
Unique,ross and Goursat problems. 

JA~ PE~SSO~ (*) 

Summary. - A uniqueness theorem by W. Walter for a s2cond order Gouvsat problem in 
to independent variables is generalized. In  the resulting theorem there are no restrictions 
on the order or on the number of indipendent variables. 

1 .  - I n t r o d u c t i o n .  

Let  f (x ,  z) be a rea l -va lued continuous function in V X  R ,  V being an 
interval  in R start ing in zero. Uniqueness  theorems for the ordinary differen- 
tial equation 

(1.1) u~ -~ f ix ,  u), u(O) --~ O. 

has been brought to a very high degree of perfection through OKAMURA'S uni- 
queness theorem [4]. See the proof in YOS~IZAWA [10], p. 3-10. Several  suffi- 
cient conditions have been given by various authors. Among these we like 
to mention NAGUMO [3], WALTER [9], MEYER [2]. For  fur ther  references in 
this field see [2]. (~-EORGE [1] has pointed out that all are included in Oka- 
mura ' s  theorem. 0KAMURA proved that (1.1) has at most one continuously 
differentiable solution if and only if certain 1Aapunov functions connected 
with f exist. 

The set W i n  R 2 is defined by 

W - ~ { ( x ,  y}; 0<_ x < _ a ,  O<__y<_b}.  

The function [(x, y,  z l ,  z2, z3) is rea l -va lued and continuous in W X R  3. 
The question of uniqueness  for the Goursat  problem 

(1.2} u~y----f(x,  y ,  u,  u~, uy), u(O, y ) ~  u(x ,  O) -~  O. 

has been treated by WALTER [9]. The result ing theorems for tl.2) and (1.1} 
are of the same nature.  

The basic theorems for (i.I) and (1.2) say that existance and uniqueness  
are garanteed if f is Lipschitz cont inuous in the z-variables.  A theorem of 
this kind for a more general  equation than (1.2} is theorem 2 in [6]. The 
problem treated in [6] has the same main feature as (1.2). A single derivative 

(*) Entrata ia Reclazione il 17 ottobre 1968. 
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stands to the left and the non-l inear  right member contains derivatives of 
lower  order. See (3.1) and (3.3) in section 3 of ~his paper. A local version of 
theorem 2 in [6] is theorem 4 in [5]. Existence theorems for the problem (3.1) 
and (3.3) are proved in [6] and (7). A generalization to the case when data 
are given on hypersurfaces  instead of on hyperplanes can be found in [8]. The 
common point in the theorems in [5]-[8] mentioned above is that the corre- 
sponding f is restr icted by Lipschitz continuity in some or all z-variables.  

There seems to be a closer connection between the uniqueness  theorems 
for (1 .1)and (1.2} than between the existence theorems for (1.1) and (1.2}. 
Therefore one might ask if Okamura ' s  theorem has some counterpar t  for (1.2) 
or more general equations. We  can give no answer  to this question. Instead 
we restr ict  ourselves to a generalization of the uniqueness  theorem in [9] for 
(1.2). 

The necessary notation and some definitions are given in section 2. Sec- 
tion 3 contains the theorem and its proof. The theorem is proved by induc- 
tion over the number  of independent  variables that are involved. It is a ge- 
neralization of the technique used in [9]. In  section 4 the theorem is shown 
to include the Lipschitz continui ty case and also a generalization of the 
Nagumo condition for (1.1). Therefore it is stronger than the uniqueness  part  
of theorem 2 in [6]. 

2. - Pre l iminar ies .  

Let  x = ( x l ,  ..., x . ) e R "  and z = ( z l ,  ..., z~ . )~R ~v. By :¢----(:q, ..., ~.) we 
denote a mul t i - index with non-negat ive  integers as components.  If D---- 
-~-(a/ax~, ..., a/ax.) then we write D=--~ (a/~x~)~,... (~/~x.)~.. We also write 

a~ .~¢aa j<_~ j ,  l < _ j ~ n ,  

and [~l----oq + . . . + a , .  

DEFINI'~ION. - Let 

K - - - - { x i O ~ x j ~ a j ,  l ~ j ~ _ n } .  

