Non continuous Liapunov functions.

Gioraio P. Szrad and Grunic Treccan: (Milano) (¥} (*%)

Summary. - Theorems which give sufficient conditions for various kinds of qualitative beha-
viours of flows defined by ordinary differential equations are proved. These theorems
are based upon suitable properties of non continuous real-valued functions and their
lower-right-hand-side Dini derivatives along the frajectories of the system.

§ 0. - Notations.

In this work we shall use the following notations, Small latin letters will
denote vectors (exceptions v, w, ¢ which are scalars), greek letters will denote
scalars and maps, while capital letters sets. With K" we shall denote the n-di-
mensional euclidean space. If 4 C B*, we shall denote with 4, 34, R4, 94
its closure, boundary, complement and interior respectively. If we B" and
& > 0 we shall denote with S(x, &), S[x, 3] the open and closed ball with center wx.

For a map ¢: R"— R we shall write

lim inf @) = lim inf {[p(x): xe S&°, )]}

230 g -0

and similarly define lim sup o(x).

x> a0
In this paper we shall often use lower and upper semicontinuous real-
valued functions on a set UC R*. If UC R*, a fanction p: U— R is lower-
semicontinuous if and only if:

0.1 lim inf o(y) = o) for all xe U,
-

and upper semicontinuous if and only if:

0.2) lim sup o(y) << o(x) for all xe U.
y X

3.

If ¢: B — R is a lower-semicontinnous real-valued funetion and x = flzx),
xe R, f: R*— R, is an ordinary differential equation and f is a continuous

(*) Entrata in Redazione il 10 febbraio 1969.
(**) Liavoro eseguito nell’ambito del Gruppo N. 11 del C. N. R.
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function, we shall consider the following extended real valued function:

0.3) ble) = ¢¥(@) = lim inf g -+ of @) + ) — $w)),

T30t
x>0

which is the lower-right-hand-side DINI derivative of the function ¢(x) along
the solutions of the differential equation x = f(x).

§ 1. - Introduction.

In this work we shall give some preliminary results on the characteri-
zation of the flow defined by the solutions of the ordinary differential equation

(1.1) t=f@x) flO=0, zeR

in the neighborhood of the rest point z =0, which will be assumed to be
isolated.

It will be assumed that the differential equation (1.1) defines a dynami-
cal system, i.e. it has properties of existence, uniqueuvess and global exten-
dability of solutions, through each point z € R

Here we shall use the customary notations of the theory of dynamical
systems [1] and denote with xf the solution of the equation (1.1) such that

#0 = 2 and with y(z) the trajectory through =z, i.e.” the set (ut.
teR
The problem of the characterization of the qualitative behaviour of the
solutions of the differential equation (1.1) in a neighborhood of the isolated
rest point =0 is composed by the sequence of the following different pro-

blems:
a) Classification of the flow in a neighborhood of the rest point z =0.

b) Classification of the particolar behaviour of the solutions of a given
differential equation in the neighborhood of the rest point 2 =0, by means
of suitable auxiliary functions (Liapunov functions).

¢) Estimation of the region I' in which the behaviour shown near the
rest point x = 0 is invariant.

d) In the case in which I' == B*, estimation offdl.

A possible classification of the flow in the neighborhood of a compact inva-
riant set M C E*, and in particular of the rest point # = 0, is the following.
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(1.2) Classification of the flow.

Consider a dynamical system in the space E*. Then in a sufficiently
small neighborhood of the rest point x = O at least one of the following holds:

(1.3) The point £ = 0 is positively asymptotically stable.
(1.4) The point z = 0 is negatively asymptotically stable.

(1.5) For each &> O there exists a point z ==0 such that y(x)C S0, %) and
v(z) is recurrent,

(1.6) There exist two points z, y == 0 such that ATt(x) = A—(y) = {0}.

(L.7) For each & > 0 there exist ze S0, 8)/0} such that {0}eA+z) N A—(z),
y(z) C SO, 8) and zeJH(z).

The classification given above is a refinement of the onme proposed by
Brama [2].

We shall proceed next with the discussion of the available methods for
the characterization of the flow induced by the solutions of a given diffe-
rential equation in the neighborhood of the rest point z = 0.

The most powerful method for the solution of this problem is the so-called
second method of LiapunNov. This «method » is usually based upon the coun-
straction of a sufficiently smooth real-valued function v = ¢(x) (the LiAPUNOV
function), such that the real valued function:

dep(zt)
dt

(22

dilz) = < grad ¢z), flx)> = {

is continuous and sign-definite.

