Some Partitions of a Skew Matrix (*)

A. Duaxe Porter (Laramie)

Summary. - Explicit formulas are obtained over o finite field for the number of partitions
of a skew wmairiz B into various forms: for example, B=—= X'AY — XA4'Y.

1. Introduction. — In this journal [4] Jouxy H. HopeEgs found the number
of m X { matrices X over a finite field which satisfy the matric equation
Xd—AX=DB, where 4 is m X { of rank r, B is a f X ¢ skew matrix and
the prime denotes transpose. In this paper we wish to consider a more general
partitioning question, and so discuss equations of the form

(1.1) ;. YidX, .. Xi— X ... Xed'Y, .. Y, = B,

with A and B as defined above, X;, 1<<i<<a, Y;, 1 <4< b, are matrices
of arbitrary sizes subject to the condition that the product, difference and
equality must be defined. In Th. I we defermine the number of partitions
of B as described by (1.1) for a, 6 =2. Then, in Th. IL and Th. III, we
consider the cases a =1, b=2 and a =050 =1, respectively. Finally, we
discuss the number of partitions of a skew matrix B into a sum of h matrices,
each in the form of the Jeft side of (1.1)

2. Notation and preliminaries. - Let F = GF(q) be the finite field of
q = p/ elements, p odd. Matrices with elements from F will be denoted by
Romax capitols 4, B,... A(s, m) will denote a matrix of s rows and m columns
and A(s, m; r) a matrix of the same dimensions having rank r. I, will denote
the identity matrix of order r and I(s, m; r) will denote an s X i matrix
having I, in its upper left hand corner and zeros elsewhere. If 4 = A(n. n)=
= (ay) then o(4) =an + ... + @a. is the trace of A. Clearly o(4 + B) = o(4) +
4+ o(B). For a skew mutrix  (one so that 0= — (), we have o(A'C)= — o(40),
where A’ denotes A transpose.

For a € F, we define

2.1 ee) = exp 2nit(w)fp;  Ho) = a + af 4 .. 4 2P,

(*) Entrata in Redazione il 21 settembre 1968,
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from which it follows that

e{o 4 B) = e(x)e(),
(2'2) ( ¥ 4, a = O:
| @e(“ﬁ)zzo, o £ 0,

where the sum is over all B € F. It is noted in [1; (2.3)] that if 4= A(, ¢
is skew, then

2.8) Se{o(4B)) =

g, A=0,
8

0. A =0,

where the summation extends over all skew matrices B — B¢, ¢). The number
of skew matrices of order { and rank 2z is given [1; (5.6)] to be

2z—1

(2.4) H(t, 22) = g o (@t -— 1y f[ (g% — 1).
i=0 i=1

Following [1; (8.3)], we define

(2.5) W(B, 22) = Ze{o(BC)},
c

where B = B{f, t) is skew, and the sum extends over all skew matrices =
= O, £; 22). This sum is evaluated [2; Th. I] to be

(2.6) W(B, 2) = ¢ T (— 1)igi—2~1 m H(t — 2, 2r — 4k),
k=0
with

bﬂ el =gl — a4 —q) ... (1 —q"; {(ﬂ =1,

and the prime indicates that g to be replaced by ¢* in the g-binomial coef-
ficients, If D is an arbitrary s X »n matrix, it may be shown that

q, D= Oa
@7 Ze{oDE)} =
z 0, D0,

with the sum over all matrices E(n, n).
We also find need for the number g(s, w; 9) of s X w matrices of rank
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y. This is given by LanDsBErG [2] to be

(2.8) gis. w; y) = U2 i (@ — g+ — Dj(g' — 1).
i=1

3. The main theorem. - We may now prove

TrEOREM 1. - Let a, b be integers =2; 4 = dA(m, n; r); B= B({, {; 2p)
be skew; Xi = Xi(f, t1); Xi= Xi{ti1, &) for 1 < i < a;

X, = Xftoer, n); Yi=Tam, toys); Y, = Yjlfupj, toy) for 1<j<b,

Yy = Yulloys—r, £), where m, n, §, fi, ..., fory_y represent arbitrary positive in-
tegers, and r, 2p integers such that = 2p = 0. Then the number N = (a, b,
m, n, 7, ¢, 1, £;) of partitions of B as defined by (1.1) is given by

N=gqr 3 WB, 20)N.0z)
2z=—0

where ¢ = (lops—1 — [t — 1]/2) + tas(n — 1) F boqa(mn — 1); W(B, 22) is given by
(2.6); Nuto(#) is given by (3.4); fo =1 or { — 1 according as ¢ is even or odd.

Proor, - In view of (2.8), the number of solutions of (1.1) is given by
N=g DX 8X;, ., Xoy Yy, ., Yole{o]Y;.. Yi4.
[

X! X — X X ATy .. Y, — BIO),

where 8(X, .., X,, Y1,.., Y;) denotes a summation over all matrices X;,
Y;, 1<i<a, 1 <§j<0b, and the sum over U is over all skew matrices of
order f{. If we note (2.2), divide the sum over O into smms over all
C= 0t t; 22), 0<2z <1, and recall that o(D'C) = — o{DC(), we may write
the above equation as

N=ge S 5 ea(BO)]
(3.1) 220 (2, 83 22)

S(Xy, oy, Xoy Y1, ey, Yo —20(Xy .. X A'Y 0 Y O)

There is no loss of generality by taking A’ = I(n, m; #), which is the
canonical form of A’ under equivalence [6; Th. 3-7]. If we let X, = [Xa, X.]
and Yl = COl[Yn, le] with X,zl = a1(la_1, 7Y, Xaz = Xaz(fa_l, n — 1"), Yu =
= Yu(?, fotr), Y12 = Yy(in — 7, .41), then after the above substitution for 4,
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X, and Y1, are multiplied by zero so the value of the inner sum in (3.1) is
independent of their choice. Hence, this sum equals

(3 2) { QTS(Xl PERTT Xal, Yn, vaey Yb)e{ _ 20‘(X1 . P STIR Yb())},

with T = {f. (1 — r) 4 topalm — 7).

