Uniqueness and Goursat problems.

Jax Prrsson (%)

Summary. - 4 uniqueness theorem by W. Waller for a szcond order Goursat problem in
to independent variables is generalized. In the resulting theorem there are no rvesirictions
on the order or on the number of indipendent variables.

1. - Introduetion.

Let f(x, 2) be a real-valued continuons function in V> R, V being an
interval in R starting in zero. Uniqueness theorems for the ordinary differen-
tial equation

.y . = flx, u), u(0) = 0.

has been brought to a very high degree of perfection through OXKAMURA’S uni-
queness theorem [4]. See the proof in YosHizawa [10], p. 3-10. Several suffi-
cient conditions have been given by various authors. Among these we like
to mention Nacumo [3], WaLTER [9], MoYER [2]. For further references in
this field see [2]. GEORGE [1] has pointed out that all are included in Oka-
mura’s theorem. OKAMURA proved that (1.1) has at most one continuously
differentiable solution if and only if certain Liapunov functions connected
with f exist,
The set W in R? is defined by

W={(x, y); 0=x=<a, 0=y<bl

The function f{x, ¥4, #1, 22, 25) is real-valued and continunous in W>< R?.
The question of uniqueness for the Goursat problem

1.2 Uy = flac, ¥, W, U, W), u(0, y) = ux, 0)=0.

has been treated by WALTER [9]. The resulting theorems for (1.2} and (L.1)
are of the same nature.

The basic theorems for (1.1) and (1.2) say that existance and uniqueness
are garanteed if f is Lipschitz continuous in the 2z-variables. A theorem of
this kind for a more general equation than (1.2) is theorem 2 in [6]. The
problem treated in [6] has the same main feature as (1.2). A single derivative
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stands to the left and the non-linear right member contains derivatives of
lower order. See (3.1) and (3.3) in section 3 of this paper. A local version of
theorem 2 in [6] is theorem 4 in [3). Existence theorems for the problem (3.1)
and (3.3) are proved in [6] and (7). A generalization to the case when data
are given on hypersurfaces instead of on hyperplanes can be found in [8]. The
common point in the theorems in [5]{8] mentioned above is that the corre-
sponding f is resiricted by Lipschitz continuity in some or all z-variables.

There seems to be a closer connection between the uniqueness theorems
for (1.1) and (1.2) than between the existence theorems for (1.1} and (1.2).
Therefore one might ask if Okamura’'s theorem has some counterpart for (1.2}
or more general equations. We can give no answer to this question. Instead
we restrict ourselves to a generalization of the uniqueness theorem in [9] for
(1.2).

The necessary notation and some definitions are given in section 2. Sec-
tion 3 contains the theorem and its proof. The theorem is proved by induc-
tion over the number of independent variables fthat are involved. It is a ge-
neralization of the technique used in [9]. In section 4 the theorem is shown
to include the Lipschitz continuity case and also a generalization of the
Nagumo condition for (1.1). Therefore it is stronger than the uniqueness part
of theorem 2 in [6].

2. - Preliminaries.

Let x ={x1, ..., ;)€ B" and 2z = (21, ..., 25} BY. By a = (a1, ..., ) we
denote a multi-index with non-negative integers as components. If D=
= (3/321, ..., 9/dx,) then we write D*==(3/dx:)7 ... (3/2w,)%. We also write
xe =g . xre, al = oyl al,

e fBea =B, 1<=j<mn,

and |a|=a 4+ .. 4 o,.

DEriNiTION. ~ Let
K=(2|0<m=<a, l<j<n]

The function u(x) is real-valued and defined in K aud B is o multi-in-
dex. If all derivatices Diu, o <8, exist and are conlinuous then we say thal
u belongs lo the function class OB, K). Let

Ki={x0<<a, 1=<j<n}.

Then OB, Ko has an obvious sense.
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DerFINITION. - Let uwe OB, K). We define u = O(xF) by

u=0@f) & Diufe) =0, @x=0, O0<k<f, I1=Zj=<n
We now make a somewhat lengthy definition of the funection classes
H(n, 8, K,). The definition will explain itself when applied to the proof in
section 3.