It has been proved [3] that, under otr hypothesis on the differential
equation (1.1), in the cases (1.3) and (1.4), there always exists in a neighbor-
hood of £ =0 a real valued function v = ¢'z) with continuous partial deri-
vatives of arbitrarily high order and with total time-derivative along the so-
lutions of (1.1} which is sign-definite.

It can also be proved that there exists a continuously differentiable
LiapuNov fanction with total time-derivative which is sign-semidefinite, also
in the case, (1.5), provided that (1.6) and (1.7) do not hold.

This type of LiapuNov function may also be constructed in a neighbor-
hood of z =0 in the case (1.6), but it will not exists in the case (1.7) as
well as in the case (1.6) when z = .

On the other hand the existence of continnous first partial derivatives
is not strictly needed for characterizing the stability properties of the rest
point z = 0.
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The first aim of this paper will be to develop conditions based upon the
use of lower-semicontinuons and upper-semicontinuous real-valued functions
which may exists in a neighborhood of the rest point z =0 and allow a
classification of the flow in sifuations in which there cannof exist a conti-
nuously differentiable Liapunov fanction.

The types of conditions that we impose on the functions we use, are dif-
ferent from the one used by YORrRkE [4] and therefore the next section will
be devoted to the proof of some conditions for a lower-semicontinuous real-
valued function to be decreasing along the trajectories of the dynamical sy-
stem (1.1).

Notice, however, that at least, for the local results (Section 3) we could
have used the same type of conditions as the one used by YORKE.

‘We do however believe that the one that we propose here are more con-
venient to use in the applications.

In the remaining sections of the paper (Sec. 4 and 5) we respectively
prove global and local extension theorems [1,5] for the case of semicontinuous
real-valued functions.

§ 2. - Definitions and basie inequalities.

In this section we shall give conditions for a lower-semicontinuous real-
valued function to be decreasing along the trajectories of the dynamical
system (1.1). The first result (Theorem 2.1) is due to YORKE.

2.1. THEOREM. ~ Let v == (), ¢: U— R, be o lower semiconlinuous real-
valued function defined on a set U C Br. Assumne that there exisls a reai-valued
function w = &), £E: U— B*, which is defined and confinuous in U and
such that the extended real-valued function (0.3) satisfies to the condilion

2.2) Yz < ) for all ze U.
Then
(2.3) plat) — plw) < [‘ E(zr)de

0

for all z€ U and te R such thal z[0, {]C U.
Assume next that the point z =0 is an isolated rest point. From defi-
nition (0.1) and (0.3) it follows that $(z) = 0. Indeed we have:

(2.4) $(0) = lim inf v¢(ty) =0
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but
$(0) = lim inf tp(ty) << lim inf t—¢01) = 0.
T 0 w04
lly[~0

‘Which proves the assertion.
Theorem 2.1. suggests the following definition.

2.6, DerFiNiTION. ~ Given a lower-semicontinuous real-valued funcfion
v=09x), o: U~ R, {0le UC B*, we shall say that ¢(z) has a lower-right-
hand side Dini derivative (z) (definition (0.3)), which is negative definite on
the set U, it and only if ¢(0) =0 and for each &> 0 there exists a real
valued function a.(p), 2,0) =0, «(p) >0 for p >0, which is non-decreasing
and continuous on [e, 4- oo), and for each ze U:

(2.6) blz) < — a|z]).

Following this definition, then, if ¢(z) is negative definite, from (2.3) it
follows that:

2.7 p(xt) — ole) << ~—f a(|zz|)dr

for 2[0, {iC U,/ S (0, ¢).

We shall give next a theorem which allows us to prove an integral
inequality of the type (2.6) with different assumptions on the real valued
function ¢(z).

These new assumptions are directly suggested by the special applications
we want to make. We shall consider functions v = ¢(z) which are piecewise
differentiable and satisfy suitable properties on the set D C R* on which they
are not continuously differentiable.

2.8. ProreRTY. ~ Consider a lower-semicontinaous real-valued function
v =9(z), ¢: UC E"-> R, which is not continuously differentiable on the sef
DcU.

