Bounded perturbations of forced harmonic oscillators at resonance.

A. C. Lazer (*) and D. E. Leach (Cleveland) (**)

Abstract

Summary. - Let e be continuous and 2π-periodic, h continuous and bounded, aud $n>0$ an integer. Sufficient conditions for the existence of 2π-periodic solutions of $x^{\prime \prime}+n^{2} x+h(x)=$ $=e(t)$ are given. The proofs are based on a modification of Cesari's method and the Schauder fixed point theorem.

Introduction.

Let $e(t)$ be continuous and 2π-periodic. It is well known that if ω is not an integer, then the differential equation

$$
x^{\prime \prime}+\omega^{2} x=e(t)
$$

always has a 2π-periodic solution. In extending a recent result due to LoUD [7], the second author, in his dissertation, has established the following:

If g is continuously differentiable, if for some integer n

$$
(n-1)^{2}<k_{1} \leq g^{\prime}(x) \leq k_{2}<n^{2}
$$

holds for all x, and if h is continuous and bounded, then the differential equation

$$
x^{\prime \prime}+g(x)+h(x)=e(t)
$$

has a 2π-periodic solution.
This result has led us to consider the differential equation

$$
\begin{equation*}
x^{\prime \prime}+n^{2} x+h(x)=e(l) \tag{S}
\end{equation*}
$$

where h is as above and n is a positive integer. The case $n=0$ has already been considered by the first author. It follows from the result in [4] that if there exists a number b such that $x(h(x)-m) \geq 0$ for $|x| \geq b$, where m is the mean value of e, then for $n=0(S)$ has a 2π-periodic solution. The technique used in the proof of this result will also be used here. It is closely related to a techique used by the first author in [5] which in turn was motivated
$\left(^{*}\right)$ Author is partially supported by N. S. F. under Grant 7447.
(**) Entrata in Redazione il 26 agosto 1968.
by a method developed by Cesari and his co-workers (see [1], [3]).
In the following we give conditions which are sufficient and conditions which are necessary for (S) to have a 2π-periodic solution. If it is assumed that $\lim _{x \rightarrow \infty} h(x)$ and $\lim _{x \rightarrow-\infty} h(x)$ exist and that $h(-\infty) \leq h(x) \leq h(\infty)$, these con ditions will coincide to yield a necessary and sufficient condition. We will also give sufficient conditions for (S) to possess odd 2π-periodic solutions and even 2π-periodic solutions. We also consider uniqueness.

The hypothesis of each of our theorems will involve the quantities

$$
A=\int_{0}^{2 \pi} e(s) \cos n s d s, \quad B=\int_{0}^{2 \pi} e(s) \sin n s d s
$$

This is not too surprising since for the case $h(x) \equiv 0,(S)$ will possess 2π-pe. riodic solutions if and only if $A=B=0$. In fact, if $h(x) \equiv 0$ and this condition is not satisfied, no solution of (S) is bounded (the phenomena of resonance); while if this condition holds, every solution is 2π-periodic.

In the paper [8], mainly due to P. 0. Frederickson, perturbations of the harmonic oscillator involving derivative terms are considered. In the proof of Theorem 1.2 we borrow a technique from this paper.

1. - The General Case.

Theorem 1.1. - Let e(t) be a continuous 2π-periodic fuuction. Assume that $h(x)$ is a continuous, bounded and nonconstant functiou and that there exist numbers c, d, C and $D(c<d)$ such that

$$
\begin{equation*}
h(x) \leq C \text { for } x \leq c \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
h(x) \geq D \quad \text { for } \quad x \geq d . \tag{2}
\end{equation*}
$$

For any positive integer n, there exists a 2π-periodic solution of the differen. tial equation

$$
\begin{equation*}
x^{\prime \prime}+n^{2} x+h(x)=e(t) \tag{S}
\end{equation*}
$$

if the condition

$$
\begin{equation*}
\sqrt{A^{2}+B^{2}}<2(D-C) \tag{3}
\end{equation*}
$$

holds where

$$
A=\int_{0}^{2 \pi} e(s) \cos n s d s, \quad B=\int_{0}^{2 \pi} e(s) \sin n s d s
$$

Proof. - Let us write equation (S) as the system

$$
\begin{align*}
& x_{1}^{\prime}=x_{2} \tag{4}\\
& x_{2}^{\prime}=-n^{2} x_{1}-h\left(x_{1}\right)+e(t)
\end{align*}
$$

and introdnce new variables z_{1} and z_{2} by means of the transformation

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{lr}
\cos n t & \sin n t \\
-n \sin n t & n \cos n t
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right] .
$$

The transformed system is

$$
z_{1}^{\prime}=\left[h\left(z_{1} \cos n t+z_{2} \sin n t\right)-e(t)\right] \frac{\sin n t}{n}
$$

$$
\begin{equation*}
z_{2}^{\prime}=\left[e(t)-h\left(z_{1} \cos n t+z_{2} \sin n t\right)\right] \frac{\cos n t}{n} \tag{5}
\end{equation*}
$$

Let R denote the reals and define

$$
P=\left\{\bar{\theta} / \bar{\theta} \in O\left(R, R^{2}\right) \quad \text { and } \quad \bar{\theta}(t) \equiv \bar{\theta}(l+2 \pi)\right\} .
$$

For $\bar{\theta} \in P, \bar{\theta}=(\varphi, w)$, set

$$
\|\bar{\theta}\|=\max _{t} \sqrt{\varphi(t)^{2}+w\left(t^{2}\right.} .
$$

Define $V=P \times R^{2}$ and for $(\bar{\theta}, \bar{a}) \in V$, set

$$
|(\bar{\theta}, \bar{a})|=\|\bar{\theta}\|+|\bar{a}|,
$$

where $|\bar{a}|=\sqrt{a^{2}+b^{2}}$ if $\bar{a}=(a, b)$. Now, if for any $\left(\bar{\theta}_{1}, \bar{a}_{1}\right),\left(\bar{\theta}_{2}, \bar{a}_{2}\right) \in V$ and $\lambda_{1}, \lambda_{2} \in R$ we define

$$
\lambda_{1}\left(\bar{\theta}_{1}, \bar{a}_{1}\right)+\lambda_{2}\left(\bar{\theta}_{2}, \bar{a}_{2}\right)=\left(\lambda_{1} \bar{\theta}_{1}+\lambda_{2} \bar{\theta}_{2}, \lambda_{1} \bar{a}_{1}+\lambda_{2} \bar{a}_{2}\right.
$$

then $(V, \|)$ is a real normed linear space.
Let us define a mapping F of V into V as follows:
For $(\varphi, w) \in P$, set

$$
\begin{aligned}
& M(\varphi, w) \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}[h(\varphi(s) \cos n s+w(s) \sin n s)-e(s)] \frac{\sin n s}{n} d s
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathrm{N}(\varphi, w) \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}[e(s)-h(\varphi(s) \cos n s+w(s) \sin n s)] \frac{\cos n s}{n} d s
\end{aligned}
$$

