
Bounded per turba t ions  of forced hnrmonic 
oscillators at  resouance. 

A_. C. LAZER (¢) and D. E. LEAea (Cleveland)(**) 

Summary. - Let e be continuous and 2u-periodic, h continuous and bounded, aud n ~ 0 an 
integer. Sufficient conditions for the existence of 2=-periodic solutions of  cc '~ q- nexq- h(x) = 
=e(t) are given. The proofs are based on a modification of  Cesari's method and the 
Sehauder fixed point theorem. 

I n t r o d u c t i o n .  

L e t  e(t) be con t inuous  and  2r~-periodic. I t  is wel l  k n o w n  that  if to is not  
an in teger ,  t hen  the d i f f e ren t i a l  equa t ion  

x "  q- ¢o2~c = e(t) 

a lways  has a 2~-pe r iod ie  solut ion.  I n  e x t e n d i n g  a r e c e n t  r e su l t  due  to LOUD 
[7], the second author ,  in his  d i sse r ta t ion ,  has  es tab l i she5  the fo l lowing:  

I f  g is con t i nuous ly  d i f f e ren t i ab le ,  if for  some i n t e g e r  n 

(n - -  1) 2 < kl  ~ g'(x) ~ k2 < n 2 

holds  for  all  x,, and  if h is 
equ a t i on  

con t inuous  and bounded ,  

~" + g(x) + h(x) = eft) 

then  the d i f f e r en t i a l  

has  a 27~-periodic solut ion.  
Th i s  r e su l t  has  led us to cons ide r  the d i f f e ren t i a l  equa t ion  

~c" q-  n2~  -t- h(x)  ---- e(l), 

w h e r e  h is as above  and  n is a pos i t ive  in teger .  Th e  case  n- -~0  has  a l r e a d y  
been  cons ide red  by  the f i rs t  au thor .  I t  fe l lows f rom the r e su l t  in  [4] tha t  if 
the re  exis ts  a n u m b e r  b such  tha t  x ( h ( x ) - - m ) ~  0 for  I x I  ~ b, w h e re  m is the  
m ean  va lue  of e, t hen  for  n~--0  (S) has a 2re-per iodic  solut ion.  Th e  t e c h n i q u e  
used in the proof  of this  r esu l t  will  also be used  here .  I t  is c lose ly  r e l a t ed  
to a t eeh ique  used  by the f i rs t  a u t h o r  in [5] which  in t u rn  was mot iva ted  
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50 A. C. LAZER - D. E. LEACH: Bounded perturbations o]/orced, etc. 

by a method developed by Cesari and his co-workers (see [1], 13]). 
In the following we give conditions which are sufficient and conditions 

which are necessary for (S) to have a 2r:-periodic solution. If it is assumed 
that lim h(x) and lim h(x) exist and that h(-- ~ ) ~  h ( x ) ~  h(cx~), these con- 

x---> c~ x . - ) - - ~  

ditions will coincide to yield a necessary and su[ficient condition. We will 
also give sufficient conditions for (S) to possess odd 2u-periodic solutions 
and even 2~-periodie solutions. We also consider uniqueness. 

The hypothesis of each of our theorems will involve the quantit ies 

2 ~  27;  

A = / e(s)cos ns ds, = / e ( s ) s i n  ns ds 
J J 
0 0 

This is not too surprising since for the case h(a~)~0, (S) will possess 2r:-pe- 
riodic solutions if and only if A-----B ~ 0. In fact, if h ( x ) ~  0 and this con- 
dition is not satisfied, no solution of (S) is bounded (the phenomena of reso- 
nance); while i[ this condition holds, every solution is 2r:-periodic. 

In the paper [8], mainly due to P. 0. Fm~DERICKSOI'~, perturbations of the 
harmonic oscillator involving derivative terms are considered. In the proof 
of Theorem 1.2 we borrow a technique from this paper. 

1. - T h e  G e n e r a l  Case.  

