has succeded in improving the method to construct
analytic expressions for some bounded solutions of equations (Aj). By applying
the reasonings in [6] to equations (A,;), an improved result can be stated as
follows:

Equations (A.) have o particular solution of the form , ®%x, z+C"), z¢C"{,
whenever z and «*C" satisfy inequalities of the form

(1.4)° 0<|z|<¥, @©°<argz<®° lzvC'] < ¥,

where @° and @° are given by either

1 Br - 1 o\

0 0 - — 44 O e b 2
(1.5 e _c(argv 2)—}—3, ) ——G<arg V+2} 3
or

1 b - 1 b

0 O e e it 0 o B B

(1.6) ¢) _G<argv 2>+a,® _.c(arg V+g) e’
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®%z, 2) is a holomorphic and bounded function of (z, 2) for
(L7p° O<|z[<E, @'<argz< @, 2] <¥

and admits there a uniformly convergent expansion in powers of z with coef-
ficients asymptotically developable in power of x as z fends to the origin
through the seclor ®° <arg = < ©°.

Obviously the sectors @° < arg « < ®° with (1.5)° and (1.6)° contain both
the positive real axis whatever the value of arg v is. Therefore the improved
theory can construct a solution of egquations (A,) which tends to O with the
order of a certain positive power of z as z approaches the origin along the
positive real axis.

The condition which is imposed upon the sector ®° < arg z < ©° will be
clarified by the lemma below. -

Lumma I'° - We can determine functions v%s) and Pt which are strict-
ly positive valued, bounded and continuous for ©° = ¢ =0° in such a way thal:

For any point (z., 2Y) in a domain of the form

(1.8)° 0 <z| <Ew%arg 2), |2| <¥'y%arg =), 0°<arg z <0°,

there exists a curve I3, similar fo the curve T, on which the inequality (1.9)
i8 satisfied and an inequality of the form

(1.10)° lzrC"| < 8"y Yarg x), 8°<arg z < e°

with C" = g'z7+ also is satisfied.
Clearly a domain of the form (18)° is equivalent to a domain of the
form (1.7)°.

3°. OUTLINE OF CONTENTS. - Chapter I will be devoted to the statement of
our main results with further additional assumptions. We shall explain
briefly the reasons why we have introduced those assumptions.

Unfortunately the improved method is not still useful for equations such as

(As) 90°+1y' = f('% Y, 2), z8 = B2 -z,

where . is a positive infeger and f(x, y,2)is a scalar function holomorphic in (z, ¢, 2)
at (0, 0, 0) and vanishing there. As is well known, the second equation of
(As) arises in the theory of Brior-BoUQUET type singular points as one of
the reduced (simplified) equations. In this case a general solution of the sec-
ond equation of (A;) has the form z¥((C” + log #) and depends actually on



M. IwanNo: Analytic expressions for bounded solutions, etc. 195

log z. It seems for me to be doubtful that we can determine a function ®{y)
with the above specified property in such a way that |Z(x, z., #')/#'| is uni-
formly bounded for z on I, and for any z, unless an inequality of the form
(1.10) is satisfied on I, . Of course the range of z, is resiricted within an
angular domain.

By virtue of this reasom, we consider first the case when equations (A)
have a particular formal solution of the form

(1.11) y~ ¥ a(L(er)0")'Py, 2 ~ 3 2L (a")0")7 Q.
iq

lLq

Here P, and @ are m- and n-~column constant vectors respectively, 1,(z*) is
an n X n diagonal matrix with element {z"+}, " is an n-column constant
vector with elements {({, ¢ is an n-row vector with elements {g.} with
non-negative integers ¢; and

(L z9C") = (an 0™ ... (@*-Cy)™.

In order for equations (A) to have a formal solution of the form (1.11), we
introduce Assumptions T and II in Section 3. Concerning an analytic meaning
of this formal solution, we have Theorem 1 in Section 3. This theorem as-
serts that:

If we formally rearrange the formal solution (1.11) in the form of a sin-
gle power series of 1,(a%)C", the resulting formal solution is uniformly conver-
gent with coefficients admitiing asymplotic expansions in powers of z.

We write this uniformly convergent solution as {®(z, 1.a)("), W(z, 1.
(z+C”")} and apply a transformation of the form

(T y=y+ 0@ 2, o=@z 2

to equations (A). Then it will be verified that the equations satisfied by

~

(y, #) are written as

By oty = H(z, ¥, @), ze = Gz, ¥y, 2),

where ﬁ’(ac, 7, 5} and é(:z;, 4y, 2) are respectively m- and n-column vectors
whose components are expressed by uniformly convergent power series of y

and # with coefficients admitting asymptotic expansions in powers of 2. Since
y=0 and z= 1,/2(C” are a particular solution of equations (Bi), we have

Pz, 0, 2) =0, Gz, 0, 2) = 1.(we.
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Let us apply next a transformation of the form
(T2) Y=Y+ A, 2)Y, ==2Z+ 2B, 2)Y

to equations (B)), where A(z, Z) and Bz, Z) are respectively m X m and % X m
matrices whose components are expressed by uniformly convergent power se-
ries of Z with coefficients admitting asymptotic expansions in powers of z. Let

(B2 oY =F Y, 4), 27'=G@ Y, Z)

be the equations derived from equations (B,) by applying the transformation
T,). We will try to simplify the matrices Fy(z, 0, Z) and Gy(z, 0, Z). From
the formal point of view, it is easy to see that Gy'z, 0, Z) can be reduced
to the zero matrix while Fy(z, 0, Z) involves still a power series of Z even
in the case of m =1. In order for the matrix Fy(z, 0, Z) to have a very
simple form, we introduce Assumption IV in Section 4. Then we have Theo-
rem 2 in Section 4 which asserts that:

We can choose the matrices A(x, Z) and Bz, Z) with the above specified
properties in such a way that Gy(z, 0, Z) is reduced to the zero matrixz and
Fy(z, 0, Z, is reduced to a diagonal matriz, say 1.0z, Z)), whose diagonal
components are polynomials of x of degree at most s with coefficients admitting
uniformly convergent expansions in powers of Z.

This case seems for me to be an only case when our simplified equations
can be integrated by quadratures. However some troubles will arise in the
attempt at the proof of uniform convergence of power series of Z appearing
in the components of the diagonal matrix 1,(A(z, Z)). In order to overcome
those troubles, we must construct first of all the solution {®(z, 1.x+)0"),
Uz, 1.(a4)C")t in a particular way. This is the reason why the construction
of this solution which is going to be developed in Chapter III needs slightly
lengthy reasonings.

Finally, in order to construct a general solution of equations (B,), we
consider a formal transformation of the form

(T) Y~u+ Yuds, v), Zev4z0 3 urBya, ),

|pl=2 |pl=2

where 4,(», v) and Bz, v) are respectively m- and n-column vectors which
are expressed by uniformly convergent power series of v with coefficients
admitting asymptotic expansions in powers of z. Here p is an m-row vector
with elements ;p;} with non-negative integers p;, and jp| = pi+ ... - pn. In
order for the equations on {u, v} to have the simplest form, we introduce
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Assumptions IIT and V in Section 4. Then we have Theorem 3 in Section 4
which asserts that:

We can choose the vecfor functions Az, v) and Bjz, v) wilh the above
specified properties in such a way that the power series (T';5) are uniformly
convergent and the simplified equations take the form

(B) oty = 1Mz, v)u, zv' = 1.(p)v.

In Section b, equations (B) will be integrated by quadratures.

In Chapter II we shall establish two fundamental existence theorems
(Theorem A in Section 6 and Theorem B in Section 11) which will play an
important role in the proof of Theorems 1, 2 and 3. From the proof of Theo-
rem B one can know our basic ideas about how to study an analytic meaning
of formal solutions. Theorems 1, 2 and 3 will be proved in Chapters III, IV
and V respectively.

CEAPTER I.

Assumptions and main results.

§ 2. - Notation and Definitions,

1o, Norarion. - 1, is the m X m unit-matrix, ¢ is an m-dimensional
row unit-vector whose j* compouent is equal to 1.

For an m~-column vector 3 with element iy;!, the expression 1,(y) denotes
an m X m diagonal matrix with diagonal elements y;!.

If » is an m-column vector with elements {u;}, [u] denctes an m-column
vector with elements {|u;!}. In particular, if all the components u; are non-
negative real numbers, the m-column vector [u] coincides with the m~-column
vector u.

For m-column vectors u and % with elements {u;} and {#;} respectively,
a vectorial inequality of the form [u] = [#] means that we have |u;| = f&}]
for each index j.

The components of an m~ and n-row vectors p = (P1, .., Pn) and ¢ =
= (g1, .., ¢.) are all non-negative integers and
(2.1 lpl=p1+ D2+ - + Pa.

For an m-column vector y with elements {y;}, the symbol p.y is the inner

product given by § p;y; and the symbol y? stands for the scalar expression
j=1

(2.2) ¥ = yvy:
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For an m~column vector y with elements {g;! and an n-column vector
tunction f(z, y) with elements {f{z, »)!, the symbol f, %, y) denotes an n X m
matrix given by

0

, aymf(“’ y))-

0
2.3) fe, y)=(@;f(x, W,

The norm of an m-vector y with elements {y;| is

m

(2.4) Iyl = max [g;].

je=1

To simplify the description, we use the following symbols for a scalar w
and for an m-row vector y with elements {1,

(2.5) WY = (W, .., W),
(2.6) e8Xp ¢ = (6XP Y1, ., ©XP Yn) OF & == (&1, ..., &'m),
2.7 Re y = (Re 41, ..., Re y.), Im y=m y1, ..., Im y.)

with y = Re y + V—1 Im y. 1f yis a column vector, w”, ¢”, Re y and Im y
are all column vectors.

20, DEFINITIONS. - A funetion f(z), which is holomorphic and bounded
in z for

O0<|z|<E, @<argw<(_9

and admits an asymptotic expansion in powers of z as z tends to O through
the sectors ® <arg z < @, is said to belong fo class C(®, ©; &)

The symbol f{z; y, #] denotes a polynomial of z of degree o. If the co-
efficients of this polynomial are holomorphic vector functions of (y, #) for
lgl <8, |2] <3, we shall say that f{z; y, #] has Property-c with respect to z
for Jy] <5, |¢] <.

A vector f(z, y, #), which is a holomorphic function of (z, y, #) for

D) O<lzi<g @<argzs<o, Jy|<3, |o]<?,

is called to have Property-9f with respect to y and z in (D), if the com-
ponents of f(v, y, ) admit uniformly convergent expansions in powers of y
and z for (D) and if the coefficients of this expansion belong te class C
(®, 8; &
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Let there be given a finite number of monomials of z—* of the same
degree, ray a:

j=1,2, .., M)

Then sectors of the form

(2.8) E(arg Y — Ty 2nh) <arg < %(arg Y; +z + 21:%)
g 2 G 2

and

@.9) arg 1+ 5 + 20 <arg o < g v, + ot o)

are said to be o mazimal negative region of Q;(x) and a mazimal positive
region of Q;(z) respectively, where k and h are any integers. The maximal
negative (or positive) region has the meaning such that, if x approaches the
origin through any subsector of the sector (2.8) (or the sector (2.9)), the funec-
tion exp (Be Q;()) tends to O (or infinity) exponentially.

We shall say that a sector @ < arg = <@ has Properly-8 with respect to
monomials | Qa(x), ..., Quls)} if this sector does not contain any maximal
negative region of Q;(z) for each index j and if there exists in this sector a
direction for each index j such that, as « approaches the origin along this
direction, exp (Re ;) tends to infinity exponentially.

REMARKS 1° - In 1942 Professor Masuvo HURKUHARA [1] introduced the
notion of Property-8 in order to complete the theory of asymptotic expan-
sions of solutions of a system of linear ordinary differential equations with
an irregular singular point which was founded first by H. PoiNcARE and
was studied by J. TryirzINsKY, J. ManMQuUist. HUKUHARA'S condition for
a sector ® < arg « < © to have Property-8 with respect to monomials { Q.(x),
wr, Qula)i is weaker than ours. Namely M. HUKUHARA assumed only that
the sector © < arg # < O does not contain any maximal negative region of
Q;(x) for each index j. Moreover, in his case, Q;(z) may have distinci degrees.

20, - Assume that Q z) have the same degree, say o. Then, for a pre-
assigned angle 8,, there exists always a sector @< arg z < @ which has Pro-
perty-8 with respect to the monomials (Q1(x), .., Qu(x)} and does contain
the direction arg z = 6.

In the case of 8, =0, we choose arg y; so that —n <argy,==n(j=1,
2, ..., M) and define ¢, 6” by 6 = min {arg y;; arg y; > 0{, 8" = max {arg
v;; arg y; <O}
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Then, as can be easily verified, sectors of the form

m " 1 1 E_ "
_—,2‘6+€ < arg m<0(9 —]—2) g,

1

w
g

" (& 14 14
(8 —§>+e <arg o < 5o —e

have both Property-8 with respect to {Qi(z), ..., Qu{z)} and do contain the
positive real axis, where ¢” > 0 is sufficiently small.

§ 3. - Assumptions I, Il and Theorem 1.

In order to constract analytic expressions for bounded solutions which
tend to O with the order of a certain positive power of z as z approaches
the origin along the positive real axis, we introduce the following assumptions:

AssuMpTION L. - B = g.(0, 0, 0) is a diagonal matrix with elements |p;}.
We denote this diagonal matrix by 1.(p), where p is an n-column vector with
elements {p,}.

AssumprioN II - i) The k™ component of the n-vector ¢.0)= g0, 0, 0)
is zero if p,=1. ii) For all the arrangements (I, q¢) of 1+ n non-negative
infegers 1, 1q:} such that | 4 |q|= 2, we have

(3.1 wi=l4q-p for each index k.

By virtue of the first portion of Assumption IT we can assume without
loss of generality that:
940) = 0.