The function u(x) is real-valued and defined in K aud ~ is a multi-in- 
dex. I f  all derivatiees D~u, ~ <_ ~, exist and are continuous then we say that 
u belongs to the functian class C(~, K). Let 

K o = { x l O < x j < - - . a j ,  l < j ~ n } .  

Then C([~, Ko) has an obvious sense. 
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DEFInITIOn. - Let u e C(~, K). We define u = O(x~) by 

u = O(xS) ¢::> Dku(x) = O, x~ -~- O, 0 <_ k < ~j, 1 <_ j <_ n. 

W e  now make a somewhat  lengthy definition of the function classes 
H(n, ~, Ko). The definition will explain itself when applied to the proof in 
section 3. 

DEyt~I~IO~. - The funct ion  h(x, z~, .... z.~-) is def ined in Ko X R "~. I t  is 
monotonically  increasing in  each z~, 1 <_ k <~ ~ ,  and  h(x, O, ..., O ) =  O, xeKo 
Let  fur ther  ~, ~ ,  ..., ov ~, be mul t i - ind ices  such that 

~ <_ ~, o, ~ 4= ~, 1 <_ k ~ ,  ~ .  

We define ~q~ = ~ - -  o~ ~' 1 <_ k <_ N. 
In  the case n = 1, we say that h belongs to H(1, ~, Ko) i f / b r  every ~ > 0 

there exist  a number 8 ~ 0 and a funct ion v ~ C(~, K} sat i s fy ing  the fol lowing 
two conditions, 

(2.1) D ~ v ~ h ( x ,  D~v, ..., D~%), x ~ K o .  

8x;~k(~!) -~ < D~kv< ~, x, e K o ,  l ~ k < _ N .  

Let  n = n' > 1. We assume that we have defined H(m, ~, K~) for for all m < n', 
and  all  ~ ~ R "~, and  all K~ c R ~. I t  is now possible to defi~e Htn, ~, Ko) uni- 
quely in the fol lowing way.  We define 

~J= t ~ ,  , ~_~ , ~j+~ , ~o) ,  ~ j k=  ( ~  , ~_~ , ~ k < j < • " , . . . . . .  , j - l '  ""' ~,~, 1 _  __n. 

We also define 

/ ~ =  I (~t, ..., xj_~, xj+~, ..., x~)lo < ~ , < a , ,  1 <_ t<_.n, t ~ i l ,  

zk(jl = O, a~j < ~j, and  zk(j} ---- zk, % ~], 1 <_ j < n, 1 <_.. k < N. 
K]  is the closure o f  KJ o in  R ~-~ . 
We say that h(x, y~ , ..., z~v) belongs to H(n, 2, Ko) i f  to every ~ > 0 there exist  
a ~ .> 0 and a funct ion v e 0(2 , K) such that 12.1), and (2.2) are true, and  i f  

lim h(x, zdj}, ..., ZM(j))= hj e H ( n -  1, ~], K]o}, 
xj*..~ o 

l < _ j < . n .  

Here h i is a function of  (xl, ... xj_l, xj+~, ..., x~)= ~c(J)~ t~ n-~, and those z~ij) 
with z d j ) - - z k .  The exact meaning of  h j e H ( n - -  l, ~J, Kio) is that in (2.1) we 
have a vJ ~ U(~J, Ki). 
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D~Jv j stands to the left and hj to the right. In  hy Da]~v ~ is inserted into the 
place where z~(j)-----z~. The condition (2.2) is adjusted in an analogous way. In  
both (2.1), and (2.2) we have ~c(])~KY o. 

3. A u n i q u e n e s s  t h e o r e m  for  Goursa t  p rob lems .  

W e  s tar t  by f o r m u l a t i n g  the  t heo rem 

T~EOREM. - The multi- indices ~, ~ ,  ..., ~N, are such that 

{3.1} ~ l ~  ak, ~ k ,  1 < k  <2~.  

The real-valued function f(x, z) is continuous in K X  R ~v. There exists a 
h E H(n, ~, Ko) such that 

(3.2) I f ( x ,  z) - -  [ {x ,  -z)I <_ h(~,  l z~ - -  ~ 1, ..., I zN - -  zN I), 
(x, z), (x,, z) e Ko X R N . 

I t  follows then that there exists at most one solution u e  C{~, K) of 

{3.3) D~u = f(x, D~u, ..., D~u), u ---~ 0{x~). 

