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Summary. - VVe shall discuss herr to construct analytic expressions /or bounde4 solutions of 
no~-linear ordinary differential equations of  the form (A) which tend to 0 as ~ ap. 
preaches the origin along the positive real axis. 

§ 1. - I n t r o d u c t i o n .  

In  this paper we consider two systems of non- l inear  ordinary differential  
equations of the form 

(A) x~+~y ' = f x, y, ~), xz' = g(x, y, z) = ~ , 

where we assume that:  

1) ~ is a posit ive integer. 

2) x is a complex independent  variable, y a n d  z are m - a n d  n - c o l u m n  
vectors wi th  elements t Y] } and  t zk } respectively. 

3) f(x,  y, z) a n d  g(x, y, z) are respectisety m - a n d  n - c o l u m n  vectors o f  
components  l fjl a n d  i gk} which  are holomorphic a n d  bounded func t ions  o f  

(x, y, z) for 

1~I<~, [lyll < d, II~ll < d 

a n d  we have f[O, O, O) - -O ,  g(O, O, O ) =  O. 

YlI= max [yj 

- -  ~ is 4) A n  m X m ma t r i x  ~ fy~O, 0, 0) wi th  elements l( /~/~yh)x=y=~=01 
~wn-s ingu lar  a n d  has Jordan ' s  canonical  f o rm wi th  upper  t r iangu lar  form.  

(*) :Entrata in Redazione il 24: agosto 1968. 
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Since ~ is a non-singular  matrix, we can assume without less of gene- 
rality that: 

5) The following relations hold: 

(L~) f~!:O) __~ h(O, O, O) = O, h(O) ~ L(O, O, O) = O, 

(1.2) gAO) -=--gAO, o, o) = o, 

where 

f:(O) = i (a/~/azh)~- . . . .  o ~, gy(O) = ! (ag+/ayh)+=y=~=o !. 

Indeed, if (I.1) is not true, it is sufficient to make a lineal' transformation 
with constant coefficients of the form 

where ~-1  is the inverse matrix of ¢~. If (1.2) is false, it is sufficient 
make the ~.hange of variable.3 

y = gj, z = - x%(O)g-~  + £ 

to 

The last t ransformation does not disturb 
g~(O, 0, 0) because f~(0)= 0. 

We  assume moreover that: 

any components of the vector 

6) All the eigenvalues ~k o f  an  n X n matr ix  ~ ~ g~(O, O, O) wi th  ele- 
ments  i(~g#~z~)~=y=~=o} have posit ive real par t s  and  ~ has Jordan's  canonical 
f or~l~ : 

(1 3) Re }tk > 0 (k = 1, ..., n). 

The purpose of this paper is to solve a problem on construct ing analytic 
expressions for bounded solutions of equations (A) that tend to 0 as x ap- 
proaches the origin along the positive real axis under  further additional as. 
sumptions (see Sections 3 and 4). The motivation of this study was the pro- 
blem for the case of m = n - - 1  that Professor  91. HU~:UI~AUA proposed in 
connection with the study of the boundary layer differential  equation. 

Previously  the author developed, in his papers [3, 4], a general theory 
to construct  analytic expressions for bounded solutions for differential  equa- 
tions of the form 

xl,~(x~)y' - -  A(x)y + xll~LIf(x, y), f(O, O) --  O, 



M. IWANO: Analytic expressions ]or bounded solutions, etc. 191 

where l,~(x ~) is an m X m diagonal matr ix  with elements l x~jl with non-ne.  

gative integers :], !tztl denotes max (z:), A(x) is an m X m diagonal matr ix  
j = l  

whose components are polynomials of x of degree at most l]':~--1, f(x, y) 
is an m-column vector function such that [y(0, 0) has JO]aDA~'S canonical form. 

However, as wilt be shown below, our previous theory is ont always 
useful for our purpose of this paper. Therefore there is need for an improve- 
ment, if it is possible, on the method to construct analytic expressions for 
bounded solutions. We have succeeded in improving the method for a special 
case of equations (A). 

1 °. EXAMPLE. - We shall i l lustrate a comparison between the previous 
method and the improved method, which we are going to develop in this pa- 
per, by the following example:  

(A:) x~+:y' = f(x,  y, z), xz' - -  ~z (~ > O, ~ # 0), 

where y and z are both scalars, f(x, y, z) is a holomorphic scalar function of 
(x, y, z) at (0, 0, 0) and vanishes there. 

Assume that 

fy(O, O, O) ~ v # O, f(x,  O, z) ~ O. 

Obviously the equations (A1) have a form similar to equations (A). 
It is expected that, if v > 0 and ~ > 0, equations (A:) have a general so- 

lution which tends to 0 as x approaches the origin along the positive real axis. 
However, our previous theory does not give any information about the ex- 
istence of such a solution. The reason is that, when we construct an analytic 
expression for a part icular  solution of equations (A:) which tends to 0 as x 
approaches the origin through some sector, say 0 < arg x < 0 ,  the opening 
angle of this sector is too small to contain the positive real axis. Indeed, by 
applying directly our previous theory to equations (A:), we can get the follow- 
ing result :  

Equations (A:) have a particular solution of  the form i O(x, x~O"), x~C"!, 
whenever the values of x and x~C' satisfy inequalities of the form 

(1.4) 0 <{xl  <~',  O <  arg x < O ,  Ix~C"l<~', 

where the angles 0 and ~) are gice~ by either 

(:.5) 
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o r  

1 1 
(1.6) ® =  ~(arg v - - a r g  I~- -2~)-}-s" ,  O = - ( a r g  v - - a r g  ~ ) - - d '  

- 

for a sufficiently small  l)ositive constant d'. q~(x, z) is expanded to a uni formly  
convergent power series of z for 

(1.7) O < I x l < ~ ' , ® <  arg x < O ,  I z } < ~ '  

whose coefficie~ts are functions admit t ing asymptolic expa~sio~s in powers of 
x as x tends to 0 through the sector ~9 < arg x < O. C" is an arbitrary constant. 

If v > 0  and ~ > 0 ,  the s e c t o r s O <  arg x < O  with (1.5) and (1.6) can 
nevor contain the positive real axis. To explain how to determine the angles 
O and ~), we shall state a lemma which, in our previous theory, played a 
fundamental  role in constructing the solution i t (x,  x~C"), ~'~" x tJ ~ The lemma 
can be stated as follows: 

L~MMA I'. - Let A(x) ~ ~ v/crx~. We can determine a function o)(~), which 
is strictly positive valued, bounded and continuous for 0 <-- ~ <- ~9, in such a 
way that: 

For any point  (x~, z ~) in a domain of the form 

(1.8) 0 < Ix 1 < ~'%(arg x), O <  arg x < O, [z I < ~", 

there exists a curve F~,, jo ining the point  x~ with the origin, which satisfies 
the following two conditions: 

i) The curce F~ is entirely cdntained in the don~ain (1.8) except for 
the origin. 

ii) As x moves on the curve P~,, we have an inequality of  the form 

d 
(1.9) ~ e -R'A(4 ~ Ix I -~-1 e--R°A(~)iv ! s 

and, moreover, an  inequali ty  o f  the form 

d . . . .  ' = I - ~  ( C "  (1.10) -d-sixtH t > I x  txi~C"t [p.ls =xT~z~). 

Here s is the arc length of  the curve r~ measured from the origin to the var- 
iable point  x and e > 0 is a sufficiently small  constant. 

In  other words, the existence of a function o)(~) and a curve I'~ with the 
above specified properties is the condition to determine the sector O <  arg 
x < @. Obviously a domain of the form (1.8) is equivalent  to a d o m a i n o f  the 
form (1.7). 

However  the above lemma can not always be extended to the higher di. 
mensional case of equations (A1) such as 

(h2) x~+ly ' = f(x,  y, z), xz' = l~(~)z ,  
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where y is an  m - c o l u m n  vector,  z is an  n - c o l u m n  vector,  f(x, y, z) is an m-col .  
u m n  vector  whose components  are holomorphic  func t ions  of (x, y, z ) a t  
(0, 0, 0) and sat isf ies  f(0, 0, 0 ) - - 0  and det  fy(0, 0, 0 ) @ 0 ,  ln(l~) is an  n X n  
d iagonal  ma t r i x  with e lements  I tsk } such that  Re ~k :> 0. Therefore,  we s tudied 
a sufficient condition, which the au thor  cal led <<Hypoth~se B~,~ in Sect ion 40 
in [4], in order  that  we can cons t ruc t  a func t ion  with the proper t ies  s imi la r  
to to(w ) for a n o n - e m p t y  sector  ® ' <  arg  x < ~)'. 

~ o  I M ~ ' R O V E M E N T  ON THE METHOD. - Since x --  0 is an i r r egu la r  type sin. 
gu lar  point  of equa t ions  (A1), an  inequa l i ty  of the form (i.9) plays  an essen- 
t ia l  role for cons t ruc t ing  bounded  solut ions of equa t ions  (A1). As can be easi ly  
seen, an inequa l i ty  of the form (1.10) shows that  a solut ion Z(x, x l ,  z ~) 

~(x~i~z ~) of the equa t ion  x z ' :  p~z sa t i s fy ing  in i t ia l  condi t ions  z - - z  1 at 
x : x~ is in absolute  value  a monotone  increas ing  func t ion  of s for x e r , ~ .  
However ,  as we have a l ready  r e ma r k e d  (See (< Th6orbme 5 ~) in Sect ion 44 in 
[4]), the inequa l i ty  (1.10) is not  a lways  necessary ,  bu t  it seems to be suf f ic ien t  
that  there exis t  an  angu l a r  domain  h in the x - p l a n e  and  a s imply  connected  
bounded  domain  ~ in the v ic in i ty  of z ~ 0 in the z -p lane  such that :  

We have always Ix, Z(x, x~, z~)}eA X ~ when x moves on a curve r~, 
(except for the origin) on which an inequality of  the form (1.9) is satisfied, no 
matter how we choose the initial values x~ and z x in h X ~). Moreover, the 
boundary of ~ may depend on arg  x for x e A provided that ~ contains a 
circle I z l -  ? with small radius ~ independent of x. 
To have Z(x, x~, z ~ ) e ~  for x e r  a i t  is necessa ry  that, as x moves on Pa,  
the func t ion  [Z(x, x l ,  z~)/zl], considered as a func t ion  of (x, x l ,  zl), is uni .  
fo rmly  bounded  for  x •  P.~ no ma t t e r  how we choose x~ and  z ~ in A X ~). 

Thus  the au thor  [6] has sueceded  in improv ing  the method to cons t ruc t  
ana ly t ic  express ions  for some bounded  solut ions of equat ions  (A2). By app ly ing  
the reason ings  in [6] to equa t ions  (A~), an  improved resul t  can  be s ta ted  as 
follows : 

Equations (A~) have a particular solution of the form , q)°(x, xeC"), x~C" l , 
whenever x and x~C" satisfy inequalities of the form 

(1.4) 0 0 < Ix[ < ~', O ° < arg  x < Oo, [x~C"t < ~', 

where 0 o and ~)° are given by either 

(1.5) o 

o r  

(1.6) 0 

AnnaIi di Matematica 25 
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¢b°(x, z) is a holomorphic and bounded function o f  (x, z) f o r  

(1.7) 0 0 < ] x l < ~ ' ,  O ° <  arg x<~)° ,  I~1<~' 

and admits  there a uni formly  convergent expansion i~ powers of  z with coef- 
ficients asymptotically developable in power of  x as x tends to the origin 
through the sector 0 0 < arg x < ~o 

Obviously the sectors G ° <  arg x < ~D ° with (1.5) o and (1.6) ° contain both 
the positive real axis whatever the value of a r g v  is. Therefore the improved 
theory can construct  a solution of equations (A~) which tends to 0 with the 
order of a certain positive power of x as x approaches the origin along the 
positive real axis. 

The condition which is imposed upon the sector O° < arg x < g)° will be 
clarified by the lemma below. 

LEMMA ][}o. _ We can determine functions to°(,~) and E°(~), which are strict. 
ty positive valued, bounded and continuous for ®o ~ ~ <__ Oo in such a way that: 

For any  point  (x~, z ~) in a domain of  the form 

(1.8) 0 0 < ix] < ~"to°(arg x), Izl < ~"x°(arg x), O ° < arg x <~)o, 

there exists a curve r°~l, similar to the curve F~I, on which the inequality (1.9) 
is satisfied and an inequali ty of  the form 

(1.10) ° lx~C"i < 8"x°(arg x), ® ° < a r g  x < ( ~  ° 

with C"- - z lx ; -e  also is satisfied. 
Clearly a domain of the form (1 8) 0 is equivalent  to a domain of the 

form (1.7) 0 . 

3 °. OUTLIS~E OF CO~¢TEN~S. - Chapter I will be devoted to the statement of 
our main results with further additional assumptions.  We  shall explain 
briefly the reasons why we have introduced those assumptions.  

Unfor tunate ly  the improved method is not still useful  for equations such as 

(A3) x~+ly ' - -  f (x ,  y,  z), x~' - -  ~z 4-  x '  , 

where 1~ is aposit ive integer and f(x, y, z) is a scalar function holomorphic in (x, y, z) 
at (0, 0, 0) and vanishing there. As is well known, the second equation of 
(As) arises in the theory of BRIoT-BovQu]~ type singular points as one of 
the reduced (simplified) equations. In this case a general solution of the sec- 
ond equation of (A3) has the form xV-(C"4- log x) and depends actual ly on 
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log z. It  seems for me to be doubtful  that we can determine a function (o(~) 
with the above specified property in such a way that I Z(x, x~, zl)/zli is uni- 
formly bounded for x on F,~ and for any x~ unless an inequali ty of the form 
(l.10) is satisfied on I~,~. Of course the range of Xl is restr icted within an 
angular  domain. 

By vir tue of this reason, we consider first the case when equations (A) 
have a par t icular  formal solution of the form 

(1.11) Y ~ Z x~(1-(x~)0")~P*q, ~ "" Z g ( l ~ ( x ~ ) O " ) ~ Q +  • 
l ,q l ,q 

Here  P,q and Qzq are m-  and n-column constant  vectors respectively,  l,(x~.) is 
an n X n diagonal matrix with element t xl~}, C" is an n -co lumn constant  
vector with elements i C~ '~, q is an n- row vector with elements t q~i with 
non-negat ive  integers q~ and 

p- ~ t t .  q t¢ qn ( l , ( x )  ) - ( x ~ C ' ~ ' / '  . .  ( x ~ . O ~ )  . 

In order for equations (3=) to have a formal solution of the form (I.I1), we 
introduce Assumptions I and l I  in Section 3. Concerning an analytic meaning 
of this formal solution, we have Theorem 1 in Section 3. This theorem as- 
sorts that : 

I f  we formally rearrange the formal solution (1.11) in lhe form of a sin. 
gle power series of l~(x~)C '', the resulting formal solution is uniformly conver- 
gent with coefficients admitting asymptotic expansions in powers of x. 

W e  write this uniformly convergent  solution as !ag(x, l~(xl~)C"), tI;(x, I .  
(x~)C")! and apply a t ransformation of the form 

(T ~) y = ~ + ¢ (x, ~), ~ = ~(x,  ~) 

to equations (A). Then it will be verified that the equations satisfied by 
(y, z) are writ ten as 

(BI) • y, ;), x ; ' =  ;), 

where _F(x, ~j, z') and G(x, y, ~-) are respectively m-  and n -co lumn vectors 
whose components  are expressed by uniformly convergent  power series of 
and z with coefficients admitt ing asymptotic expansions in powers of x. Since 

N 

y - - 0  and z = lgxe)C" are a part icular  solution of equations (B~), we have 

P(x,  o, ;)  _= o, ~(z, o, ~) = 1.(~}~. 
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Let us apply next a trans[ormation of the form 

(T:) . y =  Y +  A(x, Z)Y, ~ = Z ~ - x ~ B ( x ,  Z)Y 

to equations (B~), where A(x, Z) and B(x, Z) are respectively m X m and n X m 
matrices whose components are expressed by uniformly convergent power se- 
ries of Z with coefficients admitting asymptotic expansions in powers of x. Let 

(B21 :+~  ~' = F(x, ~, Z), xZ' = G(x, I7, Z) 

be the equations derived from equations (B~) by applying the transformation 
T2). We  will try to simplify the matrices Fy(x, O, Z) and Gy(x, O, Z). From 

the formal point of view, it is easy to see that Gy'x, O, Z) can be reduced 
to the zero matrix while Fr(x, O, Z) involves still a power series of Z even 
in the case of m - - 1 .  In order for the matrix Fy(x, O, Z) to have a very 
simple form, we introduce Assumption IV in Section 4. Then we have Theo- 
rem 2 in Section 4 which asserts that: 

We can choose the matrices A(x, Z) and B(x, Z) with the above specified 
properties in such a way that Gy(x, O, Z) is reduced to the zero matrix and 
Fy(x, O, Zj is reduced to a diagonal matrix, say 1,~(l(x, Z)), whose diagonal 
components are polynomials of x of degree at most ~ with coefficients admitting 
uniformly convergent expansions in powers of Z. 

This case seems for me to be an only case when our simplified equations 
can be integrated by quadratures.  However  some troubles will arise in the 
at tempt at the proof of uniform convergence of power series of Z appearing 
in the components of the diagonal matrix ],~(i(x, Z)). In order to overcome 
those troubles, we must construct first of all the solution i¢(x, l~(x~)C"), 
• (x, I~(xe)C")t in a particular way. This is the reason why the construction 
of this solution which is going to be developed in Chapter I I I  needs slightly 
lengthy reasonings. 

Finally, in order to construct  a general solution of equations (B2), we 
consider a formal transformation of the form 

(T3) Y ~ u + 2: upAp(x, v), Z ~ v + x~ Z uPBp(x, v), 
IPl=2 17',=2 

where A~(x, v) and B/x ,  v) are respectively m-  and n-co lumn vectors which 
are expressed by uniformly convergent  power series of v with coefficients 
admitting asymptotic expansions in powers of x. Here  p is an m-row vector 
with elements iPi} with non-negat ive  integers Pi, and [Pl----P* ~ '." ~ P ~ .  In 
order for the equations on In, v} to have the simplest form, we introduce 
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Assumptions III and V in Sectio~l 4. Then we have Theorem 3 in Section 4 
which asserts that :  

We can choose the vector functions Ap(x, v) and Bp(x, v) with the above 
specified properties in such a way that the power series (T3) are uni formly 
convergent and the simplified equations take the form 

(B) x:+~u'=l~(i(x,  v))u, xv '= lo (~)v .  