Indeed, if the k* component of g.0), say §;, is different from zero, we have
pir &= 1. We make then a linear transformation of the form

Y=y; en==2slb = k), 22 = — al{pp — 1) Bx + 21,

which reduces 8, to 0 without disturbing any other components of g,0).
For equations (A:) and (A,) that appeared in Introduction, Assumption I
is auftomatically satisfied and Assumption II is unnecessary.
Let v; be the eigenvalues of the matrix & = 7,0, 0, 0) and put

7 ,
ija (=1, 2, ..., m)

A](.’B) e
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Then we have the following theorem:

TrEOREM 1, - Adssume that, besides Assumptions 1) ~ 6) in Section 1,
Assumptions I and I1 are satisfied. Let ®, < arg z < @1 be a sector with
Property-8 with respect to  Ai(x), ..., M)} and containing the positive real awxis.

Then equations (A) have o particular solution of the form

(S1) y = O, 10", 2=¥@, 1.@C)
whenever
(8.2) 0< || <E, @1<argz <01, [1.anC]|<d)

for suitably chosen positive constants &1 and 1.
Here @@, v) and Wiz, v) are respectively m—- and n-column vectors with
a unique representation of the form

8.3) Oz, v)= ¢[z; v] + 2Oz, v), Wz, v) = Yz; v] + 27V, V),

where ¢[z; v] and Y[z; v] have Property-c with respect to z for |v] < 8%,
while ®°%x, v) and Uz, v) have Property-f with respect to v in

(3.4) 0<lz|<&,0 <arge<0:, |o]<?¥.
In particulor, we have

- d
18.5) —é-?}np[ac, V]| pompmo = 1.

This theorem will be proved in Chapter IIL

The solution | ®(z, 1,(:#0"), Wz, 1.(2#)0")} tends to 0 with the order of
a certain power of z as z approaches the origin along the positive real axis.
By the definitions of Property-o and Property-SY, it is immediately seen that

the vector functions &z, v) and W(z, v) admit uniformly convergent expan-
sions in powers of v for (3.4) with coefficients belonging to class €(®:, @1; ED.

§ 4. - Assumptions III, IV, V and Theorems 2, 3.

1°. PRELIMINARY TRANSFORMATION. - By using the vector functions
@z, v) and Wz, v) appearing in Theorem 1, we apply a transformation of
the form

(T1) y=y+o@, 2, 2=Uax z?

Annali di Matematica 26
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to equations (A). This transformation is non-singular by virtue of (3.5).
Observe that the equations satisfied by {9, 2} have y =0, z = 1,(z*C" as a
particular solution.

Hence the transformed equations can be written as

oo

x6+1?}' = &‘gf + Oz, g)é + T Pz,

Ip =2

(B1)
z7 = ln(p); -+ Dz, ;),’;' + X ?}‘DGP{‘Z: z

Ip|=2

W
——
iy

where the power series in the right-hand members are uniformly convergent for
(4.1) 0<|e| <, @ <arge< @,y <di, 7] <ds

for suitably chosen positive constants £, and di. Here Ci, 2), D, 2l Fol, 2)
and @,r, ) are respectively m X m, n X m, m X 1 and n X 1 matrices
whose components have Property-9f with respect to z in

(4.2) O<l$'<§1, (‘21 Larger <@, “;ﬂ<d1
and, moreover, we have
4.3) g0, 0 == 0, Do, 0)= 0.

To simplify the description, we used here the symbol C(0, 0) in place of
lim C(z, 0). We shall use this symbol hereafter throughout this paper.
x>0

Since

~ ~ ~

Clz, 2) = f,lz, ®(z, 2), Tz, 2)) — &

and f,z, ¥, #) is holomorphic at 0, O, 0), the relations (3.3) imply that the
matrix Oz, ¢} has a unique representation of the form

(4.4) Clz, 2) = c[z; 2] + 2o 0%z, 7).
Here c[z; 2] has Property-c with respect to z for |2] < d. while €, 2)
has Property-@f with respect to 2z in (4.2).

20, ASSUMPTIONS. - In order to construot an analytic expression for a
bounded general solution of equations (B;) which tends to 0 as z approaches
the origin along the positive real axis, we introduce the following assumptions.
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AssumprioN 111, - The inequalilies
(4.5) Re Az) = Be As(z) = ... =ReA.(z) <O
hold for = on the positive real axis, where

(4.6) Az} = — v;/oz° =1 2, .., m).

AssumPprioN IV. - The eigenvalues {v;} of the matrix & = f,0, 0, 0} are
mutually distinct.

Since & is supposed to be JORDAN’S canonical form, this assumption im-
plies that & is a diagonal matrix with elements {v;}. We denote & by 1.(v),
where v is an m-column vector with elements {v;!.

AssUMPTION V. - For any m-row vector p with elemenits {p;} with non-
negative inlegers p; such that |p| = 2, we have

4.7 Vi ey for each index j.

30, STATEMENT OF THEOREMS. - In order to construct a formal solution
of equations (By), we try to simplify, according to our usual method, equa-
tions (B:) by applying a formal transformation and we expect for the simpli-
fied equations to be integrated by quadratures. However, in the present case,
the simplified equations do contain still power series with respcet to some depend-
ent variables. If these power series would have a positive radius of conver-
gence, we might have no trouble for an analytic integration of the simplified
equations by quadratures.

Fortunately, this is the case for our simplified equations. Buf, to have
such simplified equations, we have to construct the formal transformation
in a particular way. _

Let @: < arg z < @; be the common part of the sector ®; < arg z < @
appearing in Theorem 1 and of a sector with Property-8 with respect to
monomials of the form

(4.8) PAfz) — Aulz), § = k5 — Ajla) )

We can assume without loss of generality that the sector @, < arg = < ©:
does conlain the positive real axis. B
We shall prove then the following theorem:

Tueorem 2. - Under Assumption 1V, there exisls a transformation of
the form

(T2) y=Y 4 Aw, Z)Y, 2= Z + «°Blz, Z)Y
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such that equations (Bi1) are transformed into equations of the form

S

Y = 1.\[z; Z)Y + ¥ YF,e, Z),
2

jpi=

27 = 1(WZ+ 3 Y6, Z),
lpi=2

where the power series of the righi-hand members are uwniformly convergent for
(4.9) 0<'a|<E, 0 <arg o <8, |Y]<ds, |Z] < di.

5 and ds are suitably chosen positive constanis.
Here ANz; Z, is an m~column vector function with Property-c with respect

to x for | Z| < dy and satisfies X 0; 0] =v. Furthmﬂmoreé%; AO; Z) = ;;51[:0; Zjimo

is a constant vector.

Alz, Z), Bz, Z), Filz, Z} and Gz, Z) are respectively m X m, n X m,
m X1 and n X 1 malrices whose components have Property-9f with respect
to Z in

(4 10) 0< 2| <t 8: < arg ¢ < 82, |Z] < ds
and, m particular, we hove
(4.11) 40, 0) =0, B, 0)=0.

This theorem will be proved in Chapter 1V.
We consider next monomials of the form

(4.12) {Afz) —p Ma), —p-Alz); 2= p| = My

where Az} is an m-column vector with elements {Ajiz)} and M’ is supposed
to be sufficiently large. Since all these monomials have the same degree with
respect to z~!, it is easy to verify that, in the sector @, < arg @ < @, there
exists o subsecior ®; < arg z < ©®s which has Propert@—é&’ with respect fo the
monomials (4.12) for each index j and does contain the positive real axis.
Then we see by virtue of Assumption III that the sector @; < arg z < ©®; has
Property-8 with respect to all the monomials h

(4.13) {Aifz) — peAz), — p-Alz); 2 = [p]!.
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Then we shall prove the following theorem:

THEOREM 3. - Let there be given equalions of the form (B:) salisfying the
conditions mentioned before. Assume that Assumptions 111 and V are satisfied.
Then equations (B:) possess a general solution of the form

(S2) Y=oz, Ulg), Viz)), Z= Wiz, U(z), V(z))
whenever z, Ulx), V{z) satisfy inequalities of the form
(4.14) 0<|z|<E. @s<arg z< @, |Ulz)] < &4, | Viz)] < 85,

where £3 and 8% are suilably chosen posilive consianis.
Here {U(z), Viz)} is a general solulion of equations of the form

(B) ot = 1A z; viu, 20" = L.(njw

and is oblained by quadratures. ®(x, u, v) and W(z, u, v) are respeclively m- and
n~column vector funclions which have Proper{y-Sf with respect lo uw and v in

(4.15) 0<|z|<E&, Os<arg o< @:. Ju|< 85, v]<?.

The proof of this theorem will be given in Chapter V. The integration
of the equations (B) will be studied in the next seotion.

§ 5. ~ Bounded General Solutions for Equations (A).

1°. INTEGRATION OF (B) BY QUADRATURES. - The second equation of {B)
can be immediately integrated and we have a general solution Vi{z) = 1.{2+)(C".
Liet © be any integer: 0 = © =o. A simple calculation shows that

Vig)' , _
[W dx =

(%

(g-p— o+ Vz)z™  (gep o —1)

(C)e log = (gep=0—n1.

It is to be noticed that, for each integer t, there exists a finite number
of the vectors {q! satisfying the equation g.-p =0 — 1.
On the other hand, the j** component of the first equation of (B) has the
form
zetu’y = Alz; Viz)u;,

where A[z; »] is a scalar function with Property-c with respect to z for
|v] < d7 and admits an expansion of the form

My 0] = Nw) 4+ a)() + o+ 27N T (o) 4 2%
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with coefficients holomorphic in v for |v]| < d%. By an elementary calculation
we have a general solution of the form

W= et TElA A o

where Ajz; v] has Property-o with respect to z—! for [v] < d5 and satisfies
Afz; vl = Afa) (14 Offe| + o],

and A(C") is a polynomial of C” satisfying 3,{0) = A7.

We denote by Afz; v], MC’) and (' m-column vectors with elements
{Afz; o]y, {M(C")t and { Cjt respectively.

Then we have a general solulion of equations (B) which is writien as

(5.1) Ulz) = LafeAls ") L(z4CN O, Vig) = 1aa#) 0",

where C' and C' are m- and n-column constant vectors respeclively.

20, GENERAL SOLUTIONS OF EQUATIONS {A). - We assume that, besides
Assumptions 1)~ 6) in Section 1, Assumptions I ~V in Sections 3, 4 are sa-
tisfied. If we combine the transformation {T,} with the transformation {T,),
we have a transformation from (y, 2) to (Y, Z), say (T). Substituting (S} for
(Y, Z) into the transformation (T), we get an analytic expression for a bounded
general solution of equations (A). Thus, owing to Theorems 1, 2 and 3 we
have at once the following theorem:

TaEEOREM 4. - Assume that, besides Assumplions 1) ~ 6) in Section 1, As-
sumptions L1~V are salisfied.
Then equations (A) have a general solulion of the form

) y=9f(z, Ul), Viz), 2= 3z, Ulz), Vo)
whenever the values of =, Ulz), V(z) stay in a domain of the form
(6.2) 0<|z|<E, @s<arg z< s, |u|<3°, [v]< 3"

Here {Ux), Viz)! is a general solution of equations (B} and has the re-
preseniation (D.1). Gléf(x, u, v) and Sz, u, v) are respectively m~ and n-column
veclors whose components are functions with Properiy-9f with respect (0 u
and v in (he domain (D.2). E° and 8° are positive constants.

By virtue of Assumption IIT, the solution (S) tends to 0 as z apporaches
the origin along the positive real axis. If we take (' =0, this solution is
reduced to the solution (S;) appearing in Theorem 1. If we take 0’ =0, the
solution (S) represents a particular solution which tends to O exponentially
as x approaches the origin along the positive real axis.
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3°. CoNCLUDING REMARK. - In order for simplified equations (in the present
case equations (B)) to be integrated by quadratures, we introduced, besides
Assumption III, Assumptions IV and V. Without the last two assumptions,
we can construct analytic expressions for bounded solutions of equations (A).

However, in this case, the equation corresponding to the first equation
of (B) has a very complicated form. Though its right-hand member is a poly-
nomial of u, we can no longer solve it by quadratures.

Coaprer I1.

Fundamental existence theorems.

I. - First Existence Theorem.

§ 6. Statement of Theorem A. - Let there be given two systems of
@ - 8 non-linear ordinary differential equations of the form

(6.1) ptef = Az, Y, B), 23 = Blz, Y, D)

Here we suppose that

i) o és a posilive integer, Qf and % are a— and B-column veclors with
elements {°Y;} and 1%} respectively.

ii) iz, 62;}’, %) and Bz, %, %) are respectively o~ and B-column vec-

lors whose components have Proper(y-f wilh respect to f and % in a
domain of the form

(6.2) 0<|a|<t 0<arg 2< 8, [Y]< 4 |3]< d,
E and d being positive constan!s.
iii) We have
(6.3) aé}}(os 0, 0) = 1,(y) + D, det L,fy) =0, dx(0, 0, 0) =0,

where v is an a-column vector with elements {y;} and D is an a X a nil-po-
tent malric wilh upper lriangular form.

iv) Equatlions (6.1) possess a formal solulion of the form

oo oo}
.4 U~ . % ~ 3 ,
(6 ) Qj} ZEO v fl’ IEO ¢ gl
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where fi and g are a- and B-column constant veclors respeclively and, in

pariicular,
Ifof<d,  lgo|<a.

Let
(6.5) Q)= —-L  (j=1,2 ..,
oz
TrrEoreM A (Frrsr Exisrence THEOREM). - Adssume thaf, tn the seclor

0 < arg z < @, (here exists a subseclor % < arg z < ®* which has Properiy-8
with respect (o {Q(x), .., Q).

Then equations (6.1) have a unique solulion {)(z), W(z)} which is holo-
morphic and bounded in z for

(6.6) 0<|z|<&, O*<arga<@*

and admits asymptotic expansions of the form (6.4) as z lends (o O (hrough (6.6).

This theorem has been already proved by M. Iwaxo [5] by using the
method of M. HurkuHARA [1]. However, in order to explain our usual method
for giving an analytic meaning to formal solutions, we want to reproduce
the proof of this theorem.