THEOREI~ 1.1. - Let e(t) be a co~tinuous 2u-periodio fuuction. Assume 
that h(x) is a continuous, bounded and nonconsfant functiou and that there 
exist numbers c, d, C and D (o ~ d) such that 

(1) 

and 

(2) 

h ( x ) ~ C  for x ~ c  

h(x)~__D for x ~ _ d .  

For any  positive integer n, there exists a 2r:-periodic solution of the differen. 
tial equation 

(8) 
i f  the condition 

(3) 

holds where 

x" ÷ n2x + h(x)---- e(t) 

V A  ~ + B 2 < 2 ( D - - C )  

A __ 

27; 

f e(s) 
0 

27; 

cos ns ds, B ---- f e(s) sin 
0 

ns ds. 
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PRooF.  - L e t  us wr i t e  e q u a t i o n  (S) as the s y s t e m  

(4) 
I------ 3~'2 

x': ---- - -  n~x~l - -  h ( x ~ )  + e( t )  

and  in t rodnce  new v a r i a b l e s  z~ and  z2 by m e a n s  of the t r a n s f o r m a t i o n  

I][ 
xl cos nt sin 

x2 - -  n sin nt n cos nt  z2 

T h e  t r a n s f o r m e d  s y s t em  is 

sin nt 
z'l -~ [h(zl cos nt Jr z2 sin rig) - -  e(t)] - -  

(5) 
z' nt)] cos nt  2 = [e(/) - -  h(z~ cos nt  + z2 sin 

n 

L e t  R deno te  the  r ea l s  and  de f ine  

F o r  0 E P ,  0 ~ ( %  w), set  

II011 = m a x  V~(t) 2 -~- ~v(tj 2 . 
t 

Def ine  V ~ P X R  2 and  for  (0, a )~  V, set  

I(O, ~)i=11~11+ lhl, 

w h e r e  l a ] : V a ~ - { - b  2 if  a ~ ( a ,  b). Now, if for  any  (01, al), (02, a2)E V and  

),1, ~2 E R we de f ine  

),~(0~, a~) + )`2(02, a2) = ()`i01 + ).202, ).~al + )̀2a2j,- 

t h e n  (V, ~ )  is a r ea l  n o r m e d  l i n e a r  space .  
L e t  u s  de f ine  a m a p p i n g  F of V in to  V as f o l l ows :  

F o r  (% w) E P ,  set  

M(% w) 
27; 

1 f [h(q~(s) cos ns Jr w(s) sin ns) - -  e(s)] sin ns d s  
~2- '~  n 

o 



52 A. C. LAZER - D. E. LEACH: Bounded perturbations o] ]orced, etc. 

and 

5T(% w) 
2rr  

cos ns + w(s) sin ns)] c°S ns ds .  

Now for (0, a) E V, 0----(% w), a = (a, b) define 

where 

F(O, a)----(O*, a*), O* = (~*, w*), a*.~ (a*, b*) 

~*(t) - -  a 

-{-*f([h(~(s)eosns-{-w(s)sin,~s)--e(s)] 
0 

sin ns ) 
n M(% w) ds, 

and 

W*(t) --  b 

"b f (  [e(s) - h(~(s) c°s ns 4- w(s) sin ns) ] c°s N@, w))ds, 
0 

a* ~ a + N(~*, w*), 

b* ~ b - -  M~ ~*, w*). 

Since 9o* and w* are primitives of continuous 2r:-periodie functions with 
mean zero, ¢~* and w* are continuous 2re-periodic functions and hence, /7' 
maps V into V. Furthermore,  it is easily shown that F is continuous with 
respect to the norm ]] .  

