Approximation of set valued functions
and fixed point theorems.

Agrrico CerrLina (Perugia) (%) (*F)

Sommarie. - Il risultalo fondamentale della Nota é il seguente: sia T una mulfiapplicazione
semicontinua superiormente da uno spazio metrico compatio S ad wuno spagio normato
Y, tale che T'(x) é convesso. Allora per ogni = >0 esiste una applicazione continua f.
:S— Y tale che d¥(F, G)<¢, ove F e G sono ¢ grafici di fel e d¥{F, G)==supldly, &),
ye i
Come corollari di quesio teorema vengono dimostrati il feorema di punto fisso di
Kakutani in uno spazio di Banach ed una sua generalizzazione, che nown richiede la
compattezza di T{x). Viene poi presenlaio un feorema di punio fisso con condizioni di
convessitd pite deboli di quello di Kakulani.

Introduetion.

One of the problems that has attracted the attention of mathematicians
in the last times has been the problem of extracting, or selecting, a single
valued mapping with certain properties, like continunity or measurability, from
a given multi-valued mapping: see [2], [4], [B], [6], [7].

In [4] was proved, amog other results, that it is always possible to find
a continuous selection f(+) from a lower semicontinuous set-valued mapping
T(.), if I' maps a metric space into the compact convex subsets of a BANACH.
space Y.

This result implies the following: if F and ¢ denote respectively the
graphs of f and I, and if d*¥, @) denotes the separation of F from G, then
under the preceding hypot.esis, there exists a confinuous single valucd fun-
ction f(+) such that d¥F, G)=0. If T(-) is a closed multi-valued mapping,
even with the assumption of convexity, is is easy to see that in general there
exists no continuous single valued selection f(+) from I(.), or, what is the
same, there exists no continuous function f(.) such that d*(F, G) =0, where
F and G have the same meaning as before. It is therefore natural and of
some importance for its many applications to ask whether and under what
conditions, if I' is restricted to a compact set, given arbitrarily a positive ¢,
there would exist a continuous single value funection f(.), depending on ¢
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and defined on the domain of I'(:), sueh that
d¥F, G)<e.

In this note it is shown that the answer of this question is positive if [(z)
is convex for all z in the domain of I, and is still positive if the convexity
condition on I is replaced by a weaker condition thaf, ronghly speaking,
requires that [(z) has to be the image of a convex set under a continuous
mapping.

As immediate corollaries of these theorems first KAKUTANT'§ Fixed Point
Theorem and a generalization of it, that does not require I'{x) to be compact,
are presented.

Then a generalization of Kaxuranr’s Theorem with a weaker convexity
condition on I'z) is proved.

Notations and basie definitions.

It § is a metric space, z, s€ S, d(z, s) denotes the distance of z from s.
If Z is also a metric space, § X Z is a metric space with d{(s, 2), (@, ) =
= max [ d(s, z), de, y;]. 25 is the set of subsets of § and @ is the empty set.
For A€25 dz, Ay=inf{d(r, y), y€4}|. For A4 and B€2% d*4d, B) will denote
the separation of A from B, ie., d*4, B)=sup{dx, B), €4} Bz, ] for
e >0, is defined to be {y€8:dy, x)<e}, and for A€25 D[4, ¢e]=[y€S:
:d(y. 4) <e} Also the following notations will be used:

CS)={T€25: T is closed}
aud, if Y is a normed linear space
H(Y)={T€2": T is convex}.

CH(Y) denotes CLY) N HK(Y).

If A€2Y, co 4 denotes the convex hull of A and co A the closed convex
hull of A. A mapping I': §— 2% will be referred to as a multi-valued map-
ping. If A €25 U(4)=U{I(s), s€4}. I':S—2Y is said lower semi-conlinuous
if whenever VC Y is open in Y, {s€S: ()N V=@ is openin § I': S— 27
is said to be upper semi-continuous (u.s.c.) at s if given e > 0 there cxists a
3 =&(s) such that I'(B[s, 8)) C B[I(s), ¢]. I is said u.s.c. on §if it is us.c. at each
s €8. The grapl of a mapping I': §— 2% is the subset of S X Y defined by

(8 y):s€8, yelis)

The same definition holds for a single valued mapping /:S—Y. A
mapping I' 1 §— 2% is called closed, if its graph is closed.
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It T': §— &(Y) is upper semi-continuous, it is closed. If Y is compact,
[:S-—&Y) is us.c. if and only if it is closed. If [ S— 2% its énverse
-1 is defined by

Iy = iw€S:yecl{n

A mapping I': S-—27 is lower semi-continuous if and only if T-YV) is
open in S whenever V is open in Y (see [1]). The runge of I, &) is defi-
ned to be y:y€l'(x), some z€ 8.

On a set § we may consider two different metrics di, ds; in this case
notations like «S is di-compaet» indicate the metric with respect to which
a certain property is assamed.