REMARK. - Let @ < arg 2 < @ be any subsector contained in the sector
@* < arg z < @%. Then it is known that there exists at least one solution
which is asymptotically developable to the formal solution (6.4} as z tends to
0 through

(6.6) O0<|z| <&, O <arg < e.

However, such a solution is not uniquely determined unless the sector
0'< argax < © has Property-8 with respect to {Q(z), ..., Qu(z)!.

§ 7. Determination of 0*(y). - In order to prove Theorem A, it is nec-
essary to replace a domain of the form (6.6) by a domain the form

0< z| < Ew*arg z), 0* < arg ¢ < ©F,

which is equivalent to (6.6), where w*(¢) is a strictly positive valued, bounded
and continuous function of ¢ for 8* = ¢ < @*

Therefore we begin with the determination of the function w*(qp).

By assumption, if Re (z) is non-positive for

(7.1) 0% < arg & < 8%,
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there exists at least one direction argz =0; in (7.1) such that we have
Re Qjx) =0 for arg z = 6;. Such directions are called singular directions of
Q(z) and given by

1 T , . 1 T "
(7.2) 5<arg Y + 3 -+ 2nh), (7.2) 6<arg i —3 + 2nh ),

where ' and h" are any integers. Singular directions of the form (7.2) are
called ascending singular directions of Q;z) and tho-e of the form (7.2) de-
scending singular directions. It is to be noticed that, when we consider
Re Qj(z) as a function of arg z =0, BRe Qz) is a monotone increasing (or
decreasing) function of arg z in a small neighborhood of each singular di-
rection of the form (7.2) (or the form (7.2)).

For the indices j such that Re Q/z) change their sign in (7.1), we choose
the arguments of the complex constanfs y; so that at least either one of two
singular directions

k]

1 1 3n
(7.2)F Oy = g(arg Y+ 2) ;o 127 b= (arg i+ —2~)

is contained in (7.1). We classify the set J = {1, 2, ..., «} of indices j into
Jo, J1, Jg, Jg where

Jo=1{j; ReQ,lz) >0 for ©* <argz < 0%},
Ji=1ij; 0% <83 <8< @,
Jo=1f; @* <6 < @*< i,
Js=1j; 8y < @* <6< 0*).

For jeJ., we define 6;_ by (7.2)~ and for jeJ; we define 6,1 by (7.2)7.
Some of these four sets may be empty. It is easy to verify that either J, or
J: must be empty. To simplify the discussion, we assume that the set J, is
empty.

Since the sector (7.1) has Property-8 with respect to {Q.(z), ..., Qula}},
the angles @* and @* must satisfy inequalities of the form

(7.3) m;x 0t — (g -+ 65) SO*< 0*= main b + (g - 65\

j=1 = j=1

for e > O sufficiently small.
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We put

(7.4) Oy = max {0}, ©F. = min {§,_| (x=1, 2, 8)
i€d, j€dy,

and define a function L*(y) by

o — O +4e), O +5 —4e =9 = 0,

T K T
37 ®§+—§3+4€§¢§@;—+§5—45,

op— O — 49 +m OS¢ ef—5 +de
Noticing that

®;+: max 8j+, @é’_: min 8]'__ (jEJ1UJ2UJ3),
i j

we see by (7.3) that the function L*(p) satisfies

fIA
®
'*

(7.6) 26e £ LMo) = = — 208 for o*

ftA

¢

The function ©*(¢) is to be defined as

¢
(1.7 0¥g) = exp f cot L¥z)dr,

)

where 0o is an arbitrary angle in (7.1). Obviously the function w*(¢) thus
defined satisfies the above specified conditions.

§ 8. - Fundamental Lemma for the Proof of Theorem A.

1°. SrATEMENT OF LEMMA. ~ Before going into an essential part of the
proof of Theorem A, we must prove a lemma.

LEMMA A. - Let 1 be an arbitrary point in a domain of the form
(8.1) 0<|z] < Evw*arg ), 0* <arg z < 0%,

where Ev is a cerlain positive constant. Then there exists an a—vector path
' with elements (T} such that-

i) Each curve 17 joins the point z, with the origin and is contained
in the domain (8.1) except for the origin.



M. IwaNo: Analytic expressions for bounded solutions, etc. 211

ii) As = moves on the curve '}, we have

d —fief) % — 1 E ifx .
— o) = |1 O |y sin 20e

(8.2.1) o
7

and, if |y sin 20 = 2N(Ey max w¥g)V, we have moreover

0
8.2.2) % ( ||V e—Renj(x)) > (bl S;n 2ae g (V01RO ()
7\
o
with |y|| = min |vy;|. Here s; is the arc length of the curve I, measured from
j=1

J
the origin to the variable point « on this curve.
This lemma will be proved in the next section.

20, DEFINITION OF THE PATH VECTOR I';. - In order to define the path
vector I'%, we shall define first an a-column vector function I(¢) with ele-
ments {l(p)} as follows.

It je Jl,

olp — b+ 4e), B —2¢ = ¢ = O

&35 e = B4 4 2e < @ < B — 2e,

nol 8

ofp — b4 — 4e) + m, O* = 9= O + 2e.

If jel,,

ol 3
\_@
+
+
w

IA
-
A
@
\.*

G((p—ej+—48)+ﬂ?, @*écpée,-++2€.
It j €ls y

ol — b + 4e), b —2e =9 = 0%
8.3.3) e =

oot
|

REMARK. - In the case when the set J, is non-empty, we take l(y)=rn/2
for Q* = ] = eF.

Observing that ®* and ©%* satisfy the inequalities (7.3), it is easily seen
that B

(8.4) 20e = l(p) = — 20¢ for * =9 = a*,
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Moreover the definitions of @}, and ©f_ imply that

;lj(’?) = L¥y), o —2e =9 S0* (jeJ., Ty,

(8.5)
He)z L¥y), O*=¢=6y+2 (jet., Jo)
Hence we have, by a simple consideration,
4 ?
(8.6) f cot L{t)dr = f cot L*{r)dz
8 8

fDI‘ eé @§6j++2€‘j63—1, Jz) and for 9,_—~2a§q;§9 U‘EJI, Js).

Let 2, =re'® and let (p, v) be the polar coordinate of the variable
point 2 on the curve I} . Then the curves I'% are defined as follows:

If 6 < 64 42 or 6, —2e < 0, the curve I consists of a curvilinear
part Ij:

¢
&.7) o=r oxp f cot L{x)de
g

b= =6p+2e0r 6. —-2:=p=98
and of a rectilinear part T™:

¢
(8.8) 0=9 =rexp f cot L{tjdr, ¢ = 6,y + 2e or 0, — 2e,
0

If 6,1 4+2e=0=<0_—2, the curve I'*

7% oconsists of a rectilinear part
T/ only:

(8.9) 0=p

IIA

r, p =0

§ 9. Proof of Lemma A. - By virtue of the inequality (8.6), we see by
inspection that the curves I' defined by (18.7), (88)) or (8.9} are contained
entirely in the interior of the domain (8.1) except for the origin.

This proves the first portion of Lemma A.

We shall prove first the inequality (8.2.1). On the curvilinear part I}, p
is a function of ¢ given by (8.7). A simple calculation shows that we have

dx

= BUCLE NIRRT S0 SR Vi |
j

9.1)

according as § S p = 0y + 2 or - — 2= p =



M. IwaNo: Analytic expressions for bounded solutions, etc. 213

Hence we have the equality

d
(9.2) ag;_(“ Re Qjlz)) = =p=o|y;| cos (4{g) — o9 + arg v))

where we must take the positive sign or the negative sign according as
9§CP§9,‘++2E or 6,_ — Ze = cp‘ge.

On the other hand the definitions of the functions I{p) and of the angles
8,4, 8— imply that we have the relations

4

We)+ arg Yi—cf?’:—g—-%s or —i—szf—{—é’cce

according as ¢ is in the interval I S ¢ =94 + 2 or §_ —2¢c SS9 =6. It
follows from these relations that we have

cos ({l{p) — o9 4 arg y;) = sin 4oe > sin 2ge.
This proves. the inequality (8.2.1) for z on Ij.

On the rectilinear part I'/, we have s = p = || and 6 + 2e =S ¢ = §_ — 2e.
It is readily seen that

Re (— Qi) = ‘;\ggeos (arg y; — o), larg v, — o9+ w| = g — 2Zoe.
Hence %Re (— Q,(z)) is a monotone increasing function of p and we
7 .
have the inequality (8.2.1) for z on [I/. Thus the inequality (8.2.1) has been

proved.
In order to prove (8.2.2), we observe by a simple consideration that

dlz] _ d __da;) _
—Cl=""1o |l = Rela—*-" | = — |al—L.
g =l ( ds, ]

i w1
| ds; ~ ds; =

The inequality (8.2.1) implies that

2 (o™ 2 |2t %O (4] sin 206 — N| a2
7

Hence if we choose &y small enough to have
20yl sin 208 — N|z]9) = |y| sin 20e for |z| < EnwH(arg z),

the inequality (8.2.2) holds for z on I'Z. This completes the proof of Lemma A.
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§ 10. Proof of Theorem A. - According to our usual method, we apply
successively two transformations of the form

N1 Ne-l
Qf: % ngl'*‘?}; %::: 2 xlgl'}'z;s
(10.1) =0 =0

N = 1a(e(}(x))P, §= Q

to equations (6.1), where 1,(e®*) is an o X « diagonal matrix with elements
{e%{®}, By a direct calculation we see that the equations satisfied by P and
€ can be written as

@ P = 1 e~ 0@)Alx, 1,62 P, Q)
(10.2)
@ = Bz, 1,/e29)P, Q)

where (z, m, §) and &B(z, n, {) are respectively a~ and -column vector func-
tions which have Property-@f with respect to % and ¢ in

(10.3) 0< s <E,®@<arga<o,|q|<d < d.
It is easy to verify that
19, v, O = H(n[+ 5D + Bula|",
(10.4)
1Cr, om0, OF = H'(Inl + 181 + Bw|e]¥

for (10.3). Moreover &l and & satisfy there LipsorITz’s conditions with respect
to (y, §) with LipsomHiTz’s constants H' and H” respectively. Namely we have

1A, 7% € — Az, 72 ) = H'(In' — 2|+ 18 — &)

and B satisfies an analogous inequality. Here H' and H" are positive con-
stants independent of N. By virtue of Assumption iii) in Section 6, we can
assume without loss of generality that H' satisfies

(10.5) 8H' < || sin 20e (iyl = min |y;])
Jesl
for a preassigned positive number e. Indeed, this inequality is accomplishes

by applying, if it is necessary, a suitable linear transformation with counstant
coefficients. And we take N so large that

(10.6, 4H" < N.
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By repeating the arguments which will be developed in Section 14
word by word, we can solve the, following problem:

ProBLEM A. - If we have (10.D) and (10.6), there exists a unique solulion
of equations (10.2) satisfying the conditions

(10.7)x [P]=O0(|a["[e=* @],  [Q]=0(|=]"),

where [P] denotes an a—column vector with elements {|P;l} and [e=*) is an
a-column veclor with elemenls i e~F(<],

Using the solution of this problem, we can prove Theorem A by an easy
application of the reasonings which will be given in 2° of Section 13.

II. - Second Existence Theorem,

§ 11. Statoment of Theorem B. - In this part we consider again equa-
tions of the form (6.1) for the case when their right~hand members depend,
besides z, @,‘{, %, on an arbitrary function of the form V(z) = 1.(2*)(C". Equa-
tions of this type will play an essential role for the proof of Theorems 1, 2
and 3.

‘We use the same notation as before.

Lt there be given two systems of « - § non-linear ordinary differential
equations of the form

(1L : ac"‘“@f’ = MY, Viz); Qf’ %), % = Bz, Viz); O, Z).

Here we suppose that

i) (=, v; O, 2) and Bz, v; Y, %) are respectively a- and B-column
vector functions which admil uniformly convergent expansions in powers of 622}’
and Z in o domain of the form

(11.2) O0<|z|<§ @<argz<o,|v][<?, |Y]<d|3]<d,
whose coefficienis are funclions with Properly-9f wilh respect (0 v in

(11.3) 0<|z|<E, (_@<a,rgw<@,ﬁvﬂ<6.
ii) We have

(11.4) a%w, 0; 0, 0) = L{y)+ D, &40, 0; 0, 0) =0, det 1,0y) == 0.

iii) Equations (11.1) have a formal solution of the form

(11.5) Y~ 3 Vaifia) B~ 3 V@,

|g{=0
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where f,/'z) and g4z) are respectively a- and B-column veclor functions which
belong to class C@®, @; §) and, in particular,

o)) < d, [goa)] < d.

TaHEOREM B (SECOND EXISTENCE THEOREM). - Assume that, in the seclor
@ < arg z < @, there exists a subsector @* < arg z < @* which has Property-8
with respect to {Q@), ..., Q@) -

Then equations (11.1) have o solution of the form

(11.6) Y =Va, Vi), T=We, V),
whenever & and V(z) are in a domain of the form
(11.7) 0<|z|<E, 0*<arg ¢ < O, [v] < 3"

This solution admits uniformly convergent expansions of the form (11.5), so
that )z, v) and (=, v) are respectively «— and B-column vector funclions
with Property-L with respect to v in the domain (11.7).
The proof of this theorem will be given in Section 13.

For the proof of Theorem B as well as that of Theorem A, a domain
of the form (11.7) must be replaced by an eguivalent domain of the form

(11.8)  0<|z| < Eo¥(arg z), [v] < 3X*arg o)}, ©F < arg z < @

Here w*(p) is a scalar fanction and X*¢) is an n-column vector function
with elements {X¥(yp)}:

9
w*(p) = exp f cot L¥)dr,
o

(11.9)

¥ (p) = exp !(Re puk)fcot L¥m)dt 4 (Im pe)(o — ¢) {,

0o

where L*(t) is given by the formula (7.5) and 8, is a fixed angle satisfying
0* = 6, < O*

§ 12. - Fandamental Lemma for the Proof of Theorem B.

