
On a class of partial differential equations of even order (*). 

by ALEXANDER ~¥EINSTE~N (at College Park). 

To Munro Picone on his 70 th bi~'thday. 

Summary. - The general solution for a class of equations of even order is expressed as a 
sum of solutions of equations of second order. 

1. Introduction. 
This paper deals with the general solution for a class of elliptic and 

hyperbolic partial  differential  equations of even order which includes some 
classical equations among which the best known is the equation for polyhar- 
monic functions. As is well known, this equation gave rise to many outstan- 
ding papers from AL~ANSI to Pmol~E [1]. For  this reason the author hopes 
that the following modest contribution is not out of place as a tribute to 
Professor MAURO PICONE on the occasion of his anniversary.  

Before going into the general theory let us il lustrate our results on the 
example of the biharmonie equation A A w - - 0  where w will be, as all 
functions in the following, considered as a function of the m + 1 variables 
xl ,  w2,..., x,~+,. One of the variables, say x,~+l , will play a special role in 
our considerations and will be denoted by y. We shall also use often the 
abbreviation w for the set x i ,  x~,. . . ,  w,,. k classical result of ALMANSI 
states that every regular solution of the biharmonic equation, can be writ ten 
in the form w - - h + y h i ,  where h and h I are harmonic functions satisfying 
Au = 0 in the m + 1 variables (xi, .... x , , ,  y). The interest ing feature of this 
decomposition is that the f irst  term h satisfies a partial differential  equation 
of the second order while the second term y h  t is itself a biharmonic function 
of a special type and satisfies an equation of the fourth order. The same 
remar]r is true for the other decompositions considered by ALMA~SI; for 
instance w - - h + r ~ h i  where r ~ =  ~ 2 y~. xi + ... + x,, + Let us compare the 
biharmonie equation to the equation A(A + s)w--~0 where • is a constant.  
The general solution of this equation is w - - h  + v  where A h = 0  and 
Av + ~ v - - 0  (see [8, p. 15]). This means that the solution w of an equation 

(*) This research was supported in part by the United States Air Force under Contract 
:N °. &F(600)-573- monitored by the Office of Scientific Research, Air Research and 
Deve]opment Command. 
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of fourth order appears here as the sum two functions, each satisfying an 
equation of the second order. This property seemingly disappears if we put 

equal to zero, and it is easily checked that the decomposition of certain 
solutions of our fourth order  equation tends formally to AL~A~SI ~ s decom- 
position of the biharmonie equation. 

It  will be one of the purposes of this paper to show that, using some 
recent  results, it is possible to find a decomposition of a biharmonic 
funct ion into a sum of two functions each satisfying an equation of the 
second order (see equation (3.3)) which occurs in generalized axially symme. 
trie potential theory. 

(2.1) 

and 

2. Two Differential Operators. 
In  this paragraph we will consider two differential  operators;  namely, 

~-~ + ... + ~=:~ + ~-~ + y ~y 

~ 22 ~" k 
(2.2) 3x--~ + "" + ~x~ ~y~ y ~y 

where  k is a real  parameter ,  - -  ~ ~ k ~ c,.~. The first operator is elliptic 
and occurs in generalized axially symmetric potential theory which we denote 
fort short by GASPT [2]. The second operator is hyperbolic and appears in 
the theory of the EULER-POISSO~-DARBOUX (abbreviated EPD) equation [3, 4]. 
While  the study of the two operators leads to essentially different  problems, 
we shall use for both of them the same notation Lk because only common 
properties of both operators will be used in the major part of this paper. 

A solution of the partial differential  equation of the second order 

(2.3) L~u  - -  0 

will be denoted as u k or u (k~. According to what was said previously u k may 
be a solution of an equation of GASPT or a solution of an EPD equation. 
In part icular  u (°) denotes ei ther a harmonic function or, alternatively, a 
solution of the wave equation in an m + 1 dimensional space or space time. 

The basic common property of the two operators is that in both cases 
we have the following fundamental  recursion formulas 

(2.4) u~(~, y ) - -yu~+~(w,  y) 

(2.5) u~(x~, y) ~ yl kU'2--k(X ' y) 

As the present  author stressed many times, these formulas reflect only an 
e lementary  property of the expression 

k 
(2.6) uuu + ~ u u 
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where u is considered to be a function of a single variable y, the ~v~ being 
parameters.  For this reason the recursion formulas are valid for the solutions 
of any differential  equation which is obtained by equating (2.6) to any l inear  
differential  operator which is free of the variable y. The recursion formula 
(2.4) defines u(~+ 2) in terms of u ~k~. However, if we rewrite  (2.4) as 

Y 

(2.7) u(k~(w, y ) - - - j  ~u(~+~(a~, ~)&q-4--f(x, b) 
b 

where f(x,  b) are the values which u ~k~ takes for y ~ b, we may interpret  it 
as an integral equation which yields a function u '~) from a function u(k+ ~. 
This integral  equation will play an important role in the present  paper. 
A similar  equation plays a dominant  part  in the solution of the CAuc~Y 
problem for the EPD equation as will be briefly indicated in paragraph 3, 

Remark  B. 