In  Section 5, equations (B) will be integrated by quadratures.  
In Chapter I I  we shall establish two fundamental  existence theorems 

(Theorem A in Section 6 and Theorem B in Section l l) which will play an 
important  role in the proof of Theorems 1, 2 and 3. From the proof o[ Theo- 
rem ]3 one can know our basic ideas about how to study an analytic meaning 
of formal solutions. Theorems 1~ 2 and 3 will be proved in Chapters III ,  IV 
and V respectively. 

CI=£APTER I. 

A s s u m p t i o n s  a n d  m a i n  r e s u l t s .  

§ ~. - Notation and Definitions. 

l °. ~'OTATIOIq.- lm is the m X m uni t -matr ix ,  ej is an m-dimensional  
row uni t -vector  whose j,h component is equal to 1. 

For an m-column vector y with element i yj!,  the expression l Jy )  denotes 
an m X m diagonal matr ix  with diagonal elements ~yj ~. 

If u is an m-column vector with elements {ujl ~ [u] denotes an m-column 
vector with elements I[uJll.  In particular,  if all the components uj are non-  
negative real numbers, the m-column vector [u] coincides with the m-column 

vector u. 
For m-column vectors u and u with elements {u]t and luil  respectively, 

a vectorial inequali ty of the form [u] ----- iu] means that we h,~ve lui[<= [ui] 
for each index j. 

The components of an m-  and n-row vectors p = (p~, ..., p,~) and q - -  
-- (q~, ..., q~) are all non-negat ive integers and 

(2.1) L p l = p :  + p 2 +  . .  + p = .  

For an m-column vector y with elements f Yit, the symbol p.y is the inner 
rn 

product given by E PjY/ and the symbol yP stands for the scalar expression 
]=1 

Pt~P~ 
(2.2) yP = yl  v2 ... Y ~ ,  



198 M. IWANO: Analytic expressions ]or bounded solutions, etc. 

For  an m-column vector y with elements f Yi! and an n-column vector 
function f(x, y) with elements t fj(x, y) ! ,  the symbol f f ,  x, y) denotes an n X m 
matrix given by 

f (x, y ) =  ,:=-. r(x, y ) ,  . . . ,  @- f(x, y) . 

The norm of an m-vector  y with elements t Yil is 

m 

(2.4) llyIt = I !. 
]=1 

To simplify the description, we use the following symbols for a scalar w 
and for an m-row vector y with elements iY j i ,  

(2.5) 

(2.7) 

wy _~ (wx,, . , . ,  wy:), 

exp y -  (exp y l ,  ..., exp y,~) or ey- - (ey , ,  . . . ,  eY,O, 

Re y -  (Re y~, ..., Re y~), I m  y = ( l m  y l ,  ..., I m  y~) 

with y --  Re y.d-  V--1  Ira, y. If y is a column vector, wy,  eY, Re y and h n  y 
are all column vectors. 

2 °. DEFINITIONS. - A function f(x), which is holomorphic and bounded 
ill X for 

o < l x l < ~ ,  (9 < a r g  x < o  

and admits an asymptotic expansion in powers of x as x tends to 0 through 
the sectors O < arg x < O, is said to belong to class C ( O ,  O; ~). 

The symbol f i x ;  y, z~ denotes a polynomial o[ x of degree ~. If  the co- 
efficients of this polynomial are holomorphic vector functions of (y, z) for 
IlYll < 8, Itz~ < ~, we shall say that f i x ;  y, z] has  Proper ty -a  w i th  respect to x 
for []y]] < 8, [IzU < 8. 

A vector f(x, y, z), which is a holomorphic function of (x, y, z) for 

(D) 0 < ]xl < ~, ® < arg x < @, ~y~ < 8, Ilzll < 8, 

is called to have Proper ty -e~  wi th  respect to y a n d  z in  (D), if the com- 
ponents of f(z, y, z) admit uniformly convergent expansions ia powers of y 
and z for (D) and if the coefficients of this expansion belong te class 
(O, O; ~). 
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Let  there be given a finite number  of monomials of x -~ of the same 
degree, say a: 

~'J (j  = 1, 2, . . . ,  M) .  
S2i(x) : . ~x ~ 

Then sectors of the form 

(2.8) 

and 

(2.9) 

arg Y i - - ~ + 2 u h  < a r g  x <  arg 7 1 q - ~ " k 2 7 : h  

( ) 1( ? ) 
1 arg Y i - k ~ - { - 2 ~ h '  < a r g  x < ~  arg 7 i +  q--2z:h' 

are said to be a maximal +~egalive region of nj(x) and a maximal positive 
region of ~2i(x) respectively, where h and h are any integers. The maximal  
negative (or positive) region has the meaning such that, if x approaches the 
origin through any subsector  of the sector (2.8) (or the sector (2.9)), the func- 
tion exp (Re ~2i(x) ) tends to 0 (or infinity) exponentially.  

W e  shall say that a sector O < arg x < ®  has Properly-~ with respect to 
monomials ~21(x), ..., ~M(~)f i f - t h i s  sector does not contain any maximal 
negative region of ~](x) for each index j and if there exists in this sector a 
direction for each index j such that, as x approaches the origin along this 
direction, exp (Re ~2j~x)) tends to infinity exponentially.  

R]~A~a:~S 1 °. - In 1942 Professor  MASVO HUKUHARA [1] introduced the 
notion of P rope r ty -~  in order to complete the theory of asymptotic expan- 
sions of solutions of a system of l inear ordinary differential  equat ions with 
an irregular  s ingular  point which was founded first by H. PoI~CAR~ and 
was studied by J. TRJITZINSKY. ~. MALMQUIST. HUKUHARA'S condition for 
a sector O < arg x < O to have P r o p e r t y - 3  with respect  to monomials i~2~(x), 
..., ~2M(X)~ is weaker  than ours. Namely M. HUKUHARA assumed only that 
the sector 0 < arg x < ~) does not contain any maximal  negative region of 
~2/(x) for each index j .  Moreover, in his case, ~/(x) may have distinct degrees. 

2 °. - Assume that ~2i(x) have the same degree, say or. Then, for a pre- 
assigned angle 0o, there exists always a sector O <  arg x < O which has Pro- 
perty-~' with respect  to the monomials l~21(x), ..., 12M(X) t and does contain 
the direction arg x - - 0 o .  

In the case of 0o--  0, we choose arg 7J so that -- z: < arg Yi -< 7: (j - -  1, 
2, ..., M) and define 0', 0" by 0 ' =  rain l arg Yi; arg ~'j ~ 0t,  0 " - - m a x  i arg 

71; arg 7i<0}.  
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Then, as can be easily verified, sectors of the form 

2~ 4- <~ arg x < 0' -{- -- , 

1 z 0 " - -  + s " < a r g  x < ~ - ~ - - a "  

have both P r o p e r t y - $  with respect to i l21(x), . . . ,  ~M(X)} and do contain the 
positive real axis, where s " >  0 is sufficiently small. 

§ 3. - Assumptions I, l I  and Theorem 1. 

In order to construct  analytic expressions for bounded solutions which 
tend to 0 with the order of a certain positive power of x as x approaches 
the origin along the posi t ive real  axis,  we introduce the following assumptions : 

ASSUMPTIO~¢ I. - $3 : g~(0, 0, 0) is a d iagonal  matria~ ~vith elements I ~ I. 
We denote this diagonal matrix by l,([x), where ~ is an n-co lumn vector with 
elements t P-~}. 

ASSUMPtioN II  - i) The k '~ component  o f  the n-vector g~(O)~ g~(O, O, O) 
is zero i f  ~k --  1. it) For all  the arrangement s  (1, q) of  1 "4" n non-negat ive  
integers l, iqk! such that l-4- ]q]>--2, we have 

(3.1) ~ =4= l -}- q • ~t for  each index  k. 

By virtue of the first portion of Assumption ] I  we can assume without 
loss of general i ty that:  

g x~0) --  O. 

Indeed, if the k ~h component of gx(O), say ~k, is different from zero, we have 
~k # 1. We  make then a l inear transformation of the form 

y = y ;  zh : z h ( h  :# k), zk = - - x ( ~ k - -  1) -~k + zk, 

which reduces ~k to 0 without dis turbing any other components of g~(O). 
For  equations (A1) and (A2) that appeared in Introduction,  Assumption I 

is automatical ly satisfied and Assumption I I  is unnecessary.  
Let  v i be the eigenvalues of the matr ix  ~ ~ fy(O, O, O) and put 

vj (] = ~, 2, ..., m). Aj(z) = 
f i x  cr 
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Then  we have the following theorem:  

TI{EORE~t 1 . -  Assume that, besides Assumptions 1 ) ~  6) in Section 1, 
Assumptions I and H are satisfied. Leg ~9~ ~ arg x < 01 be a sector with 
Property-$ with respect to i h~(x), . . ,  h~(x) } and containing the positive real avcis. 

Then equations (A) have a particular solution of  the [orm 

(81) y = ¢(x, 1 ~(x~)O"), z = W(x, 1.(x~)C") 

whenever 

(3.2) 0 < Ix I < ~'{, 01 < a r g  x < 0 1 ,  Uln(X~)C'~ < ~ 

for suitably chosen positive constants ~ and ~'{. 
Here ¢blx, v) and W(x, v) are respectively m-  and n-column vectors with 

a unique representation of  the form 

(3.3) eg(x, v ) =  ~[x; v]-4-x:+~e)°( x, v), W(x, v ) =  +[x; v] q-x~+"~°(x, v), 

where ~[x; v] and q~[x; v] have Property-v with respect to x for [lv[]<8'{, 
white cb°<x, v) and W°(x, v) have Property-e)~ with respect to v in 

(3.4) O < [ x [  < ~ , 0 1  < a r g  x <~)~ ,  Ilvll< 

In  particular, we have 

<3.5) 

This  theorem wilt be proved in Chapter  I I I .  
The  solut ion {¢(x, ln(~)C"), W(x, 1.(x~)C")l tends to 0 with the order of 

a cer ta in power of x as x approaches  the origin along the posit ive real  axis. 
By the defini t ions of Proper ty-~  and Property-6)~, it is immedia te ly  seen that  
the vector funct ions  ¢b(x, v) and %r(x, v) admit  uni formly convergent  expan- 
sions in powers of v for (3.4) with coefficients belonging to class ~(O1, O1; ~'{). 

§ 4. - Assumptions III,  IV, V and Theorems 9, 3. 

l °, P R E L I M I N A R Y  T R A l q S F O R M A T I O ~ .  - ]~y using the vector funct ions  
¢~x, v) and W(x, v) appear ing  in Theorem 1, we apply a t ransformat ion  of 
the form 

y -= ~1 --1- ¢b(x, z), z "- gZ(x, z) 
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to equat ions  (A). This  t ransformat ion is non-s ingu la r  b y  vir tue of (3.5}. 
Observe that  the equat ions  satisfied by I Y, z l have y - - 0 ,  z l~(x ~t) as a 
par t icular  so lu t ion  

Hence  the t ransformed equat ions  can be writ ten as 

(:B1) 
[p ;=2 

xz-' = 1/~t)z + D(x, z )~ /+  E ~]PGp(x, "z), 
fp[=2 

where the power series in the r igh t -hand  members  are uniformly convergent  for 

(4.1) o < lxt < ~ ,  o l  < arg x < ~ ,  fiY!l < all, I1~11 < d~ 

for suitably chosen positive constants  ~1 and dl. Here  C(x, z), D,x, ~, Fp(x, z) 
and G~(z, z) are respect ively m X m ,  n X m ,  m X  1 and n X  1 matr ices  
whose components  have Proper ty-e l f  with respect  to z in 

(4.2) O <  I x l < ~ l ,  ®1 < a r g x  < 0 1 ,  llzl] < d l  

and, moreover,  we have 

(4.3) C(O, O) - ' 0 ,  D(O, 0 ) - - 0 .  

To simplify the descript ion,  we used here  the symbol C(O, 0) in place of 
lira C(x, 0). We shall use this symbol hereaf ter  throughout  this paper.  
x-c, 0 

Since 

C(x, ~) = f y(x, ¢, (x, "z), tr(x, "z)) - 

and fy(x, y, z) is hotomorphie  at t0, 0, 0), the relat ions (3.3} imply that 
matr ix  C(x, z) has a un ique  representa t ion  of the form 

the 

(4.4) C(x, ~j = o[z; ~] + ~:+lC°(x, ~), 

Here v[x; z] has Proper ty -z  with respect  to x for llzll < dl while 
has Property-Sig with respect  to z in (4.2). 

C°(x, z) 

2o. Assu•PTIosrs . -  In  order to construct  an analytic expression for a 
bounded  general  solution of equat ions  {B1) which tends to 0 as x approaches  
the origin along the positive real axis, we in t roduce  the following assumpt ions :  
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ASSUMPTIO:~ l l I . -  The inequalities 

(4.5) R e  h~(z)  = < R e  h~(z) = < ... = < : R e  A~(x) < 0 

hold for x on the positive real axis, where 

(4.6) hi{xl - -  - v]/ax ~ lj - -  1, 2 . . . .  , m). 

ASSUMP~O~ IV. - The eigenvalues { vj } of the matrix ~t ~ fzIO, O, O) are 
mutual ly  distinct. 

Since ~ is supposed to be JORDAn'S canonical form, this assumption im- 
plies that g is a diagonal matrix with elements {v]}. We denote ~ by l~(v), 
where v is an m-co lumn vector with elements {v j}. 

AssuMP~I6~ V. - For any m-row vector p with elements t PJ} with~non- 
negative integers pj such that IP [ >- 2, we have 

(4.7) v i =~ p, v for each inde2 j. 

~ o  STATEMENT OF TI:[EORESIS. - I n  o r d e r  to c o n s t r u c t  a formal solution 
of equations IBd, we try to simplify, according to our usual  method, equa- 
tions ibm) by applying a formal transformation and we expect for the simpli- 
fied equations to be integrated by quadratares .  However,  in the present case, 
the simplified equations do contain stile power series with respcct  to some depend- 
ent variables. If these power series would have a positive radius of conver- 
gence, we might have no trouble for an analytic integration of the simplified 
equat ions by quadratures .  

Fortunately ,  this is the case for our simplified equations. But, to have 
such simplified equations, we have to construct  the formal transformation 
in a par t icular  w~y. _ 

Let  02 < arg x < O2 be the common part  of the sector O~ < arg x < O~ 
appear ing in Theorem 1 and of a sector with 1Jroperty-~ with respect  to 
monomials of the form 

i4.8) t Aj(x) - -  h~fx), / 4 k ;  - Aj(x)}. 

We can assume without loss of g(onerality that the sector O2 < arg x < g)2 
does contain the positive real axis. 

We shall prove then the following theorem: 

TIIEORES~[ 2 . -  Under Assumption IV, there exists a transformation of 
the form 

(T2) y : ~(-]- Atx, Z)Y,  z -  Z +  x~Btx , Z ) Y  
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such that equations (B~) are transformed into equations of  the form 

(B:) 

x : + l Y ' = l = ( ) , [ x ;  z ] ) y +  Z Y~F~tx, z t ,  
I~I=2 

xZ'  = 1,(I~)Z-}- Z YPGp(x, Z}, 
Ipl=2 

where the power series of the r ight -hand members are uni formly  convergent for 

(4.9) 

~ and d~ are suitably chosen positive constants. 
Here ),[x; Zj is an m-column vector function with Property-~ with respect 

~ ~ Z] ~=o to xl for ~ZII < d'2' and satisfies ).~0; O] = v. Furthermore ~ ~,[0; Z] -~ ~ k[x; 

is a constant vector. 
A{x, Z}, Btx, Z), Fptx, Z} and GpIx, Z) are respectively m X m, n X m, 

m X 1 and n X 1 matrices whose components have Property-6)2 with  respect 
to Z in  

(41o) o < ~xl <~'; ,  02 < arg x < b2,  IIz/1 <d ' ;  

and, ,n particular, we have 

(4.11) A(O, O) -- O, B(O, O) --  O. 

This theorem will be proved in Chapter IV. 
We  consider next monomials of the form 

(4.121 t Aj(x} - -  p .  A(x), -- p .  Afx); 2 -< p I =< ~1' 1. 

where A(x} is an m-co lumn vector  with elements i Ajlx}} and M' is supposed 
to be sufficiently large. Since all these monomials have the same degree with 
respect  to x -1, it is easy to verify that, in the sector ®2 < arg x < ®2, there 
exists a subsector ® z < arg x < ~)3 which has Properiy-~ wi th  respect to the 
monomials  [4.121 for each index j and does contain the positive real axis. 
Then we see by virtue of Assumption I i I  that the sector 03 < arg x < ~)3 has 
P r o p e r t y - $  with respect  to all the monomials 

(4.13) iA](x) --p.A(x),  - p.A(x); 2 _< [P[I" 
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Then we shall prove the following theorem: 

THEORE~¢I 3. - Let there be given equations of  the form (B2} satisfying the 
conditions mentioned before. Assume that Assumptions I I I  and V are satisfied. 

Then equations (B:) possess a general solution of the form 

~$2) y =  ¢(x, v(x), V(x)), z =  ~'~x, ~(~), V(x)) 

whenever x, U(x), V(x) satisfy inequalities of the form 

(4.14) O <  I x l <  ~'~ O s <  arg x <  63,  ItU(x)[<~'~, IlV(~)II< ~" 3, 

where ~ and ~" 3 are suitably chosen positive conslanls. 
Here t U(x), V(x) ! is a general solulion of equations of the form 

(~) x~+~u ' = L(~[x; v])u, x v ' =  1 .(~)v 

and is obtained by quadratures. O(x, u, v) and q;(x, u, v) are respeclively m-  and 
n-column vector functions which have ProFer ly -~  wilh respect to u and v in 

(4.15) o <  I~1< @~, o ~ <  arg x <  ~)3, [lull< o'~, Ilvll < ~';. 