1°, LeMma B. - We must prove a lemma, analogous to Lemma A in
Seotion 8 which will play a fundamental role in the proof of Theorem B.
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Let w*p) and X*) be the functions given by (11.9). Then the lemma
can be stated as follows:

Levua B. - Lef 2z, and v! be arbitrary points in a domain of the form
(12.1) 0 < |z| < Eyw*arg z), [v] < 8y[A¥arg o)}, ©* <arg z < e

Choose C' so that V(zi) = v', namely let C" = 1,(x;+) vl
Then there exists an a-vector path I with element {T%} such that:

1) The curves I join the point x, with the origin and are contained
in the domain

(12.2) 0 <|z| <Evo*arg z), ©*<argz< e*

except for the origin.

2) As « moves on the curve L% for each index j, we have
(12.3) [V(2)] < 8{X¥arg o)), ©* < arg z < @*,

(12.4) g;;ll V)| z — [z ]l V@],  (Jp]=max|p)

and, if |y| sin 20e = 2N(Ev max w*(p))®, moreover

d

sin Zoe
de

(12.5) (” V(x)“Ne—-Reﬂj(x)) g ”Yﬂ lx l_a._l “ V(x)u]ve——Ren’-(x) .
Here s; is the arc length of the curve I, measured from the origin (o the

variable point x on (his curve and |y| = min |y;].

20, Proor oF LEMMA B. - We define the curves I in the exactly same
way as in the proof of Lemma A in Section 8. Then Assertion 1) is evidently
satisfied. Therefore, in order to prove Lemma B, we have only to prove the
inequalities (12.3), (12.4) and (12.5).

By definition the vectorial inequality (12.3) is equivalent to # inequalities

arg x
(12.6.k) | Viz)| < 8y exp {(Re pk)f cot L*(t)dt 4+ (Imp,) 00 — arg :c);

as ¢ is on the carve I%. Observe that the curve I consists of two parts I
and T} in general and we have Vi) = vlaz/z:)** and, consequently,

z | Re
z

(12.7.k) | Via)| = | o} |

3 exp {(Imm) arg (%1)%

Annali di Matematica 28



218 M. Iwano: Analytic expressions for bounded solutions, etc.

On the curvilinear part I, p =|z| is a fanction of » given by (8.7).
Hence we have

arg =

| Vilz)| = |v;| exp ;(Repk) f cob l(tydt 4 (Imny)arg x; — arg x)%
arg #
and, by (8.6),
| Viz)| = [v}| exp %(Repk)f cot L¥t)dt -+ (Imp,)arg 1 — arg z)}.

On the other hand, v} must satisfy the inequality (12.6.k) for arg o = arg z,,
Hence, by inspection, we have inequality (12.6.k) for z e T;.

On the rectilinear part T/, we have |z! = |z:| and arg z is constant.
Hence by virtue of (12.7.k) inequality (12.6.k) holds for ze[}.
This proves the vectorial inequality (12.3;

To prove the inequality (12.4), it is to be noticed, by a simple calcula-

tion, that

d d
\ Vk(x)l_lagl Vk(x)l = Re( Vk(x)_la?j Vk(ﬂ) = Re( }ka"'lg ) .

Since |dz/ds;| =1 except for the joint of the curves I} and I}, it follows
then that

d ,
g5 VHo = — el (e[ Vi) > —[p] 217 | V()]
J
on I%. This proves inequality (12.4).
To prove the inequality (12.5), we observe that e—%%( satisfies, by virtue
of (8.2.1),
ie—}?eg}-(x) __>: f

—5—1 ~—Ref) {x)
as e v

| [ sin 20e

on I . Hence, owing to (12.4), the expression of the left-hand member of
(12.5) is not less than the expression

|2~ V@)e™ (] sin 200 — N]pe[]o[°).
Choose £y so small enough to have
Ivl sin 20e Z 2N|p|Er max o¥()®  for %= v = O*.

Then it is clear that we have inequality (12.5).
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§ 13. Proof of Theorem B.

10. - We make the change of variables
(13.1) Y =3 V@ o) +n S= 3 V@)g,da) + ¢
lel<N lgl<N
in the equations (11.1). Then the transformed equations can be written as
(13.2) 2oty = Ly + iz, V@), O o8 = Sz, V@); v, O

Here G(z, v; %, {) and gg(x, v; 7, & are holomorphic and bounded vector
functions of (z, v, %, §) for

(18.3) 0<|z|<E 0*<arg < 0% |v|<¥ In] <d, lt]<d

and satisfy there inequalities of the form

18, v; 7, OIS H(|n]+ 5] + Bafol,
(18.4)

1B, v; 1, OF= H'(In] 4+ |CD) + Bx]o]

Moreover, & and & satisfy LipscmiTz's conditions with respect to (v, {)
with LipscHITZ'S constants H' and H” respectively. H' and H” are positive
constants independent of N. In particular, owing to Assumption ii) in Sec-
tion 11, we can assume without loss of generality that H' satisfies

(13.5) S8H' < |y| sin 2c¢

for a preassigned positive number . By may depend on N.
Put

(13.6) N = 1e2NP, =6,
so that equations (13.2) are reduced fo

g P’ = z=o-1 (60 d(z, V(z); 1,(9)P, @),
(18.7)y
( @ = z-'B(z, V(z); 1(2)P, Q).

We want to solve the following problem:

ProBrEM B. - If 8H' <|y| sin20¢ and 4H" < N|Rep| wilh |Rep| =
= min { Re p.}, equations (13.7) have a unigue solution of the form {ox(z, V()
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dnlz, V(x))| satisfying

(13.8)y [P]= O V(z)[")e="2=], [ @] = O] VDI,
whenever (z, V(z)) belongs to a domain of (he form

(189  0<|z] < Eyo¥arg a), [v] < 8\[X¥(arg 2)], ©F < arg z < O

Here oy(z, v) and dn(z, v) are respectively o~ and B-colummn vectors whose
components are holomorphic and bounded functions of (x, v) for (13.9)y.
This problem will be solved in Section 14.

20, - Assume that Problem B has been solved. Then we can prove Theo-
rem B in the following way. Owing to the transformations (13.1) and (13.6),

T V(@) {2) + 1o(e? O)pn(z, V(z)),

fgl<n

T Vz)ig(2) + dnlz, V(z)
lgt<t

(13.10)

are a solution of equations (11.1) provided that (z, V(z)) is in the domain
(13.9)y. Let N’ > N be any integer. It is easy to see that

Ia(e_n(x)) Nﬁ%]{l\f ;V(x)qfq(x) + CPN'(x) V(GJ)),

T Vie)gfe) 4+ dufa, Viz)
g

N=

are a solution of equations (13.7)y salisfying (he condition (13.8)y if (z, V(z))
belongs to the common part of the domains (13.9)y and (13.9)5.. Hence, by
the uniqueness of solation, this solution must coincide with the solution
ion(e, V(z). by, Viz))). From this it follows that the solution expressed by
(13.10, is independent of N provided that 4H” < N|Re p|. We write therefore
this solution by ,(z, V(z)), W(», V(z))!. Then by analytic continuation the
functions )(z, v) and @V(z, v) are defined in a domain of the form (11.7).

On the other hand, » =0 is an interior point of the domain (11.7) in
which the vector functions ®)(z, v) and 9)(x, v) are defined.

Therefore, by CAvonY’s theorem, (z, V(z)) and W(z, V(z)) can be de-
veloped in uniformly convergent power series of V(z) whenever (z, V(x))
belongs to the domain (11.7). Clearly, iz, V(z)) and OW(z, V(z) admit the
asymptotic expansions (11.5). By the uniqueness of expansions, these asymptotic
expansions must coincide with the uniformly convergent expansions, This
proves the uniform convergence of the formal solutions (11 5).
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Thus the proof of Theorem B has been completed.

§ 14 Solution of Preblem B.

lo. FaMILY &, - Let & = {g(z, v), {(z, v)} be the family of a-column
vectors ¢(x, v) and B-column vectors ¢(z, v) whose components are holomor-
phic and bounded functions of (z, v) for (13.9)y and satisfy there inequalities
of the form

(14.1) [¢(z, V)] = Kn|o[le™ @] |4z, v)] = Kn|o|".

Here Ky is a certain positive eonstant.

Let (z1, v') be an arbitrary point in the domain (13.9)y and choose the
integration constant C” so that V(z,) = v'. We define then the vectors &(z;, v?)
and W(z,, oY) by

(14.2) Oz, v) = f Kz, Viz)de, Tz, v') = f Hz, V(z)dz,
0 0

where
J{(ml V) = x—a_lla(e*rz(x))d(xy v; 1a(en(x]) cp(:c, v), dlz, v)),

R, v) = Bz, v; 1,(699) ¢z, v), Iz, v).

The integration of the j* component of the first equation of (14.2) must
be carried out along the curve I which was already defined in Section 8.
The integration of the second equation of (14.2) must be carried out along
the segment Oz, joining x, with the origin.

20, MaprpPiNG G. - By virtue of (12.3) in Lemma B, the values of (z, V(z))
remain in the domain (13.9)y as z moves on the curve I'. Hence the j* com-
ponent of the integrand of the first equation of (14.2), say ¥z, V(z)), is a
holomorphic function of z for zeI#,. Since | V(z)] is a monotone increasing
function of [z| as # moves on the segment Oz, the values of «, V(x) remain in
domain (13.9)x for zeO0z,. Hence the integrand J(z, V(z)) is a holomorphic
function of « for z €0z, .

The inequalities (13.4) imply that

(#(z, Vie)] = (2HEKx + By) |z V(z)|¥ [eF00),
(14.3)
|8z, V(z)] = @H Ky + By) |z[™ | Viz)|".

As we have already seen, the functions e—*9;® tend to 0 exponentialls
as x approaches O along the curves I'% respectively and | V(x)| tends to 0 ay
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« approaches 0 along the curves ['% or the segment Oz,. Hence if N|Rep| >0
the integrals {14.2) are convergent. This proves that the mapping G :

iplz, v), d(z, v)} —> {0z, v), Yz, v)}
is well defined.

3°, EXISTENCE OF A FIXED-POINT. - Our solution of Problem B is based
on a fixed-point theorem [2]. Since {0, O|e#, the family & is not empty.
Moreover, it is clear that & is closed, normal and convex.

Therefore, in order to conclude the existence of a fixed-point of G, it
is necessary to prove the following assertions:

a) G maps F inlo itself, ie. CIFICHF.

b} T is a continuous mapping with respect to the topology of uniform
convergence on compact subsels.

We shall prove first Assertion a). This assertion is equivalent to the
facts that:

a:) The vectors ®(z,, vY) and W(z., v') satisfy the inequalities
(144) (@1, 0M] = K0! 7 (67 %), |W(ea, 0Y)] = K]0

az) @z, v) and Wz, v) are holomorphic and bounded functions of (z, v)
f01" (139)]\1
In order to prove Assertion a,), let §; be the arc length of I'7. By virtue
of (14.3), the j** component of the vector ®{z:, v') does not exceed

(2H Ky + By) f |z~ Vi) [ e~ N ds;

2(2H'K y + Ba)
<< 1N p—ReQ} [(x1) D
= [T sin Jos v e—Re; (by (12.5)).
The last expression will be bounded by Ky]v![¥e—) if we can
choose Ky large enough to have

K’ = 2By(|v| sin 20e — 4H')" = Ku.

Since 4H' < || sin 20¢, this choice of Ky is obviously possible. This proves

the first inequality of (14.4).
Since

x

o—

Xy

Ry
| Vit = | 2| mntone e,
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we have
dlxig Viz)|= alz i}Vis (z)| = (Re pa) |2|~" | Vi) | for some k
= (Be pi) o[~ | Viz)| Z | Be p || 7| Via)]
with |Re p| = min { Re p;} and, consequently,

(145) Tl Vel = NiRepl ol | VialP

Hence we see by virtue of (14.3) that |W(z:, v?)| is not larger than

JEA
(2H"Kx + Bx) flwl“llV( Walz|

0

< Mt By,
= TN Be ]

Since N|Rep| >4H", it we take Ky large enongh to have

K" = By(N|Re p| — 2H"j = [Ky,
|¥(x:, v')| will be bounded by Ky|v'[¥, which proves the second inequality
of (14.4).

Let Ky=max {K’, K”!. Then we get Assertion a,). Concerning the
quantity 8y appearing in (13.9)y, we have to take 3y so small that

ExBa @)Y < @ for @ = ¢ = 6.

To prove Assertion a,), assume that, for z, sufficiently near to z., the
relations

®lz:, v j Hiz, Viz)ida -{—f}f, z, Viz)jde,
(14.6)
xl,vj—fé}{x, dw—!—fél{x, Viz))de
hold. In the first equation of (14.6), the j* component of the first integral

must be carried out along the path I'j and that of the second integral along
the segment z.¢;. In the second equation of (14.6), the first and the second
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integrals must be carried out along the segments Oz, and z., respectively.

Then the relations (14.6) show that the vector functions @z, v) and
Wz, v) are holomorphic at z = z; with respect to z for each v'. On the other
hand, the inequalities (14.4) imply that the integrals (14.2) are uniformly con-
vergent with respect to v' for each z,. Hence, by HARTOGOS’ theorem, the
vector functions ®(z, v) and Wz, v) are holomorphic at (z:, v') with respect
to (z, v). This proves Assertion a,) since (z;, v’} is an arbitrary point in the
domain (13.9)y. Therefore, to get Assertion aj), it is sufficient to prove the
relations (14.6).

For the proof of the first relation of (14.6), it is sufficient to prove that
we have

(14.7.j} @j{wla f’c}g z, dx+f3£ z, '7 ))dx

for each index j, where @; is the j* component of ®.