Suppose (0, a) = ((% w), (a, b)) is a fixed point of F. Since a ~ a* and b = b*, 

M@*, w*)t--N(~*, w * ) =  0 and so 

and 

~(t) =- ~*(t) -=-- 
¢ 

+ f [h(~(s) cos us + ~;s) sin ~*s) - -  e(s)] .... SinnnS ds 

0 

~(t)  ~ W*(t) _---_ b- 
t 

-~ / [e(s) -- h(~(s) cos ns -~ w(s) sin us)] COSnnS ds. 
0 
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Consequent ly ,  co1(% w~ is a 2r : -periodic  solut ion of (5) and ~':t) = ~(t) cos nt + w(t) 
sin nt is a 2T:-periodic solut ion of equa t ion  (S). Hence ,  to prove the theorem,  
it is suf f ic ient  to show that  F has a f ixed point.  To this end  we shall  esta- 
bl ish the ex is tence  of n u m b e r s  rx and  r2 such tha t  if 

K={(0 ,  a) C v/lloll~r~ and ]a l~r~},  

then  F(K) C K and  F(K) is a re la t ive ly  compac t  set. S ince  K is obviously 
closed, bounded  and convex,  it will follow from Schauder ' s  F ixed  Poin t  
T h e o r e m  as given in [2] that  F has a f ixed point.  

~ O W ,  

l a l  ~ = 

I a l 2 -t- 2(a~@*, w*) --  bM(~*, w*)) -1- N(cp*, w*f + M@*, w*) 2. 

2H 2 
But  (-N@*, w*) 2 -{- M@*, w*) 2) ~ ~-v-,  where  

(I h(x) l -I- I eCtDI) ~ H for (x, t) E (--  ~ ,  ~ )  X [0, 2~], 

a n d  s o  

2H ~ Ta*12~la]2+ 2(aN(~*, w*)--bM@*, w*))-l- 
n 2 • 

By def in i t ion  

aN(c0* , w * ) -  bM@*, w*)= 

2"ff 

if 2r:n [e(s) --  h(CO*(s) 
o 

c o n  ns + w*(s) s in  us)] (a cos  ns A- b sin ns) ds. 

However ,  ~*(t)~---a-F ~(l) and w*(t)---b + ~(t), where  a(t) and  ~(t) a re  conti- 
nuous,  2r:-periodie and bounded  func t ions  and s ince ;  

(a cos ns ~ b sin n s ) =  l a I sin (ns + ~o), 

we have  

alV(CO*, w*) -  bM(~*, w*)---- 
2ff 1; 

2~:n [e(s) --  h ( [ a  I sin (ns + ~0) -[- ?(s)] t(~! sin (ns Jr- ~o)ds 
o 
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where y(s) -~ ~(s) con ns A-~(s)sin ns. By the change of variable n~ ~ ns q-~o, 

(6) aN@*, w*)--bM¢~*, w*) 

= 2 ~  f f e ( ~ - - ~ ) - h ( l a t s i n n t ~ A - Y ( ~ - - ~ ) )  lalsinnt~d~= 

r~  

27~ 2ff 

--2--~--,a, I f  e ( l~ - -~)  s inn~ d ~ -  f  (,al ~io,,~ + + _ ~ ) ) s i n  n~dp.] 
0 o 

because of periodicity. 
To prove the existence of a suitable r2, we shall first prove the existence 

of numbers z > 0 and m~ > 0 such that 

aN@*, w*) - bM@*, w*) < -- a[a] 

whenever t al ~m~ .  For this purpose we note that by the change of variable 
nr  ~ n ~ - -  go, 

2rr 2rr 

= ; e(r)sin nr cos~odr -}- f e(r)cosnr sin ~o dr : 
~ o 

Hence, 

(7) 

= Bcos~o + Asin~o 

f e(ir--~)sinn~d~t V A 2 + B  2 
o 

by the Sehwarz inequality. 
7~ 

By (2), for 0 < ~ < 2 ~  
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(2}+i)~--~- 

j D s in  nl~ d~ 
fa 

fo r  k = O ,  1, ... ( n - l )  w h e n e v e r  l a { ~ d - ~ L  w h e r e  
' s in  n~ ' 

m i l a r l y ,  b y  (1), f o r  a l l  s u c h  

L = m a x  ]Y(~)l" (*) Si- 

( 2 k - [ - ) 2 ~ - -  ~ 

f n~ d~ C s in  

or k----O, l, , ( n - - l )  whenever l a l ~  L -  
6 

• "" s in  n~" 