The proof of this theorem wilt be gi~'en in Chapter V. The integration 
of the equations (B) will be studied in the next  section. 

§ 5. - Bounded General Solut ions for Equat ions  (A). 

1 °. INTEGRATION OF (]3) :BY QUADRATURES. - The second equat ion of iB) 
can be immediately integrated and we have a general solution V(x} = 1,(xe)C". 
Let z be any integer:  0 < z -< z. A simple calculat ion shows that 

Vix)q d x - -  

~+~-~ i (C")~ log x (q" t~ = ~ - -  ~). 

It is to be noticed that, for each integer z, there exists a finite number  
of the vectors {qf satisfying the equation q.~t _ - - z -  x. 

On the other hand, the j,h component of the first equation of (B} has the 
form 

x~+lu'j = ;~j[x; V(x)luj, 

where kj[x; v] is a scalar  funct ion with P roper ty -z  with respect  to x for 
I/vii < d~ and admits an expansion of the form 

~j[x; v] = ~y~v) + x~)~,) + ... + x~-'~;-xIv ) + x~>,; 
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with coefficients holomorphic  in v for Ilvll < d'~. By an e lementary  calculat ion 
we have a general  solut ion of the form 

u i --  e'~J [~; v(~)]xXj(c") Cj, 

where Ai[x; v] has Proper ty-~  with respect  to x -1 for [lvIl< d'~ and satisfies 

hj[x; v] = hi(x) (1 + o( Ixl + IlvI])), 

and )v(O") is a polynomial  of O" satis[ying ~] (0) :  k~. 
We denote by A[x; v], ).(C") and C' m - c o l u m n  vectors with e lements  

iA][x; v]~, {kt(C")} and {C)~ respectively.  
Then  we have a general solution of  equations (B) which is written as 

(5.1) U(x) "- 1,~(e A[~; v(% l~(x).(c,,))C,, V(x) = 1 ~(x~}C", 

where C' and C" are m-  and n-column constant vectors respectively. 

~ o  GENERAL SOLUTIONS OF EQUATIONS tA). - W e  assume that, besides 
Assumptions  1),,, 6) in Section 1, Assumptions  I , --V in Sections 3, 4 are sa. 
tisfied. I f  we combine the t ransformat ion  ITs} with the t ransformat ion (T2), 
we have a t ransformat ion from (y, z) to (Y, Z~, say (T). Subs t i tu t ing  (S~) for 
(Y, Z} into the t ransformat ion {T}, we get an analytic express ion for a bounded 
general  solution of equat ions IA). Thus,  owing to Theorems 1, 2 and 3 we 
have at once the following theorem: 

TttEORE~ 4 .  - Assume that, besides Assumptions 1),., 6) in Seclion 1, As. 
sumplions I ~ V are salisfied. 

Then equations (A) have a general solution of the form 

is) y = ~f(x,  Utx), Vix)), z -  ~(x, U(x}, V(x)) 

whenever the values of  x, U(x), V(x) stay in a domain of the form 

(5.2) O <  ix I < ~o, 0 3 <  arg x<:  ~)s, Ilull < ~o Uv(l< 8o, 

Here { U(x), Vfx)} is a general solution of equations (B} and has the re- 
presenlation (5.1). ~f(x,  u, v) and ~(x, u, v) are respectively m - a n d  n-colmmt 
veclors whose components are functions with P r o ~ e r t y - ~  with respect to u 
and v in the domain (5.2). ~o and 8 ° are positive constants. 

By virtue of Assumption III ,  the solution (S) tends to 0 as x apporaehes  
the origin along the positive real axis. If  we take C' = 0, this solut ion is 
reduced to the solution ($1) appear ing  in Theorem 1. If we take C"--O,  the 
solut ion (S) represents  a par t icular  solution which tends to 0 exponent ia l ly  
as x approaches  ttle origin along the positive real axis. 
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3 °. CONCLUDING REMARK. - In order for simplified equations (in the present 
case equations (B)) to be integrated by quadratures,  we introduced, besides 
Assumption III ,  Assumptions IV and V. Without  the last two assumptions, 
we can construct analytic expressions for bounded solutions of equations (A). 

However, in this case, the equation corresponding to the firs~ equation 
of (B) has a very complicated form. Though its r igh t -hand member  is a poly- 
nomial of u, we can no longer solve it by quadratures.  

C!ttAPTIER II.  

F u n d a m e n t a l  e x i s t e n c e  t h e o r e m s .  

I .  - F i r s t  E x i s t e n c e  T h e o r e m .  

§ 6. S ta tement  of  ~[heorem A. - Let there be given two systems of 
-{-~ non- l inear  ordinary differential equations of the form 

(6.1) % % 

Here  we suppose that 

i) ~ is a positive integer, ~ '  and ~ are ~- and ~-eolumn vectors with 
elements { e%fi 1 and 1 5g~ } respectively. 

ii) ~(x, elf, ~) and ~(x, ~ ,  ~) are respeetively~:¢- and ~-column vec- 
tors whose components have P r o p e r l y - ~  with respect to ~ and ~ in a 
domain of the form 

(6.2} O <  ] x l <  ~, o_ <~ arg x <  g ,  [ l ~ l l < d ,  II~ll< d, 

and d being positive eonstanls. 

iii) We have 

(6.3) ~j~(0, 0, 0) -- l~(y ) + D, det l~(y ) ~ 0, ~S(0 ,  0, 0) ---- 0, 

where Y is an o:-column vector with elements I Yit and D is an o: X ~ nil-po. 
tent matr ix  wilh upper lriangular form. 

iv) Equations (6.1) possess a formal solution of the form 

co  

(6.4) 62~ "~ Z xZf, ~ ... ~ xZg~, 
l~-O l ~ O  
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where f, and gz are a- 
par[icular,  

Let 

and ~-column constant vectors respeclively and, in  

iifoll < d, Ilgoll < d. 

(6.5t gtj(x) -= - -  7] (j  - -  1, 2, ... ~). 
(SX~ 

THEOREM A (FIRST EXISTENCE THEOREM). -  Assume lhat, in  the sector 
O < arg x < (~, there exists a subseclor O* < arg x < @)* which has Proper ly -~  
wi th  respect to i t2 ~(xl , ..., £t~(x) i. 

Then equations (6.1) have a unique sohdion i e~)(x), o'Fp(x) t which is holo. 
morphic and  bounded in  x for 

(6.6) 0 < txi < ~o, O* < arg x < 0 "  

and  admi t s  asymptot ic  expansions o f  the form (6.4) as x lends to 0 through (6.6}. 
This theorem has been Mready proved by M. IwA~o [5] by using the 

method of M. H[Y~:U~ARA [1]. However, in order to explain our usual method 
for giving an analytic meaning to formal solutions, we want to reproduce 
the proof of this theorem. 

REMARK. - Let O' < arg x < ~)' be any subsector contained in the sector 
O* < arg x < O*. Then it is known that there exists at least one solution 
which is asymptotically developable to the formal solution (6.4) as x tends to 
0 through 

(6.6)' 0 < Ix] < go, O' < arg x < ~ ' .  

However, such a solution is not uniquely determined unless 
0 ' <  a r g x  < 0' has P roper ty -~  with respect to i t21(x), ..., ~3~(x)!. 

the sector 

§ 7. Determinat ion of ¢o*(~). - In  order to prove Theorem A, it is nec- 
essary to replace a domain of the form (6.6} by a domain the form 

0 < :x[ < ~'otO*(arg x), O * < a r g  x <  O*, 

which is equivalent to (6.6), where o)*(¢?) is a strictly positive valued, bounded 
and continuous function of ~ for O* ~ ~ ~ O*. 

Therefore we begin with the determination of the function ¢o*(¢~). 
By assumption, if Re gti(x ) is non-posit ive for 

(7.1) O* < arg x < ~3", 
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there exists at least one direct ion a r g x - - 0  i in (7.1) such that  we have 
Re ~ j { x l -  0 for arg x -  0 i. Such  direct ions are called singular direclions of 

ix) and given by 

(7.2) ! (arg Ti q--2-1-2r~h'), (7.2)' arg TJ--~ -1- 2=h" , 

where h' and h" are any integers.  S ingular  direct ions of the form (7.2) are 
called ascending singular directions of 91jlx) and those of the form t7.2)' de- 
scending singular directions. I t  is to be not iced that, when we consider  
Re ~2j(x) as a funct ion  of arg x - - 0 ,  Re flj(x) is a monotone increas ing (or 
decreasing) funct ion  of arg x in a small  neighborhood of each s ingular  di- 
rect ion of the form {7.2) (or the form (7.2}'). 

For  the indices j such that  Re~2j(x) change their  sign in (7.1), we choose 
the a rguments  of the complex  constants  TJ so that  at least e i ther  one of two 
s ingular  direct ions 

(7.2)+ 0 i + = ~  a r g ? i +  , (7.2)- 0, 

is conta ined in (7.1). We classify the set J - - { 1 ,  2, ..., :¢t of indices j into 
Jo, g t ,  J2, 33 where  

Jo = {j; Ref~iix) > 0 for O* = < argx  =< 0 " 1 ,  

J =ii; o * < o i + < o i - <  b*!, 

= / j ;  o* < 0i+ < b* < t, 

J 3 =  {j; 0 j+<  e*  < 0 j _ <  ~)*/. 

For  j e J2, we define 0j_ by (7.2}- and for j EJ3 we define 0i+ by (7.2)+. 
Some of these four sets may be e m p t y  It  is easy to verify that  e i ther  J'o or 
J1 must  be empty.  To simplify the discussion, we assume that  the set Jo is 
empty. 

Since the sector (7.1) has P r o p e r t y - $  with respect  to I~l(x),  ..., ~2~(x)}, 
the angles ®* and O* mus t  satisfy inequal i t ies  of the form 

(7.3) max Oj+-- "4-6e = < 0 " <  0 " =  < min Oj_-4- - - 6 e  
1 = 1  - j = l  

for s > 0 suff icient ly small. 
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We put 

(7.4) 0~*+ = max { Oj+}, 
/ e f t  x 

and define a function L*(¢~) by 

* 0j_ } (z 1, 2, 3) ®~_ = min I - -  

j E  0- z 

(7.5) L*@) = 

a(~ - -  o*_ + 4s), o*_  + 4~ __< ~ __< ~)*, 

7~ 7~ 
- -  4e, 

0 " <  <0"+ +4~. 
_ = ~ = --2-~ 

Noticing that 

0"+ -- max Oj+ , 0"_  ~- min 0]_ 
J ¢ 

( j e J ~  U J2 U Js), 

we see by (7.3) that the function L*@) satisfies 

(7.6) 2a~ =< L*@) =< 7: -- 2zz for 

The function o)*(~) is to be defined as 

(7.7) to*(~)-  exp f cot L*(z)d':, 

0o 

where 0o is an arbi t rary angle in (7.1). Obviously the function ¢o*@) thus 
defined satisfies the above specified conditions. 

§ 8. - Fundamenta l  Lemma for the Proof  of  Theorem & 

1 o. S~J'TEMEN~ OF LEMMA. - Before going into an essential part of the 
proof of Theorem A, we must prove a lemma. 

LEM~A A. - Let xl be an arbitrary point  in a domain of  the form 

(8.1) 0 < I xl < {Nto*(arg x), ®* < arg x < ~)*, 

where ~ i s  a certain positive constant. Then there exists an a-vector path  
r*~, with element~ t Ffi~i such that" 

i) Each curve rj~* joins the point xl with the origin and is contained 
in the domain (8.1) except for the origin. 
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ii) As x moves on the curve FA, we have 

(8.2.1) -~d e-R~aJ(~) ~ Ixl - : - 1  e-R~a~(~)]]T[ ]' sin 2o~ 
ds] 

and, i f  I]Y[]' sin 2z, ~ 2 N ( ~  max to*@)) N, we have moreover 

(8.9.2) h~j Ix > 

with [1TI]'-- min  IT]]. Here sj is the arc length of the curve r]~ measured from 
j = l  

the origin to the variable point  x on this curve. 
This  l e m m a  will be proved in the next  section.  

2 °. DEFINITION OF TttE PATE VECTOR P * ~ , .  - In  o rder  to def ine  the path  
vec tor  F~*~, we shall  def ine  first  an a - c o l u m n  vector  func t ion  l(?) with ele- 
ments  ~ 1i(¢~) I as follows. 

If  j e J ~ ,  

o(T - -  0j_ + 4e), 0]_ - -  2e --< ? ___< O*, 

0 ] + + 9 , <  ~ <  Oi_- -  2~, (8.3.1) l/?) = 

o(~ - -  0]+ - -  4,) + ~, o *  <_- ~ _-< 0]+ + 2,. 

I f  j e f f 2 ,  

(8.3.2) 

7~ ~,  0j+ + 2E _<_ ? <__ ~*, 

o(? - -  Oj+ - -  4 , )  + ~, ®* --< ~¢ < Oi+ + 2 , .  

I f  j e J ~ ,  

(8.3.3)  ~(~) = 

~(~ - -  0j_ + 4 , ) ,  0j_ - -  2 ,  _-< ? _-< 0 " ,  

= 0 " = ¢  < =<Oj-- -9* .  ~ ,  

REMARK. - In  the case when  the set Jo is non -emp ty ,  we take l j (~ ) - -n /2  
for ®* _--< ? --< ~)*. 

Observing that  O* and  (6* sat isfy the inequa l i t i es  (7.3), it is easi ly seen 
that  

(8.4) 2o8 < lj(~) < 7: -- 2o~ for O* <' < O* 
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~¢Ioreover the definitions of 0"_t_ and ~*_ imply that 

(8.5) 
I lj(~) _-< L*(~), Oj_ --  2~ < V _<- ~)* (j e a~, J3), 

t;(~) _-> L*(~), 0"_-< ~_-< 0;+ + 2~ ( j e a , ,  a~). 

Hence  we have, by a simple consideration, 

(8.6) f cot lj(zJdz<-- f cot L*(~)d~ 
(} o 

for 0_--< ~ --< 0i+ + 2ai j~a~,  J-,) and for 0j_ -- 2a =< ~ ~ 0  l j e J ~ ,  J3). 
Let x ~ - - r d  ° and let (p, ~} be the polar coordinate of the variable 

point x on the curve ]:j~,. Then the curves F*, are defined as follows: 
the curve 1 ~.* consists of a curvil inear  lXl If 0 < 0i+-{--2~ or 0 i _ - - 2 ~  < 0, 

part  Pj: 

~8.7) p -  r exp f cot lj(':)& 
e 

0_<¢p<0j++2~_ = or 0 j_- -2~N~<0= 

and of a rect i l inear  part ~" :  

(8.8~ 0_--< ? --< r exp / cot 1](z}d':, ~ -- 0]+ q- 2~ or 0 i _ - 2~. 

0 

I f  Oj+ q- 28 <-- 0 < 0 i _ -  2e, the curve F~ consists of a rect i l inear  part  
r~' only : 

(8.9) O < p < r , =  = ~ = 0 .  

§ 9. P roof  of  Lemma A. - By virtue of the inequali ty (8.6), we see by 
inspection that the curves Fy* ~ defined by ({8.7), (88)/ or (8.9) are contained 
entirely in the interior of the domain {8.1) except for the origin. 

This proves the first portion of Lemma A. 
We shall prove first the inequali ty (8.2.1 b On the curvil inear  part  Fj, p 

is a functim~ of ~0 given by (8.7). /k simple calculation shows that we have 

(9.1 ~ d~dX _ _ eC~j(9)+~)~ or + e (~j(~)+~)~, i , ,= V ~ l l ,  

according as 0 < < 0 i = ~  = + o  r 2 e  or 0 - - - 2 ~ _ - <  ~o=< 
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H e n c e  we have  the equa l i ty  

d 
(9.2) d--~] ( -  Re i2/x)) = +__ ~ - ~ - l i y j t  cos (/j(?) - -  o? + arg ?]) 

where  we  mus t  take  the posi t ive  sign or the nega t ive  sign accord ing  as 

0 < ¢ e < 0 i + - b 2 ~ =  = or 0 i _ - - 2 ~  <= ~=<0. 

On the o ther  hand  the def in i t ions  of the func t ions  ls(~) and of the angles  
Oi+ , 0 i_ imp ly  that  we have  the re la t ions  

r: 3r~ 
1i(~) -{- arg Y1 - -  o? - -  ~ - -  4a~ or  --  -~- T 4z~ 

accord ing  as ~ is in the  in te rva l  0___?__< Oi+-{-2s or 0 i _ - 2 ~  ~ ? ~ ( } .  I t  
fol lows f rom these re la t ions  that  we have 

cos ( l / ~ ) -  o~ -~- arg  Ti) "- sin 4o~ > sin 2¢~. 

Th is  p r o v e s  the  inequa l i t y  (8.2.1) for  x on F~. 
On the rec t i l inear  par t  r~.', we have  s - -  9 - -  I x t and 0j+ -{- 2~ ~ ¢p --< 0 i_ - -  2~. 

I t  is r ead i ly  seen that  

Re (--  gti(x)) -" I ~___~ cos (arg Yi - -  a~}, l a rg  Yi - -  67 + ~: t ~ - -  2~s. 

d 
H e n c e  ~ R e  (--~2j(x)) is a mono tone  inc reas ing  func t ion  of 9 and we 

have  the inequa l i ty  (8.2.1) for x on F~'. Thus  the inequa l i ty  (8.211) has been  
proved.  

In  order  to prove  (8.2.2), we observe  by a s imple  cons ide ra t ion  that  

( a- j l o g  = R e  = 

The  inequa l i ty  (8.2.1) impl ies  that  

d 
d--sj (I x INe -'~aj(~)) --> lx [N--~--~e--'~¢(*)(][ ,( il' sin 2 ~s - -  N I x  l~). 