Let £, and f; be respectively the intersection points of the paths I'} and
['% with a circle |z| = p of small radius p. Then the relation (14.7.j) will be
an immediate consequence of

(14.8.j) f Hiz, Viz)de |—> 0 as p— 0.

Here the path of integration must be taken on the circle |z| = p. Since
ReQy(r) > 0 for zelol, we see by virtue of {14.3} that the expression appear-
ing in the left-hand member of (14.8.j) tends to O exponentially as p—0.
This proves the relation (14.7.j).

Similarly the second relation of (14.6) can be proved and we omit there-
fore the proof.

In order to prove Assertion bj, it will be sufficient fo prove that, if
{o*z, v), P*z, v)! be any sequence which converges to |¢(z, v), $(z, v)}, then
the corresponding sequence | ®*z, v), Wz, v)! converges to the corresponding
{®(z, v), Wz, v)}. However, this assertion is almost evident because the vec-
tor functions Gz, v; 4, ) and Bz, v; v, {) satisty LipscEITZ’S conditions
with respect to (y, §). Hence it is concluded by a fixed-point theorem (See
for example {2]) that there exists a member {opn(z, v), n(z, v)! of & that cor-
responds to a fixed-point of the mapping T.

4°, EXISTENCE OF SOLUTION. — We assert that:

o) The pair {px{z, Viz)), dnlz, V{z)} is a solution of equations (13.7)x
whenever (r, V(z)) belongs to (13.9)x.
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To prove this assertion, we write V(x) as W{z, z., v'). Then it is suffi-
cient to prove that

(149) - @lao, ©7) = Wles, ), - Tizo, 09 = Iz, o)

where v° is a vector function of z, given by W(z,, z1, v?).

We shall prove the first equation of (14.9). Since Wiz, zo, v°) = Wiz,
z1, v'), the first equation of (14.2) implies that

d
T @lo, 0 = Wlao, v%) +

dz.

N Mz, W)(d3W(e, z0, %) . 3Wlx, 2o, 003 Wize, 21,0Y)
oW % 0% w° oz o
0

As is well known, for any constant §. WIE, =, V) is an integral of the
equation zv' = l.(#) ». Hence, the expression appearing in the braces of the
above integrand is zero identically and we have the first equation of (14.9).

Similarly we can prove the second equation of (14.9).

50, UNiQuENESs. - For the complete solution of Problem B, it remains
only to prove that:

d) A4 solution of equations (13.7)y satisfying the condition (13.8)y is unigue.
Suppose that there exist two solutions satisfying the same conditions.
Let { Plz, V(z)), Q(z, V(z))! be the difference of these two solutions. By as-
sumption, iz, v; m, §) and Rz, v; 1, §) satisfy LipscHITZ’s conditions with
respect to (v, ) with Lipscuirz’s constants H' and H” respectively. Hence
the §* component of P(z, v), say Pjx, v), and @Q(z, v) satisfy

1
i
| Pfa,, vY)| = H' f Mz, Vi) z|—o— e "M g,
0

and
Jml
0@, o) = 8" [ Mz, Vie)|z|-da]
with '
Miz, v) =[L,{e") P(z, v)] + | Q. v)].
If we put
K = sup {[v[~"]1.(e%) P(z, v)[, [o[~"] @, o]}

(=)
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when z and v move in (13.9)y, then we have
Mz, v) = 2K|v])", O0=K< +4oc

since P(z, v) and Q(z, v) satisfy inequalities similar to (14.1).
It we could prove that K = 0, the proof of nniqueness would be complot-
ed. Suppose that K == 0. By virtue of (12.5), we have

4H K I% 1 !}N [e-—Reﬂ(xﬂJ,

[Plzy, v)] = 7 ‘

[ sin 2oe

190, 91 = 757 1T

The definition of K yields

4H' 2H"

K = K max ] sin 20’ N|Rep|'}

By the assumption imposed on Problem B, the last expression is not
larger that K/2, which is a contradiction. Hence K must be zero.
Thus Problem B has been completely solved.

CuaarrER IIL

Proof of Theorem 1.

I. Formal Solution (S,).

§ 15. Formal Solutions. - Assumptions 1} ~ 6} in Section 1 and As-
sumptions I, IT in Section 3 imply that the right-hand members of equations

(4) 2oty = fl@, y, 2), a2 = gz, ¥y, 2)
satisfy the following conditions:

s 0, 0, 0)=4d, £(0, 0, 0)=0, 0, 0, O):= 0, det & == 0,

(16.1)
| 9,0, 0, 0)=0, g0, 0, 0) = 1,(u), g.(0, 0, 0)=D0.

Let Ajz) = — v;/0z° and let @ < argz < @1 be a sector which has Prop.
erty-8 with respect to {Ai(z), ..., A.z)} and contains the positive real axis-
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We shall prove the following proposition:

Prorosition 1.1. - Let V(z)= 1.(2¥C". Under Assumptions 1 and 11
equations (A) have o formal solution of the form

y ~ olz; V) + a*¥iate) + gﬁ V(@) a ),
Z
(Sy) _
2 blo; Vel 4 o400 + 3 Viahto)

with the properties that

i) olz; v] and $[z; v] are respectively m- and n-column vector functions
with Property-c with respect to = for |v] < ¥
In particular, we have

(15.2) $[0; 0] = 1,.

i) afz) and afx) are m-column veclors, b(z) and b,/z) are n-column vec-
tors, and the components of these wvectors are functions which belong to class
@@, 81; &Y.

If we replace ¢, ¢, a, a,, b and b, by their corresponding convergent
or asymptotic expansions, (S1) is reduced to double power series of z and
V(z). The existence of such a formal solution can be verified by the faot
that, if we apply a formal transformation of the form

gy~ Y+ T 2Py, e~Z+ Y 2Z°Q,
IHg]=2 1H]gle=2

to equations (A) and determine the coefficient vectors in such a way that the
tormally transformed equations take as simple a form as possible, then the
formally simplified equations have Y =0, Z = V(z) as a particular solution.
From the formal point of view the formal solution (S:) results from a suita-
ble rearrangement of these double power series of ¢ and V(z).

However, in order to simplify the arguments, we want to prove directly
the existence of a formal solution of the form (S;). It is to be noticed that,
if our purpose is only to consiruct an analytic expression for a solution with
Property-9{ with respect to V(z), the arguments for the construction of such
a formal solution become much simpler than those which are going to be
developed here,
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§ 16. — Proof of Propesition 1.1 (Part I).

‘We shall determine first the vectors ¢f{z; v] and {[z; v]. We expect
these vectors to have the form

(16.1) s v)= ¥ zredo) Yo vl= ¥ o)

=0 w=0

where ¢,(v) and ¢ ,v) are holomorphic functions of v at v = 0.
The vectors f(z, y, #) and g(z, ¥, #) have unique represenfation of the form

g f(z, y. 2) = flz; ¥, 2] + 2T, y, ),
(16.2)
{ 9@, ¥, ) =glz; y, 2]+ 2°Tg%z, ¥, 2),

where f[z; y. 2] and g[z; ¥, #] have Property-o with respect to z for |y| < 4,
2] < d, and [%z, y, 2) and g%z, y, #) have Property-Sf with respect to (y, 2)
in |z| <§ |y)| < d, |2] < d. By virtue of (15.1) we have at once

| 7105 0, 0]=4, £:[0; 0, 0] =0, det & =0,
(16.3)
9,105 0, 0]=0, g[0; 0, 0] = 1.(p).

If we substitute (S;) for (y, #) into the right-hand members of equations
(A) and omit all the terms containing z°t' as factors, we have relations of
the form, abbreviating the independent variable of V(z),

(16.4) a7 ~ {f]0; wo(V), Yo(V)]} + 2 { K (V)i V) + HVY(V) + KV} +
F+ e F 2 K(Vio(V) 4+ HVWAV)+ KAV) + 27 ),

(16.5) 22’ ~ g[0; 9o V), Go(V)]! + 2{ M(V)pu( V) + E(V)Po(V) + S2(V) 1 +
+ o F 27 MV)po V) + BVo(V) + So(V)] + &P . )

Here

K@) = fy[o; Po(), 4’0(”)]5 Hv) = fZ[O; @o(v), Yo(v)],

M) = g,[0; o), $o(v)], Ev) = g.[0; ¢ov), bo(v)}

(16.6)

h
Ri(v) is a linear form of m-column vectors £.[0; vov), do@)], ... ’8%7 7105 gol),

$o(v)] with polynomial coefficients of ¢, v) and ¢, (v) (1 =k < h) and §,w)
has the property similar to &Ri(v).
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In particular, we have

Ra(v) = .05 polv), o)), 1) = g40; po(v), Do(v)].

On the other hand, if we differentiate (S;) term by term and pick up
only the terms not containing z°+' as factors, we have equations of the form

. . - ,__d
(16.7) 2oty ~ o gy ( V) = 2ot L), ( :a—x>’

(168) 2 ~ VY] 4 21 aT) 4 BT+
+ o F @@ (V) 4+ o (V) 4 aoti( ).

Since V is a solution of zv' = 1,(0)v, we have

. )
2 (V) =53 V) - LWV,
which shows that the functions appearing in the braces { ... | depend on V

alone.

From ((16.4), (16.7)) and ((16.5), (16.8)) we can easily derive the following
differential equations which determine the vector functions { ¢ V(z)), $u(Viz)!
(th=20,1, ..., o):

(16.9) 105 90, $o] =0, 2o = g[0; 0o, o]
and
0
K(VJCPh-*' H(V)Lph + g{’h( V) = éi/%oh—a<17) . 1"’1“") V7

(16.10.h) ,
e 4 s = M(Vips + E(V)bs + SHV)

\ , (h=1, 2, ..., o),
where we put i) = 0itk <O,

§ 17. = Proof of Proposition 1.1 (Part II).

We shall solve differential equations (16.9) and (16.10.h).
1°. By solving the first equation of (16.9) with respect to ¢o, we have a
unique equation of the form

(17.1) 9o =-F(o),
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where F({,) is a holomorphic vector function of ¢, at O and, by virtue of
{16.3\, satisfies

17.2) F(0)=0, F,0) =0.

Substituting F(do) for o into the second equation of (16.9), we have a
differential equation of the form

(17.3) 2o = gltdo).

g(bo) is an n-column vector whose components are holomorphic functions of
bo for |$o] =d’, d being a positive constant. By virtue of (16.3) and (17.2) it
is easy to verify that g(Jo) has a uniformly convergent expansion of the form

90 =Liwbo+ X %,

g, being n-column constant vectors.
Since, by Assumption II, we have

det (1,(p) —q«ply==0 for 2 =g,

it can be verified that equation (17.3) possesses a formal solution of the form
(17.4) Yo~ V@) + ¥ V@i, Vie)= 10",
lgl=2

where o, are n-column constant vectors. Therefore we see that the equation
(17.3) has a form similar to equations (11.1) with « =0, § = n.

By applying Theorem B in Section 11 to equation (17.3), it is concluded that:

The formal solution (17.4) is uniformly convergent for |V(z)| = &' and the
sum Qo Viz)) is a solution of equation (17.3) for | V(z)| = ¥, &' denoting a_suit-
ably chosen positive constant.

Clearly ¢o(») is an mn-column vector function holomorphic in v for
jv]l = % and satisfies

(17.5) $o(0) = 0, é%ﬁ.]}o(?)) w0 = 1p

Let pov) = Fido(v)). Then pev) is an m-column vector function holomor-
phic in v for v =% and {9 V(®), o V(z)'} is a holomorphic solution of
equations (16.9) whenever | V(x| = &.
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It is to be noticed that we have, by (17.2),

(17.6) pol0) = 0, a%,gco(v) w0 = O.

20, - By definition, K(v), H(v), M(v) and Kw) are holomorphic matrix
functions of v for |v]| = &. Furthermore, owing to (16.3), we have

K0Oy=4d, HO) =0, #:0)=0,
(17.7) {

M0)=0, EO) = 1.(p), $:(00=0

In order to solve equatiovs (16.10.h) by induction, we assume that the
vectors ¢,(v) and ¢, v) have been already determined for »x = » — 1 in such a
way that they are holomorphic vector functions of v for |v] =& and the
pairs (o V(z), $(Viz))! are holomorphic solutions of equations (16.10.x).
Then &u(v) and Siv) are both holomorphic vector functions of v for |v|=<¥.

From (16.10.h) we get an equation of the form

(17.8) o = F(V(@)s + f(V(@), (F(v) = — K(v)" H(v)),

where F(v) and f(v) are respectively m X m and m X 1 matrices whose com-
ponents are holomorphic functions of v for |v| = &, and they satisfy

F{0y=0 for any h, f(0)=0 for B = 1.

Substituting (17.8) for ¢, into the second equation of (16.10.h), we have
an equation of the form

(17.9.h) o = (G V(z) — bl s + g(V(x)),

where Gv) and g(v) are respectively » X # and » X 1 matrices whose com-
ponents are holomorphic functions of v for |v| = &, and

GOy = 1.p) for any h, g(0) =0 for h = 1.
Assumption IT implies that
det (b +q-wl.—1.p))=0  for 2=h+4|q].

By using these inequalities we can verify that equation (17.9.h) admits
a formal solution of the form

(17.10.h) i~ T V(2)7Qh, (Qo=0),
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where @, are m-column constant vectors. Hence we see that equation (17.9.h)
has a form similar to equations (11.1) with « =0, 8 = n. By applying Theo-
rem B in Section 11 to equation (17.9.h), it is concluded that:

Equation (17.9.h) has a solution $u(V(z)) for |V(z)| =0 which admils
there the uniformly convergent expansion (17.10.h).

Hence equations (16.10.h} have a solution | ¢u(V{z)), ¢ Viz))} for | V(z)| =7
Here 7i(v) and $,(v) are respectively s~ and n-column veciors whose com-
ponents are holomorphic functions of v for |v|=2? and vanish at v =0 if,
in particular, # = 1. The precise form of ¢u(v) will be clear from (17.8).

Thus Assertion i) of Proposition 1.1 has been proved.

