A Theory of Extended Lie Transformation Groups.

By TsorusaBuro Taxasu (a Tokyo, Japan)

Summary. - The theory of Lie iransformation groups is exiended fo a theory of extended
Lie transformation groups by extending the group paramelers to funciions of coordi-
nates in the base manifolds, The result is global both in the group manifolds (the O.
Schreier’s fundamental theorems being not taken into account) as well as in the base
differentinble manifolds owing fo the introduction of the author’s H-geodesic parallel
coordinates. The Lie’'s fundamental theorems are extremely simplified.

The transformation parameters hitherto considered have been exclusively
of the nature of variable constants. But the present anthor has succeeded in
extending all the branches of the following table by extending respective
group paramefers to functions of ecoordinates [1, 2, ..., 11], the invariants
being retained:
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(In three dimension)
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Thereby I considered the combined manifold:
e} + {al @) (] oher) | £0; 0, m, p=1, 2, ..., n)

of the base manifold {x?} and the extended group manifold | aw(@P)}, the
x? being the local coordinates in the

differentiable manifolds | classical spaces

and the ll-geodesic curves

d o

T gi=0 (! 2of @ (P)dam™ = ab,(xF)da™),

which exist in the

differentiable manifolds | classical spaces

owing to the fact that o' are written in invariant forms and behave as for
meet and join like straight lines, play the important roles and the global
T-geodesic parallel coordinates E such that

A8 = w' = aldl
were introdnced by introducing at least one system of wmle?) € C°, (v =
= positive integer k) | = oo, ! == v},
such that

| om(@?) | = O.

Now the present author is in the situation flo exfend his exiension of
group parameters to functions of coordinates of the base manifolds to the
general case, and this will be done in the following lines, being led fo
extend the theory of Lie tramsformation groups by extending the group para-
meters to functions of coordinates. The abstract theory ilself of the Lie groups
remains however thereby wunaltered, although the domain of wvalidity 4s
enlarged therewith. Thereby the following combined manifolds M + G are
congidered:

[the base manifold M: {x?}]- [the extended Lie transformation group

manifold G: {afx)l], (p=1,2, ... n; t=1,2, .., r).

The famous Fundamental Theorems of Orro ScHREIER [13, 14] have
hitherto enabled us to reduce the global theory of Lie groups to the case
of that of the vicinity of unit element.



T. Tagasv: A Theory of Ewxtended Lie Transformation Groups 249

The present author has introduced the global l-geodesic parallel coordi-
nates & not only in the base differentiable manifolds M (*) but also in the
transformation group space (io*! in mnofation). Thus they enabled us to
establish the theory of the extended Lie

groups | transformation groups

in the large without taking the Otto Schreier’s Fundamental Theorems inio
account.

The resulting- theory of extended Lim transformation groups includes
the various extended geometries hitherto considered by the present aunthor
as special cases (r = #’), the above parameter ¢ (cf. Art. 12) being a spe-
cial canonical parameter.

Just as we have obtained dfl= wm(w”)dmm the present author has ren-
dered the usual notafion

2 k., 0
i{e — s
=8l } Zy = e (@) 5
in the
differentiable manifold {«?} | group manifold {a'!
into the form
3 2
g’ dad’

where

() | ()

are the II-geodesic parallel coordinates corresponding to

El{ex). 1 o (a).

Thus the fundamental theorems of the extended LIE ftransformation
groups are made extremely simple as the following underlying formnlas
suggest:

2 |

X = 3 (Xi, X;) =0,

2

Zi = dat’

s (Zi, Z;) = 0,

(*) Usually the Buclidean space K* only is treated as the base manifold.
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the structure constants
O;Ic =0 3 6;k = O,
d (0 ()de™) = 0,

* dak T

d(bi(@)da’) =0,

of _of
d dul "ggz'

o

In Art. 19, E. Cartaw’'s theories in his “géomélrie des groupes”’ [15]
concerwing 7 equipollence des wecteurs”, " parallélisme des wvecleurs” and
"géodésique” will be extended fo the case where the groups are the extended
ones in the present author’s semse, the fact that his geodesics are ll-geodesic
in the present author’s sense being shown.

§ 1. - Otto Schreier’s Two Fundamental Theorems.

1. Recapitulation of the Otto Schreier’s Two Fundamental Theorems.
The study of the global Ltk groups has hitherto been based on the follow-
ing principles.

First Fundamental Theorem of Ofio Schreier [13, 14]. If U be an
arbitrary vicinity of the wunit element of a connected fopological space G;
then every element of G is expressible s as the product of a finite number
of elements a,, a;, ..., 0, belonging to U.

Cor. - Connected r-dimensional continuous group G may be covered
by at most enumerable open sets of the forms a,U, (r =1 2, .., n), where
U is an arbitrary vicinity of the unit element of G.

Second Fundamental Theorem of Otto Schreier [13, 14]. If we divide a
connected r-dimensional continuous group into subsets by the equivalence
relations of locally continuous isomorphism, then each subset contains only
one simply connected group, provided that we do not distinguish the sub-
sets, which are continuously isomorphic to ome another. Every continuous
group belonging to one of the subsets is continuously isomorphic to the
coset group of the simply connected group (belonging to the subset) formed
with its isolated invariant subgroup as modulus.

And conversely, such a coset group is a continuous group belonging
to one and the same subset as its simply connected group.

In the First Fundamental Theorem of OTTo SCHREIER, the expressibility
» holds only except local continuous isomorphism and by the continuous



T. Tarasv: 4 Theory of Eaxteinded Lie Transformation Groups 251

group, locally continuously isomorphic subsef only come into our conside-
ration. Hence we see that the study of connected continuous groups is
reducible to that of the

vicinity of the unit element | group germ (local group)

only.

§ 2. - The Theory of Lie Groups in the Large by Extending
the Group Parameters to Functions of Coordinates.

2. Differentiable Manifolds. - In order o fix our notion, we will reca-
pitulate some definitions of terms ete. under consideration.

Let R” be au n-dimensional Cartesian space with the real coordinates
{22). We call the topological representation of an open subset U, of an
n~dimensional manifold M= V" on an open subset x(U,) of R" a system
of local coordinates (or a local chart) of M. U, is called the domain of the
chart (ov the domain of the coordinate system). To each point P of U, C M,
there corresponds a point of R" which is represented by (x*) called the
coordinates of P in the chart under consideration.