Now for $(\bar{\theta}, \bar{a}) \in V, \bar{\theta}=(\varphi, w), \bar{a}=(a, b)$ define

$$
\boldsymbol{F}(\bar{\theta}, \bar{a})=\left(\bar{\theta}^{*}, \bar{a}^{*}\right), \bar{\theta}^{*}=\left(\varphi^{*}, w^{*}\right), \bar{a}^{*}=\left(a^{*}, b^{*}\right)
$$

where

$$
\begin{aligned}
& \varphi^{*}(t) \equiv a \\
& +\int_{0}^{t}\left([h(\varphi(s) \cos n s+w(s) \sin n s)-e(s)] \frac{\sin n s}{n}-M(\varphi, w)\right) d s \\
& w^{*}(t) \equiv b \\
& +\int_{0}^{t}\left([e(s)-h(\varphi(s) \cos n s+w(s) \sin n s)] \frac{\cos n s}{n}-N(\varphi, w)\right) d s \\
& \quad a^{*}=a+N\left(\varphi^{*}, w^{*}\right)
\end{aligned}
$$

and

$$
\left.b^{*}=b-M \varphi^{*}, w^{*}\right)
$$

Since φ^{*} and w^{*} are primitives of continuous 2π-periodic functions with mean zero, φ^{*} and w^{*} are continuous 2π-periodic functions and hence, \boldsymbol{F} maps V into V. Farthermore, it is easily shown that F is continuous with respect to the norm \|.

Suppose $(\overline{\widehat{\theta}}, \overline{\hat{a}})=(\widehat{(\varphi}, \widehat{w}),(\widehat{a}, \widehat{b}))$ is a fixed point of F. Since $\bar{a}=\widehat{a}^{*}$ and $\widehat{b}=\bar{b}^{*}$, $M\left(\overleftarrow{\varphi}^{*}, \bar{w}^{*}\right)=N\left(\bar{\varphi}^{*}, \bar{w}^{*}\right)=0$ and so

$$
\begin{aligned}
& \bar{\varphi}(t) \equiv \varphi^{*}(t) \equiv \bar{a} \\
& +\int_{0}^{t}\left[h\left(\bar{\varphi}(s) \cos n s+\overline{w^{\prime}}(s) \sin n s\right)-e(s)\right] \frac{\sin n s}{n} d s
\end{aligned}
$$

and

$$
\begin{aligned}
& \bar{w}(t) \equiv \widehat{w^{*}}(t) \equiv \widehat{b} \\
& +\int_{0}^{t}[e(s)-h(\widehat{\varphi(s)} \cos n s+\bar{w}(s) \sin n s)] \frac{\cos n s}{n} d s
\end{aligned}
$$

Consequently, $\operatorname{col}(\widehat{\varphi}, \widehat{w})$ is a 2π-periodic solution of $(\overline{5})$ and $\widehat{x}(t)=\widehat{\varphi}(t) \cos n t+\widehat{w}(t)$ $\sin n t$ is a 2π-periodic solution of equation (S). Hence, to prove the theorem, it is sufficient to show that F has a fixed point. To this end we shall establish the existence of numbers r_{1} and r_{2} such that if

$$
K=\left\{(\bar{\theta}, \bar{a}) \in V /\|\bar{\theta}\| \leq r_{1} \quad \text { and } \quad|\bar{a}| \leq r_{2}\right\}
$$

then $F(K) \subseteq K$ and $F(K)$ is a relatively compact set. Since K is obviously closed, bounded and convex, it will follow from Schauder's Fixed Point Theorem as given in [2] that F has a fixed point.

Now,

$$
\begin{aligned}
& |\bar{a}|^{2}= \\
& |\bar{a}|^{2}+2\left(a N\left(\varphi^{*}, w^{*}\right)-b M\left(\varphi^{*}, w^{*}\right)\right)+N\left(\varphi^{*}, w^{*}\right)^{2}+M\left(\varphi^{*}, w^{*}\right)^{2}
\end{aligned}
$$

$\operatorname{But}\left(N\left(\varphi^{*}, w^{*}\right)^{2}+M\left(\varphi^{*}, w^{*}\right)^{2}\right) \leq \frac{2 H^{2}}{n^{2}}$, where

$$
(|h(x)|+|e(t)|) \leq H \quad \text { for } \quad(x, t) \in(-\infty, \infty) \times[0,2 \pi]
$$

and so

$$
\left|\bar{a}^{*}\right|^{2} \leq|\vec{a}|^{2}+2\left(a N\left(\varphi^{*}, w^{*}\right)-b M\left(\varphi^{*}, w^{*}\right)\right)+\frac{2 H^{2}}{n^{2}}
$$

By definition

$$
\begin{aligned}
& a N\left(\varphi^{*}, w^{*}\right)-b M\left(\varphi^{*}, w^{*}\right)= \\
& \frac{1}{2 \pi n} \int_{0}^{2 \pi}\left[e(s)-h\left(\varphi^{*}(s) \operatorname{con} n s+w^{*}(s) \sin n s\right)\right](a \cos n s+b \sin n s) d s
\end{aligned}
$$

