On a class of partial differential equations of even order (*).

by ALEXANDER WEINSTEIN (at College Park).

To Moauro Picone on his 70t% birthday.

Summary. - The general solution for a class of equations of even order is expressed as a
sum of solutions of equations of second order.

1. Introduection.

This paper deals with the general solution for a class of elliptic and
hyperbolic partial differential equations of even order which includes some
classical equations among which the best known is the equation for polyhar-
monic functions. As is well known, this equation gave rise to many oufstan-
ding papers from ALMANSI to PrcoNE [1]. For this reason the author hopes
that the following modest contribution is not out of place as a tribute to
Professor MAURO PIcONE on the occasion of his anniversary.

Before going into the general theory let us illusfrate our results on the
example of the biharmonie equation AAw =0 where w will be, as all
functions in the following, considered as a function of the m -+ 1 variables
X,y Ly, ooy Lyy,. One of the variables, say w,,.,, will play a special role in
our considerations and will be denoted by y. We shall also use often the
abbreviation « for the set »,, «,,.., ©,. A classical result of ALMANSI
states that every regular solution of the biharmonic equation- can be written
in the form w =~h -+ yh,, where h and h, are harmonic functions satisfying
Au =0 in the m +- 1 variables (z,, ..., ®,,, ¥). The interesting feature of this
decomposition is that the first term A satisfies a partial differential equation
of the second order while the second term yh, is itself a biharmonic function
of a special type and satisfies an equation of the fourth order. The same
remark is true for the other decompositions considered by ALMANsI; for
instance w=h-7*h, where #* =&}~ ..+ &, +y'. Let us compare the
biharmonic equation to the equation A(A +-ejw =0 where ¢ is a constant.
The general solution of this equation is w=h +v where Ah=0 and
Av +ev =0 (see [8, p. 15])). This means that the solution » of an equaftion
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of fourth order appears here as the sum two functions, each satisfying an
equation of the second order. This property seemingly disappears if we put
¢ equal to zero, and it is easily checked that the decomposition of certain
solutions of our fourth order equation tends formally to ALMANSI s decom-
position of the biharmonic equation.

It will be one of the purposes of this paper to show that, using some
recent results, it is possible to find a decomposition of a biharmonic
function into a sum of two functions each safisfying an equation of the
second order (see equation (3.3)) which ocours in generalizéd axially symme-
tric potential theory.

2. Two Differential Operators.
In this paragraph we will consider two differential operators; namely,

o 0 * k2

2.1 é-m-;:—l*.n“f-é@z“}'a‘y—gﬂ‘@@
and

0 ot * k39
(2.2 5;:4- +%§'—§§‘,“?}é§

where % is a real parameter, — co <<k < co. The first operator is elliptic
and occurs in generalized axially symmetric potential theory which we denote
fort short by GASPT [2]. The second operator is hyperbolic and appears in
the theory of the EuLrr-PoissoN-DARBoUX (abbreviated EPD) equation [3, 4].
‘While the study of the two operators leads fo essentially different problems,
we shall use for both of them the same notation L because only common
properties of both operators will be used in the major part of this paper.
A solution of the partial differential equation of the second order

(2.3) Liu=0

will be denoted as u* or u®. According to what was said previously #* may
be a solution of an equation of GASPT or a solution of an EPD equation.
In particular %' denotes either a harmonic function or, alternatively, a
solution of the wave equation in an m + 1 dimensional space or space time.

The basic common property of the two operators is that in both cases
we have the following fundamental recursion formulas

2.4 wie, ) = yu e, )
(2.5) ¥, y) =y FuiFw, y)

As the present author stressed many times, these formulas reflect only an
elementary property of the expression

(2.6) Hyy + :,i; Uy
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where u is considered to be a function of a single variable gy, the x; being
parameters. For this reason the recursion formulas are valid for the solutions
of any differential equation which is obtained by equating (2.6) to any linear
differential operator which is free of the variable y. The recursion formula
(2.4) defines u®*+? in terms of u®. However, if we rewrite (2.4) as

,.y
@0 P, y) = j quE2(@, 7)dy + f(@, b)
b

where f(x, b) are the values which u® takes for y =b, we may interpret it
as an infegral equation which yields a function #® from a function u*+?.
This integral equation will play an important role in the present paper.
A similar equation plays a dominant part in the solution of the CavucHY
problem for the EPD equation as will be briefly indicated in paragraph 3,
Remark B.