§ 18. - Proof of Propesition 1.1 (Part III).

In order to simplify the arguments, we apply first a transformation of
the form

(T) y=ole; V@)l + 20, o= do; Vi) + o2

to equations (A). By virtue of (16.2) we have
e Y = — (o + Dee¥ 4 [Ow; ¢lo; V4 o701, §fo; V] 4 oo¥12)
— e o tigle; V] — flo; lo; VI+ oY, Ylz; VI 27 2]).

and we have a similar equation for zZ'.
On the other hand, by the determination of the vectors ¢[z; v] and
Pfz; v]. we see that both of the vectors
aotiyfz; Vi) — flz; olz; V@), dlz; Vo,
e{z; Viz)} —gle; ¢lz; V@) $fz; V)l
confain 2+ as factors and have Property-9f with respect to V(z)in |2z|<¥E,

| V(z)] < &. From this fact it is concluded that:
The equations satisfied by { Y, Z| are written as

(A) oY = A, Vo), Y, Z), 24 = Bz, V), Y, 7),
where Az, v, Y, Z) and Bz, v, Y, Z) are respectively m- and n-column

vectors whose compounents are holomorphic and bounded functions of (z, v, Y, Z)
for

(18.1) 2] < E, v < ¥ |Y]|<d, |2 <d.
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g, &, d are positive constants and we can give a value to the quantity d'
as large as we want provided that ()°T'd’ < d. Moreover we have

S 470, 0, 0, 0)=d, 420, 0, 0, 0)= 0,
(18.2)
. B0, 0,0, 0)=0, Bz, 0, 0, 0) =1.(p)— (¢ + Dl..

In order to complete the proof of Proposition 1.1, it will be sufficient
to prove that equations (A) possess a formal solution of the form

(&) Y ~ alz) + ”E'i V(@) a ), Z ~blx) + |§ Viz)h (o).
qzl

ql=1
We have to look for differential equations which determine these coeffi-
cients.

1°. - We see at once that the equations satisfied by {a(x), b(x)} are given by
(18.8) zotlg’ = A(z, O, a, b), zb' = B(z, 0, a, b).

Since det & == 0 and det (1,(p) — (2 + o 4 1)1,) == O (by Assumption II), we
can easily verify that equations (18.3) possess a formal solution of the form

(18.4) a~ ¥ &Py, b~ T 2'Qu,

where P, and Qo are m- and m-column constant vectors respectively. We
can assume that |Po] < d and |Qul < d'.
Hence equations (18.3) have a form similar to equations (6.1) with

a=m, B=mn, 1,(y) = L{v)

It follows then that a sector with Property-8 with respect to {Qi(x), ...,
Q,x)' has Property-8 with respect to {Ay(z), ..., Auz)}. By applying Theorem
A in Section 6 to equations (18.3), we have the following conclusion:

The vectors alz) and b(z) are uniquely delermined as o solulion of equa-
tions (18.3) in such a way that ihey belong to class C(©:, ©1; £Y) and admit
asymplotic expansions of the form (18.4) as x fends lo O through the sector
®, < arg z < @1, £! being a positive number.

20, - To simplify our calculation, we make the change of variables

Y =1+ a@), Z =7+ b)
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to equations (A). Then the transformed equations can be written as

aotiy' = K, V(e)m + Fle, V(%))C+g é x ;PC%M, V@) + flz, Viz)),
pitigl=
(18.5)
ol = Gz, V@) + He. V@)i+ T 1780z, V) + ge, V),

\ | pitigl=2

where the power series in the right-hand members are uniformly convergent for
0<|e| <&, @1<arge< g, [V@|<?', [n]<a [{]<d*
and the coefficients have Property-9{ with respect to V(z) in
O0<|z|<E,O<arg 2 < e, | Vo)) <&,
£l &', d' being suitably chosen positive constants. Moreover, we have

S EO, 0)= &, FO, 0)=0, f(z, O) =0,
(18.6)
| G\O) 0)= 0, HQO, 0)= L(p) — (o + Dl,, g(, 0)=0.

We assert that equations (18.5) possess a formal solution of the form

oo

(18.7) M~ T V@), (~ % V@)

lg]=1 lgj=1
Indeed, differentiation of (18.7) term by term yields

zotly' ~ ¥ Vizywetal(e) + % o Viw)d(q - pla,z),
(18.8)
al ~ % V(x)qxb’q(l') + 3 Viz)idq - P‘)b9<37>-

Substituting the power series (18.7) for (v, {) into the right-hand mem-
bers of (18.5) and rearranging formally the resulting equations in the form
of a single power series of V(z), we have equations of the form

wty ~ 3 V@)t Ba, Oayw) -+ Flo, 0b,) + S,
lq|=1

(18.9)

oo

2 ~ 3 V@) G, Oae) + Hz, 0)by) + So2)t.

lg]=1
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Here &,/z) is a linear form of known m-colnmn vector functions belong-
ing to class C@:, ®,; &) with polynomial coefficients of a.(z) and b,(z) for
l¢'| < |g| and §,x) has the property similar to & (=)

From (18.8) and (18.9) we get the following linear differential equations
which determine the vector functions a(z) and b,z):

g zoHaly, = { Bz, 0) — 29(q - m)l. ' a, + Flx, 0b, + R, (@),
(18.10)
( zby = Gz, O)a, + { Hz, 0)— (g - Wl.tby 4 S,lx).

Since det 0, 0) =det d 30 and det 1. () —(@+ 149 -wl.) =0 (by
Assumption 1I), we can prove, by using (18.6), that equations (18.10) have
formal solutions of the form

(18.11) ay~ ¥ Py, b, ~ 3 2y,
1 i

where P;, and @, are m~ and n-column constant vectors respectively. Hence
equations (18.10) have a form similar to equations (6.1) with

a=m, f=mn, L) = 1)

Since (18.10) are linear differential equations, Theorem A in Section 6
says that:

The vectors a,z) and bz) are defermined successively as a unic ue solution
of equations (18.10, in such a way thal they belong to class @@, ©1; ') and
admit asymplotic expansions of the form (18.11). -

Thus Proposition 1.1 has been completely proved.

II. Uniform Convergence of Formal Solution (S,).

§ 19. Proof of Theorem 1. - By virtue of Proposition 1.1 in Section
15 we have the formal solution (S;) for equations (A). In order to prove
Theorem 1, namely to prove uniform convergence of the formal solution (S1),
we make the change of variables

o~

(T) y = ole; Vo) + oY, 2 = dfz; Vie)] + 2ot Z

to equations (A). As we have already proved in Section 18, the equations
satisfied by { Y, Z: take the form

~

(&) e ¥ = A, V), Y, ), 2Z' = B, Vi), ¥, Z),
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where A(z, v, Y, Z) and Bz, v, ¥, Z) are holomorphic and bounded vector

~

tunctions of (z, v, ¥, Z) for

o] < B o] < 8% | Y] < @t |Z] < a°
and we have

(19.1) 470, 0,0, 0) =4, 430, 0, 0, 0) =0.
E° 3° and d° are suitably chosen posiftive constants and satisfy
(E%ptide < d.

Moreover equations (A) possess a formal solution of the form

(81) ¥ ~ a(z) + IE Vieya ), Z~ bz)+ 3 V)b )

g}=1 lgl=1

with coefficient vectors belonging to class C(@®,, ©1; E). We can assume that
la@)] < d°, |bz)| < d° since a(z) and b(x) are bounded.

From these facts we see that equations (A) have quite a similar form to
equations (11.1). By applying Theorem B in Section 11 to equations (A), we
have at once the following conclusion:

THEOREM 1'. - Hquations (A) have a solution of the form | ®%z, V(x)),
Wz, V(z))! with V(z) = 1,2»)C", whenever (z, V(a)) belongs to a domain of
the form

(19.2) 0<|z|<E, @ <argz< 0, |v] < 3

Here %z, v) and Wz, v) are respectively mi~ and wn-column vector func-
tions with Property-9 with respect to v in (19.2) and moreover admil there
uniformly convergent expansions of the form (S,) with V(z) = v.

We define @z, v) and W(z, v) by the formulas

Oz, v) =glz; 0]+ 2t @%g, v), Uz, v) = Y[z; v] + 27Uz, v).

Then, owing to the transformation (T), the pair |®(z, 1.(z*)C"), Tz, 1.(z)0")}
is a solution of equations (A) provided that the values of z and 1.(z#C” stay
in the domair (19.2). Obviously the vectors ®(z, ») and W(z, v) thns defined
satisfy conditions stated in Theorem 1 in Section 3. Thus the proof of
Theorem 1 has been completed.
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CuaprrEr IV

Proof of Theorem 2.

§ 20. - Equatiens (B;) and Reduction of Linear Parts.

As we have already seen in Section 4, equations (B:) have the form, by
virtue of Assumption IV,

| oo = L o+ Ofe, 35+ £ 9ol 3
2

(B1) -
( 22’ = Li{p)e + D(=, 2y —i—| T‘izyPGp(w, 2)s
P =

where the power series in the right-hand members are uniformly convergent for

(20.1)  O<lz|<&, @i<argz<@:, |yli<d, |z]|<d.

Here Cfz, 2), Diz, 2), Fz, 2) and G,(z, 2) are respectively m X m, n X m,
m X 1 and » X 1 maftrices whose components are functions with Property-6)yf
with respect to 2 in

(20.2) O<|z|<E&, @Oi<argz<6, |zfl<d
and, in particular, we have
{20.3) 0, 0) =0, D0, 0) =0.

Moreover, the matrix Clz, 5) has a unique represenfation of the form

(20.4) Ole, 2) = ¢z 2] + 2910z, 7),
where ¢[z; 2] is an m X m matrix function with Property-c with respect to
@ for ||2]| <dy and C%, z) is an m X m matrix whose components have
Property-9f with respect to z in {20.2).

To counstruct a transformation of the form (T,) appearing in Theorem 2
in Section 4, we consider first a transformation of the form

(T3 =7+ A Yn, 7=+ 2B, Y,

where /I(w, §) is an m X m matrix with off-diagonal form and E(m, £) is an
n X m matrix.
We impose upon A(x, §) and B(z, {) the conditions that they have Prop-



238 M. IwaNo: Analytic expressions for bounded solutions, etc.

erty-@f with respect to { in a domain of the form
(20.5) O<le|<&,  @:<arge<®:;, [|{|<ds,

where ®, and ©, are the same as those that appeared in 3° in Section 4.
Then we want to prove first the following proposition:

ProposITIoN 2.1, - We can determine the maitrices Afz, §) and Blz, O of
the transformalion (T:) in such a way that equations (Bi) are transformed
into equations of the form

(20.6) 2ot = 1u(F(z, Ol + M2, a8 = L(ME + [1].

Here F(z, C) is an m-column vector function with a unique representation
of the form

(20.7) Fiz, ¢ = flz; §) + ooH Iz, 0,

where flz; §] has Property-o with respect to x for ||C|| < di while F°, §) has
Property-U with respect to § in (20.5).
The symbol [v). represents a uniformly convergent power series of v for

(20.8) 0<|e| <&, @Oi<argz<®, |n]<d, ¢ <d

which satisfies the condition [n], = O(i|n|?) and whose coefficients are vector
functions having Property-9f with respect to T in (20.D).

The proof of this proposition will be given in Section 21.
Next we want to prove the following proposition.

Proposirion 2.2, - Put

T2 (fie; Z)— fle; 0)

b) . — . [ .

(20.9) No; Z)=flo; 21— 20 »
Then there exists a lransformation of the form

(Tz) n= Y+ LB, Z)Y, (=2

by which equations (20.6) are changed to equations (Bi) appearing in Theorem
2 in Section 4. Equations (B, picking up the linear terms only, are written as

{20.10) etY = 1L0e; Z)Y + (Y, 22 = 1(WZ +[Y.

Here Rlx, Z) is an wm-column vector with elements {Rjz, Z)}, where
Bz, Z) have Property-9f with respect to Z in the domain (20.8) and R{0, 0) = 0.
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This proposition will be proved in Section 22.
Assume that these two propositions have been established. By combining
(T%) with (T3) we have a transformation from (y, 2) to (Y, Z) of the form

(T5) y=7Y+ A=, 2)Y, =z=2Z+1°Bz, Z)Y,
where

(20.11) { Alz, Z) = (In + Alw, Z)1u(B(z, Z)) + Az, Z),

Biz, Z) = Bz, Z)(1. + 1.(R(z, Z))).

This completes the proof of Theorem 2 in Section 4.

§ 21. - Proof of Proposition 2.1.

In order to prove the proposition, first of all we have to look for differ-
ential equations which determine the matrices A(z, %) and Bz, {).