However, $\varphi^{*}(t)=a+\alpha(t)$ and $w^{*}(t)=b+\beta(t)$, where $\alpha(t)$ and $\beta(t)$ are continuous, 2π-periodic and bounded functions and since;

$$
(a \cos n s+b \sin n s)=|\vec{a}| \sin \left(n s+\xi_{0}\right)
$$

$\xi_{2}=\tan ^{-1}\left(\frac{a}{b}\right)$, we have

$$
\begin{aligned}
& a N\left(\varphi^{*}, w^{*}\right)-b M\left(\varphi^{*}, w^{*}\right)= \\
& \frac{1}{2 \pi n} \int_{0}^{2 \pi}\left[e(s)-h\left(|\bar{a}| \sin \left(n s+\xi_{0}\right)+\gamma(s)\right]|\bar{a}| \sin \left(n s+\xi_{0}\right) d s\right.
\end{aligned}
$$

where $\gamma(s)=\alpha(s) \operatorname{con} n s+\beta(s) \sin n s$. By the change of variable $n \mu=n s+\xi_{0}$,

$$
\begin{align*}
& a N\left(\varphi^{*}, w^{*}\right)-b M\left(\varphi^{*}, w^{*}\right)= \tag{6}\\
& =\frac{1}{2 \pi n} \int_{\frac{\xi_{0}}{n}}^{2 \pi+\frac{\xi_{0}}{n}}\left[e\left(\mu-\frac{\xi_{0}}{n}\right)-h\left(|\bar{a}| \sin n \mu+\gamma\left(\mu-\frac{\xi_{0}}{n}\right)\right)|\bar{a}| \sin n \mu d \mu=\right. \\
& \left.=\frac{|a|}{2 \pi n} \int_{0}^{2 \pi} e\left(\mu-\frac{\xi_{0}}{n}\right) \sin n \mu d \mu-\int_{0}^{2 \pi} h\left(|\bar{a}| \sin n \mu+\gamma\left(\mu-\frac{\xi_{0}}{n}\right)\right) \sin n \mu d \mu\right]
\end{align*}
$$

because of periodicity.
To prove the existence of a suitable r_{2}, we shall first prove the existence of numbers $\sigma>0$ and $m_{1}>0$ such that

$$
a N\left(\varphi^{*}, w^{*}\right)-b M\left(\varphi^{*}, w^{*}\right)<-\sigma|\bar{a}|
$$

whenever $|\bar{a}| \geq m_{1}$. For this purpose we note that by the change of variable $n r=n \mu-\xi_{0}$,

$$
\begin{aligned}
& \left|\int_{0}^{2 \pi} e\left(\mu-\frac{\xi_{0}}{n}\right) \sin n \mu d \mu\right|=\left|\int_{-\frac{\xi_{0}}{n}}^{2 \pi-\frac{\xi_{0}}{n}} e(r) \sin \left(n r+\xi_{0}\right) d r\right|= \\
& \quad=\left|\int_{0}^{2 \pi} e(r) \sin n r \cos \xi_{0} d r+\int_{0}^{2 \pi} e(r) \cos n r \sin \xi_{0} d r\right|= \\
& \quad=\left|B \cos \xi_{0}+A \sin \xi_{0}\right|
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\left|\int_{0}^{2 \pi} e\left(\mu-\frac{\xi_{0}}{n}\right) \sin n \mu d \mu\right| \leq \sqrt{A^{2}+B^{2}} \tag{7}
\end{equation*}
$$

by the Schwarz inequality.

$$
\text { By (2), for } 0<\delta<\frac{\pi}{2 n}
$$

$$
\begin{aligned}
& \int_{2 k \frac{\pi}{n}+\delta}^{(2 k+1) \frac{\pi}{n}-\delta} \eta\left(|\bar{a}| \sin n \mu+\gamma\left(\mu-\frac{\xi_{0}}{n}\right)\right) \sin n \mu d \mu \geq \\
& \int_{2 k \frac{\pi}{n}+\delta}^{(2 k+1) \frac{\pi}{n}+\delta} D \sin n \mu d \mu
\end{aligned}
$$

for $k=0,1, \ldots,(n-1)$ whenever $|\bar{a}| \geq \frac{d+L}{\sin n \delta}$, where $L=\max _{\mu}|\gamma(\mu)| .\left({ }^{*}\right)$ Si. milarly, by (1), for all such δ

$$
\begin{aligned}
& \int_{(2 k+1) \frac{\pi}{n}+\delta}^{\left(2 k+22 \frac{\pi}{n}-\delta\right.} h\left(|\bar{a}| \sin n \mu+\gamma\left(\mu-\frac{\xi_{0}}{n}\right)\right) \sin n \mu d \mu \geq \\
& \int_{(2 k+1) \frac{\pi}{n}+\delta}^{(2 k+2) \frac{\pi}{n}-\delta} C \sin n \mu d \mu
\end{aligned}
$$

or $k=0,1, \ldots,(n-1)$ whenever $|\bar{a}| \geq \frac{L-c}{\sin n \bar{\delta}}$.
Thus, for all δ small and positive,

$$
\begin{aligned}
& \int_{0}^{2 \pi} h\left(|\bar{a}| \sin n \mu+\gamma\left(\mu-\frac{\xi_{0}}{n}\right)\right) \sin n \mu d \mu= \\
& \quad=\sum_{k=0}^{n-1} \int_{2 \pi \frac{\pi}{n}}^{(2 k+1) \frac{\pi}{n}} h\left(|\bar{a}| \sin n \mu+\gamma\left(\mu-\frac{\xi_{0}}{n}\right)\right) \sin n \mu d \mu+ \\
& +\sum_{k=0}^{(2 k+1) \frac{\pi}{n}} \int_{(2 k+1) \frac{\pi}{n}}^{n-1} n\left(|\bar{a}| \sin n \mu+\gamma\left(\mu-\frac{\xi_{0}}{n}\right)\right) \sin n \mu d \mu \geq \\
& \geq n \int_{0}^{\frac{\pi}{n}} D \sin u \mu d \mu+n \int_{\frac{\pi}{n}}^{\frac{2 \pi}{n}} C \sin n \mu d \mu+Q(\delta)
\end{aligned}
$$

(*) It is easily shown that L can be chosen indipendent of φ aud w.