F o r  the proof  of the  t h e o r e m  we need  the  fo l lowing  l e m m a .  

L]~M~A. - The real-valued function F(x, z) is defined in  K X R ~v. F is 
monotonically increasing in the N z-variables. The mult i- indices ~, ~ ,  ..., a ~v, 
satisfy {3.1). The two functions d and v belong to C(~, l i  b They satisfy the 
following two conditions. 

(3.4) 

(3.5) 

I D~d [ <__ F(x, [ D~Id [, ..., [ DdVd l), x e K. 

We define ~k by 

x k. J Xj, 

D~v ~ F(~c, Dalv, ..., D~NV), X E K. 

(3.6) 

i f  

(3.7) 

then it follows that 

(3.8) ID~kd(x) l <D~v(x) ,  

if ak-~-~i, and  a~k~---~O if a k < ~j, 
1 J J 

x ~ K ,  l <_j <_n. 

x e  K, 1 <.~.k ~ N, 

x e K ,  l ~ k < _ N .  
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I:)ROOF O~ THE L:EMMA. - It  follows from (3.7) and the continuity of the 
functions that there exists a set 

K ' = { x l O < _ x j < a j < _ a i ,  l < , j < _ n } ¢ K ,  

such that 

(3.9) 

let 

[ D~kd(x) I < D~kv(x), x e K' ,  1 <_ k ~ IV. 

K"-.~ t xtO<_ xj<_a~ <_.aj, 

We shall prove that 

(3.10) I D~kd(x,)] < D~%(x), x e K " ,  l <_ k '<  M. 

If  K"=4= K, then it follows from the continuity that we may choose every 
a~, a~ < ai, somewhat bigger. If  we choose K' maximal  in the sense that no 
a~ can be chosen bigger, then we get a contradict ion if K":#= K. It  then 
follows that (3.8) is true. Now to the proof of (3.10). 

It  follows from (3.4), (3.5), (3.9t, the continuity of D~d and D~v, and the 
monotony o[ F in the z-variables that 

[ Did(x) ] < D~v(w), x~ E K".  

We let 

Thus we know that 

(3.7}' D~kw(x k) > O, 

or w = v q - d .  

x ~ K " ,  l<k<N,_ _ 

and that 

(3.11) D~w(~,) ~ O, x, e K".  

We want to prove that 

(3.10)' D~kw(x) ~ O, x ~ K",  1 <_ k <_ E.  

We start by a simple, example. A[terwards we prove the general  case. 
Let  a l ~  ( ~ 1 -  1, ~2, ..., ~n). It  follows from (3.11) that 

off 1 

0 <_ f D~w(t, 
0 

x:,  ..., oen)dt --~ D~lw(x) -- D~Iw(O, x2, ..., xo) = D~w(x) - -  D~'w(x/). 

AnnaIi di Matematica 23 
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Since (3.7}' says that D:~w(xl} > O, we conclude that D:lw(x) > 0, x e K " .  
~ow to the general case. The indices of c¢ k are not suited for the proof 

of the lemma so we define new ones by 

Here  x ~---xi,  k i = 0 ,  and x ~ . ~ 0 ,  k i l O ,  1 ~ j ~ . n .  For every j ,  k ] > O ,  let ] ] 

o~k(]) = (~1 - -  ~ 1 ,  . . . ,  ~j--1 - -  ~ j - - 1 ,  ~j - -  ~ j  + 1 ,  ~j-~-i - -  k j + l ,  . . . ,  ~n - -  ka ) .  

We assume that for every admissible j,  say j = 1, ..., n'_< n, 

(3.12) D~k(J)w(x) ~ O, x e K " ,  1 ~ ] ~ n ' .  

It follows from (3.12~ and t3.7)' that for x e K "  

Xl 

0 ~-- ; D~k(~)w(l, 0 . . . ,  0, ~ n ' + l  ~ x n ) d t  
.J 

o 

= D~V(Xl ,  O, ..., O, ~ , + ~ , . . . ,  x ~ ) -  D ~ v ( x  ~) < I)o.~W(Xl, O, ..., O, x~,+~,. . . ,  x~). 