Differentiating (T3) and replacing {29y, 20’y by (20.6), we have equa-
tions of the form

-, ) 34 n 34
2oy = 3 LF(z, C)) -+ xﬂ‘ﬂq—a; + xa b2 2 3 wibr +

+ A1,(F(z, c))in + (1,
21.1) '

~ ok Y
xe = 1,,(}L)§ + { got? é’f‘ 4 20X ”é‘gc (J«ka -+

+ BL{F(&, {) + oa°B } 7+ [l

In the other direction, a substitution of {T%) for (¥, 5) into the right-hand
members of equations (B,) yields equations of the form

21.2) { 2y = (1a(v) + Clz, )l + Alz, Oy + [k,
27 = 1L(WE + Dz, §)(l. + Alz, Q) + ao1l(0)Biz, §) n 4[]

By equating the coefficients of the linear terms of % appearing in the
rigut~-hand members of the first equations of (21.1) and (21.2), we have the
equation:

go1 aa;l + a0 3 ac e = (1nfv) + Cla, O)ln + 4) — (1n + A)1ulFia, O).

k-—l 3
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Then we see that A(z, V(z)), with V(z)= 1.%C", satisfies the equation
@2L3) oA = (1v) + Oz, VA + 1) — (4 + L)I(Flx, V(z).
Similarly we can verify that B(z, V(z)) satisties the equation:
(21.4) o7P B = — Bl (F(=, V(@) + 2°(1(w) — L)B + D(z, V@)l + Alz, V()

1°. DETERMINATION OF A(x, v). - Since, by hypothesis, 4 is of off-diagonal
form, we see that equations (21.3) are equivalent to m? equations of the form

(2L.3) Eyz, V(z)= hik Culz, V@)Am + vi + Culz, V(z)
and

(1.8 et A= v;dp + 2 O, V(@) A — ApFiz, V(z) + Cule, V&) (FRk)

(21.3”/) Ajj = U,

Ay and Cp are the (j, k)-elements of 4 and C, and F; is the j* componeni
of F. Inserting (21.3') for F} into equations (21.3"), we have equations of the form

(21.5) 2T AL = (v; — vi' dy "}}3 Oz, Vie)Aw —
==k
— ApCulz, V(@) — Aj h‘:‘;k Culw, V(@)dm + Cim, V(&)  (j & &),

which determine the components Au(z, v) for j == k.
Notice that:

i) vy—v =0 for j ==k and Cu0, 0) = O for each (4, k) (See Assumpticn
IV and (20.5)).

ii) For each (4, k), Cu(xr, v) has a unique representation of the form
(21.6) W, )= cplz; v] + a0z, v)  (See (4.4)),

where cu[z; v] has Property-o with respect to = for [[v|| < di while Cl(=, v)
has Property-®f with respect to v in

0<lz|< b, O <argz < e, vl < di.

By applying the arguments in Seections 16, 17, 18, which were used to
construct the formal solution (S;) of equations (A), to equations (21.5), we
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can prove that equations (21.5) have a formal solution of the form
~ oo}
(21.7) Ap ~ aplz; V(z) + 2ot (a,-;c(x) +t IZ V(z)ya,, jk(.’L'))'
gl=1

Here aulz; v] have Property-c with respect to z for ||v]| < di, au(») and
a,, (x) belong to class C@:, ©:; &)

In order to prove uniform convergence of the formal solution (21.7), we
have to change the dependent variables from {ff,-k} to { Y}, where

Y= a4y — axlz; V(@)

By using the reasonings in Section 18, which were used to derive equa-
tions (A) from (A) by transformation (T), we see that the equations on { Y}
have a form similar to equations (11.1) with

o == M* — m, =0, L) = 2 ®(v; — vi)ly,
ek
where the symbol @ denotes the direct sum.

By applying Theorem B in Section 11 to the equations on | Yu!, it is
concluded that:

The equations on {Yu} have a solution {Aj(z, Viz)| whenever (z, V(x))
belongs to a domain of the form

(21.8) 0<|z|<&, @)2<arg:p<(§g, vl < di.

Afk(‘”} V(z)) admit uniformly convergent expansions of the form
. o0
Afe, Vi) = aple) + 3 Viayas oo
gl=1

provided that (z, V{z)) is in (21.8), so that Aj{z, v) are functions with Prop-
erty-9f with respect to v in (21.8).

Hence if we put
(21.9) Az, v) = aplz; v] + P Az, v),
{lek(x, V(z))} are a solulion of equations (21.5) and admil uniformly convergent
expansions (21.7) whenever the values of z, V(z) stay in (21.8).

It is clear that Ejk(x, v) have Property-9f with respect to v in (21.8).

e

20, DETERMINATION OF F(z, v). - Substituting (21.9) for 4; into equations
(21.3) and replacing V(z) by v, we have at once the following conclusion:
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The components Fyz, v) of the m-column vector F(x, v) are given by

(21.10) Fuz, v) = E Oinlz, v)Aule, v) + vi + Culz, v)
hEk

and, by virtue of (21.6) and (21.9), have unique representations of the form
Fyz, v) = filz; v] + 2"t F)z, v),  [i[0; 0] =,

where fifz; v] and FXx, v) are the same funciions as those that appeared
tn Proposition 2.1.

3°, DETERMINATION OF B(z, ©). - We consider linear differential equations
(21.4) in which F(z, V(z)) and A, V(z)) are known functions.

Observe that 1,70, 0)) = 1.(v) and det 1,(v) &= 0. By applying the reason-
ings in Section 18, we can easily prove that equations (21.4) possess a formal

solution of the form

(21.11) B~ B+ = V(@sBa),
191=
where B(z) and By z) are both n X m matrix fanctions belonging to class
C(®,, @2; 5).
- 1We now introduce an mn-column vector @ with elements (D, ..., Ba;
s} Biny e, Bun'. Then we see that equations (21.4) have quite a similar form
to equations (11.1) with

o = mn, =0, 1.(7) =~ ”i} @ vil..

==l

By applying Theorem B in Section 11 to equations (21.4), we have the following
conclusion:

Eguations (21.4) have a solution B(m, Viz)) whenever z and V(z) are in
(21.8). Here Bz, V(z) is an n X m matriz admilling uniformly convergent
expansion (21.11) for (z, V(z)) in (21.8), so that Bz, v) has Properiy-9f wilh
respect (o v in (21.8).

Thus Proposition 2.1 has been proved.

§ 22, - Proof of Proposition 2.2,
By virtue of (20.7), P(z, #) has a unique representation of the form
Flz, 2} = flz; 2] + 2° P Fz, 2).

We define Alz; Z] by the formula (20.9). Then it is clear that Alz; 2] has
Property-c with respect to z for |[#]| <d:. Moreover we have A[0; 0] = v and
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il A[0; 2] is an m-column constant vector.
oz°

Substitute (T}, appearing in Proposition 2.2, for (v, {) into both sides
of the first equation of (20.6) and equate the coefficients of the linear terms
with respect to Y in the resulting equation. Then we see that, for each index

j, Ri{z, Z) satisfies a partial differential equation of the form

(22.1) zo+t 3_3_1;] +- z° é i/

2 o7 W= (Fiz, Z) — \z; Z)(1 + R).

It follows from (20.9) and (20.7) that ﬁ}(x, v) = (e, v)— M{x; v]) have
Property-6)f with respect to v in the domain (21.8).

Hence, for each index 4§, Rjwx, V(x)} with V{x)= l.(x*)C" satisfies the
linear ordinary differential equation

(22.2) xR} = Fw, V(x)R; + Fx, Vix), F0, 0)=0.

It is easy to prove that equation (22.2) possesses a formal solution of the form

(22.3) B ~Rx) + 2 V)R, (x)

lg}=1

with eoefficients belonging to class C(®:, ©:; &).

Therefore, for each index j, equation (22.2) has a form similar to equa-
tions (11.1) with « =0, § = 1. By applying Theorem B in Section 11 fto
equations (22.2) we have the following conclusion:

Equations (22.2) have a solution {Rjfx, V(x))} whenever x and V(x) are
in (he domain (21.8). This solulion admils uniformly convergen! expansions
(22.8) for (x, Vix)) in (21.8), so that R{x, v) is an m-column vector function
with Property-S4 wilh respect to v in (21.8).

This proves Proposition 2.2 and, consequently, Theorem 2 has been
completely proved.

CHAPTER V

Proof of Theorem 3.

I. Formal Solution (N:).
§ 23. - Equations (B,).

As we have already seen in Theorem 2 in Section 4, equations (B;) have
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the form

; Y = 1, (\aw; Z)Y + & Y'Fyx, Z).

(Bz) . lp[=2
l xZ = L2+ % YPGP(:)J, Z),

[pl=2

where the power series in the right-hand members are uniformly convergent for
23.1) O<|@|<&, G <arge<®, [Y|[|<d, [Z|<d

and Fjx, Z) and G,(x, Z) are respectively m- and n-column vector funections
with Property-9f with respect to Z in

(23.2) 0<|w|<E, ®; < arg < Oy, 17| < ds.

Let ©: <argz < ©®; be the sector that appeared in Theorem 3 in Section
4. Then we shall prove the following proposition:

ProrosirioN 8.1. - Assume that Assumptions III and V in Section 4 are
satisfied. The equations (B:) admit a formal transformation of the form

(T) Y~u 4 I s urd (e, v), Z~v4x° 05_3 uPB,lx, v)

pl=2 Ipi=2

which transforms formally equations (B,) into equations of the form
(B 2ot = 1,(A[x; v)u, 20 = 1. (p)v.

Here A (z, v)and B, (x, v) are respectively m— and n-column vectors whose
conponents are functions having Property~Sf with respect to v in a domain
of the form

(23.3) 0<|z| <%, @< arg o < 8, o] < 8.

The proof of this proposition will be given in Section 24.

By virtue of Proposition 3.1, we have a formal general solution of equa-
tions (B:). As we have proved in Section 5, equations (B) can be integrated
by quadratures and their general solution { U(z), V(z)! is given by the formula
(6.1). If we substitute { U(z), V(z)} for {u, v} into the formal transformation
(Ts), we have a formal solution for (B.) of the form

(S2) Y~ U@+ ¥ Uwedw, V@), Z~V) +o° ¥ UwrBlz, V).

lp =2 lp]=2
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§ 24, Proof of Proposition 3.1. - Differentiation of the formal solution
(Sy) term by term yields

wHY ~ 1,025 V@) U) + l% Uy | o=+ Aife, V(z) +
pl=2
L@V -+ ¥ UrlaoPByz, V)-+(p-Nz; V] + owo)Byz, V).

| =2
On the other direction, inserting (S.) for (Y, Z) into the right-hand mem-
bers of equations (B,) and rearranging formally the resulting expressions in
the form of a single power series of U(z), we have after a simple calculation
equations of the form

2ot Y" ~ L(A[z; V(@)])U(z) +

+ X U@ {Laz; V@)dle, Viw)+ Rz, V@),

lpl=2

o2 ~ LV + ? Ur {2l {wBla, V) + S,z V)}.
pl==

Here &R ,(z, v) is a linear form of known m-column vector functions which
have Property-8f with respect to » in a domain of the form

0< 2| <&, 0:< arge < 0., |v] < dj,

with polynomial coefficients of A,(z, v) and By(r, v) for |p’| < |p|. Su(r, v)
has the property similar to &,z, v).

From the above power series representations for [#°TY’, 22"} of two
kinds, we can easily derive ordinary differential equations which determine
{4,(@, Vi), Bz, V@)i:

@41p) 2ot = (Loe; V@) —p - Naz; V@4, + Rz, V@),
©4.2.p) @B, = —p - Az; V@)B, 4+ ool — oL)B, + Sz, V(z).

We determine inductively 4.z, v) and Bz, ») in the following way.
Assume that 4,z, v) and B,(z, v) have been determined for 2= |p|< N in
such a way that they have Property-©f with respect to v in a domain of the
form (23.3) and A4,(x, V(z)) and Bz, V(z)) are solutions of the equations
(24.1.p) and (24.2.p) respectively for (z, V(x)) in (23.3). Then the vectors & ,(z, v)
and 8,(z, v) for |p|= N are functions with Property-9f with respect to v
in (28.3).
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Since det {1,[0; 0]) —p+A[0; 0]L.t 5=0 and p - A0; 0} == 0 respectively
by Assumptions V and III, we can prove by applying Theorem A in Section 6
that:

Egquations (24.1.p) and (24.2.p) for |p| = N have formal solutions of the
form

(24.3.p) 4, ~ Ay (x) + | 121 Viz)? 4 ,4(z)
q =

and

24.4.p) B, ~ By&) + Hfl V(@)1 B,
el

Here A,(2), A,flx) are m-column vectors and B,z), B,(x) are n-column
vectors which are uniquely determined as solutions of linear ordinary differ-
ential equations belonging to class C(®s, @s; &7).

Hence equations (24.1.p) and (24.2.p) for each p such that |p| = N have
a form similar to equations (11.1) with

a=m, B=0, 1,(y) = ;_i,l &y —p-vl
]=

and
a=mn, B=0, 1Y) = —(p-v)l.

respectively. By applying Theorem B in Section 11, we have the following
conelusion:

The m-column vectors Az, v) and the n-column vectors B,(x, v) are uni-
quely deferinined in such a way that A, x, V(z)) and Bz, V(z)) respectively
are solutions of equations (24.1.p) and (24.2.p) and, moreorer, admit uniformly
convergent expansions of the forms (24.3.p) and (24.4.p) whenever the values
of (z. Viz)) belong to (28.8).

Obvionsly 4,x, v) and By, v) have Property-9{ with respect to v in
the domain (23.3).

IL. Investigation of the Growth of a General Solution of Equations (B).

§‘ 25. Fundamental Lemma. - We noticed that Lemmas A and B (in
Sections 8 and 12) played a fundamental role in the proof of Theorems A
and B (in Sections 6 and 11). For the proof of Theorem 3 also we need a
corresponding lemma which we are going fo establish.

By virtue of Assumption III in Section 4 all the real paris of the mo-
nomials Afx) = — v;/oz° are negative valued for z on the positive real axis.
If we denote by 6;+ and 6 singular directions of Aj/z) which are immedia-
tely above and below the positive real axis respectively, then 7 is an ascend-
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ing singular direction while 0;_ is a descending singular direction. As was
explained in Section 7, we can choose arg v; so that

. , 1 T , 1 Eid

(25.1) i .—:E(arg v}w—-é), f+=a(arg v;—*-Q).
Put

(25.2) 0. = max {6}, 0% = min {6 ].

j=1 j=1

Then we can assume without loss of generality that the angles 6, 6/
satisfy

(25.3) 0= —f_<"—Be, 0= 6 — 0 <" — 5
and the angles O3, B3 appearing in Theorem 3 satisfy

7 k] - ; T
(25.4) b — 45 = @: <@ =604+ -—be

for a preassigned sufficiently small positive constant e.
We define Lig) by

o(p — Ot + 3e), 0 — 2 = ¢ = 8s,

(25.5)  L(p) = , 2 == 0y — 2,

ot 3

op — b — Be)+m, O3= ¢ =0 4 2e

By virtue of (25.4) we see that L(¢) satisfies the inequality

(25.6) oe = Ligp) = ® — o¢ for ®; = (Pé(;)g‘
Lot
(25.7) w(p) = exp f cot Liz)dr,

0o

9
(25.8) Xi(p) = exp {(Re gxk)fect L{t)dz + (Im p)(fo — ¢} g,
6o
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functions w(9) and xu(») k=1, 2, ..., n) are strictly positive valued, bounded
and continuous for ;= ¢ = ;.
Then our lemma which we are going to establish can be stated as follows:

where 8, is a fixed angle satisfying @3 = 0, < ®;. Since we have (25.6), the

Levma 3.1, ~ Let {U(z), V(z)} be a general solution of equations (B) given
by the formula (5.1). Let z., u', v' be arbitrary values belonging to a domain
of the form
| O<lol<Guwlarg 1] < Saglarg )

(25.9) _
( 0; < arg z < Oy, lu] < 8y,

where y(v) is an n-column veclor wilh elements |y t. Choose the integration
constants C and O being inrolred in | Uz), V-x)i so that Ulz:) = w', Vizy) = v*.