Whenever $|a| \geq \max \left\{\frac{(d+L)}{\sin n \delta}, \frac{(L-c)}{\sin n \bar{\delta}}\right\}$, where $Q(\delta)$ is a continuous function which vanishes at $\delta=0 . \mathrm{By}(3)$ there exists $m_{2}>0$ such that

$$
\begin{equation*}
\sqrt{A^{2}+B^{2}}=2(D-C)-m_{2} \tag{8}
\end{equation*}
$$

Thus, if we choose δ_{0} so small that $\left|Q\left(\delta_{0}\right)\right|<\frac{m_{2}}{2}$,

$$
\begin{align*}
& \int_{0}^{2 \pi} h\left(|\vec{a}| \sin n \mu+\gamma\left(\mu-\frac{\xi_{0}}{n}\right)\right) \sin n \mu d \mu< \tag{9}\\
& \quad>n\left(\frac{2}{n}\right) D+n\left(-\frac{2}{n}\right) C-\frac{m_{2}}{2}=2(D-C)-\frac{n_{2}}{2}
\end{align*}
$$

whenever $|\bar{a}| \geq \max \left\{\frac{(d+L)}{\sin n \xi_{0}}, \frac{(L-c)}{\sin n \delta_{0}}\right\}=m_{1}$, so by (6), (7), (8) and (9),

$$
\begin{aligned}
& a N\left(\varphi^{*}, w^{*}\right)-b M\left(\varphi^{*}, w^{*}\right) \\
& \quad<|\bar{a}|\left(\frac{1}{2 \pi n}\right)\left[\sqrt{A^{2}+B^{2}}-2(D-C)+\frac{m_{2}}{2}|=-|\bar{a}| \sigma\right.
\end{aligned}
$$

whenever $|\bar{a}| \geq m_{1}$, where $\sigma=\frac{m m_{2}}{4 \pi n}$.
Now

$$
\left.\left|\bar{a}^{*}\right|^{2} \leq|\bar{a}|^{2}+2\left(a N\left(\varphi^{*}, w^{*}\right)\right)-b M\left(\varphi^{*}, u^{*}\right)\right)+\frac{2 H^{2}}{n^{2}}
$$

but

$$
2\left(a N\left(\varphi^{*}, w^{*}\right)-b M\left(\varphi^{*}, w^{*}\right)\right)+\frac{2 H^{2}}{n^{2}}<0
$$

whenever $|\bar{a}| \geq \max \left\{m_{1}, \frac{H_{2}}{n^{2} \sigma}\right\}=m_{3}$. Thus, $\left|\overline{a^{*}}\right| \leq|\bar{a}|$ whenever $|\bar{a}| \geq m_{3}$.

$$
a^{*} \left\lvert\, \leq\left[n_{3}^{2}+4\left(\frac{1}{n}\right) H m_{3}+\frac{2 H^{2}}{n^{2}}\right]^{\frac{1}{2}}=m_{4}\right.
$$

for all $|\bar{a}|$ such that $|\bar{a}| \leq m_{3}$, and therefore we have

$$
\left|\bar{a}^{*}\right| \leq r_{2}
$$

whenever $|\bar{a}| \leq r_{2}$ if we set $r_{2}=\left(m_{3}+m_{4}\right)$.

Considering $\bar{\theta}^{*}$, we see that for $|\bar{a}| \leq r_{2}$,

$$
\left\|\bar{\theta}^{*}\right\| \leq\left\{r_{2}^{2}+\frac{4 r_{2}(2 \pi) 2 H}{n}+2\left(\frac{(2 \pi) 2 H}{n}\right)^{2}\right\}^{\frac{1}{2}}=r_{1}
$$

for all $\bar{\theta} \in P$. Hence if we define

$$
\left.K=\mid \bar{\theta}, \bar{a}) \in V / \| \theta \mid \leq r_{1} \text { and }|\bar{a}| \leq r_{2}\right\}
$$

where r_{1} and r_{2} are as above, K will be a closed, bounded and convex subset of V such that $F(K) \subseteq K$. In order to show that $F(K)$ is a relatively compact set, we need only show that if

$$
\left\{F\left(\bar{\theta}_{n}, \bar{a}_{n}\right)=\left\{\left(\bar{\theta}_{n}^{*}, \bar{a}_{n}^{*}\right)\right\}\right.
$$

is any sequence of $F(K)$, there exists $(\bar{l}, \bar{v}) \in V$ and a subsequence $\left\{\left(\bar{\theta}_{n_{k}}^{*}, \bar{a}_{n_{k}}^{*}\right)\right\}$ of $\left.\left\{\bar{\theta}_{n}^{*}, \bar{a}_{n}^{*}\right)\right\}$ such that

$$
\lim _{k \rightarrow \infty}\left|\left(\bar{\theta}_{n_{k}}^{*}, \bar{a}_{n_{k}}^{*}\right)-(\bar{l}, \bar{v})\right|=0
$$

The sequence $\left\{\bar{\theta}_{n}^{*}\right\}$ has the property that

$$
\left\|\bar{\theta}_{n}^{*}\right\| \leq r_{1}
$$

and

$$
\left\|\frac{d \bar{\theta}_{n}^{*}}{d t}\right\| \leq \frac{\sqrt{8} H}{n}
$$

for $n=1,2, \ldots$ Hence, the sequence $\left\{\bar{\theta}_{n}^{*}\right\}$ is equicontinuous and uniformly bounded, and therefore there exists a subsequence $\left\{\bar{\theta}_{n_{k}}^{*}\right\}$ of $\left\{\bar{\theta}_{n}^{*}\right\}$ and an $\bar{l} \in P$ such that

$$
\lim _{k \rightarrow \infty}\left\|\bar{\theta}_{n_{k}}-\bar{l}\right\|=0
$$

by Ascoli's lemma. Since $\left|\bar{a}_{n_{k}}^{*}\right| \leq r_{2}$ for all k, there exists a subsequence $\left\{\bar{\alpha}_{n_{k_{r}}}\right\}$ of $\left\{\bar{a}_{n_{t}^{*}}^{*}\right\}$ and $\bar{v} \in R^{2}$ such that

$$
\lim _{r \rightarrow \infty}\left|\bar{a}_{n_{k_{r}}}^{*}-\bar{v}\right|=0 .
$$

Thus,

$$
\lim _{r \rightarrow \infty}\left|\left(\bar{\theta}_{n_{k_{r}}}^{*}, \bar{a}_{n_{k_{r}}}^{*}\right)-(\bar{l}, \bar{v})\right|=0
$$

and the set $F(K)$ is relatively compact. By a previous remark, the proof is
Theorem 1.2. - Let e(t) be a continuous 2π-periodic function. Assume that $h(x)$ is a continuous, bounded, and nonconstant function. For any positice in. teger n, there does not exists a 2π-periodic solution of the differential equation

$$
\begin{equation*}
x^{\prime \prime}+n^{2} x+h(x)=e(l) \tag{S}
\end{equation*}
$$

if the condition

$$
\begin{equation*}
\sqrt{A^{2}+B^{2}} \geq 2\left(\sup _{x} h(x)-\inf _{x} h(x)\right) \tag{10}
\end{equation*}
$$

holds where

$$
A=\int_{0}^{2 \pi} e(s) \cos n s d s, \quad B=\int_{0}^{2 \pi} e(s) \sin n s d s
$$

