Bounded perturbations of forced harmonic
oscillators at resounance.

A, C. Lazer (*) and D. E. Leacu (Cleveland) (**)

Summary. - Let e be continuous and 2n-periodic, h continuous and bounded, aud n >0 an
integer. Sufficient conditions for the existence of 2n-periodic solutions of a' 4 w2z hix)=
—el(t) are given. The proofs are based on a modification of Cesari’s method and the
Schauder fixed point theorem.

Introduction.

Let e(f) be continuous and 2n-periodic. It is well known that if w is not
an integer, then the differential equation

x4+ o’ = (i)

always has a 2rn-periodic solution. In extending a recent result due to Loup
[7]), the second author, in his dissertation, has established the following:
If g is continuously differentiable, if for some integer n

=1 <l <g@x)<k. <n
holds for all ®, and if k is continuous and bounded, then the differential
equation
o’ + gle) 1 h(x) = e(t)

has a 2n-periodic solution.
This result has led us to consider the differential equation

(S) x4+ n2x + hix) = e(l).

where Ik is as above and » is a positive integer. The case n =0 has already
been considered by the first author. It follows from the result in [4] that if
there exists a number b such that w(h(x)—m) =0 for |@| =D, where m is the
mean value of e, then for n=0 (S) has a 2n-periodic solution. The technique
used in the proof of this result will also be used here. It is closely related
to a techique used by the first anthor in [5] which in turn was motivated

(*) Author is partially supported by N.S. F. under Grant 7447.
{(**) Entrata in Redazione il 26 agosto 1968.
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50 A. C. Lazer - D. E. LeacH: Bounded perturbations of forced, etc.

by a method developed by Cesari and his co-workers (see [1], {3]).

In the following we give conditions which are sufficient and conditions
which are necessary for (S) to have a 2n-periodic solution. If it is assumed
that lim A(x) and lim k(x) exist and that h(— oo)<C h(x) << h(oo), these con-

A=y o0 % —3—o00
ditions will coincide to yield a necessary and sufficient condition. We will
also give sufficient conditions for (S) to possess odd 2n-periodic solutions
and even 2n-periodic solutions. We also consider uniqueness.

The hypothesis of each of our theorems will involve the quantities

n 27
4= f e(s) cos ns ds, B =fe(s) sin ns ds.
[ 0

This is not too surprising since for the case h(x)=0, (S) will possess 2n-pe-
riodic solutions if and only if 4 =B =0. In fact, if k{x)= 0 and this con-
dition is not satisfied, no selution of (8) is bounded (the phenomena of reso-
nance); while if this condition holds, every solution is 2n-periodic.

In the paper [8], mainly due to P.0. FREDERICKSON, perturbations of the
harmonic oscillator involving derivative terms are considered. In the proof
of Theorem 1.2 we borrow a technique from this paper.

1. - The General Case.

TarorEM 1.1. - Let e(f) be a continuous 2n-periodic fuuction. Assume
that hiz) is o continuous, bounded and nonconstant functiou and that there
exist numbers ¢, d, C and D (c < d) such that

(1) hMae)<<C for x<c
and
(2) hey=D for x=d.

For any positive integer n, there exists a 2n-periodic solution of the differen-
tial equation

(S) x" + nte 4+ hix) = e

if the condition

3) V4?4 B* < 2D — 0)

holds where

2n 27

A =f e(s)cos s ds, B= f e(s) sin ns ds.
0 0
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Proor. - Let us write equation (S) as the system
Xy= A9
4)
Xy = — nPawy — h(er) + e(f)
and introdnce new variables # and z; by means of the transformation
2 cos nl sinnt| |2
@y - —mnsinnt ncosnt||2 .

The transformed system is

sin ni
)

# == [h{z, cos nt + 2 sin nt) — e(f)]

6))

2y = [e(l) — R(z1 cos nt 4 2, sin ni)) co;nt .

Let R denote the reals and define
P={0/8€CR, R and 8() =6(-+2n))
For 8 € P, 0 = (9, w), set
18] = max VeoltF + w(t? .
Define V=P X R* and for (8, a)€ V, set
16, o)l =164 |al,

where |a|= Va® 4 b? if a = (a, b). Now, if for any (6, a1), (B, az)€V and
A1, A2 € B we define

M0y, 1)+ 2@, @2) = a6 + A, oo + Xeas),

then (V, |[]) is a real normed linear space.
Let us define a mapping F of V into V as follows:
For (¢, w)€ P, set

Mo, w)

= gl&' f [h{ep(s) cos ns - w(s) sin ns) — e(s)]

g

gin ns
ds-
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and
N(g, w)

27

= gl% f [e(8) — h((s) cos ns + w(s) sin ns))

g

COs NS

ds.