DerinITION. - A differentiable manifold M of the class C%wv = positive
integer or v =oc or v=w)} is an n-dimensional manifold (*), to which a
system Afatlas) of charts satisfying the following conditions are associated :

4,. M=UU,.

A.,. PeUNTU,, (U, Uy: two domains of charts of 4), and (x*) and

{y*) are the local coordinates having U, and U, as the domains respectively,
then

¥ =) | @ = (y)

are functions of class (' such that

Ay*, vy ¥") Aty ., ")

o e ), Ty s ) .

Aacty .., x"):!: Yy e s y")#o
DeriNiTioN. - Two atlas 4 and B are said to be equivalent, when

their reunion is also an atlas of class C°.

(3} A ftopological space is said to be locally Euclidean at a point P, if there exists
# chart A on a vicinity of P. A HAUSDORFF space which is locally Huclidean at each
point is called a manifold.



252 T. Tagasv: A Theory of Extended Lic Transformation Groups

THEOREM. - In order that two atlas 4 and B of one and the same
differentiable manifold M may be equivalent, it is necessary and sufficient
that 4, B satisfy the axiom A4,.

DerFINITION. - Two equivalent atlas are said to define one and the
same structure of differentiable manifold of class C* on M.

DEFINITION - A system of local coordinates of M is said to be compa-
tible with the structure of differentiable manifold (or to be admissible) when
the reunion with an atlas defining M as differentiable manifold is also an
atlas of the same class.

THEOREM. ~ Hvery compact differentiable manifold can be covered by a
finite number of domains of the charts.

3. The Lie Groups are r-Dimensional Differentiable Manifolds of
Class C2 At the end of Art. 1, we have seen that the study of connected
continuous group is reducible to that of the
vicinity of the unil element | group germ (local group)
only.

Now we have succeeded in introducing global 1l-geodesic parallel coor-
dinates {E'} into differentiable manifolds and any point of a differentiable
manifold may be considered as the origin by virtue of the ertended affine
transformalion group.

THEOREM. - The Lie group is o differentiable manifold of class C°.

In order to prove this fact, we begin with the definition of the r-dimen-
sional LiE group germ.

DEFINITION, - A set (G of elements
S, = S{a*, o, ..., a’)

having points a = (a’, a* .., a”) belonging to a vieinity U, of the origin
(0) of the r-dimensional Euclidean space as parameters, is called an
r—dimensional Lie group germ, when it is characterized by the following
conditions:

(i) If we take a vicinity U, C U, of the origin appropriately, then for

a=(a' a* .., a" €U,
and
b= b, .., " el;,



T. Taxasu: A Theory of Ewtended Lie Transformation Groups 263

the product
S4:8,=8,, (c=(c" ¢* .., ") €T,

is defined, where the compesition function
¢ = ¢ia’, o’ .., a”; b, b% .., b"), t=1,2 .,7

are of class C2

(¢%4) For arbitrary a € U,, the relation

Sa'S():SO.Sa:Sa

i.e.

(3.1 PHa’, o, ..., a”; 0, ..., 0)=¢¥0, .., 0; @', ..., a”)
=0, (=1, 2 ; 7

holds.

(@9 If a, b, c€ U, for sufficiently small vicinity U, of the origin,
then the associative law

Sa'(Sb"Sc) = (Sa’Sb)'Sc

i. e,
(3.2) vHa; olb; o)) = ¢¢la; b); ¢}, =12 .., 7
holds.

Lemma. - If a and b be sufficiently near the origin, then

og'(a; b), ..., 9"(a; b)) Ae'a; b), ..., 9"(a; b))
3ok @ ., a0 3, B, b T O

so that we ean solve

¢ = oia; b), (i=1, 2, .., 7)
with respect to a or b. In particular, S; = S;* such that
SW'SQ et Sa‘S;p = S()

is determined for arbitrary S,.

iey - i -

Proovr. - M;;-’II—Q and ?ﬂ%%?l_g) and thus the fundamental determi-
ofe) ) . o S -

nants 3a) and 30) are continuous functions in the vicinity of the origin.
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If we set b =0 resp. ¢ =0, then, by (3.1), we have

(%>b=o = (g%)m = [%| =1

and thus

3() o(e)

in the vicinity of fthe origin.

If, in particular, we solve S,.8,=S,, we have
S;p = (Sx’Sa.)‘Sa; — Sﬁ’(sa' Sz)

by the associative law. Comparing this with S;= 8z-8,, we obtain
S, Se=2_8,. Thus S; =8, " exists.

Proor of the THEOREM. - I. When a vicinity of the unit element of a
topological group G is an r-dimensional LIE group germ, the topological
group G is called an r-dimensional Lie group.

II. A topological group G is an r-dimensional conlinuous group,
when @ is provided with a vieinity of the unit element of @, which is
homeomorphic to an open hypersphere of the r-dimensional Euclidean space.

From I and II, we see that the vr-dimensional Lie group G is an
r~dimensional continuous group, since for the Lir group germ, the existence
of the vicinity of the unit element of & which is homeomorphic to an open
hypersphere of the r~dimensional Euclidean space, is preassumed.

Now

III. an r-dimensional continuous group is a topological group whose
group space is an r-dimensional manifold.

Hence the r-dimensional Lie group G is an r-dimensional manifold.

By the Cor. above, this r-dimensional manifold is a differentiable mani-
fold of class C° since, by the Cor. of the First Fundamental Theorem of
Or16 SCHREIER, Axiom 4, of Art, 2 is satisfied and by the Theorem
above, the Axim 4, of Art. 2 is satisfied.

Hence the r-dimensional LiE group is an r-dimensional differentiable
manifold of class C°

4. Realization of the Present Author’s Extended Affine Geometry in the

#~Dimensional Base Differentiable j r-Dimensional Lie Group Spaces.