We shall say that ¢(z) has the property (2.8) if and only if for each
zeD' = D/gO} there exists a real number 3 > 0 and a real-valued function
©,5(), which is lower semicontinuous in the sphere S{z, &), and such that:

(2.9) w5(y) = lim (iﬁnf T 0y + T (Y) + 12) — was(y)] =<
rll=0

< —g,2>0 for all y e S(z, 8
and moreover:

zeD* N Sz, 3), # ==z implies o(t) = ¢(z).
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From the definitions given it easily follows that:

2.10 ProPERTY. - If v=g(z) is a lower-semicontinuous real-valued
function which has the property (2.8) in the set U C R*, then for each ze U
the set y(z) N D* is a set of isolated points.

We shall prove next that if a real valued function has the property
(2.8), then some properties of the function which hold in the set U, D*, hold
for the whole set U,

2.11. THEOREM. - Assume thai the lower-semiconfinuous real-valued fun-
ction v = o(z), : U-—> R has the property (2.8) in the set UC B* and that for
each ¢ >0 there erists a real-valued function wu(p), a0) =0, «(p)>0 for
p > 0, non decreasing and continuous on [, + oo), such that for all ze U,/ D*:

$(z) < — a.l]=])

while for each «e D* {(x) is finite.
Then

(2.12) o(zt) — o(z) < -f | zt])de

for all ze U and te BT such that z[0, {]C U~ SO, e).

Proor. - COlearly in the interval [0, {] there exists (property 2.10) at the
most a finite number of points 1, such that zv, e D*. Let this number be .
For each zv, there exists then a real number oyt,) sueh that:

1(T — 05, ) U a(te, -+ o) N D*=¢.

Let o = min o, and K = max $(z1s).
[e. 4 {0, ¢]
By applying the inequality (2.6) we have then:

Ty o’ 'rk+1~—c T1—ac"
(213 ozl —olx %f Kdx} -+ E %f — o)) dT ~L—f—~oc5 ol dr—{-f —a.{Jucl)d=
T’ T;H_G Tn-l»c

Now by letting ¢’ — Ot from (2.13) we obtain

Qlt) — olz) < — f ad | at])de

for all #{0, ¢ C U,~8(0, ¢), which proves the theorem.
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In spite of the necessity of constructing the local function w.s(y) for
each z e D* and some 3 > 0, the condition (2.8) is not difficult to be applied.
Its use will be shown in the following example.

2.14. ExauvpLE. - Consider the following planar system of ordinary dif-
ferential equations, described in polar coordinates:

r= —r sin 0
(2.15) _
6=r

where # and 0 are the radial and angular coordinates respectively.

We want to investigate the stability properties of the rest peint » =0
by means of a lower semicontinuous real-valued function v = ¢(z) which is
continuously differentiable on the whole plane (r, 6) except the axis 6 =0.
Consider for each point (ro, 0) 7o &= 0, the neighborhood :

(2.16) s={|lr—ro<o; 2r —e <O <L 2m; 0<b <el.
On each set s we shall then define the following function:

— 6 for 0 <b<¢
(2.17) w(r, §) =
e—9 for 2n — e < 6 < 2xn

The real valued function (2.17) is lower semicontinnous and has the
value O for 6 =0, |r —ro| < 0.

For each point of the set s (2.16), in which 6 > 0, the function w(r, 0) is
continuously differentiable with w= < grad o, f>= —r, while for each
point of the set s in which 6 < 2r, we have ® = —r e~%. Consider then
a point in the set s(|r — 70| < o) in which § =0, i.e. the point (r, 0)e S. Then:

w¥r, 0) = lim inf v o 41, w4 'ca)] =
0%
:-—>0

= lim [ inf t'w(w - 16)].
a0t O<<t<la

Now if
. -
a<m’ we have 0 < 1r 1+ 0) < e
and hence 1~ lw(tr 4 1@) = — (r 4+ 6).
Thus

(2.18) o*r, 0) = — (r 4+ 2x).
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In synthesis for each point (r, 6)e § we have:
(2.19) o¥r, )<< — e r = — kg, ki >0,
while for each point of the axis ¢ = 0, we have
(2 20) wlr, 0) = 0.

Thus each lower-semicontinuous real-valued function which is conti-
nuously differentiable on the whole plane (r, 8) but on the axis 6 =0, has
the property (2.8) for the system (2.17).

Notice that in this example the condition on * holds indeed only lo-
cally (for each o <e/r 4 2m) and not globally on the axis 6 =0.

All the results above suggest the following definition:

2.21. DeriNitioN., — Let UC R” be a set such that (0 ¢ U. Consider the
dynamical system defined by the differenfial equation (1.1).