Proof. - If we choose α_{0} such that

$$
\cos \alpha_{0}=\frac{B}{\sqrt{A^{2}+B^{2}}} \quad \text { and } \quad \sin \alpha_{0}=\frac{A}{\sqrt{A^{2}+B^{2}}},
$$

then

$$
\int_{0}^{2 \pi} e(s) \sin \left(n s+\alpha_{0}\right) d s=\sqrt{A^{2}+B^{2}}
$$

Suppose $x(t)$ is a 2π-periodic solution of (S). Then $y(t) \equiv x\left(t-\frac{\alpha_{0}}{n}\right)$ is a 2π-periodic solution of

$$
y^{\prime \prime}+n^{2} y+h(y)=e\left(t-\frac{\alpha_{0}}{n}\right)
$$

and hence

$$
\int_{0}^{2 \pi}\left[e\left(t-\frac{\alpha_{0}}{n}\right)-h(y(t))\right] \sin n t d t=0
$$

or equivalently,

$$
\int_{0}^{2 \pi} e\left(t-\frac{\alpha_{0}}{n}\right) \sin n t d t=\int_{0}^{2 \pi} h(y(t)) \sin n t d t
$$

But, by the change of variable $n s=n t-\alpha_{0}$,

$$
\int_{0}^{2 \pi} e\left(t-\frac{\alpha_{0}}{n}\right) \sin n t d t=\int_{-\frac{\alpha_{0}}{n}}^{2 \pi-\frac{\alpha^{0}}{n}} e(s) \sin \left(n s+\alpha_{0}\right) d s=\int_{0}^{2 \pi} e(s) \sin \left(n s+\alpha_{0}\right) d s
$$

Thus, by the choice of α_{0},

$$
\int_{0}^{2 \pi} e\left(t-\frac{\alpha_{0}}{n}\right) \sin n t d t=\sqrt{A^{2}+B^{2}}
$$

Now,

$$
\begin{align*}
& \int_{2 k \frac{\pi}{n}}^{(2 k+1) \frac{\pi}{n}} h(y(t)) \sin n t d t \leq \\
& \quad \leq \sup _{x} h(x) \int_{2 k \frac{\pi}{n}}^{(2 k+1) \frac{\pi}{n}} \sin n t d t=\left(\frac{n}{2}\right) \sup _{x} h(x) \tag{11}
\end{align*}
$$

and

$$
\begin{align*}
& \int_{(2 k \times 1) \frac{\pi}{n}}^{(2 h+2) \frac{\pi}{n}} h(y(t)) \sin n t d t \leq \\
& \quad \leq \inf _{x} h(x) \int_{(2 k+1) \frac{\pi}{n}}^{(2 k+2) \frac{\pi}{2}} \sin n t d t=-\left(\frac{2}{n}\right) \inf _{x} h(x) \tag{12}
\end{align*}
$$

for $k=0,1, \ldots,\left(\begin{array}{ll}n & 1) \text {. But if equality in (11) and (12) hold simultaneously }\end{array}\right.$ for some integer $k_{0}, 0 \leq k_{0} \leq(n-1)$, then $\left.h y(t)\right)$ must be discontinuous at $t=\frac{\left(2 k_{0}+1\right) \pi}{n}$ since $h(x)$ is non-constant. Consequently, we have that

$$
\begin{aligned}
& \sqrt{A^{2}+B^{2}}=\int_{0}^{2 \pi} h(y(t)) \sin n t d t= \\
& \left.\quad=\sum_{k=0}^{\sum_{k 2}{ }^{(n)}} \int^{(2 k+1) \frac{\pi}{n}} h(y, t)\right) \sin n t d t+
\end{aligned}
$$

$$
\begin{aligned}
& +\stackrel{(n-1)}{\Sigma}_{k=0}^{(2 k+2) \frac{\pi}{n}} \int_{(2 k+1) \frac{\pi}{n}} h(y(t)) \sin n t d t< \\
& <n\left(\frac{2}{n}\right) \sup _{x} h(x)+n\left(-\frac{2}{n}\right) \inf _{x} h(x)= \\
& =2\left(\sup _{x} h(x)-\inf _{x} h(x)\right) .
\end{aligned}
$$

But this contradicts (10), and hence the theorem is proven.
From Theorem 1.1 and 1.2 we bave the following:
Corollary. - Let e(t) be a continuous 2π-periodic function. Assume that $h(x)$ is a continuous function such that the limits

$$
\lim _{x \rightarrow \infty} h(x)=h(\infty)
$$

and

$$
\lim _{x \rightarrow-\infty} h(x)=h(-\infty)
$$

exists and are finite. Assume further that

$$
h(-\infty) \leq h(x) \leq h(\infty)
$$

holds for all x and that

$$
h(\infty)-h(-\infty)>0 .
$$

There exists a 2π-periodic solution of the differential equation

$$
\begin{equation*}
s^{\prime \prime}+n^{2} x+h(x)=e(t) \tag{S}
\end{equation*}
$$

if and only if

$$
\sqrt{A^{2}+B^{2}}<2(h(\infty)-h(-\infty))
$$

where

$$
A=\int_{0}^{2 \pi} e(s) \cos n s d s, \quad B=\int_{0}^{2 \pi} e(s) \sin d s .
$$

2. - Equations with Symmetries.

Theorem 2.1. - Let e(t) be an odd, continuous and 2π-periodic function. Assume that $h(x)$ is an odd, continuous, bouuded and nonconstant function and that there exist numbers c, d, C and $D(c<d)$ such that the inequalities (1) and (2) hold. For any positive integer n, there exists an odd 2π-periodic solution of the differential equation

$$
\begin{equation*}
x^{\prime \prime}+n^{2} x+h(x)=e(t) \tag{S}
\end{equation*}
$$

if the condition

$$
\begin{equation*}
|B|<2(D-C) \tag{13}
\end{equation*}
$$

holds where

$$
B=\int_{0}^{2 \pi} e(s) \sin n s d s
$$

Proof. - Again, let us write equation (S) as the system (4) an introduce new variables z_{1} and z_{2} by means of the transformation

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{lr}
\cos n t & \sin n t \\
-n \sin n t & n \cos n t
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right] .
$$

As before, the transformed system is

$$
\left.z_{1}^{\prime}=\left[z_{1} \cos n t+z_{2} \sin n t\right)-e(t)\right] \frac{\sin n t}{n}
$$