Now for (6, a)€ V, § = (o, w), @ = (a, b) define

F®, a)= (0% a%), 8* = (9%, "), a* = (a*, b%)

where
¥t =a
-+ f h(cp co8 ns -+ w(s) sin ns) — e(s)] sin ns — M(p, w) )ds,
wit) = b
-+ f (9(s) cos ns -+ w(s) sin ns) | co;ns — Ny, w))ds,
a*=q -+ N(CP*) W*);
and

b*=b — M o*, w*.

Since ¢* and w* are primitives of continuous 2x-periodic functions with
mean zero, 9* and w* are continuous 2n-periodic functions and hence, F
maps V into V. Furthermore, it is easily shown that F is continuous with
respect to the norm f].

Suppose (?, ;)=((’q;, w), (@, b)) is a fixed point of 7. Since a=a* and b = b*,
M(e*, w*) = N(¢*, w*) =0 and so

)=o) =a
and
wit) = w*l)=

COB s

+ f [e(s) — R(¢(s) cos 1s + w(s) sin ns)) 0 ds.
0
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53

Consequently, col (o, w) is a 2r~periodic solution of (5) and a?{t):&t) cos nt - w(l)
sinnf is a 2n-periodic solution of equation (S). Hence, to prove the theorem,
it is sufficient to show that F has a fixed point. To this end we shall esta-

blish the existence of numbers », and r, such that if

K={0, a)€ V/|b|<<r. and |a|<r),

then F(K)& K and F(K) is a relatively compact set. Since K is obviously

closed, bounded and convex, it will follow from Schauder’s Fixed
Theorem as given in [2] that F bhas a fixed point.
Now,

|
a -+ 2aN(e*, w*)—bM(e*, w) + N(o¥, w*P + M(g*, w*?.

2

But (N@7*, w*F + Migh, ') < o, where

()| |et))=H for (x, )€ (— oo, o) X [0, 27],

and so
- _ 2 2
J* <@ 2 o 2aD (e, %) — DME*, W)+
By definition
alN(@*¥, w¥) — bM(¢*, w*) =
27
2_11€ﬁ f [e(s) — h{y*(s) con ns 4 w*(s) sin ns)](a cos ns - b sin ns)ds.

0

However, o*({f)=a + «f) and w*({#) =0b -+ B(f), where «(f) and B(f) are
nuous, Z2r-periodic and bounded functions and since;

(a cos ns -I- b sin ns) = |a | sin (ns + &),

£y = tan—! (g), we have
a’N(CP*) W*) - bM(CP*, ’IU*) =

“2?1&;; f [e(s) — h(|a|sin (ns + &) + ()] |@ | sin (ns + &)ds

o

Point

conti-
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where y(s} = a(s) con ns + §(s)sin ns. By the change of variable np = ns 4 £,

6) aN(g*, w*) — bMi¢*, w*) =

Zn'-u}-?';;

e(p—%)—h(]&lsinnp.—}-y(p _%))15; sin np dp =

I
[\]
:I[r—-k
3
CREAL—

2n 27

- fe<p.—§n—°>sinnp.dp,ufh(mjsinmx—{—y(p—%)) sin mxdp.]

because of periodicity.

To prove the existence of a suitable r., we shall first prove the existence
of numbers ¢ > 0 and m; > 0 such that

aN(e*, w*) — bM(e*, w*) < — c[&\

whenever |a|=m,. For this purpose we note that by the change of variable
nwr = np—&,,

2T }

f e (p —%)sin np dp

0

f e(r) sin (nr - £, )dr
&

: |
bl !
n !