H e n c e  if we choose ~.N smal l  enough  to have 

2¢11~,[1' sin 2 ~ - N [ ~ I ~ )  >-- [l 'll' sin 2zs for Ix[ g¢~vto*(arg xb 

the inequa l i ty  t8.2.2) holds  for x on l'j,~. This  comple tes  the proof  of L e m m a  A. 
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§ 10. Proof  of  Theorem 1. - According to our usual method, we apply 
successively two transformations of the form 

(10.1) 

IV--..1 N - - t  

l.~O 1--~O 

- -  1~,(eo(,))p, ~---- Q 

to equations (6.1), where l~(ea(~)) is an ~ X ~ diagonal matr ix  with elements 
{e%( ~)}. :By a direct  calculation we see that the equations satisfied by P and 
Q can be written as 

(10.2) 
x~+~p' = l~(e-a(~))~(x, l~(ea(~)tP, Q), 

xQ' = g$(x, l~(ea(~))P, Q), 

where C~(x, ~, ~) and ~(x,  "q, ~) are respectively a-  and I~-column vector func- 
tions which have Property-e)~ with respect t o ~ and ~ in 

(10.3) 0 < txl < ~', 0 < arg x < ~ ,  tl'r~ll < d', tI~II < d'. 

It  is easy to verify that 

(lo.4) I ll et(., ~, ¢)tt < H'( ~ ,~ II + H ~ II) + B~ l * 1 ~, 

lla~(,~, ~, ~)11 ~ H"(lla~[] + lIE[I)-t- B~lxI  ~¢ 

for (10.3). Moreover ~ and ~ satisfy there LIPSm~ITz's conditions with respect 
to (~, ~) with LIPSCKI~z's constants H '  and H" respectively. Namely we have 

and ~ satisfies an analogous inequality. Here H '  and H" are positive con. 
stants independent  of N. By virtue of Assumption iii) in Section 6, we can 
assume without loss of general i ty that H'  satisfies 

6~ 

(t0.5) 8H' < llrli sin 2 ~  ¢Ji7t1'- min IYJ[) 

for a preassigned positive number  e. Indeed, this inequali ty is accomplishes 
by applying, if it is necessary, a suitable l inear transformation with constant 
coefficients. And we take N so large that 

(10.6f 4H" < N. 
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By repeat ing the arguments  which will be developed in Section 14 
word by word, we can solve the~ following problem: 

P~o]3L]~M A. - I f  we have (10.5) and (10.6), there exists a unique solution 
of equations (10.2) satisfying the conditions 

(10.7)N [P]-- O([x?~)[e-'°~¢~)], [IQll- O(Ixl~), 

where [P] denotes an ~-column vector with elements { [ Pjl ! and [e -~a(~)] is an 
~-column vector with elements i e-R~[~( ~)1. 

Using the solution of this problem, we can prove Theorem A by an easy 
application of the reasonings which witl be given in 2 ° of Section 13. 

If. - Second Existence Theorem. 

§ 11. St~toment of  Theorem B. - In  this part we consider again equa- 
tions of the form (6.1) for the case when their r ight -hand members depend, 
besides x, 6)~f, ~,  on an arbi trary function of the form V(x)~--l~(x )(~. Equa- 
tions of this type will play an essential role for the proof of Theorems 1, 2 
and 3. 

We use the same notation as before. 
Let there be given two systems of ~ ~ ~ non- l inear  ordinary differential 

equations of the form 

(11.1) x : + l ~  ' -  ~t(x, Y(x); ~f, ~), x ~ ' - - ~ ( x ,  V(x); 6"~, ~5). 

Here  we suppose that 

i) ~(x, v; ~f, ~) and ~(x, v; ~f, ~) are respectively ~- and ~-column 
vector functions which admit uniformly convergent expansions in powers of 
and ~ in a domain of the form 

(11.2) O < [ x [ < ~ ,  O < a r g x < - O ,  []vll<~, [16~[l<d, 1]~[[<d, 

whose coe]Ticienls are functions with Properly-6).~ with respect to v in 

(11.3) 0 <  [ x l <  ¢, O < a r g  x < ~ 9 ,  live< 8. 

ii) We have 

(11.4) ~z~(0, 0; 0, 0) --1~('() ~- D, ~ ( 0 ,  0; 0, 0 ) =  0, det l~(~.)~ 0. 

iii) Equations (11.1) have a format solution of the form 

(t!.5) ¢¢f~ Z V(x)qf~(x), ~ ~ Z V(x)~g~(x), 
lqt=o [ql=o 
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where fq~z) aJ~d gq(x) are respectively ~- and ~-column vector functions which 
belong to class ~(O, O; ~) and, in particular, 

IIf0(x)il < d, I[go(x)ll < d. 

TFIEORE~ :B (SEco57D EXiSTEnCE TH~,OREM). - Assume that, in the sector 
O < arg x < ®, there ex~ists a subsector ®* < arg x < O* which has Property-~ 
with respect to { ~2~(x), ..., ~(x) ! .  

Then equations (11.1) have a solution of  the form 

(1,1.6) ~,~ = ~)(x, V(x)), S = %P(x, F(x)), 

whenever x and V(x) are in a domain of the form 

(11.7) o <  i x [ <  o* < arg [lvU< 

This solution admits uniformly convergent expansions of  the form (11.5), so 
that o'))lx, v) and e~)(x, v) are respectively o~- and ~-column vector funclions 
with P r o p e r t y - ~  with respect to v in the domain (11.7). 
The  proof of this theorem will  be given in Sect ion 13. 

For  the proof of Theorem B as well as that  of Theorem A, a domain 
of the  form (11.7) must  be replaced by an equivalent domain of the form 

(11.8) 0 < i xl < ~%o*(arg x), [v] < 8°[X*(arg x)], O* < arg x < O*. 

Here  ~o*(~) is a scalar funct ion and X*(?) is an n - c o l u m n  vector funct ion 
with e lements  { X$(~)} : 

(11.9) 

~o*(~)- exp / cot L*(x)dz, 

0o 

~*(?)= exp l(Re ~)/cot L*(~)dr.+(lm ?k)(Oo--~) I, 
Oo 

where L*(z) is given by the formula  (7.5) and 0o is a fixed angle satisfying 
0" < Oo < 6*. 

§ 12 - F u n d a m e n t a l  Lemma for  the  P r o o f  o f  Theorem B. 

1 °. L ~ A  B . -  We must  prove a lemma, analogous to Lemma  k in 
Section 8 which will play a fundamenta l  role in the proof of Theorem B. 
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Let  to*@) and X*@) be the funct ions  given by (11.9). Then  the l emma 
can be stated as follows: 

LE~IMA B. - Let  x~ and  v ~ be arbi trary  points  in  a domain  o f  the form 

(12.U 0 < l xl < {Nto*(arg x), [v] < 8lv[X*(arg or)], ®* < arg x < 6% 

Choose C" so that  V(x,) = v ~, namely  let C" --  1 ~(xT~) v ~. 
Then there exists  an  a-vector pa th  ~*, wi th  element i Tj*~ t such that:  

1) The curves F}*x jo in  the point  x~ wi th  the origin and  are contained 
in  the domain  

(12.2) 0 < i xl < ~Nm*(arg x), O* < arg x < ~)* 

except for the origin. 

2) As  x moves on the curve ri~* for each index  j ,  we have 

(12.3) [g(x)] < 8~v[X*(arg x)], ®* < arg x < ~9", 

(12.4) -5dTd~ II V(~)II --> - I *  I-' I1 ~IIII Y<x)ll, (11 ~ l r -  m.x I~I)  
ua i 

and, i f  l/rll' sin 2zs ----- 2N(~v max  to*@)) ~, moreover 

d (12.5) d_~j(t l V(x)II%-Ro~¢(~)) > lit1' sin 2ZSlx[_~_ll 1V(x)[i%_n,nd~) 
2 

Here s i is Ihe arc lenglh o f  the curve ~i~, measured from the origin to the 
variable po in t  x on Ibis curve and  llyl[' = min IYi[. 

2o. PROOF OY LEM)~A B. - We define the curves Pi~* in the exactly same 
way as in the proof of L e m m a  A in Sect ion 8. Then  Assert ion 1) is evidently 
satisfied. Therefore,  in order  to prove L e m m a  B, we have only to prove the 
inequal i t ies  (12.3), (12.4) and (12.5). 

By defini t ion the vectorial  inequal i ty  (12.3) is equivalent  to n inequal i t ies  

a r g  x 
[ P 

1 

Oo 

as x is on the curve 17i~*. Observe that  the curve r.*j~, consists of two parts  r~ 
and r~' in general  and we have Vk(x)--v~(x/xl),~k and, consequently,  

(12.7.k) __ x R~k { (Im~k) arg 

AnnaIi di Matematica 28 
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On the eurvi l inear  part F~, p = Ix[ is a function of-~ given by (8.7). 
Hence we have 

a r g  x 

[ Vgx)[ -- Ivy[ exp t (Re~) / cot lj(z)dz ~- (Im?k)(arg X l -  arg x)f 
a r g  xl 

and, by (8.6), 
a r g  x 

t = ,  + aro t . 
a r ~  Xl 

On the other hand, v~ must satisfy the inequali ty (12.6.k) for arg x = arg x~. 
Hence, by inspection, we have inequali ty (12.6.k) for x e ]?~. 

On the rect i l inear  part ]:y, we have I xI~< I x~ I and arg z is constant. 
Hence  by virtue of (12.7.k) inequali ty (12.6.k) holds for xel:~'. 
This proves the vec*orial inequali ty (12.3:. 

To prove the inequali ty (12.4), it is to be noticed, by a simple calcula- 
tion, that 

d Re( Vk(x)-~ff--~i Vk(x) dx 

Since I dx/dsi]----1 except for the joint  of the curves ]7} and I~ ', it follows 
then that 

d 
oju 

on rjx*. This proves inequali ty (12.4). 
To prove the inequality (12.5), we observe that e-Renfl ~) satisfies, by virtue 

of (8.2.1), 

d _Re~+(.+ >_ i,~l_o_,_ _~,,,j(~)li,,,i V s in  2,:,~ 
dsj 

on rill. Hence,  owing to (12.4), the expression of the lef t -hand member of 
(12.5) is not less than the expression 

[ • I -o -1  u V(x)Ve-~'~~J ¢~)(1t ~ 11' ,~in 2 ~  - NIl t" I11 x Io). 

Choose ~v so small enough to have 

ll$]I' sin 2ae >-- 2NI[~[I(~ max ~o*(~o))~ for O* < < O*. 

Then it is clear that we have inequali ty (12.5). 
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§ 13. Proof of  Theorem B. 

1 °. - We make  the change of variables 

(13.1) ~f  --tqZ~ V(x)qfq(x) + ~' ~ -- lql<"Z V(x)qgJx) + 

in the equat ions  (11.1). Then  the t ransformed equat ions can be wri t ten as 

(13.2) x~+~ ' --  l~(y)~ + ~(x, V(x); ~, ~), x~' -- ~(x, V(x); ~, ~). 

Here  ~(x, v; :q, ~) and ~(x, v; ~, ~1 are holomorphie  and bounded  vector 
funct ions  of (x, v, ~, ~) for 

(13.3) o < [~t < ~', o*  < arg x < ~*,  [Ivll < ~', R~ll < d', ~[ l  < d' 

and satisfy there inequal i t ies  of the form 

(t3.4) 
I [l~(x, v; ~, ~)l] ~ H'([]~[I + []Kt[) + B,~llv[] N, 

)Ioreover,  ~ and ~ satisfy LIvSCmTz's condit ions with respect  to (~, ~) 
with LIPSCH~Z'S constants  H '  and H" respectively.  H '  and H"  are posit ive 
constants  independen t  of hr. In  par t icular ,  owing to Assumpt ion  ii) in Sec- 
tion 11, we can assume without  loss of general i ty  that  H '  satisfies 

(13.5) 8H'  < II Y [l' sin 2~e 

for a preass igned positive number  ~. BAT may depend on h r. 
Pu t  

(13.6) ~ = l~(ea(~))P, ~ : Q, 

so that  equat ions  (13.2) are reduced to 

(13.7)N 
t P ' =  x-~-ll~(e-~(~))~(x, V(x); l~(eU(~))P, Q), 

f Q ' - - x - l~ (  x, V(x); l~(ea(~))P, Q). 

We want  to solve the following problem:  

PI~OBLEM B. - I f  8H'< II~'1]' s i n 2 ~  and 4H" < IV[IRe ~[1' wi:h HRe~tI'-- 
-- rain i Re ~ }, equations (13.7) have a unique solulion of the form i ~(x, Vix)), 
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~pN(x, V(x))! satisfying 

[p] = o(~ v ( . ) V ) [ e - ' ~ %  ll Qil = o(il v(x))V), 

whenever (x, V(x)) belongs to a domain of the form 

(13.9)N 0 <~ I xl < ~N(o*(arg x), [V] "< ~N[X*(arg x)], O* <: arg x < O*. 

Here :pN(x, v) and ~v(x, v) are respectively ~- and ~-column vectors whose 
components are holomorphic and bounded functions of (x, v) for (13.9)N. 

This  problem will be solved in Sect ion 14. 

2 °. - Assume that  Problem B has been solved. Then  we can prove Theo- 
rem B in the following way. Owing to the t ransformat ions  (13.1) and (13.6), 

(13.10) 

l Z V(x)qfq(x) + l~(e" (*))¢~v(X, V(x)), 
Iql<N 

Z V(~)qgq(x) + ~s(x, V(x)) 
lql<N 

are a solut ion of equat ions (11.1) provided that  (x, V(x)) is in the domain  
(13.9)N. Let  N ' >  N be any integer.  I t  is easy to see that  

l~(e-"(~)) Z V(x)~f~(x) + ~.(.,  V(x)), 
N_~ I q J<N' 

E V(x)qgq(x) + +N,(x, V(x)) 

are a solution of equat ions (13.7)N satisfying lhe condition (13.8);+ if (x, V(x)) 
belongs to the common par t  of the domains  (i3.9)++ and (13.9)N,. Hence,  by 
the un iqueness  of solution, this solut ion must  coincide with the solution 
~+N(X, V(x)), ~Plv(x, V(x))*. F rom this it follows that  the solut ion expressed by 
(13.10~ is independent  of 2V provided that  4H" < NItRe ~[l'. We write therefore 
this solution by , 6))(x, V(x)), e~)(x, V(x))!. Then  by analytic cont inuat ion the 
funct ions ~2)(x, v) and ~)(x ,  v) are def ined in a domain of the form (11.7). 

On the other hand, v - - 0  is an inter ior  point  of the domain  (11.7)in 
which the vector funct ions  ~'))(x, v) and e'A)(x, v) are defined. 

Therefore,  by C/~vcl~Y's theorem, ~"~(x, V(x)) and e)/))(x, V(x)) can be de. 
ycleped in un i formly  convergent  power series of V(x) whenever  (x, V(x)) 
belongs to the domain (11.7). Clearly, ~))(x, V(x)) and eA)(x, V(x)) admit  the 
asymptot ic  expansions  (il.5). By the uniqueness  of expansions,  these asymptot ic  
expansions  must  coincide with the uniformly convergent  expansions,  This  
proves the uniform convergence of t!m formal solutions (11 5). 
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Thus  the proof o[ Theorem B has been completed.  

§ 14 Solut ion of  Problem B. 

1 °. FAI~ILY ~ . -  Let  ~= i¢~(x, v), @(x, v) l be the family of a -co lumn 
vectors ~(x, v) and ~-co lumn vectors ~(x, v) whose components  are holomor- 
phic and bounded  funct ions  of (x, v) for (13.9)N and satisfy there inequal i t ies  
of the form 

(14.1) v)] <- v)ll < K IIvV. 

Here  KN is a cer ta in positive constant.  
Let (xl, v ~) be an arbi t rary point in the domain (13.9)~v and choose the 

in tegrat ion constant  C" so that  V(xl) -- v 1 . We define then the vectors O(xt, v ~) 
and W(xl, vl) by 

(14.2) 

where 

O(xt , vl) -- f ~($, ]/(x))dx, ~¢(Xl, vl) - f ~[(x, V(:v))dx, 
0 0 

~(x, v)--x-~-ll~(e-r'(~))C~(x, v; l~(e ~(~)) ~(x, v), ~(x, v)), 

$((x, v )=  x - ~ ( x ,  v; l~(ea(~)) ~(x, v), +(x, v)). 

The integrat ion of the j:~ component  of the first equat ion of (14.2) mus t  
be carr ied out along the curve l?~, which was already defined in Section 8. 
The  in tegrat ion of the second equat ion  of (14.2) must  be carr ied out along 
the segment  0xl jo in ing  xl with the origin. 

2 °. MAPPING ~. - By vir tue of (12.3) in L e m m a  B, the values of (x, V(x)) 
remain  in the domain (13.9)N as x moves on the curve r*  Hence  the j,h eom- 

] ~ 1  ° 

ponent  of the in tegrand of tile first  equat ion of (14.2), say ~i(x, V(x)), is a 
holomorphic  funct ion  of x for xeFj:~. Since  [l V(x)il is a monotone increas ing 
funct ion  of [x] as x moves on the segment  0xl, the values of x, V(x) remain  in 
domain  (13.9)N for x+Oxl. Hence  the in tegrand ~((x, V(x)) is a holomorphic  
funct ion  of x for x e 0 x l .  

The  inequal i t ies  (13.4) imply that  

(14.3) 
I [~(x, V(x))] -< (2H'KN q- BN) lx ]-~-1H V(x)l] ~¢ [e-Rea(~)], 

[[JC(x, V(x))l] <- (21t"KNq- Blv) Ix[-' [] V(x)ll ~v. 

As we have already seen, the funct ions  e-R~j(~) tend to 0 exponent ia l l s  
as x approaches  0 along the curves l?fil respect ively and II V(x)[l tends to 0 ay 
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x approaches 0 along the curves I)*l or the segment 0x~. Hence if 2lURe ~tlI'>O 
the integrals (14.2) are convergent.  This proves that the mapping ~ :  

is well defined. 
; ~(x, vi, ~(x, v)! --> ~ ¢(x, v), ~(x, v) t 

3 °. EXISTENCE OF A FIXED-POINT. - Our solution of Problem B is based 
on a f ixed-point  theorem [2]. Since t0, 0lEg", the family 9" is not empty. 
Moreover, it is clear that 9" is closed, normal and convex. 