Thus, for all ~ small and positive, 
2W 

0 

(2k+D~ 

= ~  h ]a l s inn~+y  ~ - - n  sinnp, di~-~- 
k ~ 0  

(2k+l) 

._if ( _[_ v, h [a Isinn~+Y ~t-- s i n n l ~ d ~ >  
k ~ 0  

n n 

0 

(*) I t  is easily shown that L can be chosen indipendent of ~ aud ~v. 
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whenever  ] a l ~ m a x t ( d + L )  (L - - c )}  _ : where Q(~) is a continuous function 
s i n ~  ' s i n ~ / o  ' 

which vanishes at ~ = 0 .  By (3)there exists m 2 > 0  such that 

(8) V A 2 -Jg B 2 = 2 ( D  - -  C)  - -  m 2 .  

Thus, if we choose ~o so small that iQ(~o)l < ~ ,  

2~ 

(9) f h ( ] a , s i n n ~ t + 7 ( ~ t - - ~ ) ) s i n n ~ d ~ <  
0 

> n D + n -- C - -  -2-- = 2(D - -  C) - -  - -  
~$2 

2 

(d + L) (L--c)~ 
whenever  t a l ~ m a x  sin n~o' s inn~o)  = m l '  so by (6), (7), (5) and (9), 

aN(~*, w * ) -  bM@*, w*) 

1 w 
< )t + B2 -- 2(D-- C) + 2 1  =-jh/o 

~ 2  
]a I ~ ml, where ~ = - - .  whenever  

4un 
Now 

2H 2 
I a* 12 ~ I a I 2 + 2(aN(~*, w*)) -- bM@*, at*)) + 

n 2 ? 

but 
2H 2 

2(aN(~*, w*) --  bM(¢¢*, w*)) + ~ -  < 0 

whenever  t a l ~ m a x  ml, ~ = m 3 .  Thus, [ a * I ~ l a l  whenever  t a l ~ m 3 .  

for all l a] such that [a] ~_mz, and therefore we have 

whenever  ]a]__~r2 if we set r2----- (m3 + m@. 
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Considering 0", we see that  for ]al~r~, 

IIO* II < t n 
r~ + 4r2(2u)2H 

for all 0 E P. Hence  if we define 

K =  {(0, a)E V/llOll~r~ and la i~r~}  

where r~ and r2 are as above, K will be a closed, bounded  and convex sub- 
set of V such that  F ( K ) C  K. In  order  to show that  F ( K ) i s  a relat ively com- 
pact set, we need only show that  if 

{F(0~, a~)-----{(0", a*)} 

is any sequence of F(K), there exists (l, v) E V and a subsequence  {(0~, a~)} 

of {(0:, a*)} such that  

~* h l ) -  v) o. l im l( %, (1, l =  
k-,-~.eo 

The sequence {02} has the property that 

and 

dt n 

for n = 1, 2, .... Hence,  the sequence {0"} is equicont inuous  and uni formly 

bounded,  and therefore there exists a subsequence {0~} of {0"} and an 1 E P  
such that  

lira., .. ~O~k--lll---- 0 
k...~ oo 

by Aseoli 's lemma. Since  tan~]<~r2 for all k, there exists a subsequence  {a~k~ 

of -~  l a%} and v E R  2 such that  

l imi  ~ h - - v t = O "  

Thus,  

~" )--(t, v ) l=0  

AnnaIi di Matematica 8 
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and the set F(K) is relatively compact. By a previous remark, the proof is 

TtIEOREI~[ 1.2. - Let e(t) be a continuous 2~z-periodie fuvlction. Assume that 
k~x) is a continuous, bounded, and nonconslant function. For a~y posiliee in- 
teger n, there does not exists a 2u-periodic solution of the differential equation 

(S) ~" + n2x + h(x) = e(t) 

i f  the condition 

(lO) 

holds where 

VAS-ff - B 2 >  2 (sup h ( w ) -  inf h(x)) 

27~ 27~ 

A = f e ( s ) c o s n s d s ,  B-= f e(a) 
0 0 

sin ns ds. 