Manifolds. |
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Since the r-dimensional LIE Group is an r-dimensional differentiable
manifold of class C° the author’s extended affine geometry [4, 11] is reali-
zable in it. In the following lines, a realization of the present author’s
extended affine geometry will be exposed in the

n-dimensional differentiable , r-dimensional LIE group space G.
manifold M. [

b. II-Geodesie Curves. Take

(5.1) o! 2L o () due, t o 42 ui(ar)dat

A wy, =12 ., n), ’ G, n, .. =1,2,.., r), (r =mn),
where the Pfaffians
w! I ot

are assumed fo be anholonomic in general and to be of rank r, so that the
condition

(3.2)  Noy@)lI*E0in M ! | «l(@?) | 40 in @
is satisfied.

Since (5.1) is written in an invariant form,
w! ! ot
are global in U U,.
o
For the given

whi@), | ai(a?),

we introduce
Q7 (av) | gi(a®)
by the condition:

(5.3) Qo) =3 <> Qhul =12, { Blom =8 <> Bl =3},
where &s are Kronecker deltas.

We define the connection parameters

Al | At
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by
! X 2 1
A det gr Wy 0 1 det 1 Bm % 0%
64 Aw = w = P Ann =0 540 = = Pu g
the last identily arising from (5.3).
Consider a parameterized curve
awt = o (t), | o = alt),
where it is assumed that the ¢ is ‘nvariant.
We can easily prove the identity:
- d &)lm 1 (Pt 5 daev da? d OL)‘_ ) (dFal ; da” dat
5] am—“’*(‘d—t?“* Vo @) ! am—“l(mﬁ ' -gzz')'
We consider the combined manifold:
l] + o) | i talt 4+ {ala?) |
forming a principal fibre bundle, the
Loper)} = | Q)] | Lamda?) | = {Bula?)
making the structure group. (This group
Lo )] | Lam(a?)|
will afterwards be enlarged to
tohier), wpt). | L m(a?), ast).

Although the group elements
wi{wv)
contain the local coordinates
(wv)’ I (ap)’

the funetion forms make the group elements (in a certain sense) independent
of the local coordinates

(). i (a?).
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From (5.0}, we have

d o d o
— dPac s dxv dxv -0 ___»ﬂ Al da” dat
—ar Tt twar ar —ar T tat ar
Indeed, we can convert (5.5) into
, d o  dx° - dav da? _d'a® s da” dat
(66 & gia=ar TN @ ar @’* dt dt FraE

The differential equations on the right-hand side of (5.6) define the
autoparallel curves of the teleparallelism (E. CARTAN (1926), WEITZENBOCK
(1928)). The left-hand side (*) is convenient for the study of the global properties
and is integrated readily:

(6.7) ol = ¢é'dt, ¢ = const.), ok = etdi, (¢* = const.),
1 ah
(5.8) [% dt = et 4 ¢, (¢! = const.), /% dt = et 4 ¢*, (¢* = const.),

the (5.8) being guided by the simple character of the -right-hand side of (5.7).
Noticing again the simple character of the right-hand side of (5.8), we set

gitet 4 o, | nt 2 eit -
go that

5.9 I— ﬂl — 1 1 - f‘i e gh 1
(6.9) g dtdt et - ¢l | v atdt et 4 ¢,

This means that we adopt such curves as
&' — auces. I n* — awxes.

From (5.9), we see that the curves represenied by (5.8) or (5.9) behave as
for meet and join like straight lines in the large. We will call such
curves (%) Il-geodesic curves (read: geodesic curves of the second kind!).

(®) A glimpse is found (for the group manifold {a,}) in: E. Carrax, [15], p. 62.
(*) In the group manifolds, such curves have been called geodesic curves (E. CariaN,
[15], p. 14 and p. 62). The author has just found that the 1I-geodesics are geodesics for wi.
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Although the

w? ] ah
are anholonomic in general, we may write it in the form of differentials:
(3.10) 8 = ol = al@ (f))dwr{f) | dpr = o = ap(a®(t)dam(i)
for ll-geodesic line-elemenis, where

(6.11) al (@) 22 ol (@), | ahfa?) | 0 in @
Il ay@) il &0 in M.

The expressions (5.7) and (5.10) tell us that, for the given
an (o) da, ! o) (a®)da™,
there exists a curve
M {t), al(t),
whose line~element
{ duot| {dam |
with direction
{e] fet}
is given by the differential
dag. | dnt.
This is the case for all fhe directions
ell. | ra
Thus in (5.10), we may omit t and write down as follows:
(5.12) Al = a,(av)dac?, ] dnp = op(a?)da™,

notwithstonding the righi-hand side is anholonomic in general. (Hence (5.12)
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will lead us afterwards to

(5.13) = a,;(:z:"}xfx + al= E(x), 7t = an(@P)a™ 4 o = nHa?),
(@} = const.), (a5 = const.),

cf. (6.6)). That the anholonomic Pfaffian
czbfk(ac")om%L ] o (a®)dam
is expressible in the form of the differential
dg! 1 dn?

is an wunexpecled consequence of the superior quality of the Il-geodesic
line-elements. This point is the primary diffizully encountered by the
readers, who are apt to overlook the differential equation (°) (5.6):

(b.14) da o) der = 0 | do(a?)dam = 0

for the l-geodesic line-elements.
The first differential equation of (5.6) may be rewritten as follows:

5.15 g _ &t _
(5.15) g = 0. | g =0

From (5 13) and (5.12), we obtain
(5.16} day e )er = 0 | das(a?)a™ = 0

along l-geodesic line-elements.
Multiplying (5.7) with

Qo | By

and taking (5.3} info account, we see that the relations (%)

da* l
(5.17) =} W= ol

hold along the ll-geodesic line-elements.