From this and from (3.12) it then follows that 

l D'2(2)w(x~' l, O, ..., O, x,,.+~, ..., x~ldt ~--- 0 
/ 

0 

D~kw{x~, x2, O, ..., O, x°,+~, ..., x~,) - -  D~w(x~,  O, ..., O, x~,+~, ..., x~) < 

< D~kw(x~, x2, O, ..., O, x~,+~, .. . ,  x~), x e  K" .  

We repeat  the procedure.  At last we get 

D~kw(x) > O, x s K " .  

If ]~kl-----I~]--1, then we have ak(i)= ~ for the unique admissible j .  It fol- 
lows from (3.11) that (3.12} is true in this case. By that we have proved that 

we can apply the procedure above when l~1  ~-~ ] ~ / - - 1 .  Since D~(])w(x) > 0 
implies that D~k(i)w(x)~O we can now apply the procedure above to those 
:¢~ with l~kl-----]~l--2.  It is now obvious that (3.10) is true. The iemma is 
proved. 

PROOF O~ TttE THEOREM. - We shall prove the theorem by induction 
over the number  of variables n. We start by assuming that n ~ t. W e  choose 
a v satisfying {2.1) and (2 2). Let u and u be two solutions of (3.3}, and let 
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d ~ u -  u. Then  (3.2) says tha t  

(3.13) I D~d(x) l <- h(x, I D ~ d l ,  . . ,  [ D ~ d  I), x e  Ko. 

Since D~k(u--u)(O)--~O, l ~ k ~ N ,  it follows from (3.3) that  D~d(O)= 

= D (u - -  VO(O) = o .  

Le t  a be the n u m b e r  used  in (2 2). I t  follows f rom the con t inu i ty  of D~d that  
there  exists  a n u m b e r  s ' ~  0 such tha t  

I Dad(x) l < 8, 0 ~ m _ ~.  

Le t  ~ k =  ~ _  ~ .  I t  follows f rom d ( x ) =  O(mgj tha t  

(3.14) I D~kd( x} I < ~x'~'a(~ k I) -~ , 0 < x ~ s', 1 <-- k <-- N. 

The set Ke  is def ined  by 

K ~ , = { x l e ' _ _ <  x < _ a l t .  

W e  let F(x ,  z ) =  h(x, z), x~.Kg. W e  also let m k ~  s' ins tead  of z k =  0. I t  fol- 
lows f rom (3.13t and (2.1~ that  (3.4) and (3.5) are t rue with K r e p l a c e d  by K~,. 
W e  also see f rom (2.2) and (3.14) tha t  

I D~kd(x2) l = [ D~'kd(e') l < D~kV(E ') ~- D~k~(x~), x e K~, , 1 <-- k ~ .57. 

The l emma appl ied to K~, ins tead  of K now says that  

1D~d( x) I < Dakv( x) < e, x ~ K¢ , l ~ k <_ N. 

W e  may  choose s' a rb i t r a r i ly  small .  Therefore  d must  be zero in Ko, and  
thus  also in K since d is cont inuous .  The theorem is proved for n - - 1 .  

We  now assume tha t  the theorem is t rue for n = n o - - l ~ l .  Then  we 
shal l  prove tha t  the theorem is t rue  for n ~ no too. 

Le t  x : ( x ~ ,  w ' t E R  ~ and let D--~(D~, D'b W e  took at  

(3.15) D~u(O, x')----f((O, z'), D~lu(O, x' b ..., D~Nu(O, x,'}), u = O(x~). 

k D~ku(O, x'} = 0 when  ~1 < i~i since u = O(x~). Le t  ~ = (~ ,  t~') and o~ k (o~, £k), 
i3~ we get 1 <_ k <_. hr. W i t h  o~ 1 = 

Daku(O, x') = D'a'kD~:u(O, x'). 
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Let  the f i rs t  N ~ be such that  a~ ----- ~1 and  let :¢~ ~ ~ for the rest.  W e  def ine  

~Ix,') = D~lu(O, x'). 

Then  (3.15) impl ies  that  

"~a "~ 'i~" D'~'w(x') = f((O, x'), D'a'~w, ..., w w, O, ..., 0), w =-O(x  ~. 