PROOF. - If we choose % such that 

then 

B 
and sin s o cos ~o - V ~ - ~  ~ ,  ~ 

A 

VA 2 .-~ B2' 

2rr 

e(s) 
0 

sin (us q- %)ds = ¥' A 2 q- B 2. 

( Suppose x(t) is a 2~:-periodic solution of (8). Then y ( t ) ~  x t - -  n is a 

2re-periodic solution of 

and hence 

or equivalently, 

y 

27~ 

0 

sin nt dt ---- O, 

2r¢ 2r~ 

0 0 

sin nt dt. 

But, by the change of variable n s - - ~ n t - - S o ,  
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~o 
277--~-- 2ff n 2ff 

f e( t ---~)sin ntdt-= f e(s)sin(ns + %)ds= f e(s) sin (ns + %)ds 
0 a j  0 

n 

Thus, by the choice ef %,  

(11) 

and 

(12) 

~ow, 

2~ 

f{ %) e t - -  n sin nt dt ---- V A  2 - ~  B 2 . 
0 

(2k-{-1) j" 
2k'Z n 

h(y(t)} sin nt dt 

(2k+1)~ 

sup h(x) 
a /  

(2k-~-2) 

f sin nt dt h(y(t)) 

( 2kool ) [ 

(2k+2) 2 

, i /  

(2k+l) 

2) i nf h@) s i n n t d t ~  -- ( ~ 

for k = 0 ,  1, ..., (n 1). But if equality in (11) and (12) hold simultaneously 
for some integer ko, 0 ~ k o ~ _ ( n - - 1 ) ,  then h~y(t)) must be discontinuous at 

t (2ko+ i)r: since h(x) is non-constant.  Consequently, we have that 
n 

27~ 

VA2-+ B ~ = f h(y(t)) sin nt dt 
0 

(2k+l)~ 

( n - - l )  f = E h(ylt)) sin nt dt + 
k ~ O  

k2 ~_ 
n 
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(2k-~-2) 

(n-l) f 
k-~-0 

h(y(t)) sin nt d t <  

n/  

= 2 (sup h(~) -- inf h(@). 
x 

But this contradicts (10), and hence the theorem is proven. 
From Theorem 1.1 and 1.2 we have the following: 

CO~aOLLAaY. - Let e(t) be a continuous 2r:-periodic function. Assume that 
h(x) is a continuous function such that the limits 

and 

l im h(x) -~ h(~)  
X-~, ¢o 

lim h(x) = h( - -  cx~) 
X-.-~*m ¢m 

exists and are finite. Assume further that 

holds for all  ~ and that  

h(-- ~ )  ~ h(x)~_ h(~)  

h ( ~ ) -  h ( - - ~ )  > O. 

There exists a 27:-periodic solution of  the differential equalion 

(S) s" + n% + h(x) ---- e(t) 

i f  and  only i f  

V A 2 + B ~ < 2 (h(~) --  h(--  ~ ) )  

where 

27~ 2 r ;  

.4 = f e(s)oos n8 d~, ~ = f e(s) 
0 0 

sin ds. 
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2. - E q u a t i o n s  wi th  S y m m e t r i e s .  

TttEORE~ 2.1. - Let e(t) be an odd, continuous and 2r~-periodic function. 
Assume that h(x) is an odd, continuous, bouuded and nonconstant function and 
that there exist numbers c, d, C and D (c < d) such that the inequalities (1) 
and (2) hold. For any positive integer n, there exists an odd 2rz-periodic solu. 
tion of  the differential equation 

CS) x" -[- n2x ~ h(x) ~- e(t) 

i f  the condition 

(la) B B[ < 2:(D-- C) 

holds where 

2~ 

B =fe(s) 
o 

sin ns ds. 