Therefore, in order to conclude the existence of a f ixed-point  of ~, it 
is necessary to prove the following assertions: 

a) ~ maps 9" into itself, i.e. ~19"! C 9". 

b) ~ is a continuous mapping with respect to the topology of uniform 
convergence on compact subsets. 

We shall prove first Assertion a). This assertion is equivalent  to the 
facts that:  

a~) The vectors ¢(x~, v ~) and ~'(x~, v ~) satisfy the inequalities 

(14.4) [(I)(x~, v~t] __< KNllv~ff[e-~a(~)], Ilq;(x~, v~)[1 ~ KNllv~[ff. 

az) (I){x, v) and W(x, v) are holomorphic and bounded functions of {x, v) 
for (13.91N. 

In order to prove Assertion a~), let s~ be the arc length of F.* By virtue j IZI • 
of (14.3), the j~h component of the vector (I)(x~, v ~) does not exceed 

1 
s.  
1 

(2H'K~. -t- B~) f Ix l -°-~ ti V(x~ lINe--R~a~(~dsj 
0 

= IIYII s t ,  ~ o ~  ~' 
(by (12.5}). 

The last expression will be bounded by K~vl[vl[l~e-R~aj(~l) if we can 
choose K~v large enough to have 

K'--~ 2B~([I~II' sin 2~e -- 4H') -1 < KN. 

Since 4H' <: liYI/' sin 2a~, this choice of K~v is obviously possible. This proves 
the first inequali ty of (14.4). 

Since 

t X Ret'~ke(Im~.k)(argxl__argx) 
I y ~ ( x ~ l  = - -  92,I 
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we have 
d d 

tl I v (~ ) l /=  d- -~  i V~(x) t = (Re ~,) )~ )-' t V,(~) i ~or some k d Ix 

= (Re ~ ) I x [  -~ [I V(x)[l >- I]Re ~lt' I x [ -1 [I W(x)I[ 

with tlRe ~ll'-- rain i re  ~ i  and, consequently,  

(14.5) d 
tU V(x)V >= Nil Re ~ 1t' I • t -~ [t V(x)V. d I X 

Hence  we see by vir tue of (14.3) that  ttW(xl, va)lt is not larger  than 

Ix, I 

(2H"KN + BN) f dlxt 
0 

< 2H"KNNtlRe +l~lB~v II v I lIN. 

Since N[]Re I~ll':> 4H", if we take KN large enough to have 

K" ~ Bz,.(NII Re )z ll' - -  2H") -1 <= [K~, 

[tW(x,, vl)l[ will be bounded  by K~v[[v~ll N, which proves the second inequal i ty  
of (14.4). 

Let  K N - - m a x  t K' ,  K"! .  Then  we get Assert ion aa). Concerning the 
quant i ty  8>~ appear ing  in (13.9)N~ we have to take 8N so small  that  

KN(SNII X*(~)I] )N < d' for O* < < (~* 

To prove Assert ion as), assume that, for xo sufficiently near  to x, ,  the 
relat ions 

(14.6) 

f° f' ¢(xi, vl) --  ~(x, V(x))dx + ~(x, 
0 x 0 

x o X l  

0 x 0 

V(x))dx, 

V(x))(tx 

hold. In  the first equat ion  of (t4.6), the jth component  of the first integral  
mus t  be carr ied out along the path I'jx~ a n d  that  of the second integral  along 
the segment  XoX~. In  the second equat ion of (14.6}, the first and the second 
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integrals  must  be carr ied out along the segments  0xo and xox~ respectively.  
Then  the relat ions (14.6} show that the vector funct ions  O~x, v} and 

W(x, v) are holomorphic  at x --  x~ with respect  to x for each v ~. On the other 
hand, the inequal i t ies  (14.4) imply that  the integrals  (14.2) are uniformly con- 
vergent  with respect  to v ~ for each x~. Hence,  by HAR~OGOS' theorem, the 
vector funct ions  (I)(x, v) and Wtx, v) are holomorphie  at (x~, v~} with respect  
to (x, v}. This  proves Assertion a~) since (x~, v~} is an arbi t rary point  in the 
domain  (13.9}~. Therefore,  to get Assert ion a2), it is sufficient  to prove the 
relat ions (14.6). 

For the proof of the first relat ion of (14.6), it is sufficient  to prove that  
we have 

(14.7.j} 

X 0 X 1 

0 x 0 

for each index j ,  where 0 i is the j'~ component  of O. 
Let  to and t~ be respect ively the intersect ion points of the paths Ppo and 

I'/**~ with a circle I x l - - ~  of small radius p. Then the relat ion ~14.7.j) will be 
an immedia te  consequence  of 

(14.8.j} 

tl 

f i~j(x, V(x))dx 
¢0 

--~0 as p --> O. 

Here the path  ?_ff integrat ion must  be taken on the circle I x ] -  ~. Since 
Rei21(x ) :> 0 for xetot l ,  we see by vir tue of {14.3t that  the expression appear- 
ing in the le f t -hand  member  of (14.8.j} tends to 0 exponent ia l ly  as ~-->0. 
This  proves the relat ion (14.7.j}. 

Similar ly  the second relation of (14.6) can be proved and we omit there. 
fore the proof. 

In order to prove Assertion b), it will be sufficient  to prove that, if 
t~k(x, v), ~k(x, v)/ be any sequence which converges to l¢~(x, v), ,~(x, v)}, then 
the corresponding sequence i(I)k(x, v), W~(x, v) l converges to the corresponding 
tO(x, v), W(x, v)}. However,  this assert ion is almost evident  because the vec- 
tor funct ions  ~{x, v; ~, ~) and [$(x, v; ~, El satisfy LIPSCgITz's condit ions 
with respect  to (~, ~). Hence  it is concluded by a f ixed-poin t  theorem (See 
for example  [2]} that  there exists a member  l~g(X, v), ~N(x, v)! of 9" that  cor- 
responds to a f ixed-poin t  of the mapp ing  ~.  

4 ° .  ] ~ X [ S ' r E N C E  O F  S O L U T I O N .  - W e  assert that :  

c) The pair l~N(x, V(x}), ~N(x, V(x))} is a solution of equations (13.7)N 
whenever (x, V(x)) belongs to (13.9)N. 
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To prove this assertion, we write V{x) as W(x, xx, v~). Then  it is suffi- 
cient  to prove that  

d lI~(Xo, vO} = ~(xo, v°), (14.9) dxod ¢(Xo, v °) "- ~(xo, v°), 

where v ° is a vector funct ion of Xo given by W(xo, xx, v~). 
We shall prove the first equat ion of (14.9). Since W(x, xo, v °}-- W(x, 

x~, vl}, the first equat ion  of (14.2} implies  that  

d 
dxo O(Xo, v °) --  :E(Xo, v °) + 

xo 

+ f V~(x,~_WW) j ~ W(x,( ~oX°' v ° ) + 
0 

3Wix, Xo, vo}3W{xo, xl,v~)~dx" 
3v ° 8x0 

As is weli known, for any constant  ~. W(~, x,  V) is an integral  of the 
equat ion  xv ' - - l , ( t~)  v. Hence,  the express ion appear ing  in the braces of the 
above in tegrand is zero identical ly and we have the first equat ion of {14.9). 

Similar ly  we can prove the second equat ion of (14.9). 

5% UNIQUenESS. - For  the complete  solution of Problem B, it remains  
only to prove that :  

d) A solution of equations (13.7)N satisfying the condition (13.8)N is unique. 
Suppose  that there exist  two solutions sat isfying the same conditions.  

Let  i P{x, V(x)t, Q(x, V{x))! be the difference of these two solutions. By as- 
sumption,  ~(x, v; ~, ~l and ~{x, v; ~, ~) satisfy Li:escttiTz'S condit ions with 
respect  to (~9, ~) with LIPSClziTz's constants  H '  and H" respectively.  Hence  
the ¢,h component  of P(x, v}, say Pj(x, v}, and Q(x, v) satisfy 

and 

with 

If  we put  

1 
s .  
I 

lpj(xl, vl)l _-< H ' f  
O 

M(x, V(x)) ] x ]-o-1 e-Rea~(~)dsj 

IQ(xl, vl)ll ~ H" .M(x, V(x))lxl-ldlxl 
0 

M{x, v) --  li 1~(e~(~)) V(x, v} il -[- II Q(x. v)II. 

K - -  sup t l]vI]-NIIl~(ea(~)) P(x, v)n , []vil-xl[ Q(x, v)[ll 

AnnaIi di Maternatica 29 
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when x and v move in (13.9b, then we have 

M{x, v} < 2Ktl v lV '~, 0 _~ K < -4:-oo 

since P(x,  v) and Q(x, v) satisfy inequalit ies similar to (t4.1). 
If we could prove that K - - 0 ,  the proof of uniqueness would be complet. 

ed. Suppose that K ~ 0 .  By virtue of (12.5), we have 

[P{x~ v~)] < 4 t { ' K  il~v [e_Rm(~)], 

II Q(xl vl)[I < 2 H " K  
' = lV[1 Re ~ tl' [1 v~V. 

The definition of K yields 

K < K max ftily[l' 4H' 2H" t 
----- sin 2 ~  ' Nll Re [.t tl' ~ " 

By the assumption imposed on Problem B, the last expression is not 
larger  that K / 2 ,  which is a contradiction. Hence K must be zero. 

Thus Problem B has been completely solved. 

CHAPTER I[I.  

P r o o f  o f  T h e o r e m  1. 

I. Formal  Solution ($1). 

§ I5. Formal S o l u t i o n s . -  Assumptions I ) ~  6i in Section 1 and As- 
sumptions I, I [  in Section 3 imply that the r ight -hand members of equations 

(A) x~+~y' = f(x, y, z), xz' = g(x, y, z) 

satisfy the following condit ions:  

(15.1) 
l fy(o, o, o )=  ¢2, f~(o, o, o)=  o, f.(o, o, o)]= o, det ~I 4= O, 

I gy(O, o, o ) =  o, g~(O, o, o ) =  l~(~), g x(o, o, o ) =  o. 

Let Ai(x) --  - -  vj/ax ~ and let O1 < arg x < ~1 be a sector which has Prop. 
e r t y - g  with respect to {Al(x), ...,-h,~(x)l and contains the positive real axis. 
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We shall prove the following proposit ion: 

PRoPosI~O~ 1.1. - Let V(x)-" lgx,.)C'. Under Assumptions 
equations (A) have a formal solution of  the form 

I and II  

(S 1) 

y ,-, ~[x; V(x)] + x:+l(a(x) + Z Y(x)qaq(x)), 
Iql=l 

z ~ q~[x; V(x)] + x~+~(b(x) + Z V(x)qbq(x)) 
[q]~l 

with the properties that 

i) ~[x; v] and ~b[x; v] are respectively m-  and n-column vector functions 
with Property-a with respect to • for llvH < ~'. 

In  particular, we have 

(15.2) ~p~[0; 0] = 1, .  

ii) a(x) and az(x) are m-column vectors, b(x) and bq+x) are n-column vec- 
tors, and the components of  these vectors are functions which belo~g to class 

- If  we replace ~, +, a ,  aq, b and bq by their corresponding convergent  
or asymptotic expansions, (S~) is reduced to double power series of x and 
V(x). The existence of such a formal solution can be verified by the fact 
that, if we apply a formal t ransformation of the form 

Y ~ Y + Z :~lZqPzq, z "-I Z +  Z x~ZqQzq 
l+lq[=2 /--Hq[=2 

to equations (A) and determine the coefficient vectors in such a way that the 
formally transformed equat ions take as simple a form as possible, then the 
formally simplified equations have :Y--0,  Z---- V(x) as a par t icular  solution. 
From the formal point of view the formal solution ($1) results from a suita- 
ble rearrangement  of these double power series of x and V(x). 

However,  in order to simplify the arguments,  we want to prove directly 
the existence of a formal solution of the form ($1). It  is to be noticed that, 
if our purpose is only to construct  an analytic expression for a solution with 
Property-~)~ with respect  to V(x), the arguments  for the construct ion of such 
a formal solution become much simpler than those which are going to be 
developed here, 
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§ 16. - Proof  o f  Proposition IA (Part I). 

We shall determine first the vectors ~[x; v] 
these vectors to have the form 

and ~[x; v]. We expect 

ff 
(16.1) ~[x; v] = £ x~Jv ) ,  ~[x; v ] - -  ~ x~Jv ) ,  

×~0 ~:~0 

where ~jv)  and ~ jv)  are holomorphic functions of v at v- - -0 .  
The vectors f(x, y, z) and g(x, y, z) have unique representation of the form 

(16.2) I f(x, y, z ) -  f[x; y, z]-¢-x~+~f°(x, y, ~), 

t g(x, y, z ) =  g[x; y, ~] + x~+~g°(x, y, z), 

where fix; y, z] and g[x; y, z] have Property-~ with respect to x for IlyII < d, 
1]z]] < d, and f°(x, y, z) and g°(x, y, z) have Property-e)X with respect to (y, z) 
in Ixl < ~, IlYll < d, I[zl[ <: d. By virtue of (15.1) we have at once 

(16.3) 
! fy[o; o, o] = a ,  f=[o; o, o] = o, det Ct + 0, 

t gy[0; 0, 0] - - -0 ,  g=[O; O, 0] = 1.(t~). 

If we substitute ($1) for (y, z) into the r ight-hand members of equations 
(A) and omit all the terms containing x~+ ~ as factors, we have relations of 
the form, abbreviating the independent  variable of V(x), 

(16.4) x:+~y ' ,-, if[0; ~o(V), ~o(V)]i + x f K ( V ) ~ ( V )  + H(V),~(V) + ~ ( V ) }  + 

-[- ... -[- x= i K ( V):? ~( V) -k H( V)~ j V) --[- ~=( V) ! --[- x~+~( ... ), 

(16.5) xz' ~ 

Here 

g[O; ~o(F), +o(V)] ~ + x{ M(V)~?~(V).~- E(V)+~(V) + Sx(V)! + 

+ ... + x~M(V) 'c~(V)  + E(V)+~(V) + SgV)} + x~+~( ... ). 

(16.6) 
I K(v)-~  fy[0; ~¢o(V), ~bo(V)], H(v)=---f=[0; ~o(v), ~o(V)], 

M(v)--=gy[0; "~o(V), Co(V)], E(v)--g~[0;  ~o(V), +o(V)]. 

~h 
~ ( v )  is a l inear form of m-column vectors [~[0; ~o(v), ~o(V)], ..., ax h f[0; ~o(v), 

Co(v)] with polynomial coefficients of ~(v) and ~k(v) (1--< k < h) and Sh(v) 
has the property similar to ~h(v). 
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In particular,  we have 

~,~(~) : f~[O; To(V), +o(V)], $~(v)=g~[O; ~o(V), +o(V)]. 

On the o~her hand, if we differentiate (S~) term by term and pick up 
only the terms not containing ~+~ as factors, we have equations of the form 

(, (16.7) x~+ly ' ~  x~Ix~'o(V) i--kx~+~( ... ), : ~  , 

(16,8) xz' "" I X~Jo(V)} "-~ X t x~)~( V)  -if- ~)I(V)!-}- 

+ ... + x ~ Ix+'(11) + ~ ~(v) ! + x~+~( ... ). 

Since V is a solution of x v ' :  l n(~t)v, we have 

x C V ) -  UV-~(V) • 1.(t~)V, 

which shows that the functions appearing in the braces i ... } depend on V 
alone. 

From ((16.4), (16.7)) and ([16.5), (16.8)) we can easily derive the following 
differential  equations which determine the vector functions i?h' V(x)), +h(V(x))! 
( h = 0 ,  1, ..., ~): 

(16.9) 

and 

/ [o ;  ~o, +o] = o, x+~, = g[o; t o ,  +o] 

(16.10.h) 
x+'~ + h+~ = M(V)~ + E(V)+~ + $~(V) 

(h : 1, 2, ..., c~), 

where we put ~k(v) -- 0 if k < 0. 

§ 17. - P r o o f  of  Proposi t ion  1.1 (Par t  II). 

We  shall solve differential  equations (16.9) and (16.10.h). 
1 °. By solving the first equation of (16.9) with respect  to ~0, we have a 

unique equation of the form 

(t7.1) ~o = F(+o), 



230 M. IWANO: Analytic expressions ]or bounded solutions, etc. 

where F(~o) is a holomorphic vector function of ~o at 0 and, by virtue of 
(16.3), satisfies 

(17.2) F(0) = 0, F+o(0) -- 0. 

Substi tut ing F(~o) for ~o into the second equation of (16.9), we have a 
differential  equation of the form 

(17.3) x~'o = g(~o). 

g('~o) is an n -co lumn vector whose components are holomorphie functions of 
~o for []~otl ~<d', d' being a positive constant. By virtue of (16.3) and (17.2) it 
is easy to verify that g(+o) has a uniformly convergent expansion of the form 

gq being n-co lumn constant vectors. 
Since, by Assumption II, we have 

Z +o {ql=2 

det ( l ~ c ~ ) - - q . ~ l ~ ) 4 0  for 2 ~  }q[, 

it can be verified that equation (t7.3) possesses a formal solution of the form 

(17.4) +,o ~ V(x) + Z V(x)qQoq. V(x) ~- l,(xe)C", 
{q{=2 

where Qoq are n -co lumn constant vectors. Therefore we see that the equation 
(17.3) has a form similar to equations (11.1) with ~ - - 0 ,  ~ - - n .  

By applying Theorem B in Section 11 to equation (i7.3), it is concluded that: 

The formal solution (17.4) is uniformly convergent for il V(x)li ~ 8' and the 
sum ~o(V~x)) is a solution of equation (17.3) for I{ V(x)tl--- 8', 8' denoting a:suit. 
ably chosen positive constant. 