DEFINITION. - The function hi{x, 21, ... 2x) is defined in K> RY. It is
monotonically increasing in each 2z, 1 < k<< N, and Iz, 0, ..., 0) =0, xeK,
Let further B, &, ..., o, be multi-indices such that

oF < 8§, ok £ B, 1=k< N.

We define w* =8 —a’ 1 < E< N.

In the case n = 1, we say that h belongs to H(1, B, Ko) if for every ¢ >0
there exist a number 3 > 0 and a function ve CB, K) satisfying the following
two condilions,

2.1) D8y < hix, D*v, ..., D*"v), wx€Ky.
(2.2) satint)t < D o<e, weK,, 1<k<N.

Let n=mn'> 1. We assume that we have defined H(m, £, Ko) for for all m <#/,
and all £e€ B, and all Ky < BR™. It is now possible (o define H(n, 8, Ko) uni-
quely in the following way. We define

pj: (ﬁla sy {3;—1 ’ ﬁH—l 3oy §n), alt = (“1107 ey “}i‘c—l? a;—-lf (] thf}, 1 g.}sn
We also define
K%:{(ﬁ“&,..-,ﬂ?j_l,wj+1,..., mn)[()<wgSa/;, IStS‘%,tq&j},

aljl=0, of <P, and aff) =, o/, 1<jsn, 1<Ek< N

Ki is lhe closure of Kj in R*'.

We say that hix, 3, ..., 2x) belongs to H(n, B, Ko) if lo every e > 0 there exist
a & >0 and a function ve OB, K) such that (2.1), and (2.2) are true, and if

lim R(x, #:(j), .., oulj) =h e Hun—1, i, Ki), 1<j<mn.

mj—>0
Here h; is a function of (&1, .. %1, Tjp1, .., X)) =€ B, and those zj)
with z(j) = .. The exact meaning of h;e Hn— 1, §/, Ki) is that in (2.1} we
have o vie Clp/, K.
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DPyi stands fo the left and h; to the vight. In h; D*v7 is inserted into the
place where zij) = 2. The condition (2.2) is adjusled in an analogous way. In
both (2.1), and (2.2) we have a() e Ki.

3. A uniqueness theorem for Goursat problems,
We start by formulating the theorem

TrEOREM. - The mulli-indices B, o', ..., &”, are such that
(3.1) B= ot B == o, 1=SE<N

The real-valued [unction flx, 2} is confinuous in K> RY. There exists a
he H(n, B, Ko) such that

(3.2 | 1w, 5) — 1@, B)|<hiw, &1 — 2], oy 2w — 2w,

(x, 2), (2,, 2)€ Ko >< BV,
It follows then that there exists al most one solution ue CB, K) of
(3.3) Dew = fle, D*u, ..., D*"u), = Ofxk).

For the proof of the theorem we need the following lemma.

Lemma. - The real-valued function F(z, 2) is defined in K> R". F is
monolonically increasing in the N z-variables. The multi~indices 8, o', ..., o¥,
salisfy (3.1). The (wo functions d and v belong (o Cf, K). They sailisfy the
following two conditions.

(3.4) | Dd | < F(w, | D?d |, ..., | D*"d})), wxekK.
(3.5) Dty = F(x, D%, ..., D“"v), xeR.

We define x* by

(3.6) =0, it a=4F, and =0 if of <§;,
xeK, 1<j<n.

If

3.7) | D*d(wH) | < D"v(x), «xeK, 1<k<N

then it follows that

(3.8) | DAd(x) | < D*vf), xeK, 1<Ek<N.
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Proor oF THE LEMMA. - It follows from (3.7) and the continuity of the
functions that there exists a set

K={z|0=x<o<a,1<j<n}]ck,
such that

(3.9) | D*d(x) | < D*v(x), xeK', 1<k<N.
let

K'={x|0=y<ag=<a;, 1=sj<nj.
We shall prove that
(3.10) | D4d(w) | < D*v(x), wxeK”, 1<k< M.

It K" &= K, then it follows from the continuity that we may choose every
a;, a} < a;, somewhat bigger. If we choose K’ maximal in the sense that no
a; can be chosen bigger, then we get a contradietion if K" == K. It then
follows that (3.8) is true. Now to the proof of (3.10).