We shall say that a metric space S has the fized poini properiy if every
continuous mapping of § into itself has a fixed point in §; when we want
to emphasize that two metrics are used, we shall say that a mapping from
S into § Jor 25| is (dy, dy)-continuous [(dy, db)— semi-continuous] if it is
continnous as a mapping from S with metric d; to S[2°] with metric d,.

Approximation theorem.

The following Proposition will be used for proving the fixed point theorems,

PropositioN 1. - Let S be a compact metric space having the fixed
point property. Let I':S-—25 be a closed multi-valued mapping. Assume
that for arbitrary & >0 there exists a single valued continuous mapping
f:8—S§, depending on &, such that if F' and G denote the graphs of f and
I, d¥F, G) <e. Then I' has a fixed point in S.

Proor. - Let e,— 0 and let f, be the corresponding single valued map-
pings. Each f, has a fixed point in S, say ¢.. Let ;y.! be a sunbsequence
converging to . We want to show that ¢, €I'(y,). We have

A(yo, Yoy G)<< Ay, Yo)y Wn, Yn) + A(Yn, f(ya), G) <
< &(Yo, Yo), Yn, Yn)) 4+ A%, G)

and the right hand side is as small as we please. Since G is a closed set,
it follows that (yo, o) € G, or y, € L'(yo).

THEOREM 1. - Let § be a compact metric space, Y a normed linear
space. Let I'; §— J(Y) be a upper semi-continuous multi-valned mapping.
Then for ¢ >0 arbitrary, there exists a continuous single valued mapping f:
: 8 — B[&X), ] Nco &KT), depending on e, such that if F and G are fhe
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graphs of f and I,
d¥(F, G)<e.

Proor. -~ Fix ¢ > 0. For each €S, define a real number p(z, ) by
(1 olx, &) = sup ;> << ¢/2: 32" € Blw, 8]3 [(Blz, 8])C BI(z)), /2] .

We will show now that p(z, e) is positive and bounded away from zero
on S,

Fix z arbitrary. By definition of upper semi-continuity of the multi-
valued mapping I, given ¢> 0, there exists a v = n(z)> 0, such that I'( B[z, 9] C
C B[I'(=z), /2]

Setting «' = « in definition (1) we see that n: = min {y(z), ¢/2} is positive
and 0 < vuz) << pla, €).

Suppose that p(z, ¢) is not bounded away from zero on §, i.e. given
any §> 0, there exists some z €8 such that p(z, &) <§.

Let §,} 0, {2.! such that p(z., €) < §., and let z,— z,. Since z,€S, there
exists a positive 7(z,) (that we can assume =< ¢/2) such that

P(B{xo, ')7(.1’0)}) C BEF(QEQ), 51’2].
Then when d(z., %o < n(xo)/3
I(Bl., n(xo)/3]) C I(Blxo, Mo)) C B[T(xo), /2]

and xo ¢ B[z., n(xo)/3).

Therefore plz., € =v(xzy)/3 for n sufliciently large, contradicting the
hypothesis.

Let $o > 0 such that gz, ei==0 on S, and let 0 < §; << §. Define on S
a new multi-valued mapping ¢ by

D) = I(Ble, G

It is easy to see that the inverse of each open set in &) is open (in
fact the inverse of each point in &(I) is open) and therefore the mapping @
is lower semi-continuous (but not necessarily convex).

The collection {®—Yy); y € Rt is an open covering of the compact set
S. Let F:{® X y:)liwx be a finite subcoverig.

Let & :{p(-)}li=1 a partition of unity subordinated to F, and consider the
function

fa)= E plop.
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f(z) is a continuous function defined on S. Fix z arbitrary; f(z) is the average
of a certain number of ¢, corresponding to pi-) not vanishing at z, such
that y; € ®(z). By the definition of ®(x), there exists a point 2’ and a positive
number 3, d{z, ) < 8, & < 8 < ¢/2, such that

@) = I(Blz, &J) C I(Blz, &) C B[T(@), /2] N &) C
C B, /2] N coR(T).

Since T(z') is convex, so is B[I'(z"), ¢/2]Nco8R{T) and therefore f(z)€
€ BI(z'), /21 N coR(T). The continuous function f: S — cof(I') N B[A(I), €] has
the required properties: for z arbitrary and corresponding z’ as before, we have

d((z, f(x), G)<<d((z, flx), («, fl@) + A, Hz), G)=
< d((x, fla), («, fla) + d(=, f@), @, [@))
<e/2 4 ¢/2 =,

CoroLnARY 1. (KARUTANY S fixed point theorem in a BAwAcH space [3))
Let S be a compact convex subset of the BaxacH space X; letI': §— CH(S)
be upper semi-continuous. Then T has a fixed point in S.

Proor. - By Theorem 1 for any ¢ > O there exists a continuous single
valued mapping f: S -~ § such that d*(F, G) < e. By a theorem of SCHAUDER,
S has the fixed point property. By Proposition 1 I has a fixed point in S.