Clearly ~o(V) is an n -co lumn vector function holomorphic in v for 
tl fi -< v and satisfies 

(17.5) ~o(0) = 0, ~ ~o(V) ~=o = 1~. 

Let ~o(V)= Et'.~o(V)). Then ~o(v) is an m-column vector function holomor- 
phic in v for [tv[I ~ 6' and l~o(V(z)), ~o(V(x)'t is a holomorphie solution of 
equations (16.9) whenever  ][ V(x~l] ~ 8'. 
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It is to be noticed that we have, by (17.2), 

3 
(17.6) ~o(0) = 0, ~ Vo(V) ~=0 -- 0. 

'2 °. - B y  definition, K(v), H(v), M(v) and Ei v) are holomorphie matrix 
functions of v for l]vI] _-< 3'. Fart.hermore, owing to (16.3), we have 

(17.7) 
I K(0) = el, H(0) --  0, ~ ( 0 )  ---- 0, 

M,0) - -  0, E(0) --  L(~), $~(0) - -  0 

In order to solve equatious (16.10.h) by induction, we assume that the 
vectors q~(v) and t~.(v) have been already determined for z < h - -  1 in such a 
way that they are holomorphic vector functions of v for llvll < 3' and the 
pairs i~.~(V(x)), ~ (V(x ) ) l  are holomorphic solutions of equations (16.10.z). 
Then ~ ( v )  and Sh(v) are both holomorphic vector functions of v for []vl]~ ~'. 

From (16.10.h) we get an equation of the form 

(17.8) ~ --  F(  Vix))+h -4- f (  V(x)), (F(v) ~ - -  Kcv)-~tI(v)), 

where F(v) and f(v) are respective!y m X m and m X 1 matrices whose com- 
ponents are holomorphic functions of v for [lvll_--_ ~', and they satisfy 

F(0) ----- 0 for any h, f(O) -" 0 for h --  1. 

Subst i tut ing (17.8) for c+h into the second equation of (16.10.h), we have 
an equation of the form 

(17.9.h) x+, 'h - -  ( G( V (x) ) - -  h l~]~ h .+- g( V (x)), 

where Giv) and g(v) are respectively n X n and n X 1 matrices whose com- 
ponents are holomorphic functions of v for HvU- 3', and 

G(0) ~ ld~)  for any h, g(O) ~ 0 for h ~ 1. 

Assumption I I  implies that 

det ((h + q • ~t)l~-- In(W)) 4 0 for 2 < h + [ q l .  

By using these inequali t ies we can verify that equation (17.9.h) admits 
a formal solution of the form 

(17.10.h) ~ ~ Z V(x)qQhq, (Qlo=o) ,  
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where Qhq are n -co lumn constant vectors. Hence we see that equation (17.9.h) 
has a form similar to equations (11.1) with ~.----0, ~ - - n .  By applying Theo- 
rem B in Section 11 to equation (17.9,h), it is concluded that:  

Equation (17.9.h) has a solution q~dV(x)) for ~F(x)[ I - 5 '  which admits 
there the uniformly convergent expansion (17.10.h). 

Hence equations {16.10.h~ have a solution Iw(V(x)), ~h( V(x))} for I[ V(x)[I <- ~'. 
Here ~(v) and ~h(v) are respectively m-  and n -co lumn vectors whose com- 
ponents are holomorphic functions of v for []vH=<~' and vanish at v - - 0  if, 
in particular,  h -  1. The precise form of ~h(v) will be clear from (I7.8). 

Thus Assertion i) of Proposition 1.1 has been proved. 

§ 18. - P roof  of  Proposi t ion L I  (Par t  I I I ) .  

In order to simplify the arguments,  we apply first a 
the form 

transformation of 

(q:) y -- ~[x; V(x)] + x~+lY, z = ,.~[x; V(x)] -[- x:+t2 

to equations (A). By virtue of (16.2) we have 

- x - ~ - I  i x ~ + l v ' [ x ;  v]  - f [ z ;  ~[~; v] + ~+12, +[~; v] + z~+12] }. 

and we have a similar  equation for xZ'. 
On the other hand, by the determinat ion 

,~[x; el. we see that both of the vectors 
of the vectors ¢?[x; v] and 

x~+~'[x; V(x)]--f[x; ~[x; V(x)], +[x; vix)]], 

x+~[x; v(x)] - g[x; ~[x; V(x)], +[x; V~x)]] 

contain ~:+1 as factors and have Property-~'2g with respect to V(x) in[x[<~' ,  
[1V(x)l] < ~'. From this fact it is concluded that:  

The equations satisfied by I Y, Z} are written as 

(~) x~+1£'= A(x, V(x), 2, 2), xZ-'= B(x, V(x), 2, 2), 

where A(x, v, Y, Z) and B(x, v, ~, Z) are respectively m-  and n-co lumn 
vectors whose components are holomorphic and bounded functions of (x, v, Y, Z) 
for 

(18.1) Ixi < ~', llv[1 < 5', ll?[1 < d', I[ZI[< d'. 
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~', ~', d' are positive constants and we can give a value to the quanti ty  d' 
as large as we want provided that (~')*+~d' < d. Moreover we have 

<18.2) 

A~(0, 0, 0, 0 ) -  ~ ,  A~(0, 0, 0, 0 ) =  0, 

i Bp(0, 0, 0, 0) 0, Bs(0, 0, 0, 0 ) =  lgl~)--(~ + 1)1.. 

In order to complete the proof of Proposit ion 1.1, it will be sufficient 
to prove that equations (~k) possess a formal solution of the form 

Y ~ a(x) q- Z V(x)qaq(x), Z ~ b(~) q- Z V(x)qbq(x). 
lql=~ I~l=~ 

W e  have to look for differential  equations which determine these coeffi- 
cients. 

1 °. - We  see at once that the equations satisfied by { a(x), b(x) t are given by 

(18.3) x~+~a'=-A(x, O, a, b), x b ' =  B(x, O, a, b). 

Since det ~ ~ 0 and det (1 ~(l~) - -  (l --]- ~ --[- i)1 ~) ~ 0 (by Assumption II), we 
can easily verify that equat ions (18.3) possess a formal solution of the form 

(18.4) a .-. Z xzPto, b .., Z xtOzo, 

where Pzo and O~o are m - a n d  n -co lumn constant vectors respectively.  

can assume that ll/'ooH < d' and IIQooll < d'. 
Hence  equatio:as (18.3) have a form similar to equations (6.1) with 

W e  

= m, ~ = n> 1,,(y) = l=(v). 

It  follows then that a sector with P rope r ty -~  with respect  to i12~(x), ..., 
~2Ax)~ has P rope r ty -~  with respect  to i Al(x), ..., hgx)  l. By applying Theorem 
A in Section 6 to equations (18.3), we have the following conclusion:  

The vectors a(x) and b(x) are uniquely determined as a solution of equa- 
tions (18.3) in such a way  that [hey belong to class C(O1, O1; ~)  and admit  
asymptotic expansions of the form (18.4) as x tends t o  0 through the sector 
O1 < arg x < (91, ~ being a positi~Je number. 

2 °. - To simplify our calculation, we make the change of variables 

Y = ~7 + a(x), g = ~ + b(x) 

AnnaIi di Matematica 3o 
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to equat ions (3_). Then  the t ransformed equat ions  can be wri t ten as 

(18.5) 

x~+l~' = E~x, V(x))~ + F(x, V(x))~ + X ~P~%q(x, V(x)) + f(x, V(x)), 
Ipl+l~i=2 

x~' = G(x, V(x))~ + Ii(x, V(x))~ + Z ~p~%q(x, V(x)) + g(x, r(x)), 
I p I+ l  q t=2 

where the power series in the r igh t -hand  members  are uniformly convergent  for 

o <  t~i < i ~, o~ < arg x <  b~, II v(~)!i < ~1, Ilnii < d~, li~t] < d~ 

and the coefficients have Property-C2g with respect  to V(x) in 

O <  l x t <  ~1 0 ~ <  arg X < ® l ,  llV(x)ll <~1, 

~1, ~ ,  d ~ being suitably chosen positive constants.  Moreover, we have 

(18.6) 
t E(O, O ) -  C~, F(O, O)= O, f(x, O)~ O, 

~ G~O, O) = O, HIO, O) = In(W) --  (: + 1)In, g(x, O) ~ O. 

We assert  that  equat ions  08.5) possess a formal solution of the form 

(18.7) "¢I " ~, U(x)qaq(x), ~ ,~ Z V(x)qbq(x). 
[q]=l lq]=i 

Indeed,  different ia t ion of (18.7) term by term yields 

(18.8) 
l x~+l~ ' ~ Z V(z)qx~+la'q(x) ÷ Z x V(x?(q. Aaq(x), 

x~' ~ Z V(xFxb'q(A + Z r(x)q(q. ~)b~(x~. 

Subst i tu t ing  the power series (18.7) for (~, ~) into the r i gh t -hand  mem- 
bers of (18.5) and rea r rang ing  formally the resul t ing  equat ions  in the form 
of a single power series of V(x), we have equat ions of the form 

(18.9) 

¢ o  

x~+i~ ' ~ 2: 
lq 1 =i 

o o  

x ¢ ~  Z 
Iql=l 

V(x)q i E, x, O)aq(x) + F(x, 0)bq(x) + ~ ( x )  

V(xFt G(x, 0)aq(x) + H(x, O)bq(x) + Sq(x) 
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Here  ~qrx) is a l inear  fvrm of known m - c o l u m n  vector funct ions  belong- 
ing to class ~(0~, 0~; ~1) with polynomial  coefficients of aq.(x) and be(x)for 
]q'l < i q ]  and S-q(x) has the proper ty  s imilar  to ~q(x). 

From (18.8) and (18.9) we get the following l inear  different ial  equat ions  
which de te rmine  the vector funct ions aq(x) and bq(x): 

(18.10) 
I x~+la'q = t E(x, O) - -  x:(q • t~)l,~ ! aq + F(x, O)bq + ~gq(x), 

t xb'q -- G(x, O)aq + { H(x, 0 ) - -  (q. ~)l ~ t bq + Sq(x). 

Since det E(O, 0 ) - - d e t  ~ @ 0  and det ~ l , ( f ~ - - ( l + l + q . l ~ ) l , , ) ~ 0  (by 
Assumpt ion  II), we can prove, by using (18.6), that  equat ions  (18.10) have 
formal solutions of the form 

(18.11) aq ~ Z xZPzq, b~ ~., Z xlQlq, 
l l 

where P~  and Qzq are m -  and n - c o l u m n  constant  vectors respectively. Hence  
equat ions  (18.10) have a form similar  to equat ions  (6.1) with 

~. = m, I~ "-" n, l~(y) = l.~(v). 

Since ([8.10) are l inear different ial  equations,  Theorem A in Sect ion 6 
says that  : 

The vectors aq(x) and bq(x) are determined successively as a uni( ue solution 
of equations (18.10~ in such a way that they belong to class ~(O1, O1; ~1) and 
admit asymptotic expansions of the form (18.11). 

Thus  Proposi t ion 1.1 has been completely proved. 

II. Uniform (~onvergenee of  Formal Solution ($1). 

§ 19. Proof  of Theorem 1. - By vir tue of Proposi t ion 1.1 in Section 
15 we have the formal  solution ($1) for equat ions  (A). In  order to prove 
Theorem 1, namely to prove uni[orm convergence of the formal solution ($1), 
we make the change of variables 

(if:) y = ~[x; ~(x)] + x~+~:~, z = +[x; V(x)] + x~+~2 

to equat ions  (A). As we have already proved in Sect ion t8, the equat ions  
satisfied by i Y, Z I take the form 

(.~) xo+l:~ = A~x, V(x), :~, 2), x~' = B(x, V(x), 2, 2), 
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where A(x, v, Y, Z) and B(x, v, Y, Z) are holomorphic  and bounded vector 
funct ions of (x, v, Y, Z) for 

and we have 
[ • I < ~ o, II v I1 < s o,/I ~ll < ~ o, II 2 II < d° 

(19.1) A~(O, 0, 0, 0 ) =  ~ ,  A~(0, 0, 0, 0 ) =  0. 

~o, ~o and d o are sui tably chosen positive constants  and satisfy 

(~°)~+id° < d. 

Moreover equat ions (A) possess a formal solution of the form 

(~) ~ ~  a(x) + X r(x)~a~(x), Z,., b(x) ÷ Z V(z)~bq(x) 
[ql=l Iql=l 

with coefficient vectors belonging to class C((D~, O~; ~'). We can assume that  
n a(x)ll < d°, I] b(z)[] < d ° since a(x) and b(x) are bounded.  

F rom these facts we see that equations (A) have quite a similar  form to 
equat ions (11.1). By apply ing  Theorem B in Section 11 to equat ions (A), we 
have at once the following conclusion:  

TtIEORE~ 1'. - Equations (A) ha~:e a solution of the form i cp°(x, V(x)), 
W°(x, V(x))} with V(x)-= l~(xe)C", n'henever (x, V(x)) belongs to a domain of 
the form 

(19.2) 

Here ¢)°(x, v) and W°(x, v) are respectively m -  and n-column vector func- 
tions with P roper t y -~  with respect to v in (19.2) and moreover admit there 
uniformly con~;ergent expansions of the form (Si) with V(x) ---- v. 

We define (D(x, v) and W(x, v) by the formulas  

¢(x, ~) ---- ~;[x; v] + x~+l¢°(x, v), ~(x, v) = +[x; ~] + z~+t~°(x, v). 

Then,  owing to the t ransformat ion (T), the pair  t@(x, l~(x~)C"), W(x, 1,~(x.~)C")! 
is a solut ion of equat ions  (A) provided that  the values of x and ln(x~)C" stay 
in the domair  (19.2). Obviously the vectors (I)(x, v) and ~'(x, v) thus defined 
satisfy condit ions stated in Theorem t in Section 3. Thus  the proof of 
Theorem 1 has been completed.  



M. IWANO: Analytic expressions ]or bounded solutions, etc. 237 

C~At'~Eu IV 

P r o o f  o f  T h e o r e m  2 .  

§ 20. - Equations (B~) and Reduction of  Linear Parts.  

As we have already seen in Section 4, equations (B~) have the form, by 
virtue of Assumption IV, 

(81) Ip[=2 

Ipl=2 

where the power series in the r ight-hand members are uniformly convergent for 

(20.1) 0 < l x I < ~  , O~ < a r g x <  5~, I!ylI <d~, II~ll <d~. 

Here  C(x, z), D(x, z), Fp(x, z) and @(x, z) are respectively m X m, n X m, 
m X 1 and n X 1 matrices whose components are functions with Property-O).g 
with respect  to ~ in 

and, in particular,  we have 

(20.3) C(O, O) =. O, D(O, O) --  O. 

Moreover, the matr ix C(x, z) has a unique representat ion of the form 

(2o.4) C(x, = c[z; + z + co(x, 

where c[x; z] is an m X m matrix function with Proper ty -v  with respect  to 
x for Hzll <:d~ and C°(x, z)~is an m )4 m matrix whose components have 
Proper ty-e '~  with respect  to z in t20.2). 

To construct  a transformation of the form (T2) appear ing in Theorem 2 
in Section 4, we consider first a transformation of the form 

T t 

where Zl(x, Et is an m X m matrix with off-diagonal form and [~(x, ~) is an 
n X m matrix. 

We  impose upon A(x, ~) and B(x, ~t the conditions that they have Prop- 
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erty-e)/  with respect to ~ in a domain of the form 

(20.5) 0 < Ix[ < ~', O2 < arg x < O2, ll ~ ! < d~', 

where O2 and O~ are the same as those that appeared in 3 ° in Section 4. 
Then we want  to prove first the following proposi t ion:  

PRoPosi t ioN 2.1. - We can determine the matrices A(x, ~) and B(x, ~ o f  
the transformation (T~) in such a way that equations (B~) are transformed 
into equations of  the form 

(20.6) x~+~'= l~(F(x, ~))~ + [n~:, x~ '=  L(~)~ + [~]~. 

Here F(x, ~) is an m-column vector function with a unique representation 
of  the form 

(207~ r (x ,  ~ = f ix;  ~] + x~+~F°(x, ~, 

where f[x; ~] has Property-~ with respect to x for ]]~11 <d~' while F°(x, ~) has 
Property-el~ with respect to ~ in (20.5). 

The symbol [~j]2 represents a uniformly convergent power series of ~ for 

12o.s) O<Ix  I <~;', o~ < a r g x <  ~)~, t!~li <d~, !I~{i <d;' 

which satisfies the condition [~]~ -- 0(![~7 []2) and whose coefficients are vector 
functions having Property-el~ with respect to ~ in (20.5). 

The proof of this proposit ion will be given in Section 21. 
Next we want  to prove the following proposit ion.  

PROPOSlTIO~ 2.2. - Put 

X O' ~O' x ~ O  (20.9) ),Ix; Z] = / I x ;  Z] - ~ .  ~ ( / [ x ;  Z] - -  f[x; 0]t • 

The~ there exists a transformation of  the form 

by which equations (20.6) are changed to equations (B2) appearing in Theorem 
2 in Section 4. Equations (B2), picking up the linear terms only, are written as 

(2o.lo) x~+tY ' = l~O~[x; z])y + [y]~, x z ' =  l~(~)z + [yj~. 

Here R(x, Z} is an m-column vector with elements {R](x, Z)}~ where 
R](x, Z} have Property-6l~ with respect to Z in the domain (20.8) and Ri(O , O) -- O. 
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This proposition will be proved in Section 22. 
Assume that these two propositions have been established. By combining 

T' (Ti') with (2)  we have a transformation from {y, z) to (Y, Z) of the form 

N 

(T2) y = Y + A(x, Z) L = Z + ~B(x, z ) y ,  

where 

(20.11) 
A(x, Z) = (~o~ + .~(x, Z))l =(R(~, Z)) + ~(x, Z), 

B(x, Z ) =  ~(x, Z)(i= + ~=(/¢(x, Z))). 

This completes the proof of Theorem 2 in Section 4. 

§ 21. - Proof  of  Proposi t ion 2.1. 