3. Equations of the Fourth Order Associated with the Operator L~. 
In this paragraph we shall prove the following fundamental  theorem. 
T~EOREM. - The general solution of  the equation 

(3.1) L~L~w = O, ~ =4= a - -  2 

is given by the formula 

(3.2) w --" u (~ -~ u c~-2~. 

The only arbitrariness in this decomposition is that u ~-e and u~ can be 
replaced by u ~ - ~ +  h and u ~ - - h ,  respectively, where  h- is an  arbi t rary  har- 
monic function of the variables xj ,  x~, ..., x , , .  Our decomposition (3 .2 ) i s  
valid in any cylindrical  domain of m-+-1 dimensional space with its base in 
base in the subspaee y-----b-~ constant and with generators parallel to the 
y-axis ,  this cyl inder lying entirely in the domain ef regular i ty  of w. In  the 
special case c¢--~----0 we have the result  that every biharmoaic function w 
admits the decomposition 

(3.3) w - -  u (°) -+ u (-2~. 

The appearance of axially symmetr ic  functions in this decomposition is remar- 
kable because the biharmonic function w does  not in general  have any sire- 
metric properties. For  m -~ 1, u (°) and u < =~J are STOKES stream functions in a 
two and a four dimensional  space, respectively. By our previous remark  the 
same decomposition holds for the solution of the i terated wave equation. 

To prove our theorem let us observe that it follows immediately from (3.1) 
by our definit ion of the differential  operators that every solution w of ~3.1) 
satisfies the equation 

(3.4) L~w -~ u c~). 
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(3.8) 

where  

Conversely, any solution of (3.4) satisfies (3.1). Therefore,  the proof of our  
theorem is reduced to the de te rmina t ion  of the general  solut ion w of (3.4)for 
a given funct ion u c~ which satisfies by defini t ion the equat ion L~u ~ - -  O. We 
shall  show as a first step that for ~ - - a  + 2=t=0 (3 .4)admits  a par t icular  
solut ion w = u ~-~ so that  
(3,5) L #  ~ - '  = u ~. 

To this end let us observe that  as ~ = (~- -  2) + (6 -- :¢ + 2i and as L~_.u  -" = 0 
we have for any u ~a-~ the obvious ident i ty  

~ u  a-~ 0'u ~-" ~ - -  2 ~u ~-'~ 
(3.6) L~u (~-~ -~ ~ ~ + ~y~ -! Y Oy 

+ ~ - -  ~ + _ 2  ~ u  ~-~ _ 13 - -  ~ + 2 ~ u  ~-~ 

Y ~Y Y ~Y 
For  the sake of defini teness let us assume that  in (3.6) and in the following 
proof, L~ is the operator  in GASPT as the proof  for the EPD equat ion is enti- 
rely analogous.  In  view of (3.6), equat ion (3.5) can be replaced by the equat ion 

(3.7) bu ~-" 1 ~y - -  ~ - -  a + 2 YU~" 

This  equat ion is obviously of the type of the recurs ion formula  (2.4) with u ~ 
1 

being replaced by ~ _  a + 2 u~' As in paragraph  2, (3.7) leads to the integral  

equat ion 
Y / *  

u~- ' (x ,  y) = ~ j~u~'(~, ~)d~ + f(x,  b) 
b 

1 
C w  

The value y - - b  is assumed to be in the domain of regular i ty  of w. It  can 
be assumed without  loss of general i ty  that  b=~=0. The funct ion f (x ,  b)~--- 
= f ( x , , . . . ,  ~ , , ,  b) will now be de te rmined  by using the different ial  equat ion 

a--2 ~ -  2 a--2 
(3.9) L~_~u ~-~ ~ A~u ~-~ + uyv + - -  uv - -  0 

Y 

where  h~ denotes the operator  E By (3.8) we have 
~=1 ~ "  

Y 

5xu~-'=cj'whxu~(x,~ ~)d~ + 5xf(X, b) 
b 

Y 

J i ] '~ 
b 
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The  in tegra t ion  on the r ight  hand  side can be performed in an e lementary  
way and leads imfiaediately to the following formula,  

1,3.10) 

Further;"  by (3.8) 

(3.11) 

and 

5 .u~-e  ---_- - -  c i yu~(x, y) - -  bu~(x, b) 

- - u ~ ( x ,  y ) + - u s ( z ,  b)-4-au~(x, y ) -  au~(~r, b)} 

+ A J @ ,  b). 