(5)

$$
z_{2}^{\prime}=\left[e(t)-h\left(z_{1} \cos n t+z_{2} \sin n t\right)\right] \frac{\cos n t}{n} .
$$

Define the sets

$$
0=\{\varphi / \varphi \in C(R, R), \quad \varphi \text { is odd and } \varphi(t) \equiv \varphi(t+2 \pi)\}
$$

and

$$
P=\{w / w \in C(R, R), \quad w \text { is even and } \quad w(t) \equiv w(t+2 \pi)\}
$$

where R is the set of real numbers. For any $f(t) \in 0 \cup P$, set

$$
\|f\|=\max _{t}|f(t)| .
$$

Define $V=0 \times P \times R$ and for $(\varphi, w, a) \in V$, set

$$
|(\varphi, w, a)|=\|\varphi\|+\|w\|+|a| .
$$

If for any $\left(\varphi_{1}, w_{1}, a_{1},\left(\varphi_{2}, w_{2}, a_{2}\right) \in V\right.$ and $\lambda_{1}, \lambda_{2} \in R$ we define

$$
\lambda_{1}\left(\varphi_{1}, w_{1}, a_{1}\right)+\lambda_{2}\left(\varphi_{2}, w_{2}, a_{2}\right)=\left(\lambda_{1} \varphi_{1}+\lambda_{2} \varphi_{2}, \lambda_{1} w_{1}+\lambda_{2} w_{2}, \lambda_{1} a_{1}+\lambda_{2} a_{2}\right),
$$

$(V, \|)$ is a real normed linear space.
Let us define a mapping F of V into V as follows:
For $(\varphi, w) \in 0 \times P$, set

$$
\begin{aligned}
& N(\varphi, w)= \\
& \frac{1}{2 \pi} \int_{0}^{2 \pi}[h(\varphi(s) \cos n s+w(s) \sin n s)-e(s)] \frac{\sin n s}{n} d s .
\end{aligned}
$$

Now for $(\varphi, w, a) \in V$, define $F(\varphi, w, a)=\left(\varphi^{*}, w^{*}, a^{*}\right)$ where

$$
\begin{aligned}
& \varphi^{*}(t)= \\
& \int^{i}\left([h(\varphi(s) \cos n s+w(s) \sin n s)-e(s)] \frac{\sin n s}{n}-N(\varphi, w)\right) d s \\
& \quad w^{*}(t)=a+ \\
& \quad \int_{0}^{t}[e(s)-h(\varphi(s) \cos n s+w(s) \sin n s)] \frac{\cos n s}{n} d s
\end{aligned}
$$

and

$$
\begin{equation*}
a^{*}=a-N\left(\varphi^{*}, w^{*}\right) . \tag{14}
\end{equation*}
$$

Since $\varphi^{*}(0)=0$ and φ^{*} is the primitive of an even continuous 2π-periodic function with mean zero, $\varphi^{*} \in 0$. Similarly, since w^{*} is the primitive of an odd continuous 2π-periodic function, $w^{*} \in P$ and hence, F maps V into V. As before F is continuous with respect to the norm ||.

Now, proceeding in a manner analogous to that used in the proof of

Theorem 1.1, we shall find numbers r_{1}, r_{2} and r_{3} such that if

$$
K=\left\{(\varphi, w, a) \in V /\|\varphi\| \leq r_{1},\|w\| \leq r_{2} \quad \text { and } \quad|a| \leq r_{3}\right\}
$$

then $F(K) \subseteq K$ and $F(K)$ is relatively compact.
To show the existence of a suitable r_{3}, we shall first show that $N\left(\varphi^{*}, w^{*}\right)>0$ if $a>0$ and large, and that $N\left(\varphi^{*}, w^{*}\right)<0$ if $a<0$ and negatively large. Now

$$
\begin{aligned}
& N\left(\varphi^{*}, w^{*}\right)= \\
& \frac{1}{2 \pi n} \int_{0}^{2 \pi}\left[h\left(\varphi^{*}(s) \cos n s+w^{*}(s) \sin n s\right)-e(s)\right] \sin n s d s
\end{aligned}
$$

But $w^{*}(s)=a+\alpha(s)$, where $\alpha(s)$ is a continuous 2π-periodic function with $|\alpha(s)| \leq \frac{2 \pi H}{n}$, where $H=\max _{(x, t) \in R^{2}}(|h(x)|+|e(t)|)$. Thas, since

$$
\left|\varphi^{*}(t)\right| \leq \frac{4 \pi H}{n} \quad \text { for all } t
$$

$$
\begin{gather*}
N\left(\varphi^{*}, v^{*}\right)=\frac{1}{2 \pi n} \int_{0}^{2 \pi}[h(a \sin n s+\tilde{\alpha}(s))-e(s)] \sin n s d s= \tag{15}\\
\quad=\frac{1}{2 \pi n}\left[\int_{0}^{2 \pi} h(a \sin n s+\tilde{\alpha}(s)) \sin n s d s-B\right]
\end{gather*}
$$

where $\tilde{\alpha}(s)=\varphi^{*}(s) \cos n s+\alpha(s) \sin n s$ is continuous, 2π-periodic and bounded.
Now, by (2), for $0<\delta<\frac{\pi}{2 n}$ and $a>0$

$$
\int_{2 \pi \pi \frac{\pi}{n}-\delta}^{(2 k+1) \frac{\pi}{n}-\delta} h(a \sin n s+\alpha(s)) \sin n s d s \geq \int_{2 k \frac{\pi}{n}+\delta}^{(2 k+1) \frac{\pi}{n}-\delta} D \sin n s d s
$$

for $k=0,1, \ldots,(n-1)$ whenever $a \geq \frac{d+L}{\sin n \delta}$, where $L=\max |\tilde{\alpha}(s)| \cdot\left({ }^{*}\right) \mathrm{By}$ (1), for such $\delta>0$ and $a>0$

$$
\int_{(2 k-1) \frac{\pi}{n}+\delta}^{(2 k+2) \frac{\pi}{n}-\delta} h(a \sin n s+\tilde{\alpha}(s)) \sin n s d s \geq \int_{(2 k+2) \frac{\pi}{n}+\delta}^{(2 k+2) \frac{\pi}{n}-\delta} C \sin n s d s
$$