I t  follows f rom the con t inu i ty  of f and  f rom the def in i t ion  of H(n, ~, Ko) 
that  there  exist  a h ' e  H ( n - - 1 ,  ~', K~) such tha t  

l f((0, g ) ,  z l ,  . . . ,  z~, 0, ... ,  0 ) - - f ( ( 0 ,  ~'), z~, .... , z~, 0, . . . ,  0)1 < 

<h' lx / ,  [ z l - - z ~ l ,  ..., I z ~ z y ~ l ) ,  O < x j  ~_aj ,  2 ~ - - j ~ _ n .  

F r o m  the induct ive  a s sumpt ion  we now conclude  that  w(w')is un ique ly  deter.  
mined.  Since 

D W(~ }, D~u(O, X/)"= D'~'D~'u(O, ~ ) =  '~" ' 

we also see that  D~u is un ique  on x~ ~ 0 .  In  the same way we may  prove 
that  D~u is un ique  on x] ~-- 0, 1 ~ j  ~ n .  

Le t  u and  u be two solut ions  of (3.3) in K. As in the case n ~ 1 we let 
d ~ u -  u. We  choose ~ > 0 and  then we choose ~ and v such tha t  (2.1)and 
(2,2) are  true.  W e  have j u s t  proved that  D~d "= O, x i --.= O, 1 ~ j ~_ n. I t  follows 
f rom the con t inu i ty  of D~d tha t  there exist  an ~ ' >  0 such that  

t D~(w) 1 <: a, w e K, 

if at  least  one x i _~ ~'. The set K~, is de f ined  by 

Since  d = O(w~) we see tha t  with ~ ~ -  ¢¢~ 

(3.16) ] D~d(x) [ < $w~(~k i)-~, x, e Ko, and  at least  one wj "<. ~'. 

Le t  F(x, z)-----h(~c, z), x e K~,, and let ~ = ~', ~ < ~ and  x ~. ----xg, a ~. ==~. 
] 

From (3.16) and (2.2) we now get 

!D~d(w~)l ,~ D~v(x~), x e g ¢ ,  1 ~_ k "~. N, 
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We note that (3.13) is true in this case too. We now apply the l e m m a  with 
K replaced by K~,. Just  as in the case n ~ 1 we now conclude that d ~ 0 in 
K. The theorem is proved. 

4. Nagumo conditions and Lipschitz cont inui ty .  

In [7] WAL~Er~ has shown that the them'em of this paper covers a wide 
variety of special results when n =  2 and ~ = ( 1 ,  1). The computation turns 
out to be increasingly more difficult  in the general case. So we give only 
two examples here. One example shows that the 5Tagumo condition for ordi. 
nary differential  equations has its counterpart  in the general case too. The 
other proves that the theorem also covers Lipschitz continuity.  

Let  ~, ~d, ..., :¢~, satisfy (3.1). Let ~k ~ ~ _ ~k, 1 < k <-- _hr. We shall prove 
that the function 

N k 
h(x, z: ..., z~) ----- Z ak(a:)(:c~ )-~k I zk, (x, z) ~ Kox~R iv, 

N 

belongs to H(n, ~, Ko) if E a~(m)<_ 1. :ok(x) ~ 0 ,  m eKo.  
k~.~. 1 

Let v---Cx~(~!) -~, C > 0 .  It follows that D~v--=Cx~(~k!)-~ xGK,  
n~v(x) = C. 
It is now obvious that (2.1) is true. We now choose G so small that 

and 

Ca~k(~ ~ I) -1 < e, x e K0, 1 ~ k ~ ~.  

After that we choose 8----2-:0, and (2.2) is also true. If  n > 1, then the fun. 
ctions hi in the definition of H(n, ~, Ko) in section 2 have the same form as 
h itself. By that  we have proved that h e H(n, ~, Ko). 

We shall also prove that for M~> 1, 

N 

h(x, z) ---~ M ~ zk, x e Ko, 

belongs to H(n, ~, Ko). The function v is defined by 

V ----- exp (NMP(x)), 
N 

P(x) = Z xj, C > 0. 
j ~ l  

Let ~, c¢:~ ..., ~N, satisfy (3.1). Since N M ~  1 and since 

D~v(x)----C(NM)I< e NMP(x) 
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we see  t h a t  

N 

M E D~kv(x) ~ MNC(NM)I~: -~ e NMP = C(NM)t~t e NMP = D~V(X). 

I t  is  n o w  e a s y  to v e r i f y  t h a t  h b e l o n g s  to H(n ,  ~, Ko). 
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