(°} This condifion is lacking for the general Pfaffians.
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‘We will call the
{E4 | {nH
the II-geodesic parallel coordinates corresponding ito
@ o) | a%(ar)
referred fto U-geodesic coordinate axes. The {&} are global in the atlas UU,.
6. Extension of the Affine Transformation Groups by Extending the

Group Parameters to Fuaections of Coordinates, When the differentiable
manifold

M | G
is the classical affine space and the
{2’} ! ta?}

are the ordinary parallel coordinates, the atlas UU, reduces to a single
2

chart U,, whose map is the classical affine space.
In general case, the II-geodesic parallel coordinates

(&) | (n*)
can stand for

{e ], i La?t,

so that the atlas UU, may be considered to consist of a single chart U,

and in place of (5.12), we come to consider
(6.1) d& = a? (EP)dE™,
(| anZ) | 0 in M)

| di = @ )dnt,
| (] o) | +0 in @)

for T-geodesic line-elements corresponding to
n(EP). | ).
We take II-geodesic curves corresponding to

anlE?) | ah(n?)

as tangents fo the curves.
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We consider a transformation
(6.2)  E=dl(EPE"+ dl, 7t = aX e 4 ok,
(| anE?) | 0 in M) (lay(p’) | 40 in G)

accompanying (6.1}, We will call the transformations (6.2), which transform
-geodesic curves

§™{l) l 7 (?)
into II-geodesic curves corresponding to
AnE) | ()
extended affine transformations. By such a transformation, II-geodesic curves

21} Zari b
d ’ o

(6.3) as °r

are transformed into II-geodesic curves

dzéz _ dz;)'x _
(6.4) 2n=0. [ A
Now by (6.1), we have
g _ad 1., dE" dn® e

vi....t l v
g = @i %) g ) g

! dzgm d2;))“ d N
aF = ) g ol g - f =

Hence by the demands (6.3) and (6.4), we must have

(6.5) dal(Er)dEm = dog(n?)dne

L dEs dgr dety d*ne dn® dge
— 3 v 8 T3 P 2 e P— v A a J_ ,_.:I}_ =
S a/s(ﬁ )g dtz + A,.[(Ep) dt dt dt —— O - Oﬂ(‘ﬂ ) dtz + A’Fm dt dt dt2___ O

for the H-geodesic line-elements.
Integrating (6.1) along the II-geodesic

El-axis, | y-axis,
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we have
md m —
& = anm E”E’“»}-/g “ Dar. I o= ) n*ur/‘fz” sl ") .
Now
dan(E) 2, dam dei(n) da(n’)
m m " » — palet AN BP A
jg U= dtfdg f’“‘ at =] g ””/d”“
_ﬁ d“m dtd&ms “[/ ) dey dtdm{
= consé.

by (6.5), (the indication of the domain of integration is here omitted), and
the condition for that the repeated integral may be converted into the double
integral being evidently satisfied. Hence for the

o | o
in (6.2), we have
ah= const., | op = const.,
being led to
(66) &= am(E)" + as, | 7= )+ o,
(| ab(€?) | &= 0 in M, a) = const.). i {1 oc&(*f]‘/) | #0 in G, «f = const ).
From (6.2} and {6.5), we see tha$
(6.7) da,{EP)Em = 0 | da(n* )y = 0

for the U-geodesic line-clements.
The totality of the extended affine transformations forms a group,

G, say. | ¥, say.
In order to show this analytically, it suffices to show that the product

of (6.6} with

-

(6.8) B=al @i+ dl, M= a4 ak,

(1 a,’n(g’”) [ 40 in M, Ef) = const.) (1 “1( ") | =0 in @, ocl = const.)
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is of the form (6.6):

(6.9) &= bulEP)E" + b, } = Byl e + B,
(|bwE?) | 4 0 in M, b, = const.), I (|82) | % 0 in G, 8, = const.),
where
(6.10)  BL(E?) = am(ahE)Er Balm’) = ol
+ af)axig"), + ao)ai(n°),
(6.11) by = bulEP)ay” + s, 8o = Buln )b + o,
(6.12)  BwlE?) = (anlafE")E* + ad). Buln) = apfas(n*)n* + ag).

We shall see that
(6.18) b =bL(EP)a + a) = const,, | 85 = BA(n*)as 4+ a5 = const.,
for which it suffices to prove that
(6.14) agdbplE) = 0 1 abdfin) =0
on summation with respect to m. For (6.9), the condition (6.7) for that the
E-axes | 7-axes
may be Il-geodesic curves corresponding to
i (E7) | s (1)
becomes
(6.15) E™dal, (EP) = 0. } ndar (n”) = 0.
We shall show that (6.14) follows from (6.15). The (6.15) becomes
| aREE + aq' | dam (2°) Vo) oo g (o)

= {QIEP)EE + al | dbYy(EP) = 0, | ={al(n* = + o} dBip’) = 0,
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so that
(6.16)  a™dak(Er) = aldb(E?) dsdan) = obdBin?)
= — af(E7) dbr (7)€ = — e (n*)dBy(n" )n”
= — ()b EP)E" = — af(n*) dByln* )
— |EFdaM(EP) | bu(E?) — {ndabn)} )

by the differential equation
(6.17) Etda™(E?) = 0 | nrdaf(n’) =0
of the H-geodesic curves corresponding to

ax(E)- | i)

Thus we have

a5 A (EP) = — EFd | af (EP)bm(EP)| abdag (n’) = — W A} () Byne) |
= — Ehd | af(EP)am(E?)} = — nd | af(n?)an(n)}
= — EFdDL(EP) =0 = — pdfin’) =0

by the differential equations
(6.18) ERdbi(E?) =0 B ) =0
of the II-geodesic line-elements corresponding to
bun(EP). | Btn)-
The (6.17) shows (6.14). We have called the
G l ¥
the extended affine group. The most general extended offine group

G | ¥
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contains the ordinary affine group
C | R

(in the abstract sense) as a subgroup. The totality of the elements of
G, l ¥,

which are free from
C | R

together with the unit transformation, forms a subgroup,

1b’ I ﬂ’
pay, of
G, | ¥,
go that
(6.19) G =Ch + bd. | ¥F=RT+ TR

The geometry under the extended affine group has been called by me
the extended affine geometry.

7. Realization of the Extended Affine Geometry in the Differentiable
Manifolds. - Our results of Art. 3 ~ 6 show wus that fhe author's extended
alfine geomelry is realized in the differentiable manifolds.