27

= f e(r) sin nr cos E,dr - J— e(r) cos nr sin &, dr { =

\‘ f
=|Boos§ -+ Asing,

2n

f e(p—%)sinnp dp

[

< VA" 4 B®

by the Schwarz inequality.
m

By ), for 0 << 3 < o
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@k+D T -5
f jh(icﬂ sin np 4 y(p-—%))sin np dp >
245
@145
f D sin np dp
25:3;—{—-8

d+ L

for k=0, 1, ..., (n — 1) whenever |a|= — ,
sin nd

where L = max |y{(p)|. (*) Si-
milarly, by (1), for all such 3 '

@kH)2Z—3
f h(fc_t}sinngx +y(p—%)>sinnpdpz
@) s
@)l —s
-[ Csin np dp
@448
or k=0, 1, ..., m— 1) whenever ;&izlf —,
sin 13

Thus, for all & small and positive,

2

fh(]&[sinnp—[—y(pw%"))sinngdgm

@T
n—1 -
:Eof h(ia{sinnu—}—y(p—%})sin np dp 4+
2111;1
@417
n—1 _
+k§0f h(lalsinnwY(u—%>)sinnudu2
[2fc+1)§

=
n

2_‘7
anDsinupdp—{—nf C sin np dp -+ Q3)
T

0

(*) It is casily shown that L can be chosen indipendent of ¢ aud w.
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(d-+ L) (L—¢
sinnd ’ sinnd
which vanishes at §=0. By (3) there exists m ;>0 such that

, where Q(8) is a continuous function

whenever |a| = max

@®) VA 4 B2 = 2(D — C) — mis.

Thus, if we choose 3, so small that [ Q(3)] <%,

27

©) fh<l7i1 sin mp + Y(P —%))sinnpdp<
>”(?@)D+"("* i)g-%-——?w— 0%

(@d+L) (L—c¢)
sin n€,’ sinnd,

whenever |@|>= max =m, so by (6), (7), (8) and (9),

aN(¢*, w*)— bM(y*, w*)

A TN P m -
<1a!(m>[VA2+B2—2(D-—0)+§ = —|a|s
whenever |a|=mi, where 6=z
4nn
Now
-, - 2572
la* |2 < |a]® + 2AaN (%, w*) — BM(e*, @)+ =+,
but

NaN(o* £3 # *_1_2H2 0
(a’ (@;w)_bM(CP;W)) H ‘;,;2_‘<

whenever |@|= max{m,, %%zﬂlg- Thus, [a*|< |a| whenever |a|=ms.

1 20}
fa*| < {ng o} 4<§) Huy + ?}2 = a4

for all |a| such that |a|<-ms, and therefore we have
la*| <7,

whenever |a|<<r, if we set 7y == (m; - my).
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Considering 6% we see that for |a|<rs,

B¢ < | g 4 2B

-

L2 ((Qﬂ)QH)

for all 8 € P. Hence if we define
K={® o) V/[8]<r: and |a|<r,)

where r, and r, are as above, K will be a closed, bounded and convex sub-
set of V such that F(K) < K. In order to show that F(K) is a relatively com-
pact set, we need only show that if

(F@®, a)=1{(0F, o))

is any sequence of F(K), there exists (/, v) € V and a subsequence {(6 , an)}
{(8*, a¥)} such that

lim |(9"' s c—t,, —(, ;)I:O.

k5o

The sequence {0} has the property that

[o=<r
and
ass|_vem
dt n
for n=1, 2, .... Hence, the sequence {6} is equicontinuous and uniformly

bounded, and therefore there exists a subsequence (6% ] of (67} and an IEP
such that

lim |6, — 7] =0

koo k

by Ascoli’s lemma. Since {a < r; for all %, there exists a subsequence {a,,

of { ,,&} and v€ R? such that
hm{a,nk—-—;;:o.

Thas,
lim |82, , aX )—@ v)]=0

T oo

Annali di Matematica 8
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and the set F(K) is relatively compact. By a previous remark, the proof is

THEOREM 1.2. - Let e(f) be a continuous 2n~periodic function. Assume that
Wx) is a conlinuous, bounded, and nonconstant function. For any positice in-
teger m, there does not exists a 2n-periodic solution of the differential equation