Now let S be a convex, weakly compact subset of the Banacn space X and
T a mapping from § into the (strongly) compact, convex subsets of S such
that I' is n.s.c. from the wenk to the strong topology. Then I' has a fixed
point in S. In fact when the image of a point is compact, an w.s.c. mapping
maps a compact set onto a compact set; therefore &(I') is a strongly compact

subset of S and co@T) is a compact convex subset of S that is mapped into
itself by I. Moreover T is u.s.c. also from the strong to the strong topology.
Therefore the preceding assertion follows KaRUTANT'S Theorem.

The next Corollary extends this result to the case where the image of
a point is required to be only closed, instead of compact: in this case &T)
need not be a strongly compact suliset of S and the result does not follow
from KARUTANT'S Theorem,

CoroLLARY 1. - Let S be a weakly compact, convex subset of the sepa-
rable BANACH space X. Let T: 8-~ Ci{(S) be upper semi-continnons from
the weak to the strong topology. Then I' has a fixed point in S.

Proor. - Let d, be the metric ygenerated by the norm. From the hypo-
thesis also the weak topology on S is metrizable, with metrie d;. Let &,—0,
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let f, 8=~ 8 such that d¥¥F,., @) <=,; such a sequence of functions exists
by Theorem 1. Let y, = f,'y,) be the fixed points of f, in S, that exists from
TiceoNOV’S Theorem, and assame, from the weak compactness of S, that
Y—Yo in the metric d;. Given ¢>0 there exists a >0 such that I'{Bi'y,, &)
CthF(yo}, } Set n:min(g, 8), Let N such that n =N implies 9.€
€ b ]yo, —;ZI and e, <7~; Then given any ., n=>N, there exists a . € B, |y,, g]

such that f,(y.) € B2 ll‘(yg’), g} . Therefore ¢, = ful#.) € B> lf(yﬁ,), Zi)—} CBof (9o}, 1] i.e.

oyl oo

€
G,

4oy 1) € By ly ;] X By lr(y()), :

}, n = N.

Let ¢, such that for each n only a finite number of ¢ are non-zero,

o &L
Zew=1 and a, = Z cuy converges to yo strongly, ie. in d,.

=n Fesmn,

Since the right hand side of (2) is a convex se,

£

(Yns %) € B lyo, 2} X By {I‘(yo), %]

Le. d(y,, z.), G) <%. Then

d((?/o, ?/0), G) = d((y% Z/o); (yns 'vn)) + d((?/n; Tn)y G) g; + ‘82 =t

for n = N. Since ¢ was arbitrary and G is closed, (yo, y0) € G or yo € I'(yo).

With few modifications in the proof the following more general result
holds:

CoROLLARY 1", - Let S be a convex subset of the locally convex complete
linear topological space Y. Let the topology on S be metrizable, with metric
ds. Let on S be defined another locally convex topology, metrizable with
metric d;, such that S is di-compact. Let the di-topology on § be coarser
than the d.-topology, but not coarser than the weak topology of ds. Let I
be a (dy, de)-u.s.c. mapping from § into CH(S).

Then I' bas a fixed point in S.

In the next theorems we attempt to substitute to the convexity of I(z)
a more general condition: roughly speaking, it will be assumed that I(z) is
the image of a convex sct under a continuous mapping. Precisely we have
the following
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THEOREM 2. - Let § be a compact convex subset of the BANACH space
X. Let I' and A two u.s.c. mappings from § into 2% such that for each z€S,
A(z) is convex and [(z) is closed. Let D be the graph of A and on D lef
there be defined a continuous single-valued function ¢ : D— S such that

2) ¢(r, Alz)) = INz) for all z€S.
Then [ has a fixed point in §.

Proor. - Let ¢, 0. From Theorem 1 for each n there exists a continuous
function f,:8—S such that d%¥,, D)<e,, where F, is the graph of f,. Using
Dugunpir’s Theorem we ean extend the definition of ¢ to the whole of
S X 8, keeping its range in S. Set g.(x) = ¢z, f.(2)). Since ¢ is uniformly
continuous on § X §, it is easy to see that d%({,, @)~ 0, where G, is the
graph of g,. By Proposition 1 I' has a fixed point in S.

We remark that, instead of (2) we could assume the following condition
®(x, Alz)) C L),

The following is a trivial example of construction of the mappings A, ¢
for a given T,

ExamprE. - Let [ be an u.s.c. multi-valued mapping defined on a region
Q C B2 Let the image of a point €& be one of the sets

Li={& 7 &+ 7 =1}
T={G ;o=
={6 w; p=ttwst]

Define the mapping A by
g {p, 8); 0<<b6=<<2n and p=1} if Iz)=1I
Alg) =

{(p, 8); 0<<8<2n and p= it T =1,

DO} -
st

A

BO] -

\ %(p, 8); 0<b<2n and

Then A will be clearly u.s.c.. Moreover, A(x) is convex for all z€Q,
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The function

= pcosb
¢(=, @/>=<p(y)=gE o

7 =psinb
is such that

o(Az)) = I'(=).
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