3. Equations of the Fourth Order Assoeiated with the Operator Lg.
In this paragraph we shall prove the following fundamental theorem.
TueoREM. - The general solution of the equation

(3.1) L,Lgw = 0, Ba—2
is given by the formulo
(8.2 w = u'® 4 ul>—2,

The only arbitrariness in this decomposition is that w»—2 and w* can be
replaced by u*—2 -+ h and uf — h, respectively, where k- is an arbitrary har-
monic function of the variables x,, «,, .., #,,. Our decomposition (3.2) is
valid in any cylindrical domain of m -+ 1 dimensional space with its base in
base in the subspace y=2>b = constant and with generators parallel to the
y-axis, this cylinder lying entirely in the domain ef regularity of w. In the
special case a==§=0 we have the result that every biharmoaic function w
admits the decomposition

(3.3) w=u® 4+ u=?

The appearance of axially symmetric functions in this decomposition is remar-
kable because the biharmonic function w 'does not in general have any sim-
metric properties. For m == 1, w® and u‘~* are STOKES stream functions in a
two and a four dimensional space, respectively. By our previous remark the
same decomposition holds for the solution of the iterated wave equation.

To prove our theorem let us observe that it follows immediately from (3.1)
by our definition of the differential operators that every solution w of (3.1)
satisfies the equation

(3.4) Lew = u®.
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Conversely, any solution of (3.4) satisfies (3.1). Therefore, the proof of our
theorem is reduced to the determination of the general solution w of (3.4) for
a given function u'® which satisfies by definition the equation L,y =0. We
shall show as a first step that for f — o+ 24=0 (3.4) admits a particular
solution w == #*~* so that

(3.5) Lguo—* = u~.

To this end let us observe that as f=(x—2) +(f — a+2) and as L,_,u**=0
we have for any u“—® the obvious identity

» agua—-ﬁ a’.’uaw.", + o — 2 au¢—2

i (0—2) —
(3.6) Lgu@? = % P “+ P ” E
B—a+20u? B —a+23us?
_l_ - - B
Y %y Y oy

For the sake of definiteness let us assume that in (3.6) and in the following
proof, Lg is the operator in GASPT as the proof for the EPD equation is enti-
rely analogous. In view of (3.6), equation (3.5) can be replaced by the equation

Jur—? 1

(3.7 py = p—— YU,

This equation is obviously of the type of the recursion formula (2.4) with u>

u® As in paragraph 2, (3.7) leads to the integral

being replaced by -

equation
Y

(3:8) W, y)=c f nuw, n)dn + flx, b)
b

where

= 1
T B—a4-2

The value y = b is assumed to be in the domain of regularity of w. It can
be assumed without loss of generality that b3=0. The function flz, b)=

= f(@,, ., %, b) will now be determined by using the differential equation
(3.9) La__zua—-2 = Awua—Z g u;y_g 4 « ; 2 uZ'—Z =0
m

b4

where A, denotes the operator
i

a’Z
st By (3.8) we have

1

fi

y
A ut=c ] nAzu*(w, )dn + Af(x, b)
)

Yy

= — cfn[u.‘ij.,,-{—%uf;] an + Af(x, b).
b
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The integration on the right hand side can be performed in an elementary
way and leads immediately to the following formula,

13.10) A us—2 = — ¢ { yus(w, y) — buse, b)
— uXw, y)+ ur@, b)-+ au(w, y) — aux, b)}
+ A,f(=, b).
Further; by (3.8
(3.11) uyy = o { uxa, ) + yus, y) i
and
«—2

(3.12) ui "t = oo — uAx, ¥).