Then there exists a curce I, , which joins the point x, with the origin,
such that

iy The curve T., is entirely contained in the domain
{25.10) 0< |z] < Eywlarg z). @; < arg < 0;

except for the origin.

i) As z moves on the curve I, , we have the following three inequalities:

(25.11) [V(x)] < 8a[x(arg z)), 0; < arg z < O,
a vl sin oe
(25,12 AL BRI T
®18) g (H U e_ReAj(x)) L
(N]|v| sin ce = 4|v])
with |v] = min |v;|. s is the arc length of the curve T, measured from lhe

origin to the variable point x.

§ 26. Proof of Lemma 3.1. - To prove our lemma, we denote by (g, ¢)
the polar coordinate of the variable point # on I',. Then the curve T, is
defined as follows:

If @;<arga; < 0_ 42 or fp — 2e < arg z; < @3, [, consists of a cur-
vilinear part I':

o

126.1) o =|z1] expf cot L{z)d=

arg x
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forarg z; S0 =0_+2eor 8} —2e =9 = arg o
and of a rectilinear part I":

0= p=|z:] exp foot Lr)dr, o =10_ 4 2e or 6} — 2.

arg x
If 6.+ 2e < arg 2z, = 0, — 2¢, T, consists of a rectilinear part I' only:

0=p =2, p=arg z,.

1°. - By the definition of the curve I, Assertion i) of our lemma is
almost evident. An application of the reasonings which were used to prove
the inequality (12.3) in Lemma B in Section 12 proves easily the inequality
(25.11).

- We want to prove the inequality (25.12). Since U(z) is a solution
of the equation

zotu’ = 1.(M=z; V(z))u, A0; O]=v,
a simple calculation shows that

UW |

@6 ue T )

- S (x)i . .
1 4| Uf®)
ds (for some index j)

dx
= Re (x—ff —Az; Vi) %)
_ Re( a1, 92 dz \fz; V(x)])

S Vi
The index j depends naturally on the choice of the point z, i.e. s.
Since |V(z)| is uniformly bounded for zel., no matter how we choose
the point z,, we can assume without loss of generality that:
For each index j, as # moves on I',,, we have

1
(26.3) §|Vf[ = [Mez; V@), "
7

arg

On the curvilinear part I', p is a functions of ¢ given by (26.1). An easy
computation shows that we have for zeI”

(26.4) Z? — et +e) or 4 elHete)
8

Annali di Matematica 32
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according as ¢ satisfies arg z:. S ¢ = 6.+ 2z or 0} —2e = p = arg 1.
Hence an inequality of the form
! L

26.5) | U(ac)n—lﬂl—dU—?lﬂ Z 5oy sin oe = ;

||| v] sin ae

would follow from (26.2) and (26.3) if we could prove that L(v) satisfies

(26.6) cos (L(cp) — op + arg v; + arg Al ?(x)]

)< —sin & or > sin oe
\ I

according as o satisfies
arg z: = ¢ = 0. 4 2e or 6} — 2e = ¢ = arg ;.

Hence, in order to have inequality (25.12) on I, it sufficies that (26.6)
holds in the desired interval. We shall prove (26.6). The definitions of L(v)
and i imply that

: N
arg v; + Liy) — op = olff. — 04 4+ 3¢) —

for ) — 2 =< ¢ = @;. This relation yields by (25.3)

(26.7) |arg v, + L(p) — 07| = 5 —20e  for 0} —2¢ <9 = @s.

ks
2

Since |arg Afz; V(z] — arg v;| < oe for zel”’, we have (26.6) from (26.7)
for 6 —2¢e = o = arg .
Similarly we can prove that

(26.8) larg v, + L(p) — op — m| = g--2ae for ©; = ¢ = 6- - 2¢,

from which inequality (26.6) follows for arg z, = ¢ = 6_ - 2¢ since we have
(26.3). Thus we have inequality (25.12) for zel".

On the rectilinear part I, we have |z| =s and arg z = arg .. Hence
dz/ds = exp (¢ arg z:) and 0_ 4 2e = arg z:1 = g’y — 2¢, which, by virtue of
(25.1), yields

--g 4 o(fiy — O 4 2¢) = arg v; —oarg z1 = T o(0j— — 6 — 2e).
Then it follows from the definitions of 6_ and 6} that

larg v, — ¢ arg | = g——?cs.
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Hence, by using (26.3), we can derive from (26.2) inequality (25.12) for
zel”.

3°. - To prove the inequality (25.13), we take N so large that
4|v] = N|v| sin oe.

Then, by using the fact that the inequalities (25.12) and |dz/ds| =1 are
satisfied for z eI, , we have by an elementary calculation

a
ds

e

iU e

= (W - {Vj ])ﬁ U(%)RN e——ReAj(x) 1 z k_c——l

> N}\v“’:in oe | U@) ¥ e~ ™4 | 5 |7,

This completes the proof of Lemma 3.1.

IIIL. Outline of Proof of Convergence of Formal Solution (S,).

§ 27. Problem to Prove Theorem 3. - By virtue of Proposition 3.1 in
Section 23 equations (B;) have a formal solution of the form

S) Y~Uw+ ¥ Uwpde, V@), Z ~ V@) +o° 5 UlrBys, Viz),

lp|=2 pi=2
where A,(z, v) and B,z, v) have Property-®f with respect to v in
(27.1) 0<|o|<8, O;<arg 2< 85, [v]< .
To prove uniform convergence of (S,), put

g PN('T) U, U) =u + . gZ:[<N %PAP<$B, /0))
=1p

(27.2) <
2 Ou(e, w, v) =v-+2° I uPB,z, v

=Pl

We make the change of variables

(27.3) Y= Py, Ulz), V@) + 1, Z= Quz, Ulw), Vi) +§
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to equations (B;). Since we have an identity of the form
zott a Pylz, Um), Viz) = zott k2 Py(x, Ulz), V(z)
dz ) 3 i 3z 3 ’

+ W’f}@ Pyiz, U), V() Le; Vo)l

d
+ WPN(% Ux), Viz))+ 1w)V(z)
and since {U(z), V(z)} is a general solution, we see that zo+! %PN(:E, U(z),
Viz) is determined as a function of (z, Ulz), V(z)) in a unique way. Similarly

we can prove that x% Qn(x, U(z), V(x)) is uniquely determined as a function

of (z, U(z), V(z)). Henoce, if we write the equations satisfied by {7, {} as

aotly = Lyvm + Fz, Uz), V(x); 1, &),
(27.4)

2t = G=, Ulw), Viz); 9, O)

Bz, u, v; n, ) and Gz, u, v; v, {) are respectively m- and n-column vector
functions holomorphic and bounded in (z, u, v; %, ) for a domain of the form

0<|a| <&, B:<arg o< 83, Ju] <3, |o] <3,
27.5)

Ul < dw, 8] < dy

for suitably chosen positive constants £y, 3y and dy.
Since equations (27.4) possess a formal solution of the form

(27.6) N~ X Uwrdy)z Vi), §~a° ;: U@)rB,(x, V(z),

lplalV \pl=N

an easy computation shows that F and G satisfy both an ineguality of the
form

@17 | F, u, v; o0, O, | Gl u, v; v, O = A0 +1ED) -+ Brjul”
for (x, u, v; 9, ) in (27.5). Moreover, F and G satisfy LipscHITZ'S condition

with respect to (v, §) with the same LiPscHITZ'S constant 4. Here 4 is a
positive constant independent of N while By may depend on N.
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We make a further transformation of the form
@7.8) n=1,/A)P, (=4Q,
so that equations (27.4) are reduced to

| B =) Fla, Do) Vi 1P, @,
27.9)
| @ =26z, U), V(2); 1(AD)P, Q.

We shall solve the following problem:

ProBLEM. - Let N = 164/|v| sin ge and N = 4||v|/|v| sin ce. Then
equations (27.9) have a wunique solution {ox(z, Ulx), Vix), $xlz, Ulx), Vie)}
such that

(27.10)y [P]=0(|U@)[Me2®], Q= O0(U@]"),
whenever the values of z, Ux), Viz) belong to a domain of the form

S 0 < |z| < Eyolarg ), O; <arg z < 8,
(27.11)y -
!l <%, (2] < Silxtarg ).

Here oylz, u, ) and Yn(z, u, v) are respectively m— and n~column vectors
whose components are holomorphic and bounded functions of (z, u, v) for (27.11)y.

If we assume that Problem has been solved, an application of the argu-
ments in 2° in Section 13 proves uniform convergence of the formal solution
(S2) when 2z, U{z), V&) belong to a domain of the form

0<jo| <5, 0:<argz < O, Ju] <8, |v] <%

and, consequently, we have Theorem 3 in Section 4.
Therefore, in order to prove Theorem 3, it is sufficient to solve Problem.

§ 28. Solution of Problem. - To solve Problem, let & ={¢(z, u, v),
Uz, u, v)} be the family of m-column vectors ¢(z, #, v) and n-column vectors
$(z, w, ©v) which are holomorphic and bounded functions of (z, u, v) for
(27.11)y and satisfy there inequalities of the form

[ole, u, v)] = Knfu]"[e—4¢],

(28.1)
bz, u, )] = Kn|ul,

Ky being a certain positive constant.
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Let (z,, u', v') be values arbitrarily chosen from the domain (27.11)y
and defermine the integration constants ¢ and €’ being involved in { U(z),
Viz)t so that U(z)) = #' and V(z,) = 2.

We define the vector functions ®(z, u, v) and ¥{x, u, v) by

Oz, ut, vl) =f‘%(x, U(z), V(x))dzx,
(28.2) ' .
Yz, u', v =JJJ{(w, Uz), V(z)dz,
where 0
Az, u, v) =z (e~ANF(z, u, v; L.(e29) oz, u, v), Yz, u, v)),
Hix, u, v) =210z, u, v; 1.(e2D) @z, u, v), Y(z, u, v)).

The integration must be carried out along the curve I'., which was already
defined in Section 26.

By virtue of Lemma 3.1 in Section 25, |U(z)| is a monotone increasing
function of s as # moves on the curve I',,. By combining this fact with the
inequality (25.11), we see that the values of z, Uz, V(z) belong to the domain
(27.11)y as z is on I, and, consequently, the integrands of integrals (28.2)
are holomorphic functions of z for zel., except for z=0. On the other
hand, we see by (27.7) and (28.1) that the integrands of integrals (28.2) satisfy

k [z, Uw), Vz)] = 24Ky -+ By i u Ulx) nN[e"ReA(")L

(28.3)
[ |z, U@), V@)| = QAKy + By)|z|| U@

Since || U(z)| tends to O exponentially as x approaches the origin along
I'.,, the integrals (28.2) are convergent. Hence the mapping G:

{o(, u, v), Yz, u, v)} > { Oz, u, v), ¥(z, u, v)}

is well defined.

Since {0, 0} e &, & is non-empty. Moreover it is clear that & is a closed,
convex and normal family. Hence, in order to solve Problem by using a
fixed-point theorem (see [2]), we must prove first the following assertions:

1o - G maps F inio itself, namely we have GiFi C .
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20, - G is a continuous mapping with respect to the topology of uniform
convergence on compact subsets.

It we assume that these two assertions have been proved, then there
exists a member of & that corresponds to a fixed-point of G. We denote
this member by !un(z, u, v), On(z, u, v)}. Then we must prove the following
assertions:

30, - {on(z, Ulm), V(z), Ya(z, Ul), V(z)} is a solution of equations (27.9).
40, — A solution of equations (27.9) satisfying condition (27.10)y és unique.

These four assertions can be proved by applying almost exactly the same
arguments as in Section 14 which were used fo solve Problem B in Section 11.
For example the proof of the inequalities

[@(271, unl, ,vl)] = KN}IMIRN[Q.—REA%)L
(28.4)

[Wiar, w?, vh] = Knfu{".

is carried out as follows.
By virtue of (28.3), it will be sufficient, to have (28.4), fo prove that:

(2&5} (?;AKN -+ By f;x‘ra—?\ u U(x)ﬂ” eﬂReAj(x) ds = KNHRIHN euﬂeixj(x)] ,
0

(28.6)  (24Ky + By) f o[~ | U@ ds < Kn]u|",

where s; is the arc length of the curve I.,.
By using inequality (25.13), we see at once that the expression of the
left-hand member of (28.5) does not exceed

424Ky + By

(28.7) N[ sin oe

[wt ¥ o~ Reryln)

if 4]v] = N|v| sin ce. Since 164 =< N|v| sin oe, we can take Ky large
enough to have

(28.8) 4By(N|v| sin ce — 84)™ = Ky.

Then the expression (28.7) is bounded by the expression of the right-
hand member of (28.5), which proves inequality (28.5) and, consequently, we
have the first inequality of (28.4).
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Similarly, by using (25.12), we see that the expression of the left-hand
member of (28.6) does not exceed

2QAKy+ By), 1y
(28.9) T sin s 1

By virtue of (28.8) the expression (28.9) is obviously bounded by Ky|u!|,
which proves (28.6) and we have the second inequality of (28.4).
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