Let v = ¢(z): ¢ = U —» R be a lower-semicontinuous real-valued function.
Let DCU be the set on which ¢(x) is not continuously differentiable. Let
D*=D, 0

We shall say that 1(z) is a LiapuNov function for the rest point £ =0
of the differential equation (1.1) on the set U, with a negative definite lower~
right-hand side Dini derivative w = {(x), if and only if ¢(z) has the property
(2.8) and in addition for each = > O there exists a real function e p) «.:R — R,
with «(0)=0 and «(p) >0 for p >0, continnous and non-decreasing on
[e, 4- o), such that the inequality:

222) @) = lim inf e olo + (@) + ) — ¢l@)] < — ol z])

T—0%
lylj=0
holds for each z e U, D* while for each z e D¥ {(z) is finite.
It and only if the real valued extended function w = {(z) has the pro-
perties stated above, it will be said to have the property (2.21).
A similar definition can be given for upper semicontinuous real-va-
lued functions.
2.23. RemMarg. - It is well known that for the case of a continuous
real-valued function v = o(z); ¢: U~ R, UCR"» {0} e U, the condition:

(2.24) there exists a continuous, non decreasing real-valued funetion
afp), o: B— R, 2(0) =0 and «(p)> 0 for p > 0, and such that ¢x) < — «(2])
for each z ¢ U,
is equivalent to the condifion:

2.25)  o(x) <0 for ze U, {0} and for {z"i C U, ¢(¢")— 0 implies z"— {0},
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This equivalence is not generally true for semicontinucus functions. In
this case however, condition (2.25) on {(x) is equivalent to the condition
(2.21) on the set U /D>,

§ 3. - Local resnlfs,

We shall next apply the results of the previous section to the study of
some local properties of the flow in the neighborhood of the rest point =0
of the dynamical system (1.1). Here we shall give some results on properties
which capnot be characterized by continnously differentiable Liapuwov
functions.

8.1. TeroreM. - If Ue R is an open neighborhood of the rest point =0
U is compact and v = ¢(x) is a lower-semicontinuous Liapunov function with
lower-right-hand-side Dini derivative which is negalive definite on U with
respect to the dynamical system (1.1) (def. 2.21), then the set U, {0} does not
contain any recurrent rajeclory.

Proor. - Let v(z)C UﬁO} be a recurrent trajectory. Then vy(x) is a com-
pact minimal set. Thus g[y(z), {0!]= 0> 0. We can choose «,(p) such that
(2.22) holds. By theorem (2.11) we have then for each ¢ > O:

t

8.2) Plzl) — p(z) < — f as(fz])dr < — fOlU(G)d‘C = — g (o)t

0

On the other hand if y(z) is recurrent then ze A™(z)' hence there exists a
gequence {{"} C B+, {*— 4 oo, such that z {"— 2. Thus from (3.2):

3.3) Plet™) < glz) — ag(o)”
and ¢(zf")'s — oo for m— 4'co which implies that v = ¢(z) is not lower-se-
micontinuous in the point z € U and violates the hypothesis.

3.4. THEOREM. - Let v = ¢(z); ¢: U~—> R be a lower-semicontinuous real-
valued function defined on an open sel UC R* with {0} e U, and such that:

%) The exiended real-valued function $(x) (def. 0.3) has the property
(2.21) on the set U.

) 90) =0, 9(x) >0 for ze U, {0}

#i) The component containing {0} of the set {zxe U: gz)< B; B> 0} is
either compact or is U.

Annali di Matematica 2
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Then {0} is a positive attractor and A4(0)C U.

Proor. - Let ye U /{0 and assume At{y) = @. It must be 9(y) < Suap
to(x): z e U}: as U is open, there is 1< 0 such that yre U. By applying the
inequality (2.12) to the point yt, we have that o(yz) > o(y). It follows that
ize U: 9@) < oly){ == U and so it is compact. Then A*(y)==0 and compact.

We shall prove that At(y) = {0}

Assume 2 e At(y), # == {0}. There is then a sequence {{"} C B+, {"—»+ o
such that yi*—s 2. Clearly we can construct two sequences, {t"| and {s"|

such that yt”e H(z, |#],3) and ys" e(z,i“zﬂ) and for each n, 8" < 7 < ™

2
We may also assume that for s < ¢ <17, yteS(z,él]z[]) and that

1" — §* =09 > 0 for each .
From the inequality (2.12) it follows that:

n
—

glyt™) — oly) < 3 (plyt") — p(ys™) <

1

<—3 [, (2lha=— o (Qs1) S

Then for sufficiently large n, o(yi®) <%(p(3) and so ¢(z) cannot be lower

semicontinuous in z2e U.
We have proved that for each ye U, At(y) = {0} and so {0} is an attra-
ctor and its region of attraction contains U.