Y

The sum of the left hand of (3.10), (3.11), (3.12) is by (3.9) equal to zero.
Therefore, we have for the sum of the right hand sides the equation

(3.13) Auf(x, b) + ¢ { bugle, b) + (0 — Du(x, b)}=0.

This equation is an m-dimensional PolssoN equation for the function
flx,, ..., %,, b) on the manifold y="> and determines the unknown function
f(x, b) up to a harmonic function b in =,, «,,.., ©,. This last remark is
confirmed by the fact that difference, ui ™ — ui™>, of the two solutions of (3.7)
is a function #*-2? which is independent of % and, therefore, by the equation
L,—su*~2=0 is a harmonic function in the x-space.

Once f bas been determined it is obvious that the right hand side of (3.8)
defines indeed a function #>-? satisfying the equation (3.4). As we have
by (3.4) and (3.5)

Lgw — Lg’w’”g = Lgw —u2) =0
it follows by the definition of a function uf that w — u*~? = u® which proves
our assertion (3.2). As u*—2 is determined up to an arbitrary harmonic function
h in »,,.., ®,, the function uf for a given w is determined up to the

function — A.

ReMARK (A). - The computation which leads to (3.6) yields for any values
of § and vy, the equation ngz%j %;T The right hand side is by (2.4),

regardless of the value of the constant § — v, obviously a function ur+? so
that we have for any given ur the general relation

(8.14) L@%Y = yrt2

valid for all values or § and y.
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ReMARx (B). CAucHY PROBLEM. - Let us put in (3.8), c=1, b=0 and
write f(x) in place of f(x, 0) so that we have for the EPD equation

y
(3.15) wHw, y) = / nura, m)dn + f@).
§

Then the computations leading to (3.13) show that the CaAucHY problem for
u>?2, a==1, with the data w2z, 0)= f(x), uj—z(m, 0)=0 ecan be solved
Af
1—a
and uy(w, 0) =0. This fact was of basic importance for the solution of the

CaucHY problem as given by the present author in 1952 [3a].

provided a function u*w, y) can be determined from the data w*(x, 0)=

4. Generalization to Equations of Higher Order.
Let us consider the differential equation

(4.1 L,L,, ... L,w=0.
THROREM. - Under the assumption
4.2) a. o, —2r—j4), J<r=2 3,.,n
the equation (4.1) has the gewneral solution
4.3) W == U + Un—1"2 + Uy~ d ... - Y2 A1),

Each of the functions u on the right hand side of (4.3) is determined up to
a harmonic function A(x,, ®,,..., ,) such that their sum Zh is identically
zero. The proof is obviously obtained from the case n =2 by induction. In
fact we have from (4.1)

(4.4) LaLuLa, o Ly 0 = um,

As by assumption a,==a, —2, there is a function u»—2 such that u» =L, u»2
By the same assumption we can put u®—?=— L, u»22 go that un=L,L,u»2?2
Continuing in the same way, we obtain the equation L,L,, ... L, slo2n—1) = g,
By subtracting this equation from (4.4) we obtain

(4.5) L Ly ov. Ly, (W — foa=2n—10) = 0,

This procedure reduces the solution of (4.1) to the solution of (4.5) which
containg only (n-—1) operators L. Repeating this process we reduce the
solution of (4.1) to the problem treated in Paragraph 3. This proves the for-
mula (4.3) and also the statement about the non-uniqueness of this decom-
position.
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5. The Polyharmonie Equation.
By our previous result the general solution of the polyharmonic equation

m 2 !
of order n, Low (Where according to our nofations, Ly = E 3 8?) is given
by (4.3) as
5.1) W= u'" 4w 4 g,

According to ALMANSI. we have the decomposition

{0) (0)

(6.2 w=ub + yul + ... + Yy luy

where all functions % are harmonic. However, the corresponding terms of (5.2)
are polyharmonic functions of orders 1, 2, ..., n, respectively. Let us compare
(5.1) with (5.2), taking for the sake of simplicity #=2. In this case we
have with abbreviated notations,

(5.3) w=yP+ Q

where P and @ are harmonic functions in (x,,.., ®m, ¥). We shall now
(—2) (0)
and ;' such fhat

compute from P and @ two functions u;
(5.4) yP 4+ Q=ul™ +ul’

To this end we introduce a harmonic function % defined by the equation
(5.5) u) = P.