(S) " + nie - hix) = e(l)
if the condition
(10 V4% -+ B?*=2(sup hix) — inf h(x))

holds where

2 2n
4 =fe(s) cos ns ds, B=fe(s) sin ns ds.
0 0

Proor. - If we choose «, such that

B . y: |
COB oy == e e and sin g = ———"——,
A2 __I_ BZ
then

21

fe(s) sin (ns 4 «,)ds = V 4% 4+ B>

Q

Suppose «(t) is a 2n-periodic solution of (S). Then y(t)zw(t—— %") is a

2n-periodic solution of
v+ wy+ i) =e(t—22),
and hence

2n

f ie (! — %9) — h(y(t))} sin nt df =0,

Q

or equivalently,

In 27

fe(t—«%—o)sin ntdt:f Ryt)) sin nt di.
0

0

But, by the change of variable ns == nf — «,,
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2w n 2

f e(t —%‘-’) gin nt di = e(s) sin (ns + a ) ds = f e(8) sin (ns + a,) ds
0

Thus, by the choice cf «,,

27
fe(t_i;f)sm nt di = VI I B7.
0
Now,
@+
(11) f h{y(t)) sin nt dt <

2% =
n

(2k+1)§

< sup b(®@) f sin nf df — (g) sup h(x)

2%
and "
@)=
(12) f h{y(t)) sin nt di <
(2koo)) T
@k+2) 7
< int bfe) f sin nf df = —(%)nzf hiw)

@412

for k=0, 1, ..., (n 1). But if equality in (11) and (12) hold simultaneously
for some integer %,, 0 <<k,<(n — 1), then h/y(f)) must be discontinuouns at

t:(%f:_o;i-_})_n since %(x) is non-constant, Consequently, we have that

2%
V4’4 B*= f h(y(t) sin nt dt =

(2k+1)§

(»=1)
P Zf h(y 1) sin nt dt

k=0
wl
n
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er2) s
(n—1)
4 = f h(y(t) sin nt di <

]
@+ "

2 {2
<n (ﬁ) sup hx) + n (— ;&) iilf hx) =
= 2(sup k{x) — inf Alx)).

But this contradicts (10), and hence the theorem is proven.
From Theorem 1.1 and 1.2 we bave the following:

CoROLLARY. - Let e(f) be a continuous 2n-periodic function. Assume lhat
hx) is a continuous function such that the limits

lim A(x) = h{co)
and

lim 7(x) = h(— o)

S )

exisls and are finite. Assume further thal

h(— o0) << Ix) < hioc)
holds for all x and that
h(co) — Rf—o0) > 0.

There exisls a 2n-periodic solution of the differential equation
(S) 8" + nx 4 hix) = e()
if and only if

VA& + B < 2 (W(oe) — h{— o)

where

27 2n

A= f e(s) cos ns ds, B = J e(s) sin ds.

0 0
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2. - Equations with Symmetries.

TaeoreM 2.1. - Let e(t) be an odd, conlinuous and 2n-periodic function.
Assume that hix) is an odd, continuous, bowuded and nonconstant function and
that there exist numbers ¢, d, C and D (¢ < d) such that the inequalities (1)
and (2) hold. For any positive integer n, there exists an odd 2rm-periodic solu-
tion of the differential equation

S x4+ nlx 4 hix) = e(f)
if the condilion
(18) |B|<2(D— 0

holds where

i
B = f e(s) sin ns ds.
0

Proor. - Again, let us write equation (S) as the system (4) an introduce
new variables z; and #; by means of the transformation

€1 2]
L2 Zo .

As before, the transformed system is
sin ni

cos ni sin ni

— n sin nt 7 cos ni

#1 = [2, cos nt + 22 sin nt) — e(f) ]

®)

7 = [e(f) — h(z. cos ni + 2, sin nf)) eo;nt .

Define the sets
0=1{9/9€C(R, R, ¢ is odd and o) = ot + 2m)}
and

P={wwecCR, R), w is even and w({)= (- 2m)},
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where B is the set of real numbers. For any f() €0UP, set

[f]= max ).

Define V=0 X P X R and for (p, w, a)€ V, set

i w, o)l =|o|+|w|+al.
If for any (91, w1, a1 . (92, ws, @2)€ V and %3, 1, € B we define
i, w1, @) + Aa{pe, Wa, Go) == (A191 + XaPa, A1t + Aete, 201 + A202),
(V, | D) is a real normed linear space.
Let us define a mapping F of V into V as follows:

For (¢, w)€0 X P, set

N(CP) W) =

2
1 sin ns

o [R(p(s) cos ns - w(8) sin ns) — e(s)] ds.
0

Now for (¢, w, a)€ V, define Flp, w, a)= (¢*, w* a*) where

P*l) =
f (1n65) cos ms - w5 sin ) — e 21 — Vg, w) s,
f le(8) — h(p(s) cos ns 4 w(s) sin ns)] cos ns o ,
and
(14) a* = a — N(¢*, w¥).