PROOF. - Again,  let  us wr i te  e q u a t i o n  (S) as the sys tem (4) an i n t ro d u c e  

new var iab les  zl and  z2 by  me a n s  of the t r a n s f o r m a t i o n  

[ 11 ~2 - -  n sin n t  n cos nt 

ol] 
~ 2  ° 

As before ,  the t r a n s f o r m e d  sys tem is 

(5) 

sin nt 
z i ~  [zl cos nt + z2 sin nt)--e(t) ] - -  

n 

z ~  ~ [ e ( t )  - -  h(z 1 cos nt  -{- z2 sin nt)] cos nt .  
n 

Def ine  the sets 

O = { ~ / ~ E C ( R ,  R), ~ is odd and  ~(t)---- ~ ( t +2 7 : )}  

and 

P ~ t w / w E C ( R ,  R), w is even  and w(t)-7-w(t-~ 27:)}, 
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where R is the set of real numbers. For any f(t)EOk.JP, set 

lifil = max I f(t)l. 
t 

Define V ~ - 0 X P X R  and for (% w, a) E V, set 

I(% a)l = II  Pll + llavll + t. 

If for any (~0t, wl, a~ , (~2, w2, az)E V and ~1, ~k2 E/~ we define 

(i/, [ l )  is a real normed linear space. 
Let  us define a mapping F of V into V as follows: 

For (% w) E 0 × P ,  set 

N(% w)----  

2r~ 

2~ [h@(s) cos ns -]- w (s) sin ns) --  e(s)] sin n8 ds. 
n 

o 

Now for (% w, a)E V, define F(% w, a)-~ @*, w*, a*) where 

~*(t) = 

and 

(i4) 

rv*(t)--- a ÷ 

t 

f [e ( s )  - h ( ~ ( s )  

O 

cos n s  q- w(s) s i n  ns)]  c o s  us d s  , 
n 

a*  ----- a - -  57(¢¢*, w*).  

Since T*(0)~ 0 and ~o* is the primitive of an even continuous 2re-periodic 
function with mean zero, ~*E0. Similarly, since w* is the primitive of an 
odd continuous 2rz-periodic function, w*EP and hence, F maps V into V. 
As before F is continuous with respect to the norm ]]. 

Now, proceeding in a manner  analogous to that used in the proof of 
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Theorem 1.1, we shall find numbers  r~, r2 and r3 such that if 

K =  t(% w, a)~ Vllt~ll<rl, [!wll~r~ and ta[~r31. 

then F(K)~ K and F(K) is relatively compact. 
To show the existence of a suitable r3, we shall first show that N@*, w*) > 0 

if a > 0 and large, and that N(~*, w*)<0 if a < 0 and negatively large. Now 

N(~*, w * ) =  

2r~ 

2~:n [h@*(s) cos ns + n,*(s) sin ns ) -- e(s)] sin ns ds. 
0 

But w*(s)=a-t-e(s), where e(s) is a continuous 2re-periodic function with 
2rcH 

] a(s)] ~ ~- , where H =  max (1 h(x) l + [ e(t)]). Thus, since 
(~, t)~ R2 

4rcH I~*(t) .~ for all t, 
n 

2re 

(15) N(~*, w*) = 2 ~  f [h(a sin ~s + / ¢ ( s ) ) -  e(s)] sin ns ds = 
0 

2ff 

0 

where ~(s) = ~*(s) cos ns + e(s) sin ns is continuous, 2rc-periodic and bounded. 
rc 

Now, by (2), for 0 < ~ < ~  a n d a > 0  

f h(as inns+~(s))s innsds~ f 

for k----0, 1, ... ( n - - l )  whenever  a ~ _ _ d + L  where 
' 81n n ~  ' 

(1), for such ~ ~ 0 and a > 0 

D sin ns ds 

L =  max]~(s) l. (*) By 

(2k-}-2) ~ --~ (2k-1-2) ~--~ 

f h (as inns+;(s ) ) s innsds~  f C sin ns ds 

(*) L can  be  chosen  i n d i p e n d e n t  of ¢~ a n d  w 
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for k : 0, 

and a > 0, 

L ~ c  
1, . . ,  ( n -  I ) w h e n e v e r  a ~ s i  n n~" Hence for $ > 0 and small 