It is noted [4; § 2] that for DC square, o(DC) = o(CD), so by making
this substitution and then summing over ¥, in accordance with (2.7), the sum
in (3.2) may be evaluated as

q¥ath—1, it OXy..Xa¥Yn. Yo =0,
0, otherwise.

33) {

Henece, we must have CX;..XaYu ... Yo =0 or else the contribation
to the sum in (8.2) and so also to N will be zero. Thus, we seek the number
of solutions of this equation. However, this is a special case of a mafric
equation previously considered by the author, and with rank C = 2¢, the
number of solutions is given [7; Th. III] to be

(la~§-b—-1' 2z)
Noyo(29) = qF T (22, tags 1} Zapsa)q letb—ati—2 .
3a~{-b—-1=o
atb—2 Gadelomi s fafbei)
(5.4) R D CHT AP s
1= za+b—i~1=
» @ Fatb—id fab—i—1,

|
vwith B = topsallope— — 22) + th - o+ foqsstotsz,

where (#, v) = minimum of « and v; g(s, w; y) is defined by (2.8); the sum
over any ¢ is defined to be | when the upper lmit is O; 4, is defined to be r.
If we now combine (2.D) with (3.1) through (3.4), the theorem is established.

4. Two special eases. -~ It is of some interest to consider (1 b for a =1,
b>=2 and a =1, b =1. The proofs of the theorems below for these cases
are basically the same as for Th. I so will not be included. We note that
the case @ =2, b = 1 may be obtained directly from the case a=1, 6 =2
80 need not be considered separately.

THEOREM II. - Let ¢ =2, b =1 be integers; 4, B, X;, 1 i< a, be as
defined in Th, I; Y7 = Yiim. £). Then the number Ny = (a, L, m, n, v, e, §, £
of partitions of B as defined in (1.1) is given by

Na=g 3 W(B, 2)N.1(s)

2z=
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where 3 = #{m — [t — 1/2) + . s(n — ); W(B, 2) is defined by (2.6); N.paf2)
may be obtained from (3.4) by letting #, =1, b=1, defining f,_3=1 for
a =3 and the product over ¢ to be 1 for a = 2.

TaporEM 1II. - Let a=b=1: 4, B, Y, be as defined in Th. IT; X;=Xi({, n).
Then the number Ny of partitions of B as defined by (1.1) is given by

Iy
N}l — qz(m—t-nﬂ[t-wl] 2) % W{B, 22}9“2?‘2.
2

=0

5. The general partition. - We now let 4, = 4,/m,, w.; ri) and AX;, Yi) =
= Ylébk o Yir e Xiap oo Xy — Xx o XkakAI:Ykl o Xipy,, Where Xy = Xl f); Xu=
= Xulbur, tu) for 1 <4 <ay;

Xkak = Xkak(tkak—l 5 Wk); Ykl = Y}d(“lk, tkak—j—l);

Yi;= Yk,j(thﬂk"kj—-l, tk,ak—f—j) for 1 <j< be; Y, by == Yk,bk(fk,ak+bk_1, 1),

for each 1 <<%k < h. We then seek the number of ways a skew matrix B =
= B(t, t; 2p) may be partitioned as

(51) /!1(X1, 1T1) + e + A},(Xh, Ih) = B,

It is possible to prove

TarorREM IV. - The number N, of partitions of the matrix B as described
in (5.1) when s, b, =2, 1 <k <h, is given by

ty h
Ny = ¢b~ =02 3% W(B, 22) I N, 1,(22),
k=1

2z==0

where B = B, + ... + B» and f, is defined by (5.5); W(b, #) is defined by (2.5);
Nots(22) is defined by (5.4) and (5.5); I is as defined in Th. L.

Proor. - It is clear that

Nh — q—’(’—l)’z X Z e { G([AI(X1, Yl) + + Ah(Xh, }rh) — B]O) },

C Xy Vi

where the sam over C is over all skew matrices of order #, and the sum
over Xy, Xy indicates a summation over each X,. Y, as these matrices are
defined above. If we note (2.2), the properties of trace, divide the sum over
C into successive sums over all C = C({, I; 22), 0=<2z=<{,, recall (2,5), and
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note that the sum over X, Y is distinct for each %k, we obtain

t I3
5.2) Ny=g=t-D S WB, 2) 1T 8,,
=0 k=1
with
(53) Sk = S(X}cyl, ey Xk'“k’ Yk,1, ey 7k-bk)e { G[Ak(Xk, Yk)] },

and S(X¢1, ooy Xiapy Yea, ooy Yis,) is as defined in the proof of Th. L
The value of S, is given by (3.2) through (3.4), after making appropiate
substitutions, to be

(5.4:) quNak+bk(2z)’
where
(6.5) Br = teapmar(Me — 1) + o apqr(y — 13) + M aqoi,

and N, ;(22) is obtained from (3.4) by letting @ =, b =b;, e =, ;=1
2 = #kj, ¥r = lpq,. The theorem follows by substituting (5.4) into (5.2).

It is possible to state results corresponding to Th. IV when some or all
of a; and b, = 1. However, we shall not take the space to do so.
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