§ 4. - Global extension theorem.

In this section we shall prove the global extension theorem i.e. a theorem
which allows to extend to the whole space the local stability properties of
the rest point x = 0, which are supposed to be known.

4.1. THEOREM. - Let v = ¢(z), v: B”— R be a real-valued function which
salisfies the following conditions:

i) v = olr) is lower-semicontinuous i.e. if z* —>x, then lim inf ¢lz")=
= ¢(@). i

i) (0) = 0.
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iii) The exitended real-valued function $(z) (def. 0.3) is negalive definite
no R, as in definition (2.21).
Then if {0} is a positive attractor, it is a positive global attractor.

ProOF. - Assume that the rest point z =0 is a positive attractor and 4
is its region of attraction. Liet z°e 34, since 34 is invariant, y(z°) C94. Now:

inf {|y|: yer@)t=%k>0.

As ¢(z) has the property (2.21), we can choose o;(p) such that:

plz%) — 9z = —-f ai|z%))dr < — axk)t.

Thus there exists t >> 0, such that z% e 394 and ¢(z%) < 0.

Since ¢(z) has the property (2.8), for each v > 1, |t' — t| <gfe > 0 suf-
ticiently small, ¢(z) is continuous in 2% and ¢(z%') < (=) < 0.

Since %t € 34, there exists ze 4 such that ¢(2) < 0. Hence:

(=) < o(r) for all ¢ > 0.

Consider now a sequence {{"}, t"— -4 oo, such that 2" — {0}.
We have ¢(z*) < ¢(t) <0 and therefore

lim inf o(zt") < ©(0)
=00
which contraddicts the assumption ¢) and proves that 94 = ¢.
Thus 4 = R~ Q.E.D.

4.2. REMARK. - The most interesting ca e in which theorem (2.1) can be
applied is the case of un unstable attractor. This is a case in which if is
not possible to construet a continuous LIAPUNOV function with sign-definite
total time derivative.

On the other hand it is possible to construct a lower-semicontinuous
real-valued function » = ¢(r) which satisfies the hypothesis of Theorem 2.1.
It is to be noticed that such a real-valued function must be discontinuous
at the point # = 0. This follows from the fact that the assumption of lower-
semicontinuity together with the conditions on {(z), do not allow the function
to «jump away from z = 0» along any trajectory, not even in the points of
discontinuity of v = g¢(z) for z € R*,7{01.

A theorem analogous to theorem (2.1) can be proved also for upper-se-
micontinuous real-valued function v = ¢(z) such that, if z — x, then

(4.3) lim sup o) < ¢(x).

2y
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Clearly if v = o(r) is upper-semicontinuous, then the real-valued function
o(z) — — p{z) is lower-semicontinuous.
In addition for an npper-semicontinuous function we define

(4.4) V¥ (@) = H*‘;i‘lp T olz + tf (@) + ) — 9@,

then e

(45) Y¥@) = — lim inf < [5le 4 5(z) + ) — ¢)] = — §(a)
yl=0

where ¢(z) = — o(z) and U(x) is as defined as in (0.3), for u(z).

Thus, it ¢(z) is such that in an open set U C R" it is
(4.6) {¥(x) = &)

where the real-valued funection E(z) is continmous in U, then ¢(z) satisfies
the inequality

@ $(z) = — $¥o) < — Ea).
Sinee ¢(z) is lower-semicontinuous, then

t

4.8) olat) — olz) < f — Eamyde for all ¢ with {0, ¢{jC U.

0
Hence

@.9) olwt) — ola) = f Eoryds.
Thus: ’

4.10. TaEORLM. - Let v = 9(); ¢: R"—> E be a real-valued [function,
which satisfies the following conditions:

1) v = ¢(zx) is upper-semiconlinuous.
#) o0)=0.

ii5) The extended real-valued function *z) defined in (4.5) is positive
definite on R (def. 2.21).
Then if {01 is o positive altractor, it is a positive global attracior.

§ b. ~ Loeal extension theorem for discontinuous Liapunov functions.