f h(a sin us -I- [t(d)) sin ns ds = 
0 

= ~-~1 ( h(a sin ns "4- ~(s)) sin ns ds -[- 
k=0 J 

(2k+l),E 

n--J. f + ~  
k ~ O  

_ °  

n 

~ n f D  
o 

h(a sin ns -~- ~(s)) sin ns ds 

2 7 r  

n 

sin ns ds -{- n f C sin ns ds A- QI(~) 
T: 
rt 

(Lsin~nsC) l, where Q~(8) is a continuous function 
t(d±_L) 

whenever a ~ max(  sin n~ ' 

vanishing at $----0. By (13), there exists m > 0 such that 

(16) m --  2(D - -  C) < B < 2(D - -  C ) -  m. 

Choosing $~ such that 

(17) 

m ._ 

I QI(~)I < ~ Lwe have 
2r: 

f h(a sin ns -}-/t(s)) sin ns ds 
o 

2 

----- 2(D --  C) 2 

s i n n ~ '  si-nn$~ = bl. T h a s £ b y  (15) (16), and (17) 

(18) N@*, w*) > 2(D -- C) 2 2~D-  C) + m = 

1 1 

whenever  a ~ b l .  
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On 
7~ 

the other hand, by (1), for 0 < $ < .~n and a < 0 

f h ( a s i n n s ÷ ~ ( s ) ) s i n n s d s ~ f  

~+~ ~+~ 
C sin ns ds 

c - - L  
for k ~-~ 0, 1, ..., (n -- 1) whenever  a ~ sin n~" By (27, for such ~ < 0 and a < 0 

(2k-{-2) ~ --~ (2k.~-2) ~--~ 

f h ( a s i n n s + - ~ ( s ) ) s i n n s d s ~ f  D s i n n s d s  

(2k-1)~+~ (2k+1)~ +~ 

d--~- L 
for k ----- O, 1, ..., (n - -  1) whenever a ~ sin (-- n~)" Henee, for ~ > 0 and small 
and a < O, 

~ 2r~ 

of h(a sin ns + ~ (s)) sin ns ds ~ n C sin ns ds + n D sin ns ds + Q2(~) 
0 0 

n 

t - L) (e ± L) t whenever  a ~ min ( sin--~ ' sin (-- n~)}' where Q:(g) is a continuous function 

vanishing at ~--~-0. Choosing ~2 such that I Q2(~2)I < ~ - ,  we have 

(19) 

27~ 

f ( h(a sin sn + ~(s)) sin us ds < n C -~ n ~ -~- ~ - -  2(D -- C) + m 

0 

whenever  a ~ rain l - -  ~z' (Csin--nsz,L) s in( - -  n ~ 2 ) ( d  + L) t~-  b2. Thus, by (15), (16) and (19) 

(20) ~(¢, w*)<2-I-2(D--C)+m---,n ~n(-- 2 + 2(D-- C)]= -~)<0 

whenever  a ~ b2. Defining 

( " )  b * = m a x  I bl r , ]521, -~ + 1  , 

we see by (14), (18), and (20) 

ia*l-<lal 

AnnaIi di Matematica 9 
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w h e n e v e r  I a l ~ b * .  But  I a* I ~ i a I + I N(~*, w*) I ~ 1 + H for  all  'a', and  thus  
n 

H 
if we def ine  r s =  b* + n '  t hen  

ja* t ~ r 3  

4uH 2r:H 
- -  and def ine  = - -  and r 2 = r 3 +  n for  t a l ~  r~. Hence ,  if we set r~ n 

K = { ( %  w, a)E V/ll~ll~,rl, Uwll~r~ and lal~r~}, 

t hen  F ( K ) ~  K. T h a t  F(K) is a r e l a t i ve ly  compac t  set fol lows as before  by  
Aseoli ' s  l emma.  Hence ,  s ince  K is a closed, b o u n d e d  and c o n v e x  set, we can  
apply  S c h a u d e r ' s  F i x e d  Po in t  T h e o r e m  and  obta in  a f ixed  point  of /i. Th i s  
gives ss an odd 2r : -per iodic  so lu t ion  of equa t ion  (S) which  comple tes  the proof.  