(*) L can be chosen indipendent of φ and w
for $k=0,1, \ldots,(n-1)$ whenever $a \geq \frac{L-c}{\sin n \delta}$. Hence for $\delta>0$ and small and $a>0$,

$$
\begin{aligned}
& \int_{0}^{2 \pi} h(a \sin n s+\tilde{\alpha}(d \tilde{)}) \sin n s d s= \\
& \quad=\sum_{k=0}^{n-1} \int_{(2 k+1) \frac{\pi}{n}}^{(2 k+2) \frac{\pi}{n}} h(a \sin n s+\tilde{\alpha}(s)) \sin n s d s+ \\
& \quad+\sum_{k=0}^{n-1} \int_{(2 k+1) \frac{\pi}{n}}^{(2 k+2) \frac{\pi}{n}} h(a \sin n s+\tilde{\alpha}(s)) \sin n s d s \geq \\
& \quad \geq n \int_{0}^{\frac{\pi}{n}} D \sin n s d s+n \int_{\frac{\pi}{n}}^{\frac{2 \pi}{n}} C \sin n s d s+Q_{1}(\delta)
\end{aligned}
$$

whenever $a \geq \max \left\{\frac{(d+L)}{\sin n \delta}, \frac{(L-c)}{\sin n \delta}\right\}$, where $Q_{1}(\delta)$ is a continuous function vanishing at $\delta=0$. By (13), there exists $m>0$ such that

$$
\begin{equation*}
m-2(D-C)<B<2(D-C)-m \tag{16}
\end{equation*}
$$

Choosing δ_{1} such that $\left|Q_{1}\left(\delta_{1}\right)\right|<\frac{m}{2}$, ,we have

$$
\begin{align*}
& \int_{0}^{2 \pi} h(a \sin n s+\tilde{\alpha}(s)) \sin n s d s \tag{17}\\
& \quad>n\left(\frac{2}{n}\right) D+n\left(-\frac{2}{n}\right) C-\frac{m}{2} \\
& \quad=2(D-C)-\frac{m}{2}
\end{align*}
$$

whenever $a \geq \max \left\{\delta_{1}, \frac{(d+L)}{\sin n \delta_{1}}, \frac{(L-c)}{\sin n \delta_{1}{ }_{1}}\right\}=b_{1}$. Thus, ${ }_{-}^{\text {T }}$ by (15), (16), and (17)

$$
\begin{align*}
& N\left(\varphi^{*}, w^{*}\right)>\frac{1}{2 \pi 1}\left[2(D-C)-\frac{m}{2}-2(D-C)+m\right]= \tag{18}\\
& =\frac{1}{2 \pi n}\left(\frac{1}{m}\right)>0
\end{align*}
$$

whenever $a \geq b_{1}$.

On the other hand, by (1), for $0<\delta<\frac{\pi}{2 n}$ and $a<0$

$$
\int_{2 k \frac{\pi}{n}+\delta}^{(2 k+1) \frac{\pi}{n}-\delta} \dot{h}(a \sin n s+\tilde{\alpha}(s)) \sin n s d s \leq \int_{2 k \frac{\pi}{n}+\delta}^{(2 k+1) \frac{\pi}{k}-\delta} C \sin n s d s
$$

for $k=0,1, \ldots,(n-1)$ whenever $a \leq \frac{c-L}{\sin n \delta}$. By (2), for such $\delta<0$ and $a<0$

$$
\int_{(2 h-1) \frac{\pi}{n}+\delta}^{(2 k+2) \frac{\pi}{n}-\delta} h(a \sin n s+\tilde{\alpha}(s)) \sin n s d s \leq \int_{(2 k+1) \frac{\pi}{n}+\delta}^{(2 k+2) \frac{\pi}{n}+\delta} D \sin n s d s
$$

for $k=0,1, \ldots,(n-1)$ whenever $a \leq \frac{d+L}{\sin (-n \delta)}$. Hence, for $\delta>0$ and small and $a<0$,

$$
\int_{0}^{2 \pi} h(a \sin n s+\tilde{\alpha}(s)) \sin n s d s \leq n \int_{0}^{\frac{\pi}{n}} C \sin n s d s+n \int_{\frac{\pi}{n}}^{\frac{2 \pi}{n}} D \sin n s d s+Q_{2}(\delta)
$$

whenever $a \leq \min \left\{\frac{(c-L)}{\sin n \delta}, \frac{(d+L)}{\sin (-n \delta)}\right\}$, where $Q_{2}(\delta)$ is a continuous function vanishing at $\delta=0$. Choosing δ_{2} such that $\left|Q_{2}\left(\delta_{2}\right)\right|<\frac{m}{2}$, we have
(19) $\int_{0}^{2 \pi} h(a \sin s n+\tilde{\alpha}(s)) \sin n s d s<n\left(\frac{2}{n}\right) C+n\left(-\frac{n}{2}\right) D+\frac{m}{2}=-2(D-C)+\frac{m}{2}$ whenever $a \leq \min \left\{-\delta_{2}, \frac{(c-L)}{\sin n \delta_{2}}, \frac{(d+L)}{\sin \left(-n \delta_{2}\right)}\right\}=b_{2}$. Thus, by (15), (16) and (19)

$$
\begin{equation*}
N\left(\varphi^{*}, w^{*}\right)<\frac{1}{2 \pi n}\left[-2(D-C)+\frac{m}{2}-m+2(D-C)\right]=\frac{1}{2 \pi n}\left(-\frac{m}{2}\right)<0 \tag{20}
\end{equation*}
$$

whenever $a \leq b_{2}$. Defining

$$
b^{*}=\max \left(\left|b_{1}\right|,\left|b_{2}\right|, \frac{H}{n}+1\right)
$$

we see by (14), (18), and (20)

$$
\left|a^{*}\right| \leq|a|
$$

whenever $|a| \geq b^{*}$. But $\left|a^{*}\right| \leq|a|+\left|N\left(\varphi^{*}, w^{*}\right)\right| \leq \left\lvert\,+\frac{H}{n}\right.$ for all ' a ', and thus if we define $r_{3}=b^{*}+\frac{H}{n}$, then

$$
\left|a^{*}\right| \leq r_{3}
$$

for $|a| \leq r_{3}$. Hence, if we set $r_{1}=\frac{4 \pi H}{n}$ and $r_{2}=r_{3}+\frac{2 \pi H}{n}$ and define

$$
K=\left\{(\varphi, w, a) \in V /\|\varphi\| \leq \cdot r_{1},\|w\| \leq r_{2} \text { and }|a| \leq r_{3}\right\},
$$

then $F(K) \subseteq K$. That $F(K)$ is a relatively compact set follows as before by Ascoli's lemma. Hence, since K is a closed, bounded and convex set, we can apply Schauder's Fixed Point Theorem and obtain a fixed point of F. This gives ss an odd 2π-periodic solution of equation (S) which completes the proof.