Liet v == o(x), ¢: B*—> R be a real-valued, lower-semicontinuous function
and let o(0)=0.
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Define the following sets:
6.1) N@)={zeR: 9ox)<f8}, B real

5.2) N(B) is the component of N'(B) which contains }0°,

@ if N(B) is not compact
(5.3) N =

N@) if N(B) is compact.

If <0, N@) = NAB)= @, while if § > 0, N(B)== 0. Then the following
properties hold.

(5.4) If v=¢(zx) is continuous at the point {0} and B> 0, then N(f) is a
neighborhood of {0!.

(6.5) If v=¢(x) is bounded in a neighborhood of {0}, then there exists
§ > 0, such that N(B) contains an open neighborhood of {0}.

(5.6) If v=9(x) is discontinuons at the ‘point {0}, then there exists a real
number 3 >> 0 such that {0!C N(§); we may even have {0} = N(B).

(.7) N(3) may not be open.

Consider next the differential equation (1.1) where f: R*-s R satisfies
usual conditions for uniqueness and global existence of solutions for each
point z € B*. Consider next the real-valued funection w = (z), defined in (0.3).

From inequality (2.3) follows that if {(z) <O for all z e N(B), the set N(B)
is positively invariant.

Consider next the sets

6.8) 0@)={ze B 9(z) > B}

5.9) 0() is the component of O'(B) which contains {0}; since v = o) is
lower-semicontinuous then the set O(f) is an open set.
In this case, however, if {(z) < O for all z e O(f), it does not follows that
0(B) is positively invariant.
Finally it also follows that:

(6.10) If v = ¢{x) is continuous on R*, then ¢(z)=§ for z e IN(f).

(6 11) If v = ¢(x) lower-semicontinuous on R” then v = ¢(z) < B for z € IN(B).
We are now in the position of proving the main result.
b.12. TuroreM. - Consider the differential equation (i.1) with the

usual hypothesis. Liet # =0 be an isolated rest point which is a positive at-
tractor. Let A+ be its region of attraction. Let v = ¢(z) be a lower-semicon-
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tinuous real-valued function, such that:
i) o0) = 0.

#t) there exists a real-number B¢ >0 such that the extended real-va-
lued function, w = {(z), defined in (0.3) has the property (2.21) in N(f).
Then A1+ D N(f9.

Proor. - Assume by absurd that z°e (34+ N N(§9). From the hypothesis
made, the set N(B9) M 24+ is positively invariant, hence yH(z% C[N(BN4+].
Now by proceding as in the proof of theorem (2.1), we reach a contra-
diction which proves 94+ N N(§) = @ and N(B)C 4+. Q.E.D.

5.13. THEOREM. ~ If in addition to the hypothesis of theorem (5.12) it is
also true that

iii) for each x e dN(B) we can find a o >0 such that $(z) < — o for each
ze Sz, 8) N N, with & > 0, sufficiently small.
Then A+ D N(B°).

Proor. - If N(8° is posiiively invariant, then also N(§°) has this property.
Let now 2°e€ dN(39) N é4+. From the hypothesis é¢i) it then follows that there
exists T > 0, such that 2% e N(3°), which contraddicts the fact that z°te 94+
and proves the theorem.

5.14. REMARK. - In the same fashion as in theorem (4.10), theorems
analogous to theorem (5.12) and (5.13) can be proved also with upper-semi-
continuous real-valued functions. Clearly now the hypothesis of the theorem
will be on the sets O(f), instead of on the sets N(f).

Theorems which are the dual of Theorem (5.12) and (5.13) can be proved
for the case of negative attractor, with the mnatural changes of hypothesis,
In addition to the characterization of instable attractors, it is conceivable
that the theorems that we have presented in this paper may be applied to
the numerical construction of LiapUNov functions which are made by diffe-
rent families of elementary polynomial forms with suitably matched boundaries.

§ 6. - Conclusions.

The preliminary results that we have given prove the usefulness of se-
micontinuons real-valued functions for characterizing the behaviour of flow
for which a continuously differential Lrapu~Nov functions cannot exist. Many
questions however still remain open in particular regarding the converse
theorems.

Apother important application of this theory is in the numerical con-
struction of Liapunov functions, in the case in which the rest point is
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asymptotically stable, but not globally asymptotically stable and one wishes
to identify 4. This identification can be made withe semicontinunous functions
which are made by different families of continuously differentiable function
with very simple analytic expressions.
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