T~EOREM 2.2. - Let e(t) be an even, continuous and 2r:-periodie function. 
Assume that h(x) is a continuous, bounded, and rwnconstant function and that 
there exist numbers c, d, C and D (c < d) such that the inequalities (1) and 
(2) hold. For any positive integer n, there exists an even 2u-13eriodic solution 
of the differential equation 

(8) ~," + n2x + h(x) = e(t) 

i f  the condition 

holds where 

IAI <2(D-- C) 

2ff 

A = f e:s cos ns ds. 
0 

PROOF.-  L e t  us wri te  equ a t i o n  (S) as the sys tem (4) and then  t r a n s fo rm  
sys tem (4) into 

sin nt 
z; ~ [h(zl cos nt + z2 sin nt) -- e(t)] - -  

n 

(5) 
cos nt 

z~ ---- [e(t) - -  h(zl cos nt + z2 sin nt)] - -  
n 

as it  was done  in the p roof  of T h e o r e m  2.1. F u r t h e r ,  let  us  de f ine  the  rea l  
n o r m e d  l i nea r  space  (V, [[)  as we did in the p rev ious  proof.  

Now, we shal l  def ine  a m a p p i n g  F of V into V as fol lows:  
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For  (% w) E 0 X P, set 

M(% w)--'-- 
2~ 

0 

h:w(s) cos ns -Jr ~(s) sin ns)] cos ns ds. 
n 

For (% w, a)E V, define /7'(% w, a)----(¢~*, w*, a*) where 

w*(t) = a + 

/ 
0 

[h(w(s) cos ns + ~(s) sin ns) - -  e(s)] sin ns 
n 

48, 

and 

t 

~*(t) -= [e (s) --  h(w(s) cos ns ~ ~(s) n ~, w) ds , 
0 

a*= a + M(~*, w*). 

Since w* is the primitive of an odd continuous 2r:-periodic function, w*EP.  
Similarly, since T*(O)----0 and ~* is the primitive of an even continuous 2r~- 
periodic funct ion with mean zero, ~*EO and hence, F maps V into V. Mo- 
reover, F is continuous. 

5Tow, making only slight modifications in the prof of Theorem 1.1, we 
can find a set 

K = { ( %  w, a)e  V / / ~ I I ~ r l ,  ~wU~r2  and l a t ~ : r 3 }  

such that F ( K ) ~  K a n d  that F(K) is relat ively compact. Thus, since K is a 
closed, bounded and convex set, we can apply Sehauder ' s  Fixed Point  Theo- 
rem, which will yield the existence of the desired solution and hence comp- 
letes the proof. 

3. - A U n i q u e n e s s  C o n d i t i o n .  

Applying the same argument  as given in [6], we obtain 

THEORE~ 3.1. Assume that the hypothesis of Theorem 1.11 and lhe condi- 
tion (3) hold. I f  h is continuously differentiable and 

(21) 0 ~ h'(x) ~ 2n ~ 1 

holds for all x, then there exists a nnique 2u-periodic solution of (S). 
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PROOF. - The existence of at least one 2~-  periodic solution of (S) fol- 
lows from Theorem 1.L If x~(t) and x2(t) were two distinct 2re-periodic solu- 
tions of (S), the difference y(t) :--- x2(t) - -  x~(t) would be a nontrivial 2u-periodic 
solution of the linear differential equation 

where 

From (21) 

p ( t )  = n ~ + 

y" -~ p(t)y ---- O, 

1 

f h'(~(t) + s(zc~(t) - -  x~(t)))ds. 
o 

(22) n 2 < p ( t )  < (n ~ 1) 2, 

and since p(t)--~p(t  ~ 27:), p(t) has a positive lower bound. Therefore there 
exists  a number c such that y(c)-----y(c~ 2 ~ ) ~  O, y'(c)=~ O. By (22) and the 
Sturm comparison theorem, y(t) has exactly 2n zeros on the open interval 
(s, c + 2~) contradicting y'(c) ~ y'c ~- 2~). This contradiction proves the theorem. 
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