8. The Fundamental Pfaffians fer the Lie Group (Germs). - The ordinary
theory of the fundamenial Pfaffians for the Lie group germs applies still
when the elements

oy, 1=1,2, ..,r; i=1 2, ..., n)

of the Lie group germs are extended fo appropriate functions of the coordi-
nates of the base manifold. Such a theory will be exposed in the following
lines, writing o' in place of alx) = d¥«?). We assume moreover the coordi-
nates (x%) to be Il-geodesic parallel coordinates (5%), which are global. Then
we may omit the term “germ, without relying upon the Ofto Schreier’ s
Fundamenial Theorems.
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We have assumed in Art. 3 that the composition functions
(8.1) ¢t = ¢ia?, ..., a”; b .., b"), =12 .,
are such that
(8.2 ot € O

We form the matrix

4 o ia;b ..
(8.3) ai(a) :( @ éb?. ) )M, =12 ., 1)

Since
84 | 4(0) [ =18} | =1,
we introduce the inverse ﬁ;ﬁ{a,) by the conditions
(8.5) wi(@)ffa) = 8f, == aj(a)fila) =3,
where oc;: are KRONECKER deltas.

DeriniTIoN. - We call
(8.6) wi(a,da) = Bjla)dai, a' = allx}), wi€ AD(C?)

the fundamenial Pfaffians of the extended LiE group (germ), where
A9(C? is a Lie algebra having wi(a,da) as base.

Multiplying (8.6) with «i{a), we obtain

(8.7) dai = ol(a) vl

THEOREM. — The necessary and sufficient condition for that the differen-
tial form

(8.8) ©= I g . pladaA .. \Nda € A(C)
11<...<1¢p

may be invariant:

(8.9) B= T g . p@daip .. \dair=0
i < . L ip
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for all the transformations
(8.10) & =ik .., k" a', ..., o), i=1,2 .,

with parameters (k'(xi), ..., k"(x') belonging to o vicinity of the origin (0)
is that for

(8.11) Q= 3 Dy @i . A\ o,
8 <L e KD

the coefficients h; ..y are all constants.

Proor. - We will begin with the proof for that (8.8) are invariant for
{8.10). Apply the transformation (8.10) to (8.7); then we have

da = aajol,
i. e.
3gitk; a)
dal

(8.12) da? = ai (g(k; a)) oi

on one hand and

; 3i(k; a); Pk;o(a;
(8.13) %i(olk, a) = ( _CU_@E?)_Q)G: 0o <W)m 0
_ 3k bay e)) ¥vi(kia)
AT )c_o’" "

on the other hand, where b' = ¢%a; ¢). Apply the inverse of

2at

( 3¢'(k; a) )

to (8.12). Then it results that
da' = ak(a)ai.

Thus we have
ol = Bi(r)da? = Bi(a)ak (@) = Fhot = ol
Secondly, in order that ® may be invariant, the relation

hi, ... o) = By ap(olk; @)
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must hold for all values of & If we take a— O, since ¢i(k; O)=k, we
must have

hiy ... ip(0) = by ..ip(E).
Hence h;, .. must all be constants. Q.E.D.

THEOREM. — For the fundamental Pfaffians of r-dimensional extended
Lie group (germ), it holds thal

(8.14) dw? =-; Chew’ N\ oF,
where the r* constant coefficients O’;:k obey the rules
0:'" = Olii s
(8.15) _
cji=0
(8.16) CfChx + CjkChi + OfiChj = O,
Proor. - Since o' are invariant, do’ must also be invariant, since the

operator d and coordinate transformation are commufative. Hence, by the
last Theorem, we must have constants Cjx such that

deoi = Chol A oF,
If we set (8.15):

Cir=—Ckj, >k, OC;=0,

we have
(8.17) do’ :% G}}cwi A 0¥, wi€ 4(C?), dw'€ A((Y),
(8.18) d(dwi) = 0.
Therefore
d{dwf} = % C?;zdw"/\ Wt — ; Cpw® A dot
= Chdo* A m’——% C;’;zCll,fqmq A 0? \ ol= 0.
Hence

CiiChe + CfiChi + CiiCri = O, @ 4§, k=12, .., 7).
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DEFINITION. - The #° constants O} are called the structure constants of
the r-dimensional extended LIE group (germ).
If we develop of(a(x?); b(x)), by virtue of (3.1), then we obtain

(8.19) oila@; b) = @ + b + djyaibt + ¢,

where ¢ is an infinitesimal higher than the second order in the vicinity of
the origin. From (8.19), it results that

aj(a) = 8} + dijo* + ¢,
Bila) = &) — dija* + €7,
where ¢* and ¢* are infinitesimals. Hence
oi(a,da) = da' — drjatdai + e,; dai,
where ¢,; is an infinitesimal. Hence it resunlts that
do = — di;da* A\ dai + dey; A\ dai = Clwi A\ o,
Comparing the coefficients of da* A da’/, we obtain
8.20) Cl = djx — d;.

N.B. - (i) In order to deduce (8.16) in terms of dfk directly, we utilize
(3.2) having written out the terms of the third degree in (8.19) [16].

(ii) As for the class C® in the ordinary case, L. PONTRIAGIN [16] has
taken v = 3. L. van der WAERDEN [17] has assumed that (1) ¢¥(a; b) is once
differentiable, (2) wa(a;b) satisfies the Lipschitz’s condition for b and (3) its
converse. G. BIRkHOFF [18] has assumed the existence of the total differen-
tial of ¢a; b) and its continuity in the origin. P.A.SmirH [19] has proved

that when for of(a; b) = a?+ b* + {¥(a; b), the condition —(g"%%’—ﬁ—) —0, (a— 0,
b— 0), where (|a|=a"+4 ..+ a"™), is satisfied, the Lie group (germ)
may be rendered into an analytic LIE group (germ).

In our case, we have assumed “g¢f€ 0%, . This condition is fully utilized
in (8.18), But, it will be seen that the result of Art. 8 hold good also for
¢ € C° if we notice the following fact. Indeed, if ¢'€ (%, then we have

w' € 4(0%), dw’€ A(C°). Thus the first Theorem of Art. 8 is still applicable,
so that (8.17) holds. Consequently we see that doi€ A(C*), so that d(def)
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exists and the fact d(dw’) =0 is a consequence of w?€ A(C?. Hence it suf-
fices to deduce d(dw’) =0 from do’€ 4(C*) in another way. For this pnrpose
we utilize the generalized SrTOKE'S theorem. When w”€ 4(C®), (v>1) is an
homogeneous expression of r-fh degree and C"** be an algebraic complex
composed of curved simplex of p-¢h class (p > 2), then the relation

[ o= ar

agrtt ot
holds. Thus for an arbitrary 3-dimensional curved simplex C? we have

(C%, d(dw)) = (AC% dof) = (A(ACP), o) =0,
where
[m’":((]", w”).
o
Hence we have
d(dwi) = 0.