U ~ - - 2  ~y - -  ~ t u~(x, y) + yu~(z ,  y) 

(3.12) ------= u~ -~ - -  c(a - -  2)u~(x, y). 
Y 

The sum of the left hand  of (3.10), (3.11), (3.12) is by (3 .9 )equa l  to zero. 
Therefore,  we have for the sum of the r ight  hand  sides the equat ion 

(3.13) A~f(w, b) + c { bu~@, b) + (a - -  1)u~@, b) } "-- 0. 

This  equat ion  is an m-d imens iona l  PoIssoN equat ion for the funct ion 
f ( x , ,  ..., x,~, b) on the manifold y - - b  and determines  the u n k n o w n  funct ion  
f (x ,  b) up to a harmonic  funct ion h in ~ , ,  x~, . . . ,  vor~. This  last r emark  is 
conf i rmed by the fact that  difference, u~ - ~ -  u,~ -2, of the two solutions of (3.7) 
is a funct ion  u ~-~ which is independent  of y and, therefore, by the equat ion 
L=_2u ~ - 2 - -  0 is a harmonic  funct ion in the a~-space. 

Once f has been de te rmined  it is obvious that  the r ight  hand  side of (3.8) 
defines indeed a funct ion  u =-2 satisfying the equat ion (3.4). As we have 
by (3.4) and (3.5) 

L~w ~ L~u ~-~ --- L~(w - - u  ~-~) "- 0 

it follows by the defini t ion of a funct ion u~ that  w - - u = - ~ - - u ~  which proves 
our assert ion (3.2). As u =-2 is de te rmined  up to an arbi trary harmonic  funct ion 
h in x , , . . . ,  z , , ,  the funct ion u~ for a given rv is de termined up to the 
funct ion - -  h. 

R E M A R K  (A) .  - The computa t ion  which  leads to (3.6) yields for any values  

of ~ and ~., the equat ion  L~uY ~ ~ - - y~u ' r  Y ~ - .  The  r ight  hand  side is by (2.4), 

regardless  of the value of the constant  [ ~ - y ,  obviously a funct ion uY+ 2 so 
that we have for any given ur the general  relat ion 

(3.14) L~ur ---- ur+~ 

valid for all values or ~ and ~'. 

A n n a l i  di  Matemct t ieo  32 
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RE~AR~: (B). CAUC~Y PROBLEm. - Let  us put  in (3.8), c -  I, b - - 0  and 
write f (x )  in place of f (x ,  O) so thai  we have for the EPD equat ion 

(3.15) 
Y 

u~-2(~, y) = f ~u~(x~, ~)d~ + f(x). 
o 

Then  the computa t ions  leading to (3.13) show that the CAucHY problem for 
u Ca-~, a-:-I~l, wi th  the data ua-2(x, 0 ) - - f ( x ) ,  ~-2 uy (x, 0 ) - - 0  can be solved 

~f provided a funct ion u~(w, y) can be de te rmined  from the data u~(~c, 0) - -  1 --  

and u~(~, 0 ) - - 0 .  This  fact was of basic impor tance  for the solution of the 
GAUCH¥ problem as given by the present  author  in 1952 [3a]. 

4. General izat ion to Equa t ions  o f  H i g h e r  Order.  
Let  us consider  the different ial  equat ion 

(4.1) L ~ L ~  ... L~ w - -  O. 

THEOREM. - Under the a s sumpt ion  

(4 .2)  ~,. :4: ~j - -  2(r  - - j ) ,  j < r ~ 2, 3,  . . . ,  n 

the equation (4.1) has the general  solutions 

(4 .3 )  w - - -  u ~  + -  u~'~-i  - ~  + u ~ , - ~  - ~  + ... + u~-2( ,~ -~) .  

Each of the funct ions u on the r ight  hand  side of (4.3) is de termined up to 
a harmonic  funct ion h(w~, w2,..., x,~) such that  their  sum Z h  is identical ly 
zero. The  proof is obviously obtained from the case n - - - 2  by induction.  In  
fact we have from t4.1) 

(4.4) L~,L~L~,  ... L~ w - -  u ~ . 