It follows from (3.4), (3.5), (3.9), the continuity of DEd and DPy, and the
monotony of F in the z-variables that

| Ded(x) | < DPo(w), weK'.

We let
w=10v—d, or w==v -} d.
Thus we know that
3.7y D%wixty >0, wxeK’, 1<Ek<N,
and that
(3.11) DEp(x) =0, xze K".
We want fo prove that
{8.10y° D¥wx) >0, wxeK’, 1<Ek<N.

We start by a simple. example. Afterwards we prove the general case.
Let o = (8: — 1, B2, ..., B.). It follows from (3.11) that

(3= fDﬁw(t, Xz, o,y L)t = D*wix) — DPw(0, X2, ..., %)= D"wx)— D w(x).
o
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Since (3.7) says that D”mw(x') > 0, we conclude that D*w(x) > 0, ceK".
Now to the general case. The indices of a* are not suited for the proof
of the lemma so we define new ones by

o= — k1, v, Bo—ku).
Here uf = a;, k=0, and w;.‘=0, B >0, 1 =j<n. For every j, k>0, let
D= —kry ooy Ba—Fi, B =+ 1, B — ki, ooy B —Fa).
We assume that for every admissible j, say j=1, ..., »' <n
(3.12) DMl =0, xe K", 1<j<wn.

It follows from (3.12) and (3.7) that for xe K"
0= f DOty 0., 0, ®wgr, oo, wo)dl =
]

= D**w(w,, O, ..., O, Xpr 1y weey Xn) — D“kw(ao") < D*w(xs, 0, ..., 0, X1y very %)

From this and from (3.12) it then follows that

ag
0< fD'*k(Z)w(az;, 6, 0, vy O, wwpa, ..., @)l =
]

k k
= D*wlaey, 2, 0, o), 0, Zpr, oy @) — D*wliez, 0, ..oy 0, @Xprga, ooy @) <

< D’kw{ml, x2, 0, o) 0, @opa, ooy @), xe K".
We repeat the procedure. Af last we get
D#*wix) > 0, xe K.

If |a*|=|f] —1, then we have a*/) =3 for the unique admissible j. It fol-
lows from (3.11) that (3.12) is true in this case. By that we have proved that

we can apply the procedure above when |a*| =8| — 1. Since D*p(x) > 0
implies that D**w(x) >0 we can now apply the procedure above to those
of with |a*|=1]8]—2. It is now obvious that (3.10}) is true. The lemma is
proved.

Proor orF THE THEOREM. - We shall prove the theorem by induction
over the number of variables n. We start by assuming that n = 1. We choose
a v safisfying (2.1) and (22). Let » and u be two solutions of (3.3), and let
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d=u — u. Then (3.2) says that
(3.13) | Dfd(x) | < hie, | D7d)|, ..., |D*"d]), x€Ko.

Since D*u —u)0)=0, 1<k <DN, it follows from (3.3) that DBJ(0)=

== DBy — u){0} = 0.
Let 5 be the number used in (2 2). Tt follows from the continuity of D8d thai
there exists a number ¢ > 0 such that

| D¥d(x) | < 8, I=sx=¢.
Let 9 =8 — o*. It follows from d(x) = O(«xf) that
(3.14) | DY) | < S'(*))t, O<ax<e, 1<E<N.
The set K. is defined by
K.={zxld<x<m}.
We let F(x, 2) = hx, 2), xeK,. We also let a* = ¢ instead of «*=0. It fol-

lows from (3.13) and (2.1) that (3.4) and (3.5) are true with K replaced by K...
We also see from (2.2) and (3.14) that

| D4d(?) | = | D=*d(e') | < D*v(e) = D" v{w¥), € K, 1 <E<N.
The lemma applied to K. instead of K now says that
| D*d(x) | < D¥v(aw) < e, xeKes, 1<=k=< N.

We may choose ¢’ arbitrarily small. Therefore d must be zero in Ko, and
thus also in K since d is continuous. The theorem is proved for n=1.

We now assume that the theorem is true for n=n,—1>=1. Then we
shall prove that the theorem is true for n = no too.