Theorem 2.2. - Let e(t) be an even, continuous and 2π-periodic function. Assume that $h(x)$ is a continuous, bounded, and nonconstant function and that there exist numbers c, d, C and $D(c<d)$ such that the inequalities (1) and (2) hold. For any positive integer n, there exists an even 2π-periodic solution of the differential equation

$$
\begin{equation*}
x^{\prime \prime}+n^{2} x+h(x)=e(t) \tag{S}
\end{equation*}
$$

if the condition

$$
|A|<2(D-C)
$$

holds where

$$
A=\int_{0}^{2 \pi} e^{\prime} s \cos n s d s
$$

Proof, - Let us write equation (S) as the system (4) and then transform system (4) into

$$
\begin{aligned}
& z_{1}^{\prime}=\left[h\left(z_{1} \cos n t+z_{2} \sin n t\right)-e(t)\right] \frac{\sin n t}{n} \\
& z_{2}^{\prime}=\left[e(t)-h\left(z_{1} \cos n t+z_{2} \sin n t\right)\right] \frac{\cos n t}{n}
\end{aligned}
$$

as it was done in the proof of Theorem 2.1. Further, let us define the real normed linear space ($V, \|$) as we did in the previous proof.

Now, we shall define a mapping F of V into V as follows:

For $(\varphi, w) \in 0 \times P$, set

$$
\begin{aligned}
& M(\varphi, w)= \\
& \frac{1}{2 \pi} \int_{0}^{2 \pi}[e(s)-h(w(s) \cos n s+\varphi(s) \sin n s)] \frac{\cos n s}{n} d s
\end{aligned}
$$

For $(\varphi, w, a) \in V$, defiue $F(\varphi, w, a)=\left(\varphi^{*}, w^{*}, a^{*}\right)$ where

$$
\begin{gathered}
w^{*}(t)=a+ \\
\int_{0}^{t}[h(w(s) \cos n s+\varphi(s) \sin n s)-e(s)] \frac{\sin n s}{n} d s \\
\left.\varphi^{*}(t)=\int_{0}^{t}\left([e(s)-h(w(s) \cos n s+\varphi(s) \sin n s)] \frac{\cos n s}{n}-\varphi, w\right)\right) d s,
\end{gathered}
$$

and

$$
a^{*}=a+M\left(\varphi^{*}, w^{*}\right)
$$

Since w^{*} is the primitive of an odd continuous 2π-periodic function, $w^{*} \in P$. Similarly, since $\varphi^{*}(0)=0$ and φ^{*} is the primitive of an even continuous $2 \pi-$ periodic function with mean zero, $\varphi^{*} \in 0$ and hence, F maps V into V. Moreover, F is continuous.

Now, making only slight modifications in the prof of Theorem 1.1, we can find a set

$$
K=\left\{(\varphi, w, a) \in V /\|\varphi\| \leq r_{1}, \quad\|w\| \leq r_{2} \quad \text { and } \quad|a| \leq r_{3}\right\}
$$

such that $F(K) \subseteq K$ and that $F(K)$ is relatively compact. Thus, since K is a closed, bounded and convex set, we can apply Schauder's Fixed Point Theorem, which will yield the existence of the desired solution and hence completes the proof.

3. - A Uniqueness Condition.

Applying the same argament as given in [6], we obtain
Theorem 3.1. Assume that the hypothesis of Theorem 1.11 and the condition (3) hold. If h is continuously differentiable and

$$
\begin{equation*}
0<h^{\prime}(x)<2 n+1 \tag{21}
\end{equation*}
$$

holds for all x, then there exists a nnique $2 n$-periodic solution of (S).

Proof. - The existence of at least one 2t-periodic solution of (S) follows from Theorem 1.1. If $x_{1}(t)$ and $x_{2}(t)$ were two distinct 2π-periodic solutions of (\mathcal{S}), the difference $y(t) \equiv x_{2}(t)-x_{1}(t)$ would be a nontrivial 2π-periodic solution of the linear differential equation

$$
y^{\prime}+p(t) y=0
$$

where

$$
p(t)=n^{2}+\int_{0}^{1} h^{\prime}\left(x_{1}(t)+s\left(x_{2}(t)-x_{1}(t)\right)\right) d s
$$

From (21)

$$
\begin{equation*}
n^{2}<p(t)<(n+1)^{2}, \tag{22}
\end{equation*}
$$

and since $p(t)=p(t+2 \pi), p(t)$ has a positive lower bound. Therefore there exists a number c such that $y(c)=y(c+2 \pi)=0, y^{\prime \prime}(c) \neq 0$. By (22) and the Sturm comparison theorem, $y(t)$ has exactly $2 n$ zeros on the open interval $(c, c+2 \pi)$ contradicting $\left.y^{\prime}(c)=y^{\prime} c+2 \pi\right)$. This contradiction proves the theorem.

REFERENCES

[1] L. Cesari, Functional analysis and periodic solutions of nonlinear differential equations, Contributions to Differential Equations, 1 (1963), pp. 149-157.
[2] J. Cronin, Fixed Points and Topological Degree in Nonlinear Analysis, Math. Survey 11, American Mathematical Society, Providence, 1964.
[3] J. K. Hale, Oscillations in Nonlinear Systems, McGraw-Hill, New York, 1963.
[4] A. C. Lazer, On Schauder's fixed point theorem and forced second-order nonlinear oscillations, J. Math. Ana. and Appl., 21 (1968), pp. 421-425.
[5] — —, On the computation of periodic solutions of wealily nonlinear differential equations, SIAM J. Appl. Math, 1 ñ (1967), pp. 1158-1170.
[6] D. E. Leach, A uniqueness theorem, Notices Amer. Math. Soc., 15 (1968), Abstract 68.T 329, p. 397.
[7] W. S. Loud, Periodie solutions of nonlinear differential equations of Duffing type, pp. 109.22t, Differenzial and Functional Equations, edited by W.A. Harris, Jr. and Y. Sibuya, Benjamin, New York, 1967.
[8] P. O. Frederickson and A.C. Jazzer, Necessary and sufficient damping in a second order oscillator, J. Differential Eqs. 5 (1969), 262.270.