(iiij The name “fundamental Pfaffians” arises from the following
theorem.

THEOREM. - When v fundamental Pfoffians are invariant for
A = iH{a), =12 .., 1)

which maps the points of a vicinity U of the origin into a vicinity U, of the
origin:

(8.21) wi(a, da) = via, da), =1, 2 .., ),

the ia) coincides with the composition function ¢'(k;a):

(8.22) Vi) = 9ik; a), (t=1.2, .., 7
for
{8.23) i 0) = K, =12 .., 7,

that is to say, the extended Lie group (germ) is determined uniquely by r
given fundamental Pfaffians.
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Proor. - Consider the simultaneous total differential equations
(8.24) wi — vt =0, i=1, 2, .., 1),
by putting

of = B(a)dal.

These are completely integrable. For.

diwf — o) = T Clfo! A\ of — of A oF)

i<k

= 3 Of{ol \ (0F — vk) 4 (0f — wf) A okl
i<k
=0, (mod, o' — 0!, ..., 0" — o),
and since
| @) | + 0,
the solutions such that
Ei - fi(kl, rees kr; a‘l} sy ar),

(8.25)
B o= fi, ..., &5 0, ..., O), =12 .., 9

oxist on one hand. o' = Yi(a) are solutions of (8.24) for the initial condi-
tions (8.23) so that, by the uniqueness of the solutions. we have

q)i(a) = fi{k; a), (=1, 2, .., 7).
On the other hand

at = @i, .., k"; @) ...,a")

are also the solutions of (8.24) for the same initial conditions by the First
Theorem above. Therefore we must have

(8.26) 9ilk; ) = filk; a) = 9i(a), =12 .., 1)

9. Abstract Lie Ring. - In order to make the structure of the exten-
ded Lie groups clear, we give the definition of the abstract Lig ring.

DrrFINITION. - A vector space B of rank r with

real | complex
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coefficients is called an absfract Lie ring, when the following conditions
(i) and (ii) are safisfied:

(i) For 4,BE€R, a commutator product (4, B)€E is defined uni-
quely;

(ii) {}‘1‘41 + AZA% B) = )‘I{Al’ B) + 12(‘42’ B):
(9.1) (4,B) = — (B, 4),
(9-2) (4B), 0) + (B, 0),4) + ((C, 4),B) = 0.

THEOREM. - For given basés E,, E,, .., B, of a weclor space, there
ecists r-dimensional abstract Lie ring R having the siructure constants of
an r-dimensional (extended) Lie group (germ) G as coefficients of

(9.3) (Ei, B;) = Ci:Ey.

Proor. - Since H,, E,, ..., E, form a basis of a vector space, we may
set (9.3). Then from (9.1) and (9.2), we obtain

Cf —_— — C’;’
9.4) é ’ ’
| ChCh + CLOk + ClCh=0.

Conversely, if (9.4) holds for certain r constants Cjx, we can determine,
the basis E,, E;, .., E, so that the commutator product of them is (9.3)
and introduce the definition

(diEi, BfE]'} = Oﬂi(lj(Ei, Ej),

then (9.1) and (9.2) hold. Hence the theorem.

N. B. - When a property of an extended LIE group (germ) is given,
we shall express it in terms of the corresponding abstract LIE ring.

10. Coordinate Transformation.
DEFINITION., — When the relations
gilvla; b)) = #i(gla); gb)),

(10.1) o o
gilela; b)) = ¢igla); gb)), i=12 .., 1)
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hold by a certain one-to-one transformation

i= gi(a‘l} ooy ar)’ 0= gi(O’ sery 0)7

IS

(10.2)

g, g€

between certain vicinities U, U of respective origin of two r-dimensional
extended LI group (germs) G and G hold, G and G are said to be isomor-
phic to each other. Thereby ¢(@; b) and @(a; b) are respective composition

functions in G and G.
The (10.2) may also be expressed as follows:

If §,+8,=48,, then Sg(a,wgab) == S’g(c),
(10.3)

it 53-8 =8;, then S,5)-S,5) = S,3,
s, Sy, o €G, Sa, S5, o € .

When ¢ and g' are, in particular, analytic functions, @ and G are
said to be amalytically isomorphic.

If we transform the extended parameters (a% ..., a”) of an r-dimensional

extended LIE group (germ) @G into (a', ..., a”) by g% .., g" € C* such that

ot = gia, ..., a’), 0=g\0, .., 0), t=1, 2, .., ),
(10.4)

then it results that

Sa: o)

which is a special case G =G of the above definition for isomorphism.

Thus a treatment of the isomorphism consequences a transformation of the
extended parameters.

If G and G be isomorphic to each other, then introducing

dai = dgi(a) = %ga da*
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and

(W) _ g (acpk(a; c)) zo(a%f))

i Je=o daF\ 3! -0

obtained by differentiation of

into

daf = (?i"’(i_"))_ o (@, da)
oct =0

and solving the resulting equations with respect to da®, we obtain

d9*(a; o)
k__ b
da “( 5o

Comparing this with the fundamental Pfaffians wi(a,da), we obtain

(10.5) w(a, da) = hio! (a, da),
where

i ag"@))
(10.6) h]_( )

Thus the fundamental Pfaffians wundergo a linear transformation with
eonstant coefficients.

We introduce this into

duwé = % G;ﬁ;mk A ol
Then it results that
i 1 iox1- -
d(hjwi) = 5 Crabghgw? A\ o

Set

= (= (29) ).
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Then we have
do/ = % Crihilghyw? Ao,
Uomparing this with
disi == 3 Thoo? p\ o,
we see that
(10.7) Gy = (b highty) Ci-

Taking this result with the converse, we shall prove the following
theorem.