Such a function exists and can be computed by a procedure similar to that
used to solve the equation (3.7) (see also R. J. DurriN [B], p. 6). We prove
now that we can put in (5.4)

(5.6) ul ™ = yul)) — ulo),

In fact the right hand side of (5.6) satisfies the equation L_,u =0 as can
be checked by the following differentiation of (5.6):

0
yz“yww - Z U, - 20+ Yy, — gy —

2
?/{ “g) + ?/“yy “éfo) b=

= (2l ) — (Bl o)+
+ 2ul)) — 2ul) = 0.
Therefore, by (5.5) and (5.6) we can rewrite (5.3) as follows:
w=yP + Q= (yu, — u) 4 u® + Q)
which shows that in (5.4) u{™ is given by (5.6) and ul? equals wl® + Q.
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6. The iterated Wave Equation. .

Our decomposition of the solutions of the polyharmonic equations applies
also to the solutions of the iterated wave equation. The formula (5.1) remains
valid on the understanding that the functions # appearing there are solutions
of the EPD equations with the corresponding indices. As in paragraph 5 lef
us consider here only the case n = 2.

The general solution of the iterated wave equation L,Lw = 0,
W =1, ..., T, Y), Where y plays the role of the time variable, is given by
the formula
(6.1) w=ul 4 ul "

with arbitrary u(lo) and u‘fE).
‘We shall show now briefly how the formula for the general solution w

leads fo the solution of the CAvucHY problem for the iterated wave equation
with the initial data

(6.2) w = f,(x), wy = [,(®), Wyy = (), Wyyy = [5(%)
for Y= 0.

Let us first remark that the formula (6.1) contains not two but four
arbitrary functions. In fact (6.1) can be rewriften as follows

(63) w = u" yu(ﬁ) g U - yaum

because by (2.5) the additional terms are again solutions of Lu =0 and
L_,u =0, respectively.

It is possible to satisfy the conditions (6.2) by taking for u®, u®, u'=?,
u solutions of a singular CAUGCHY problem for the corresponding EPD
equation, Liyu® =0, with prescribed values for u*(x, 0) and u(;}(m} 0)=0.
This last problem was recently solved for all values of % [3, 4] and, therefore
the solution is known for k=0, 2, — 2, and 4.

For the sake of brevity we shall solve in this way the CaucHY problem
for w only in the special case where f, f,, and f, are identically zero while
fix) does mnot vanish identically. Then we see at once from (6.3) that a
golution of the CAUCHY ppoblem for w is given by the formula

6.4 WX, , Xyyorey Loy Y =Y Ux,, Xy, e, Tony Y)

where #' is a solution of a CavcHY problem, L,u =0, with the inifial
econditions

1
(6.5) X, , Byyuny Loy 1)=Bf3(ml, Ry very Xym)
and

(6.6) uf,f)(w,, Xy y e, L, 0)=0.
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According to previous results [3] obtained by the present author the solution w
for m=1, 2, 3 and 4 is given by the formula

(6.7) ?f é,-—m ff3(w + &Yy ey T - YY)
Z} a;?<1
i
w B i
. (1 — 2 ocf)'"z“doc, e Ay
1
where o, = 2(r)**/I(s/2). For m==5, we have

3 »
(6.8) W= é% j . ff(w, + Y, ey X+ ay)do, .
5

Finally, if 4 <m — 1, we select the smallest integer v such that 4 +2v>m — 1.
Then

a Vv
w p— ( ) 2V+3u(4+2\&) w’
=gy (Y @, ¥))

where u4+®gx, y) satisfies the corresponding EPD equation and the initial
conditions