As by assumpt ion  % =4= ~¢1- 2, there is a funct ion u ~1-2 such that  u ~1 - - -L~u ~l-e. 
By the same assumpt ion  we can put  u ~1-~-- L ~ u  ~-~'~ so that  u~,--L~L~3u~ -~'~. 
Cont inu ing  in the same way, we obtain the equat ion L ~ L ~  ... L ~ u ( ~ - 2 ( ' - ~ ) l - - u %  
By subtract ing this equat ion from (4.4) we obtain 

(4.5) L~L~3 ... L ~ ( w  - -  ,~ 1~l-2/~- l ) ) )  ~ 0. 

This  procedure  reduces the solution of (4.1) to the solution of (4.5) which 
contains only ( n - - 1 )  operators  L. Repeat ing this process we reduce the 
solut ion of (4.1) to the problem treated in Pa rag raph  3. This  proves the for. 
mula  (4.3) and also the s ta tement  about the non-un iqueness  of this decom- 
position. 
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5. T h e  P o l y h a r m o n i c  E q u a t i o n .  
By our  previous  resul t  the general  solut ion of the polyharmonie  equat ion  

of order  n ,  L ~ w  where according to our notations,  L ,  = 1 Z~-~ -+ -~  is given 

by (4.3) as 
(5.1) w ~ u (°~ -I- U c-'~) ~- ... U ( - ~ + ~ .  

According to AL~_~SI. we have the decomposi t ion 

(5.2) ~v = u~o °) + y u t  °) + ... + ~ ~,,~-1 

where  all funct ions  u (°~ are harmonic .  However,  the corresponding terms of (5.2) 
are polyharmonic  funct ions  of orders 1, 2, ..., n ,  respectively. Let  us compare  
(5.1) with  (5.2), taking for the sake of s implici ty n - - 2 .  In  this case we 
have with abbreviated notations,  

(5.3) w - -  y P  -+. Q 

where  P and Q are harmonic  funct ions  in (x~, ..., x,n, y). We  shall  now 
compute  f rom P and Q two funct ions  u(1-2! and u(1 °) such that  

(5.4) y P  + Q - -  u(~ -~) + u~ °). 

To this end we in t roduce  a harmonic  funct ion u (°) defined by the equat ion  

(5.5) u (°) y "---~Po 

Such a funct ion  exists and  can be computed  by a procedure  s imilar  to that  
used to solve the equat ion (3.7) (see also R. J. DUI~FI~ [5], p. 6). We prove 
now that  we can put  in (5.4) 

(5.6) u~ -'~) = y u ~  ~ - -  u (°). 

In  fact the r ight  hand side of (5.6) satisfies the equat ion L _ ~ u  ~ 0 as can 
be checked by the fol lowing different ia t ion of (5.6): 

y Z ~ {o) Z ~ (o) (o) ~, Io) ~ (ot _ 
t vyx i~ i  - -  . ¢~xi~v i "-~ 2 1 y y  ~ l ]v , , yyy  - ~  ~ y y  

i z 

2 ~(°) . . . ( o )  (o) 
y t .*y "I- Y~yy  - -  u y  } - -  

/ Z "  (°) .a_ ~ (°l~ / Z  to) . (olx . 

9.'*'(0) 9.a~'-(O) O. 

Therefore,  by (5.5) and (5.6) we can rewri te  (5.3) as fol lows: 

w - -  y P  + Q - "  tyuy" Io) _ u(o)) + (u(ol - ~  Q) 

which shows that  in (5.4) u~ -2) is given by (5.6) and u(1 °) equals u (°) + Q. 
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6. The iterated Wave E q u a t i o n .  
Our decomposition of the solutions of the polyharmonic equations applies 

also to the solutions of the iterated wave equation. The formula (5. t)remains 
valid on the understanding that the functions u appearing there are solutions 
of the EPD equations with the corresponding indices. As in paragraph 5 let 
us consider here only the case n---~ 2. 

The general solution of the iterated wave equation L , L o w  - -  O, 

w ~---w(x~,. . . ,  x ,n ,  y), where y plays the role of the time variable, is given by 
the formula 

(6.1) w --  u~ °t + u~ -~) 

with arbitrary u~ °l and u~ -2). 
We shall show now briefly how the formula for the general solution w 

leads to the solution of the CAUCH¥ problem for the iterated wave equation 
with the initial data 

(6.2) w - -  fo(~), w~, ---- f d ~ ) ,  r o w  = f~(x),  w v v v  - -  f s ( x )  

for y - - 0 .  
Let us first remark that the formula (6.1) contains not two but four 

arbitrary functions. In  fact (6.1) can be rewritten as follows 

(6.3) w = u (°~ + y u  (~ + u C-~) + y3u(~) 

because by (2.5) the additional terms are again solutions of Lou  ~ 0  and 
L _ ~ u - -  O, respectively. 