THEOREM. - The mnecessary and sufficient condition for Ithat two
r-dimensional (exiended) Lie group (germs) G and G may be isomorphic to
each other, is that the structure constanis of G and G are transformed by
matric (10.7), where (hj) is a matrix of constants such that | hi|== 0 and
(B}) its reciprocal matri.

ProOF - Sefting
{10.8) b(a, da) = kivi (@, da),
dbi = % Chibi A BF
as in the case of dw/ above. Hence
b, da) — vi(a,da) = 0, t=1,2, .., 1
is completely integrable as in the case of (8.24) and the solution may be

given by

ai=§i(a1: vy @7, 0=g%0, O, .., O), (=1, 2, .., 7).
Since these are one and the same integral, we must have

(10.9) glgila)) = &, g'lgla)) = o, =12 ., ),
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Now the composition functions ola; b) of G makes o', .., w” invariant
for a— p(k;o) and consequently it makes also their linear combinations

0%, ..., 6™ invariant. Hence, for the transformation

ai— gila) — ¢i(g(k) ; gik) — gi(vlgk); gla)), (=12 ..,
we obfain
(e, da)— B(a, da) — 8(a , da) — ofo, da)

together with

0 — ¢(0) = 0 — ¢(g(k); 0) = g'(k) —g'lg(k)) = W, =12 ..,71)
in particular.
Now by the Theorem concerning (8.22), we must have

g(lg(k); glo) = o(k; a), =12, ..,71

#gk); gla)) = g1elk; a)), =12 ., 1)
by (10.9).
A similar result will be obtained, when we interchange the situations
of G and G.
Taking these two results together, we arrive at (10.1).

If hersby ¢!, ¢'€ C°, then o, wi,8 € 4(C*) and so we see that
g, g€C. Q. ED.
Restating the last Theorem in terms of the abstract LIE ring, we obtain
the following theorem.

TregoREM. - In order that two r-dimensional (ewtended) Lie group (germs)
G and G may be isomorphic to each other, it is necessary and sufficient that

the corresponding abstract Lie rings B and R become ring—isomorphic by an
appropriate linear transformation belween their bases, that is {o say, that to

A€ R there corresponds f(A) = A € B uniquely and thal the relations
| 04 =Af(dy) + pf(4s),

| 74, B) = (r14), £(B)
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hold, the linear lransformation being

[(E:) = WiE;, G=1,2 ., )

11. Inner Automorphie Transformations.

DEFINITION. - The isomorphism G -—— G of the type
(11.1) Sz — 85 = 88,857 (Sz€ G)

is called an inwner aulomorphism of G.
The transformation

ot = g¥(a), =1, 2 .., 1
transforms a vicinity of the origin into a vicinity of the origin in one-to-one
manner and since gf€ C° the first theorem of Art. 10 applies, so that
we have

(11.2) wila , da) = ki (a)o*(a, da), (=1, 2 .., r)

where the matrix (hi(x)) is obtained as follows. Since from (11.1) follows:

S2Sz = Sa2S.,

the relation

wia; x) = i(x; a), G=2, .., 1)
holds and consequently

(e ; 2) gta))  _ (3w;a)
w1 S s W o
We set

3*(c; a i i

(114 o) =) ettt =5

according to (8.3) and (85) and multiply (11.3) with. B#° then it results
that

hilr) = ( dal )a:oz o ko)
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Next, for
Sz = 8,88, = (8,8)5uS,Sz) %,
we have
wia, da) = hily)ol(a, da) = hi{y)hifz)*a, da),
whence follows:
(11.5) hi(e(x; y)) = Mi()hj(y).

Thus, if we set
H(So) < | bl |,
from (11.5), we obtain
(11.6) H(S;+8,) = H(Sz)- H(S,).
This tells us that the set
(11.7) {(h(@); * € U]
forms a group (germ), which is homomorphic to the r-dimensional extended
Lir group (germ) G.

DeriNiTION. - We call (11.7) the adjoini extended group of G.
N.B. - The adjoint extended group is an extended Lie group (germ).

12. Existence Conditions and Canonical Parameter.
DEPINITION, - An r-dimensional group (germ) is said fo have a cano-
nical paramefer, when the following two conditions are satisfied :

(i) it is an extended analytic Lie group (germ) i.e. ¢¥a; b) are ana-
Iytic funotions of o and b; (ii) for sufficiently small real values of s
and {, the relation

(12.1) ai(s + ) = gia’s, ., a's; a'l, .., a’f), (f=1, 2, .., 1)

in ac U, i.e.

(12.2) Sut af=ait, |t] <e, G=1,2 ...,

forms a one-dimensional extended subgroup (germ). The (12.2) is called a
one-parametric extended subgroup (germ).

TarROREM 1° - If is possible to make any (exiended) Lie group (germ)
@G have a normal parameler by an appropriate change of parameter, refaining
the structure constants.
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This theorem implies also that there exist an analytic “{extended) Lik
group (germ) G having the structure constants with an arbitrary given
extended LiE group (germ) G in common and the G and the G being
isomorphie to each other.

This theorem is an immediate consequence of the following existence
theorem having a stronger content.

TaroREM 20 - If +* consianis
(12.3) ]ik, @ k=12 ..,7

have the properties (8.15) and (8.16), there exists an r-dimensional (extended)
Lie group (gevm) G having the canonical parameier and the (12.3) as
structure constants.

For, if we form an r-dimensional extended LIE group (germ) of cano-
nical parameter having the structure constants Cj; of the given yr-dimen-
sional Lie group (germ) as structure constants, the G and the G are
isomorphic to each other by the first theorem of Ari. 10.

N.B. - The Theorem 2° shows. us the complete correspondence between
an r-dimensional LiE group (germ) and an abstract Lie ring of rank r.
Thus taking the first theorem of Art. 10 together, we have the

THEOREM 3°. - There exists an r-dimensional extended Lie group .(germ)
corresponding to an arbitrary given abstract Lie ring of rank r. Consequently
a class of mutually isomorphic r-dimensional extended Lie group (s) (g‘e?‘m:s)
and o class of mutually ring-isomorphic extended abstract Lie ring of rank
r hove one-to-one correspondence.

Let us now prove Theorem 3° in three steps I, IT, IIL.