Since ¢*0)=0 and ¢* is the primitive of an even continuous 2rn-periodie
funection with mean zero, *€0. Similarly, since w* is the primitive of an
odd continuons 2m-periodic function, w*€ P and hence, F' maps V into V.
As before F is continuous with respect to the norm |J.

Now, proceeding in a manner analogous to that used in the proof of
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Theorem 1.1, we shall find numbers #, #; and #; such that if
K={(o, w, a) € Vfjol<<r, |[wj<<r, and |a|<<rsi.

then F(K) & K and F(K) is relatively compact.
To show the existence of a suitable r;, we shall first show that N(p*, w*) >0
if >0 and large, and that N(¢* w*) <0 if ¢ <0 and negatively large. Now

N {':?*9 w$) =
b

f{h(@*(s) cos ns - w*(s) sin ns ) — e(s)] sin ns ds.

0

1
2nn

But w*s)=a -} «(s), where «(s) is a continuous 2rn-periodic function with
2nH

|a(s)| << ——, where H= max (|k(x)|+ |e(f)). Thus, since
n (= )ER?
|p*(t) | << é%g for all ¢,
2n
(15) N(o*, w*) = 9‘717@_[ (h(a sin ns + a(s)) — e(8)] sin ns ds =
0

2
1 ] _ . ‘
= 9mn f I{(a sin ns 4 «(s)) sin ns ds — B
4]

where a(s) = @*(s) cos ns + a(s) sin ns is continuous, 2r-periodic and bounded.
™

Now, by (2), for 0 <3 < o anda > 0
@) T —5 @k+1) T —8
f h{a sin ns - a(s)) sin ns ds = f D sip ns ds
i3 248
d+4 L ~
for k=0, 1, ..., (n— 1) whenever a_>_é—l,n—w§, where L= max|«s)|. (*) By
(1), for such 3 >0 and a >0
@it2)" —8 @+2) T8
f h{(a sin ns + a(s)) sin ns ds = f C sin ns ds
@—1) 45 @2 48

(*) L can be chosen indipendent of ¢ and w
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for k=20, i, ..., (n — 1) whenever aZsI;n——n;' Hence for &> 0 and small

and a > 0,

27
thMHn&+&@mmns%==

[

@r+2)T
=3 f h{a sin ns + x(s)) sin ns ds -+
kz°[2k+l)§
@2k42)~
+ "5 f (o sin ns + «(s)) sin ns ds =
= (2k+1)§
" 2

2nfl)sinnsds+nf Csin ns ds + @i(3)
g kid

@+1L (L—o
sinnd ' sinnd
vanishing at $=0. By (13), there exists # > O such that

(16) m— AD — C) < B < 2D — C)— m.

%, where @(8) is a continuous function

whenever ¢ = max

Choosing &, such that | Q.(3)] <’"—g,‘;we have
an

(a7 fh(a, sin ns 4 afs)) sin ns ds
1]
2 2 m
=mb—mm%

@+ L) (L—c)
gin nd; ' sin nd,

whenever azma‘xgal, $=bl. Thaus,” by (15), (16), and (17)

18 NG, 09> g [Z(D — 0)— g — 2D — C)+ m

whenever ¢ > b,.
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On the other hand, by (1), for 0 <& < % and a < 0

@+1)=—5 @k+1) T8
f h(a sin ns + a(s)) sin ns ds < f C sin ns ds
zk§+a 2k§+8

for k=0, 1, ..., (n — 1) whenever a< preen L . By (2), for such 3< 0 and a <0

@k+2)7 =5 (2k+2)§+s
f (o sin ns + o(s)) sin ns ds gf D sin ns ds
@ —1)"+5 @248
d+ L
for k=0, 1, ..., (n — 1) whenever g << ——"— . Hence, for >0 and small
sin (— nd)’
and a <0,
L =

fh{amnm+oc(s))smnsdsg,nszmnsds—{—nf Dsin nsds + §:(9)

T
n

c—L) @+1I
sin nd ’ sin (— nd

whenever a << min§ )E , where @;(3) is a continuous function

vanishing at &= 0. Choosing 3; such that |Q,(8;) [< , we have

27
19 J-h(asinsn—}—&(s))sinnsds<n(%>{7+n<—g-)1)+%=—-2(1)-— C)—i—?g

c—L) @+ L)

sinn8;’ sin(— ndy)

whenever a << min%-—— 82, g: b.. Thus, by (15), (16) and (19)