1
(442) —_

(6.9) uw, 0) = g m gy

(6.10) Wz, 0) =0,

The function u*+®! can be determined by a formula of the type (6.7) in the
case 44+-2v >m —1 or by the formula (6.8) if 4 4-2v=m — 1. From these
formulas it is seen that HUYGENS’ principle holds only for the values
m =5 -} 2v, v="0, 1, 2,..

because only in these cases the solution is given by the integral over a
hypersurface in the m-dimensional wx-space. This last result confirms a
remark by GARDING 6, p. 788 and connects HUYGENS’ principle for the n~fold
iterated wave equation with the fact that HuYeENS' principle holds for the

EPD equation of index % each time m —% is an odd positive integer even
if k itself is negative, k4= —1, — 8, —5, ... [3¢, p. 112].

7. The Iterated EPD and GASPT Equation.
Let us consider the equation
Lgnu:.-O n:l 2 3...

which is either an EPD equation or a GASPT equation and let L' denote
the % + 1 times iterated operator La,. The we obtain as a special case of (4.3)
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that the gemeral solution of

(7.1) Lif'w=0
is
(1.2) W= u® 4 w2 4 0,

This result includes ar a special case a theorem of FrIEDRICHS which was
extensively discussed in CourAnT-HILBERT Vol. II [7, p. 416 ff.). This teorem
states that in the case of omne x variable, m =1, the equation (7.1) admits
w® as a particular solution. It would be, of course, easy to find by our
method all equations of the type (4.1) which admit «*) as a solution. The corres-
ponding results hold obviously for the GASPT equation. The results of this
paper were summarized in an abstract, Bull. Amer. Math. Soc., vol. 60, p. 254,
1954.

BIBLIOGRAPHY

{1] M. PicoNE, Nuovi indirizzi di ricerca nella teoria e nel calcolo delle soluzioni di falune
equazioni lineari alle derivate parsiali della Fisica-matemalica, « Annali della R. Scuola
Normale Superiore di Pisa», Serie II, Vol. V (1936-X1V),

[2] A. WEINSTRIN, Generalized axially symmetric potential theory, « Bull. Amer. Math. Soc. »,
Vol. 59 (1953), pp. 20-28.

[8] A. WEINSTEIN, (a) Sur le probléme de Cauchy pour Uéquation de Poisson et Véquation
des ondes, «C. R. Acad: Sci.», Paris, Vol. 234 (1952), pp. 25684-2585.

(b) The singular solutions and the Cauchy problem for generaliced Tricomi’ s
equations, « Communications on Pure and Applied Mathematics », Vol. I, pp. 105-116
(1954).

(c) On the wave equation and the equation of Euler-Poisson, Proceedings of Fifth
Symposium in Appl. Math., McGraw Hill, 1954, pp. 137-148.

[4] J. B. Diaz and H. F. WRINBERGER, 4 solution of the singular initial value problem for
the Euler-Poisson-Darboux equation, « Proe. Amer. Math. Soc. », Vol. 4 (1923), pp. 703-715.

(5] R. J. DurriN, Continuation of biharmonic functions by reflection II, Technical Report
N°. 18, 1954, Carnegie Institute of Technology.

{6] L. Garpixg, The Solution of Cauchy’s problem for two fotally hyperbolic linear diffe-
rential equations by means of Riesz integrals, « Annals of Math. », Vol. 48, N° 4 (1942).

[7} R. Courant and D. HiLBeRT, Methoden der mathematischen physik, Vol. 11, Berlin, 1937,

[8] A. WEINSTEIN, Etude des spectres des équations aux derivées partielles de la theorie des
plaques elastiques, « Memorial Se. Math, », N° 88 (1937).

[9] E. XK. BuuyM, The Euler-Poisson-Darboux equation in the exceptional Cases, « Proc. Amer.
Math. Soc.», Vol. 4 (1954), pp. 511-520.