In order to prove the proposition, first of all we have to took for differ- 
ential equations which determine the matrices .4(x, ~) and /~(x, ~). 

T' Dif f e r en t i a t i ng (2 )  and replacing t x*+~ ', x~'t by (20.6), we have equa. 
tions of the form 

x°+~Y' = I i,o(/+{x, ~)) + ~+~ ~71 : ~_~ 7x + x~ ,~ ~ t~,~ + 

(2i.1) 

Tx + ~ ~  + 

+ BI~(F(x, ~)) + csx~/~ I ~ + [~]~" 

T' In  the other direction, a substitution of { 2) for (y, z) into the r ight-hand 
members of equations {]3~) yields equations of the form 

(2t.2) ~ ~+1~, = (i=(v) + C(x, ~))(1= + .~(x, ~))~ + [~j]2, 
( x~' = ln(~)¢ + i D(x, ¢)(1= + ~(x, ¢)) + xoi~(~)~(x, ~)~ ~ + [~]~. 

By equating the coefficients of the l inear terms 
rig[~t-hand members of the first equations of (21.1) 
equation : 

of v~ appearing in the 
and (21.2), we have the 

k~l ~k 
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Then we see that A(x, V(x)), with V(x)--I~(J.~)C '', satisfies the equation 

(21.3) z~+~.£ ' = (1,,~(v) + C(x, V(x) ) (X+ 1.~) - -  (X + l~)l~(F(x, V(x))). 

Similarly we can verify that B(x, V(x)) satisfies the equation:  

(21.4) x~+~/J ' : --/~l.~(F(x, V(x))) + x~(l,(~) - -  1,)B + D(x, V(x))(1.~ + .4(x, V(x))). 

1% DETERMIZqA~IO~ OF .Tl(x, V). - Since, by hypothesis, .4 is of of f-diagonal 
form, we see that equations (21.3) are equivalent to m 2 equations of the form 

F~(x, V(x)) = 2 C~(x, V(x))Xh~ + v~ + C~(z, Y(x)) 
h+k 

(2t.3') 

and 

(21.3") x~+~A~ -~ v]A]k -k- Y, Cih(x, V(x))Ah~ - -  A]kF~(x, V(x)) + Cik(x, V(x)) 

(21.3'") .4jj. ~ 0. 

(j =~ k ), 

~-k and C/k are the (j, k)-elements of A and C, and F] is the j'~ component 
of F. Insert ing (21.3') for Fk into equations (21.3'), we have equations of the form 

(21.5) 
h@-k 

- -  Aj~Ck~(x, V(x)) - -  Aj~ ~ C~(z, V(x))J~ + Cjk(x, V(x)) (j  # k), 
h~=k 

which determine the components -A]k(x, v) for j ~ k. 
Notice that : 

i) v j - -  v~ ~ 0 for j @ k and C]k(O, 0) = 0 for each (j, k) (See Assumption 
IV and (20.3)). 

ii) For each (j, k), Q~(x, v) has a unique representat ion of the form 

(21.6) C~.~(x, v)-----c]~[x; v] + x~+~C.°(x, v) (See (4.4)), 

where c]~[x; v] has Proper ty -s  with respect to x for !!vii < d~ while C°(x, v) 
has Property-e2g with respect  to v in 

By applying the arguments  in Sections 16, 17, 18, which were used to 
construct  the formal solution (S~) of equations (A), to equations (21.5), we 
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can prove that equat ions  (21.5) have a formal solution of the form 

(21.7) ( ) .~j~ .-. aj~[x; V(z)] + x:+ ~ aAx) + ~ V(x)%, j~(x) . 
lql=~ 

Here a]k[x; v] have Proper ty -v  with respect  to x for tlvt[ < d~, aik(x) and 
aq,]k(x) belong to class C ~®2, O2; ~'~). 

In  order to prove uni form convergence of the formal solut ion (21.7), we 
have to change the dependent  variables from {.'~k} to { ~ } ,  where 

M 

Yjk = x-:-~(&~ - -  aj~[x; V(x)]). 

By using the reasonings in Section 18, which were used to derive equa- 
t ions (A) from (A) by t ransformat ion (T), we see that the equat ions on { Y]kt 
have a form similar  to equat ions (11.1) with 

:¢ ~-- m2 - -  m, ~ - - 0 ,  1~(7)-- E ®(v j - -vk ) l l ,  
j~k 

where the symbol @ denotes the direct  sum. 
By apply ing  Theorem B in Sect ion 11 to the equat ions on { ~ } ,  it is 

concluded that : 

o V(x))I whenever  (x, V(x)) The  equat ions  on {)jk} have a solut ion {Ajk(x , 
belongs to a d o m a i n  of  the form 

(2t.S) 0 < I x l <  ~', o ~ <  argx < O:, Jtvll< d~'. 

A°k(x, V(x)) admi t  u n i f o r m l y  convergent expans ions  of the f o rm  

o o  

ATx ,  v(.)) = aj~(x) + ~ v t x ) % , A x )  
Iqt=~ 

prov ided  that  (x, V(x))is in  (21.81, so that  
erty-6)~ wi th  respect to v in  (21.8). 

Hence  if we put  

A°~(x, v) are func t ions  w i th  ]Prop- 

(21.9) .~dx, v) = ajk[x; v] + x~+lA°k(x, v), 

{ ;lik(x , V(x))t are a solut ion o f  equat ions  (2t.5) a n d  a d m i t  u n i f o r m l y  convergent 
expans ions  t21.7) whenever lhe values  o f  x, V(x) s t ay  in  (21.8). 

It  is clear that ~'41k(x, v) have P r o p e r t y - ~  with respect  to v in (21.8). 

2 °. DETERMINA'~IO:g OF if(X, V). - Subst i tu t ing  (21.9) for 2~jk into equat ions  
(21.3') and replac ing  V(x) by v, we have at once the fol lowing conclus ion:  

Annali di Matematica 3~ 
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The components Fgx, v) of the m-column vector F(x, v) are given by 

(21.10) F~(x, v )= ~ Ogx, v)Jgx, v)+ v~ + C~(x, v) 
h~=k 

and, by virtue of (21.6) and (21.9), have unique representations of the form 

Fgx, v) = f~[x; v] + z~+F°(x, v), f~[0; 0] = v,, 

where fk[x; v] and F°(x, v) are the same functions as those that appeared 
in Proposition 2.1. 

3 °. DE~ERMIN.~+IO~ OF 13(X, V). - We consider l inear different ial  equat ions 
(21.4) in which F(x, V(x)) and .4(x, V(x)) are known functions. 

Observe that l~(F(0, 0))--1,~(v) and det 1,~(v):4: 0. By applying the reason- 
ings in Section 18, we can easily prove that equat ions  (21.4)possess a formal  
solution of the form 

(21.11) [~ ~ B(x) q- ~. V(x)qBq(x), 
[ql~l 

where B(x) and Bq(~) are both n X m matr ix  funct ions belonging to class 
~(O2, ~2; ~'). 

- W e  now introduce an ran-column vector ~ f  with e lements  (/3~, ..., /~,~; 
...; / ~ , . . . ,  ~ .  Then we see that equat ions (21.4) have quite a s imilar  form 
to equat ions  (1i.1) with 

rn 

= ran,  ~ = O, l~,(y) = - ~ ® v / l . .  
j = l  

By applying Theorem B in Section 11 to equat ions (21.4), we have the following 
conclusion : 

Equations (21.4) have a solution 13(x, V(x)) whenever x and V(x) are in 
(21.8). Here JB(x, V(x)) is an n X m matrix admitt ing uniformly convergent 
expansion (21.11) for (x, V(x)) in (21.8), so that B(x, v) has Properly-e'~ wilh 
respect to v in (21.8). 

Thus  Proposi t ion 2.1 has been proved. 

§ 22. - P r o o f  o f  P r o p o s i t i o n  2.2. 

By vir tue of (20.7), F(x, z) has a unique  representa t ion  of the form 

F(x, ~)= fix; z] + xo+lF°(x, z). 

We define )~[x; Z] by the formula {20.9). Then it is clear that ),[x; z] has 
P roper ty -o  with respect to x for I]z]l <d~'. Moreover we have ),[0; 0 ] -  v and 
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3x- ~ )~[0; z] is an m - c o l u m n  constant  vector. 

Subst i tute  (T~'), appear ing  in Proposi t ion 2.2, for (~, ~) into both sides 
of the first equat ion of (20.6) and equate  the coefficients of the l inear  terms 
with respect  to Y in the resul t ing equation. Then we see that, for each index 
~, Rj(x, Z} satisfies a part ial  different ial  equat ion of the form 

(22.1) aRj aRj -b x~ E btkak --  (Fj(x, Z) - -  Xj[x; a])(1 -[- Rj). 
k~l ~ k  

It  follows from (20.9) and (20.7) that ~(x,  v ) -  x-"(~(v,  v)--),j[m; v]) have 
P r o p e r t y - ~  with respect  to v in the domain  (21.8). 

Hence,  for each index ~, Rj(x, V(x)) with V(x)- - I~(~)C"  satisfies the 
l inear  ordinary different ial  equat ion 

xR; = g( . ,  V(xORj + g(x, &O, O) = O. 

It  is easy to prove that equat ion (22.2) possesses a formal  solution of the form 

Iqt=l 

with coefficients belonging to class ~(O2, ~)2; ~'). 
Therefore,  for each index ]', equation (22.2) has a form similar  to equa- 

tions (11.1) with ~ = 0, ~ - - 1 .  By applying Theorem B in Sect ion 11 to 
equat ions  (22.2) we have the fol lowing conclusion:  

Equalions (22.2)have a solution {Rj(x, V(m)}} whenever ~ and V(x) are 
in the domain (21.8). This solution admits uniformly convergent ex~pansions 
(22.3) for (x, V{x))in (21.8), so that R(x, v) is an m-column vector function 
with P r o p e r t y - ~  with respect to v in (21.8). 

This  proves Proposi t ion 2.2 and, consequently,  Theorem 2 has been 
completely proved. 

CHAPTER V 

P r o o f  o f  T h e o r e m  3.  

I. Formal Solution (82). 

§ 23. - Equations (B2}. 

As we have already seen in Theorem 2 in Section 4, equat ions (Ba) have 
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the form 

(82) 
I x~+ ~ y'  = l~(X[x; z]) y--4- ~ y~F~(x, z). 

[~1=2 

~ z ' =  ~!~)z  + ~ Y'G,(x, z) ,  
Ipl=2 

where the power series in the r igh t -hand members  are uniformly convergent for 

(23.1) 0 < l ~ , <  ~ , O~ < argw < O2, II Y[I < d~', [IZli < dh' 

and /~(x, ZI and Gp(x, Z) are respectively m-  and n -co lumn vector functions 
with Property-~3~g with respect to Z in 

(23.2) 0 < ]X] < ~2f, 02 < arg X < 62, {] Z {] < d2'. 

Let O3 < arg x < Oz be the sector that appeared in Theorem 3 in Section 
4. Then we shall prove the following proposition: 

PRoPos~Io~¢ 3 .1 . -  Assume that Assumptions I I I  and V in Section 4 are 
satisfied. The equations (B2) admit a formal transformation of the form 

(T~) Y ~ u +  ~ u~A~(x, v), Z ~ v + x ~  Z upBp(x, v) 
I p l=2 I pI=2 

which transforms formally equation, s (B2) into equations of the form 

(B) x:+~u ' = l~O,[x; vJ)u, xv' = 1,(~)v. 

Here Ap(x, v) and Bp (x, v) are respectively m- and n-column vectors whose 
components are functions having Property-~ with respect to v in a domain 
of the form 

(23.3) 0 < I x  I < ~2, 03 < arg z < ~)3 ~vll< ~:' 2. 

The proof of this proposition will be given in Section 24. 
By virtue of Proposition 3.1, we have a formal general  solution of equa- 

tions (B2). As we have proved in Section 5, equations (B) can be integrated 
by quadratures  and their general  solution t U(x), V(x) l is given by the formula 
(5.1). If we substitute t U(x), V(x)t for In, vt into the formal t ransformation 
(T3), we have a formal solution for (B~) of the form 

(S~) Y ~ U(x) + Z U(z)eAp(x, V(x)), Z ~ V(x) + x~ Z U(x)pBp(x, V(x)). 
I P =2 l el =2 
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§ 24. Proof  of Proposit ion 3.1. - Differentiat ion of the formal solution 
($2) term by term yields 

x ~+~ Y'  ,'; l , ,() ,[z; V(x)]) U(x) -}- 

c , a  

xZ' ,-, I~(~)V -+- Z 
tP ] = 2  

e ~  

Z U(z)~{x~+~A'gx, V(z)) + 
1~1=2 

+ p .  X[x; V(x)]A~(x, V(x))t, 

UP { x~+IB'gx, V) + (p .  X[x; v] + ~x ~)B/x, V) t. 

On the other direction, inserting ($2) for (Y, Z) into the r igh t -hand mem- 
bers of equations (B2) and rearranging formally the result ing expressions in 
the form of a single power series of U(x), we have after  a simple calculat ion 
equations of the form 

x~+~Y ' ... 1,~(X[z; ~'(x)])U(x) + 

+ Z Y(x)~il=(XD; V(z)])a/x, v ( z ) ) T ~ g x ,  V(x))}, 
IP [=2 

¢ v  

xZ' ... 1 ~(~)V --[- Z Up {x q.(l~)Bp(x, V) "Jr" Sp(x, V)}. 
tp I=2 

Here  ~p(x, v) is a l inear  form of known m-column vector functions which 
have Property-c).g with respect to v in a domain of the form 

with polynomial coefficients of Ag(x, v) and B/(x ,  v) for IP'] < iPl. ~p(~', v) 
has the property similar to ~ g x ,  v). 

From the above power series representat ions for {x~+IY ', xZ'!  of two 
kinds, we can easily derive ordinary differential  equations which determine 
{ Agz ,  V(x)), Bgx,  V(z)) ~ : 

(24.1.p) x:+lA'~ = (1,~(k[x; V(x)]) - - p .  ).[x; V(x)]l,~)Ap 'k ~p(x, V(x)), 

(24.2.p) x~+lB'p --  - - p  • X[x; V(x)]Bp -C x~(1,~(~) --  ~l~)Bp -[- Sp(x, V(x)). 

We determine inductively Ap(x, v) and Bp(~c, v) in the following way. 
Assume that Ap(x, v) and Bp(x, v) have been determined for 2 < tpI < N in 
such a way that they have Property-e'2g with respect to v in a domain of the 
form (23.3) and A•(x, V(x)) and Bp(x, V(x)) are solutions of the equations 
(2~A.p) and (24.2.p) respectively for (x, V(x)) in (23.3). Then the vectors ~p(x, v) 
and ~p(x, v) for IPl = N are functions with P r o p e r t y - ~  with respect to v 
in (23.3). 
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Since det i l,,()v[0; 0]) ~ p .  ),[0; 0]l., I q= 0 and p .  ),[0; 0] :# 0 respectively 
by Assumptions V and III,  we can prove by applying Theorem A in Section 6 
that : 

Equations (24.t.p) and (24.2@) for l p l -  N have formal solutions of  the 
forgn 

(24.3.p) A~ ~ Agx) + Z 
Iql=l 

and 

(24.4.p) B e ~ Bp(x) + Z 
Iql=l 

V(x)~Agx) 

V(x),Bgx). 

Here Ap(~), Apq(x) are m-~olumn vectors and B/x) ,  Bpq(x) are n-column 
vectors which are uniquely determined as solutions of  linear ordinary differ. 
ential equations belonging to class CtOa, O3; ~'). 

Hence equations (24.1@) and (24_2.p) for each p such that ]Pl - - N  have 
a form similar  to equations (11.1) with 

- -  m, ~ = O, lg'r) = Z e (vj - - p .  v)l~ 
j = l  

and 
= n ,  ~ = O, l~('r') = - -  ( P .  v ) l  

respectively. By applying Theorem B in Section 11, we have the following 
conclusion : 

The m-column vectors Ap(x, v) and the n-column vectors Bp(x, v) are uni- 
quely defermined in such a way that Ap(x, V(x)) and Bp(x, V(x)) respectively 
are solutions of equations (24.Lp) and (24.2@) and, moreo~:er, admit uniformly 
convergent expansions of  the forms (24.3.p) and (24.4@) whenever the values 
of  (x, V~x)) belong to (23,3). 

Obviously A / x ,  v) and Be(x , v) have P r o p e r t y - ~  with respect to v in 
the domain (23.3). 

I I .  Invest igat ion of  the  Growth of  a General Solution of  Equations (B). 

§ 25. Fundamenta l  Lemma. - We noticed that Lemmas A and B (in 
Sections 8 and 12) played a fundamental  role in the proof of Theorems A 
and 13 (in Sections 6 and 11). For the proof of Theorem 3 also we need a 
corresponding lemma which we are going to establish. 

By virtue of Assumption I I I  in Section 4 all the real parts of the mo- 
nomia~s A ] ( x ) = -  vj/~x ~ axe negative valued for x on the positive real axis. 
If we denote by 0)+ and ()}_ singular directions of Aj(x) which are immedia- 
tely above and below the positive real axis respectively, then t~j+ is an ascend- 
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ing singular  direction while 0j_ is a descending singular direction. As was 
explained in Section 7, we can choose arg vj so that 

, ( ; )  (25.1) 0}_--~ arg vJ--2 , 0~+--~ arg v]-{- . 

Put  
Ta m 

(25.2) OL = max {0~=1, 0~_= rain {Oj+ 1. 
] = 1  j=1 

Then we can assume without loss of generali ty that the angles 0)_, 
satisfy 

(25.3) 0 < 0 ' _  ' 7: = - - 0 ; _ <  5~, 0 < 0 ) +  0~_<~ 

o;+ 

and the angles 0~, Oz appearing in Theorem 3 satisfy 

( 2 5 . 4 )  0'-- - -  - ¢: + 5~  < = 0 3  < O3 = < 0~- + - = - -  5~  
- (~ 

for a preassigned sufficiently small positive constan~ e. 
We define L[~) by 

(25.5) L(¢~) = 

~ ( ~  - -  0 2  "4- 3~) ,  O:F - -  2~ _--< ~ = 0 3 ,  

02 + 2s < < = ~ =  O~---2s, 

z(:p - -  0" -- 3s) + ¢:, 03 < ~ < 0'__ + 2s .  