(20) N(g*, w’*‘)<ﬁ[—2(D G)+— — m 4 2D — 0)1 ln(—“%)<0
whenever @ << b;. Defining

b*:max(}bll, 152, %Jr 1),

we see by (14), (18), and (20)

ot < |al

Annali di Matematica 9
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whenever |a|=b* But |a*|<<|a| -+ | N(o*, w¥|<| +% for all ‘a’, and thus

if we define r;=b* —}—g, then

la*| <1
H 2
for |a|<< rs. Hence, if we set r1=%:;— and ry =17, —]—jng and define

K={(p, w, a)€ V/g]< m, |w|<r, and |a|=rs),

then F(K)< K. That F(K) is a relatively compact set follows as before by
Ascoli’s lemma. Hence, since K is a closed, bounded and convex set, we can
apply Schauder’s Fixed Point Theorem and obtain a fixed point of F. This
gives ss an odd 2rn-periodic solution of equation (S) which completes the proof.

TaroreM 2.2. ~ Lef ¢(f) be an even, conlinuous and 2n-periodic function.
Assume that hix) is a continuous, bounded, and nonconstant function and that
there exist numbers ¢, d, C and D (c <d) such that the inequalities (1) and
(2) hold. For any positive infeger n, there exisis an even 2w-periodic solution
of the differential equation

S x4 n?x - h{x) = e(f)

if the condition
4] <2(D— 0)
holds where

27
Azfe(scosns ds.
(1]

Proor. - Let us write equation (S) as the system (4) and then transform
system (4) info

gin nf
)

21 == [h(21 cos ni 4 2, sin nf) — e(f)]

®)
cos ni

22 = [e(f) — h{z; cos nt - 2, sin nt))

as it was done in the proof of Theorem 2.1. Further, let us define the real
normed linear space (V, |]) as we did in the previous proof.
Now, we shall define a mapping F of V into V as follows:
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For (o, w)€0 X P, set
My, w)=

CO8 KS
"

ds.

gl;t f [e(s) — hww(s) cos ns 4 ¢(s) sin ns)]

For (9, w, a)€ V, defiue F(p, w, a)= (¢*, w*, a* where

wHi)=a 4

12

f [P(w(s) cos ns - ¢(s) sin ns) — e(s))

0

sin ns

ds,

&

o* ) = f ({e (8) — B{(w(s) cos ns -+ 9(s) sin ns)]

3

cos ns

— % T’U)) ds)

and

a*=a + M(y*, w*).

Since w* is the primitive of an odd continuous 2r-periodic function, w*€P.
Similarly, since ¢*0)=0 and ¢* is the primitive of an even continuous 2r-
periodic function with mean zero, ¢* €0 and hence, F' maps V into V. Mo-
reover, F is continuous.

Now, making only slight modifications in the prof of Theorem 1.1, we
can find a set

K={(p, w, a)eV,/ |o]l<r, |w]l<r. and |a|<rs}

such that F(K) & K and that F(K) is relatively compact. Thus, since K is a
closed, bounded and convex set, we can apply Schauder’s Fixed Point Theo-
rem, which will yield the existence of the desired solution and hence comp-
letes the proof.

3. = A Unigueness Condition.

Applying the same argument as given in [6], we obtain

TaEOREM 3.1. Assume thal the hypothesis of Theorem 1.11 and (he condi-
tion (3) hold. If h is continuously differentioble and

@1) 0 < W(x)< 2n 1

holds for all x, then there exisis a nnigue 2u-periodic solution of (S).
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Proor. - The existence of at least one 2u- periodic solution of (S) fol-
lows from Theorem 1.1. If x(f) and wx.(f) were two distinet 2w-periodic solu-
tions of (8), the difference y(f) = xs(f) — x1(f) would be a nontrivial 2n-periodic
solution of the linear differential equation

y' + py =0,
where
1
ity = + f Wan(t) -+ s(alt) — w()ds.
4]
From (21)
(22) n* < p{t) < (n 4 17,

and since p(f) = p(¢ 4- 2n), p(f) has a positive lower bound. Therefore there
exists a number ¢ such that ylc)=ylc-+ 2r)=0, y(c) =0. By (22) and the
Sturm comparison theorem, y(f) has exactly 2n zeros on the open interval
(¢, ¢ + 2x) contradicting y'(c) = y'c 4 2xn). This contradiction proves the theorem.
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