It is possible to satisfy the conditions (6.2) by taking for u (°~, u (~), u (-'~', 

u ~4~ solutions of a singular CAUCE¥ problem for the corresponding EPD 
equation, L k u  a:~ - -  O, with prescribed values for u(k)(x, 0) and u¢~)(x, O) ~ O. 

This last problem was recently solved for all values of k [3, 4] and, therefore 
the solution is known for k - - 0 ,  2, - -2 ,  and 4. 

For the sake of brevity we shall solve in this way the CAUCHY problem 
for w only in the special case where fo,  f~, and f2 are identically zero while 
f~(~c) does not vanish identically. Then we see at once from (6.3) that a 
solution of the CAUCHY ppoblem for w is given by the formula 

(6.4) 

w h e r e  u ~ is  

conditions 

(6.5) 

and 

(6.6) 

w(x~ l , x.~, ..., x ,~ ,  yt  := y'~u(~)(x~, x~, ..., ~,~, y) 

solution of a GAUct~Y problem, L 4 u - - 0 ,  with the initial 

1 
u" ' (x~ ,  x~, ..., x ~ ,  1)---- 6 f3(m,, ~ ..., xm) 

y ~ ,  ~.~,. . . ,  xm,  0 ) - = 0 .  
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According to previous results [3] obtained by the present  author  the solution w 
for m - - 1 ,  2, 3 and 4 is given by the formula  

y3 %-~ f f (6.7) w - -  . . .  f3(x  + a i y ,  . . . ,  ÷ . 

i 

where  %--2(u) ' / ' / r (s /2) .  For  m - - 5 ,  we have 

(6.8) w ---- . . .  f ( ~  -~- ~ y ,  . . . ,  x= - ~  % y ) d % .  

1 

Finally, if 4 ~ m - - 1 ,  we select the smallest integer v such that 4 - t - 2 v ~ m - - 1 .  
Then 

w : ~ y t y ]  ~= ' ' y ) )  

where uI4+e~l(x,, y ) sa t i s f i e s  the corresponding EPD equation and the initial 
conditions 

1 
i 

(6.9) u(4+2')(a~, 0) - -  5 . 7  ... (3 -t- Iv) '  

(6.10) u(y~2'~(x, O) - ~  O. 

The function u(~+~) can be determined by a formula of the type (6.7) in the 
case 4 -t- 2v ~ m - -  1 or by the formula (6.8) if 4 --t- 2v - -  m - -  1. From these 
formulas it is seen that HU:~GENS' principle holds only for the values 

m---5-1-2v,  v - - 0 ,  1, 2,... 

because only in these cases the solution is given by the integral  over a 
hypersurface  in tim m-dimensional  x-space.  This last result  confirms a 
r emark  by GARDI~G 6, p. 788 and connects HUY~ENs' principle for the n - f ° ld  
i terated wave equation with the fact that HUYGE~S' principle holds for the 
EPD equation of index k each t ime m - - k  is an odd positive integer even 
if k itself is negative, k =~=- 1~ - - 3 ,  ~ 5, ... [3e, p. 112]. 

7. The Iterated EPD and GASPT Equation. 
Let us consider the equation 

L ~ , u  ~ O, n - -  1, 2, 3, ... 

rnd-I which is ei ther an EPD equation or a GASPT equation and let ,,~,, denote 
the n + 1 times iterated operator Lm~. The we obtain as a special case of (4.3) 
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that the general solution of 

(7.1) L~', +~ w - -  0 

is 

(7.2) w - -  u ~2") + u/~n-2/+ ... + u(Ol. 

This result  includes ar a special case a theorem of FRIEDRICHS which was 
extensively discussed in COURANT-HILBERT Vol. I I  [7, p. 416 ff.]. This teorem 
states that in the case of one a~ variable, m - - 1 ,  the equation (7.1) admits 
ulO) as a par t icular  solution. It  would be, of course, easy to find by our 
method all equations of the type (4.1) which admit u{01 as a solution. The corres- 
ponding results hold obviously for the GASPT equation. The results of this 
paper  were summarized in an abstract,  Bull. Amer. ~Iath. Soc., vol. 60, p. 254, 
1954. 
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