Let ¢ = (x,, e B* and let D=(Dy, D). We look at

(8.15)  DPu(0, o) =fi(0, &),  D*u(0, &), ..., D ul0, ),  w= Ok

D*u(0, ) == 0 when «; < B; since u = Ofxg). Let § = (B, §) and o* = (o1, %),
1=<Ek<'N. With o =8, we get

D u(0, x) = D’“”‘D?lu{O, «).
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Let the first N o* be such that o =3, and let «* < B, for the rest. We define

w(x') = DHul0, «').

Then (3.15) implies that
DE¥ni) = f((0, «), D', ..., D'**m, 0, ..., 0}, w=O@¥).

It follows from the continuity of f and from the definition of H{n, B, Ko)
that there exist a W'e Hin— 1, §', K}) such that

|f((0’ m’)’ By ey By O) ey O)""f((oy 93’), gl, ey ;N; Oa ey OJI <
<WW, |a—a), w0, | 25— 25), 0<ay <o, 2<j<n.

From the inductive assumption we now conclude that w(z') is uniquely deter-
mined. Since

DEu(0, o) = D'¥ ' Diu(0, ) = D'¥Fw(x),
we also see that DPu is unique on a; = 0. In the same way we may prove
that DPy is unique on 2;=0, 1 <j <n.
Let u and # be two solutions of (3.3) in K. As in the case n =1 we let
d=u —u. We choose ¢ > 0 and then we choose 5 and v such that (2.1) and

(2,2) are true. We have just proved that D?d =0, ;= 0, 1 <j < n. It follows
from the continuity of DBd that there exist an ¢ > O such that

| DB(x) | < 3, xe K,
if at least one x; < ¢'. The set K. is defined by
Ke=l|ald <o <o)
Since d = O(xf} we see that with v*=§ — &*
(3.16) | D¥d(x) | < Bx*(n*!)~!, x € K,, and at least one x, < €.

Let Flx, 2) = hix, 2), xe K., and let wf=¢, af <f; and xf =, @ =B;.
From (3.16) and (2.2) we now get

ID4d(w¥) | < D*vad), «eK,, 1<k<DN,
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We note that (3.13) is true in this case too. We now apply the lemma . with
K replaced by K.. Just as in the case » =1 we now conclude that d =0 in
K. The theorem is proved.

4. Nagumo conditions and Lipschitz continuity.

In [7] WaLTER has shown that the theorem of this paper covers a wide
variety of special results when » =2 and § = (1, 1). The computation turns
out to be increasingly more difficult in the general case. So we give only
two examples here. One example shows that the Nagumo condition for ordi-
nary differential equations has its counterpart in the general case too. The
other proves that the theorem also covers Lipschitz continuity.

Let B, of, ..., a¥, satisfy (3.1). Let n* = — a*, 1 <k = N. We shall prove
that the function

N
hiz, #1..., 2n) =k§lak(w)(;nﬂk)—1n”! 2, (¢, z)e KoxR",

N
belongs to H(n, B, Ko if 2 awlx) =1, ax(x) = 0, xe K.
bz,

Let v= CxBBY)~', 0> 0. It follows that D*v = Cx""(4*!)"', xe K, and
D) = C.
It is now obvious that (2.1) is true. We now choose ( so small that

Co'tphlyt <e, wekK,, l<k<DN

After that we choose 5 = 2-1(C, and (2.2) is also true. If » > 1, then the fun-
ctions k; in the definition of H(n, B, Ko in section 2 have the same form as
h itself. By that we have proved that ke H(n, §, K.

‘We shall also prove that for M =1,

N
W, 5= M X 2, x € Ko,

k=1

belongs to H{n, B, Ko). The function v is defined by

N
v = exp (NMP(x)), Px) ='E @, C>0

=1

Let B, «!, ..., o, satisfy (3.1). Since NM =1 and since

Dav(a) = C(NM)# e M1PE)
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we see that

It

[y
(2]
(3]
(4]
(5]
(6]

(7]
(8]

k]

N
M Z D?vx) << MNC(NM)B—t o P — Q(NM)Bl & ¥MP = Dp(a).

k=1

is now easy to verify that h belongs to Him, §, Ko)
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