By virtue of (25.4) we see that L(@ satisfies the inequali ty 

(25.6) as =< L(@ =< u -- zs for O 3 < < ~)3 

Let  

(25.7) 

(25.8) 

co(y) -- exp ; cot L(z)dz, 
0 o  

Xk(~)=expl(Rertk)fcotL(~)d~+(Im~.k~(Oo--~) I, 
60 
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where  00 is a f ixed  angle  sa t i s fy ing  ®3 ~ 0o ~ O3. Since  we have (25.6), the 
func t ions  o)(~) and Xk('~) (k := l, 2, ..., n) are  strictly positive valued, bounded 
and  continuous for ®3 ~ ~ ~ 03 .  

Then  our  lemma-  which  we are  going to es tabl i sh  can  be s ta ted  as fol lows : 

LE~aMA 3.1. - Let { U(x), V(x) t be a general solution of equations (B) given 
by the formula (5.1). Let x~, u ~, v ~ be arbitrary values belonging l® a domain 
of the form 

i 0 < Ix! < ~vto(arg xi, Iv] < 8N[x(arg x)], 

(25.9) 
f 03  < arg x < ~)a, l[ull < ~N, 

where X(~) is an n-column ceclor with elements {Xk(¢?)l. Choose the integration 
constants C' and C" being in~'olced in i U(x), V x )  I so that U(x~) = u 1, V(x~) --- v 1. 

Then there exists a c~rce r.~, ~vhich joins  the point  x~ with the origin, 
such that 

i) The curve ~ is entirely contained in the domain 

(25.10) 0 <  Ix[ < ~Nco(arg x). ®3 < arg x <  Oz 

except for the origin. 

ii) As x mo~es on the curve I ~ ,  we have the following three inequalities: 

(25.[1) [V(x)] < ~N[X(arg x)], O3 < arg x < O3, 

(25.12) I1 u(zl l l  --> il ~ 1]' s in  o~ 
2 Ix l -~ -x l t  u(~)ll '  

(25.13)  (ll )> ds UCx) e-'~A/~ NIl v/I' s in  o~ 
4 [ x I -~ -~  H U(x)Ii N e-R%i (~) 

(~ll~It' s in  o~ >__ aIl~ll) 

with  l[v[I~ =- min Ivjl. s is the arc length of the curve t'~ measured from the 
origin l® the variable point x. 

§ 26. P r o o f  o f  Lemma 3.1. - To prove  our  lemma,  we denote  by  (p, ~) 
the po la r  coord ina te  of the var iab le  poin t  x on Fxl. Then  the curve  P~ 1 is 
def ined as fol lows:  

If  ®3 < arg xl < 0" -{- 2s or 0~- -- 2~ < arg xt < O3, l?~ consis ts  of a cur.  
v i l i nea r -pa r t  r ' :  

q~ 
f a  

: Ix~i exp  t cot L(~)dz (26.t) 

~ I ' g  x 1 
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for a r g x ~ = < ~ - - < 0 ' _ + 2 s  or 0:V--2s=<'~, =< arg x~ 
and of a rect i l inear  part  ]7': 

0==_ ~--<lx~[ exp ; cot L(z)dz, 
a r g  x 1 

If 0'__-]-2~ _-__ arg x~ ~ 0 ~ - - 2 ~ ,  F,~ consists of a rect i l inear  part  F" only: 

0<~= =<Ix1[, ~ - - a r g  xl .  

1 °. - B y  the definit ion of the curve 1~,  Assertion i) of our lemma is 
almost evident. An application of the reasonings which were used to prove 
the inequali ty (12.3) in Lemma B in Section 12 proves easily the inequali ty 
(25.11). 

2 °. - We want to prove the inequali ty (25.12). Since U(x) is a solution 
of the equation 

x~+~u ' = 1,~(~[x; V(x)])u, 2~[0; 0] = v, 

a simple calculat ion shows that 

(26.2) [[ U(x)[[ - ld l l  U(x)tl-- I Uj(x) l -Id~]~/!x~)l (for some index j) 
ds • ds 

- -  Re(x-~-O,j[x;  V(X)]dd---~) 

- B (s-lv x/x; 
- -  ~ ds  v i ]" 

The index j depends natural ly  on the choice of the point x, i . e . s .  
Since IlV(x)l] is uniformly bounded for xeFxl  no matter  how we choose 

the point xl ,  we can assume without loss of generali ty that:  
For  each index j, as x moves on F~,, we have 

1 1 I (26.3) ~[vi[ < [;~j[x; V(x)]] arg).j[x; V(x)] < ~ 

On the curvil inear  part  F,  p is a functions of ~ given by (26.1). An easy 
oomputation shows that we have for x e r '  

df~ 
(26 .4)  d s  - -  dtL(~)++) o r  -4- e ~(L(~)+~} 

Annali di Maternatica 32 
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accord ing  as ~ sat isf ies  arg x~ --< ~ < 0'__--}-2z or 0~_--2~=< "z. =< arg x~. 
H e n c e  an inequa l i ty  of the form 

(26.5) llU(x)il-~d]lU(x)i]>ds = 2]xl i_:_X[vj [ sin zz =>~]x [Iv[l' sin zs 

would  fol low from (26.2) and t26.3) if we could  p rove  that  L(¢~) sa t i s f ies  

(26.6) cos/[L(@ - -  v¢~ + arg vj + arg )~jlx ; v l\:(x)~| < _ sin as or > sin zs 
\ , vj / 

accord ing  as ~ sat isf ies  

arg xl_-- < ~ <= OL-{-2~ or O ~ - - 2 s _ - -  < ~_--< arg x l .  

Hence ,  in order  to have inequa l i t y  (25.12) on P', it suff ic ies  that  (26.6) 
holds in the des i red  interval .  W e  shall  p rove  (26.6). The def in i t ions  of L(?) 
and ~+ imply  that  

7~ 

for 0~_-- 2s __< ¢p --< O3. This  re la t ion  yie lds  by  (25.3) 

(26.7) [arg vj + L ( ~ ) - -  z~] < -~--  2~s for 0~_-- 2s < ~ < Os. 

S ince  la rg  kj[x; V(x~]-- arg vii _-< as for  x ~ P ' ,  we have  (26.6) f rom (26.7) 
for  0 ~ - -  2z _-_ ~ _--< arg x t .  

S imi la r ly  we can p rove  that  

(26.8) I arg vj q- L(~) - -  z~ - -  = 1 = < z " - = - -  2 ~  for 0 3 : < ~O = < O-- -}- 2 5 ,  

f rom which  inequa l i ty  (26.6) fol lows for arg zl  _-< ~ _--< 0" n u 2e s ince we have 
(26.3). T h u s  we have  inequa l i ty  (25.12) for  x e F'. 

On the rec t i l inear  pa r t  F ' ,  we have  l x t -  s and arg x - - a r g  x l .  H e n c e  
d x / d s - -  exp (i arg xl) and 0" -{-- 2e --< arg xl _ - - 0 ~ - -  2e, which,  by v i r tue  of 
(25. l), y ie lds  

- -  ~ -I- ~(0j+ - -  0~- -I- 2~) -- arg vj - -  ~ arg x, _--< 2 q- - -  - -  2~). 

Then it follows from the definitions of 0'_ and 0~- that 

]arg v j - - a  arg xl] < = 2 ~  _ _ _  o 

---- 2 
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Hence,  by using (26.3), we can derive from (26.2) inequal i ty  (25.12) for 
x ~ r " .  

3 °. - To prove the inequal i ty  (25.13), we take 57 so large that  

4t]vi] <= Nllvlr sin o~. 

Then,  by using the fact that  the inequal i t ies  (25.12) and t dx /ds l - -  1 are 
satisfied for x e F ~ ,  we have by an e lementary  calculat ion 

d (tiU(x)ll~ve-R°Ag~))=(N[IU(x)II-~dilds z~+~ds],~ ds 

= 2 I v+ I N z ) ~  e -~°A+(~) I ~ t -~-~ 

> _Nlivit' sin ¢:stl ]-~-i 
- -  4 V ( x )  [I N e-R~x/(:)  I x . 

This completes  the proof of L e m m a  3.1. 

I I l .  Out l ine  of  P roo f  of  0onvergence of  Formal  Solut ion ($2). 

§ 27. Problem to Prove Theorem 3. - By vir tue of Proposi t ion 3.1 
Sect ion 23 equat ions (B2) have a formal solut ion of the form 

in 

e o  

($2) Y ~  U(x) + X U(xFA/x, V(x)), Z ~ V(x) + x ~ X U(x)FBgx, V(x)), 
Ip[=2 Ipl=2 

where A~(x, v) and B/x ,  v) have P r o p e r t y - ~ f  with respect  to v in 

(27.1) o < txt < ~ ,  o ~ <  arg x <  0~ ,  llvI[< ~'~. 

To prove uni form convergence of ($2), put  

(27.2) 

i P~(x, u, v ) - - u +  Z uPA/x, v), 
2<lp I<N 

i QN(x,u, v ) = v + x  ~ X upB/x,  v). 
2<IFI<N 

We make  the change of variables 

(27.3) Y = P:v(x, U(x), V(x)) + ~, Z = Q~-(x, U(x), v(x)) + 
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to equations (B2). Since we have an identi ty of the form 

d x~+~Pgx, U(x), V~(x))= x~+ ~ P~(x, UIx), V(x)) 

Jr- ~-U~ P.~(x, U(x), V(x)). l=(),[x; V(x)])U(x) 

x ~ - -  P~v(x, U(~), V(x)). lgl~)V(x) + ~ v(x) 

d 
and since {U(x), V(x)} is a general  solution, we see that x ~+~ --~xPN(X, U(x), 

F(x)) is determined as a function of ix, U(x), V(x)) in a unique way. Similarly 

we can prove that x d dx Qx(x, U(x), V(x)) is uniquely determined as a function 

of (x, U(x), V(x)). Hence, if we write the equations satisfied by {:q, ~} as 

(27.4) 
I x :+~ ' --- I,~(v)~ + Fix, U(x), ~V(x); ~, ~), 

x~ ' -"  G(x, U(x), Vtx); ~, ~), 

F(x, u, v; "~, "~) and G(x, u, ~; ~, ~) are respectively m - a n d  n-co lumn vector 
functions holomorphic and bounded in (x, u, v; ~, ~) for a domain of the form 

(27.5)  
, II ~ l < d~,  tl Ell < d~ 

for suitably chosen positive constants ~v, ~v and d~v. 
Since equations (27.4) possess a formal solution of the form 

o o  ~ o  

(27.6) ~ ~ Z U(x)pAp(x, V(x)), ~ " x: Z U(x)PB~(x, V(x)), 
[ p I-~N IP I ~ N  

an easy computation shows that F and G satisfy both an inequali ty of the 
form 

(27.7) [IF(x, u, v; ~, ~)1[, {t G(x, u, v; ~, C)U ~ A(I!~[t+I]~[]) + BNBull N 

for (x, u, v; ~/, ~) in (27.5). Moreover, F and G satisfy LIPSCKITZ'S condition 
with respect  to (~, ~ )wi th  the same LIPSOKITz's constant A. Here  A is a 
positive constant independent  of N while B~ may depend on N. 
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We make a fur ther  t ransformation of the form 

(27.8) - -  I.~(eA(~))P, ~ ---- Q, 

so that equations (27.4) are reduced to 

(27.9) 
i P'--x-~-~l~(e-A(z))F(x, U(x), V(x); 1,~(eA(*))P, Q), 

] O' "- x-lO(x, U(x), V(x); 1.~(eA(~I)P, O). 

We shall solve the following problem: 

P R O B L E M .  - Let N >- 16A//]vl]' sin ¢~ and N ~  411vll/l[vll' sin o~. Then 
equations (27.9) have a unique solution {~(x,  U(x), V(x)), ~N(x, U(x), V(x))} 
such that 

(27.10)N [P] : 0( t] U(x) IVv)[e-A(:)], II Q~ --  o(II U(x)llN) , 

wheneeer the values of x, U(x), V(x) belong to a domain of the form 

(27.11)N 
i tr a 0 < txl < {Nm( rg x), 03 < arg x < 03, 

I Ilu[I < < x)]. 

Here ?~v(x, u, v) and ~ ( x ,  u, v) are respectively m-  and n-column vectors 
whose components are holomorphio and bounded functions of (x, u, v) for (27.11)N. 

If we assume that Problem has been solved, an application of the argu- 
ments in 2 ° in Section 13 proves uniform convergence of the formal solution 
($2) when x, U(x), Vkx) belong to a domain of the form 

0 < I x ]  <~s," O 3 < a r g  x < ~ ) 3 ,  Ilul]<8"s, Ilvl/ <8'~ 

and, consequently,  we have Theorem 3 in Section 4. 
Therefore,  in order to prove Theorem 3, it is sufficient to solve Problem. 

§ 28. Solution of  Problem. - To solve Problems let ~ ~(x,  u, v), 
~(x, u, v) 1 be the family of m-co lumn vectors ~(x, u, v) and n-co lumn vectors 
~(x, u, v) which are holomorphic and bounded functions of (x, u, v) for 
(27.11)~v and satisfy there inequalit ies of the form 

[~(x, u, v)] --< KN(luIV[e-R~a(~)], 
(28.1) 

ll P(x, u, KAuV, 

KN being a certain positive constant. 
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Let (x~, u ~, v ~) be values arbi trari ly chosen from the domain (27.11)N 
and determine the integration constants C' and C" being involved in {U(x), 
V(x)! so that U(xO -- u x and V ( X l )  "--" V 1. 

We define the vector functions (I)(x, u, v) and ~(x, u, v) by 

(28.2) 

where 

O(xl, u 1, v 1) "- f ~(x, U(x), V(x))dx, 
0 

x 1 

W(xl, U 1, v l) - - / ' ~ ( x ,  U(x), V(x))dx, 
0 

~(x, u, v)~--x-:-ll,,(e-A(~))F(x, u, v; l~(eA(~))~(x, u, v), ~(x, u, v)), 

~(x, u, v ) ~  x-IG(x, u, v; 1,,(e A(~)) ~?(x, u, v), ,~(x, u, v)). 

The integration must be carried out along the curve P~ which was already 
defined in Section 26. 

By virtue of Lemma 3.1 in Section 25, [I U(x)l] is a monotone increasing 
function of s as x moves on the curve P~. By combining this fact with the 
inequali ty 125.11), we see that the values of x, U(x ~, V(x) belong to the domain 
(27.11)~ as x is on F~ and, consequently, the integrands of integrals (28.2) 
are holomorphic functions of x for x e l ~  except for x - - 0 .  0 a  the other 
hand, we see by (27.7) and (28.1) that the integrands of integrals (28.2) satisfy 

(28.3) 
i [X(x, UCx), V(x))] -< (2AK~ + B~) Ix [-~-~tI U(x)tl~[e-R°*(~)], 

! jig(x, U(x), <= + B  )ixi- II u(x)V. 

Since IIU(x)I] tends to 0 exponential ly as x approaches the origin along 
P~l, the integrals (28.2) are convergent. Hence the mapping ~ :  

t¢;(x, u, v), ~(x, u, v)}--> tO(x, u, v), ~(x, u, v)t 

is well defined. 
Since {0, 0 t e ~ ,  ~ is non-empty.  Moreover it is clear that ~ is a closed, 

convex and normal family. Hence, in order to solve Problem by using a 
f ixed-point  theorem (see [2]), we must prove first the following assertions: 

1 ° - ¢g maps ~ into itself, namely we have ~ i ~I C ~. 
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2 °. - ~7 is a continuous mapping with respect to the topology of uniform 
convergence on compact subsets. 

If we assume that these two assertions have been proved, then there 
exists a member  of f that corresponds to a f ixed-point  of ~ .  We denote 
this member  by l,~v(x, u, v), ~N(x, u, v)}. Then we must prove the following 
assertions : 

3 °. - I,~s(x, U(x), V(x)), ~ ( x ,  U(x), V(x))} is a solution of equations (27.9). 

4 °. - A solution of equations i27.9) satisfying condition (27.10)~v is unique. 

These four assertions can be proved by applying almost exactly the same 
arguments  as in Section 14 which were used to solve Problem B in Section 11. 

For example the proof of the inequalit ies 

(28.4) 

I [O(xl, u ~, vl)] < K.~llu ~ ~ e -R°A(~) = I/[  ], 

u v 1)ii -<- g d u  1 V.  

is carr ied out as follows. 
By virtue of (28.3), it will be sufficient,  to have (28.4), to prove that:  

(28.5) 

st 

(2AKN -t- B~,) f i x  i -°-x  It U (x)il ~v e -R~A~(~) ds <= KNIt u ~ II ~ e -R~Aj(~) , 
0 

(28.6) 

Sl 

(2AKN + Bu) f i x  [ -1H U(x)ll N as <= KN]lul[t N, 
O 

where sl is the are length of the curve F~ 1. 
By using~ inequal i ty  (25.13), we see at once that the expression of the 

le f t -hand member  of (28.5) does not exceed 

(28.7) 

if 411vl] ~ N[]vIl' 
enough to have 

(28.8) 

4(2AK~v + BN) [1 u ~1] N e -R~Aj(~t) 
2~ [I v l]' sin ~ 

sin ~ .  Since I6A <-NI]vI]' sin ae, we can take K~v large 

4BN(N[[v[I' sin a~--8A)-1  ~ KN. 

Then the expression (28.7) is bounded by the expression of the r ight-  
hand member  of (28.5), which proves inequali ty (28.5) and, consequently,  we 
have the first inequali ty of (28.4). 
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Similarly, by using (25.12), we see that the expression of the left-hand 
member of (28.6) does not exceed 

(28.9) 2(2AK~v + ~_:)tlu~iI~v 

By virtue of (28.8) the expression (28.9) is obviously bounded by KNtlu~tt ~, 
which proves (28.6) and we have the second inequality of (28.4). 
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