I. If analytic functions bj(a) such that for constants Cjx the relations
1 i Lo k
(12.4) dot = 5 Cjrol A ok,

S o' = bi(a)da/, =1, 2 .., .
(12.5) '
{ 5 =105 (0, ..., 0),

hold, then there exists an r-dimensional analytic (extended) LiE group
(germ) @G, for whose composition functions ¢ the relation

o)

holds, so that the Cjx become the structure constants for this G.

(12.6) i) = | Hlaidl
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Proor. (i) The simultaneous total differential equations

(12.9) o' — i = 0, =12 .., 7

for 2r independent variables o, ..., a”;a%, ...,a” formed after (12.5) as in
the case of (8.24) are tompletely integrable.
Taking their solutions such that

5 o =gk, ..., k"; @, ..., a”), =12, .., 1)
(12.8) .
[ ki=iE, .., k" O, .., 0), G=1,2 .. )
we define the product
8,8, =38, (c;=gila; b)), i=1,2 u,

for sufficiently small vicinity of the origin. Let us examine if an (extended)
Lie group (germ) G is formed.

(i) By (12.8), we have
oik; 0) = K, i=1, 2, .., n).
It is further seen that
¥H(0;a) = @', (i=1,2 .., 7

from the fact that both sides are golutions of (12.7) for the inifial condition
9H0; OV =0.
(iii) Since under the two transformations

0 —af = i(l; a) — @t = ¢i(k; o(l; @), (i=1,2 .., 1)

the Pfaffians o', ..., »" are invariant,
b = i(lk; oll; ), (i=1,2 ., 1)
are solutions of (12.7) and satisfy
cp"{k; cP(l7 0)) = @ilk; l)? (t=1, 2, s ?‘)-
Hence by the uniqueness of the solution, they coincide with ¢(¢(k;); a)
taking the same values in @ == 0:
ok 9(l; @) = ¢ (elk31); a), (¢=1,2 ... 1)
Finally, comparing
da* o da*
D] =gk eie) |

da” da”
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deduced from (12.7) with
das = 29 3) 44

i
deduced from (12.8), we see that a' =74 on putting a = O, so that we
obtain (12.6). Q.E.D.

II. Since the solutions b;:(a) such that (12.4), (12.5) hold are determinable
not uniquely, we shall solve the problem wunder an additional demand
(12.11) below.

If we introduce (12.5) into (12.4), then it results that
Bk 1ot | A da* =L ¢l bibidat A da®
Wda —9 peUl Yk /\ .

Comparing the coefficients of da* A da!, (kK < 1), we are led to solve

oL o

a—&‘ll—a—a,;: G;;qb?bg; (¢, L, k=1, 2, .., 7)

(12.9)

(These equations are called Maurer-Cartan differential equations).

Let us prove:

There exist analytic functions b}’ .., a”) satisfying the MAURER-
CarTAN differential equations such that

(12.10) b0, ..., 0) =3}, (4, i=1, 2, .., 7),

(12.11) bia)ai = ai.

ProorF (°). - Before all we shall solve the simultaneous ordinary diffe-
rential equations of the first order

(12.12) %’;‘zs;q_ Ol anfd (6,1=1, 2, ., 1)

having a', ..., a” as parameters, under the initial condition

(12.13) fi=0, in t=0.

Their solutions

(12’14) f;'(aly vy @’ t);

(°) Substantially due to F. Schur. Another substantial solution will be found in: J. H.
C. Whitehead, Note on Maunrer's equations. Jour. of Liondon Math. Soe., 7(1932).
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are analytic funections of a’, ..., a” and £ Setting
b;’(alf vy A7) :f;:(a’ly ooy @’ 1),

we shall see that (12.9) holds. For it, we set

i ofr oft ] .
{12.15} Fm=§g§—-@f§~ quf{fgy {3; k’ l=17 23 ey ?')'
Since
o of
M=1=07= =

for £ =0, we have F;f;:() for t=20.

It we could show
d v ; . )
(12.16) --d—t"‘:: CLa?Fh, (5 k1=1,2 .., 01,

by virtue of FZ;C(O), =0, it would follow that

so that (129) holds. Hence we shall examine (12.16).

AF;; o i e i
d;k = =k (81 — Op?[7) + W(ak — Cpe0* %)

— GIBL — CLOfE — Ol IYEY — CRarf?)
ot Sf%@)

= Cpfl — Opfk + 013300”(-9-(;,; 3
— Chf? — Ol &4 gy 0802 fTf% + CpaChec fHIT.
If we introduce

2 p
off  °fk — _ Ff— prfff%,

dak " 2t "
obtained from (12.15) into the last equation, then it follows that

aAFs

= Clz Bl — ClLCE fifias + CaoCafifior 4 CpyChfifTar.
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Replacing the indices (x, p, ¢} by {y, =, p), (%, p, y) respeciively and
utilizing (8.15) and (8.16), we obtain

EZ%E = — C;S@ng‘% - (Ogyoz:z + Gypﬁ(};v + CzpBO’;g)f;Uf;‘Zaz

= — Cpo? Fif .
In a similar way, for
(12.17) Gi(t) = fi{a,ai — ta’,
we have G{0)=0. For (12.17), we examine

(12.18) 9 = v a.

We see that Gi(f) =0 and in particular, Gi(1) = 0. Now

dd—cf = (5] + Cpga”fYai — ai.
= CpyaPaif? = Clarifial — tar),
since C;p =0, Ogg=—Cygp, (p>gq) so that (12.18) is regitimate (7).

That (12.10) holds, follows from the fact that the solutions of (12.12) for
a*= .. =a" =0 becomes fi=dit.

III. Lastly, we shall prove that when (12.11) holds, the (extended) Lim
group (germ) obtained under I is of the canonical parameter.

By (12.6), for the G obtained under I the relation bf(a) = p¥(a) holds for
the Bja) in (8.5). Hence by (12.11) we have

(12.19) aa)el = ai

also.

Next we shall prove that
(12.20) ¢ = alls + 1), (i=1,2 ..,

{*) The reason why we considered (12.12) consists in that when conversely (12.9) and

(12.11) hold, it is easily seen that f‘;.(t):—_tb?(t) satisfies (12.12). Cf. Pontrijagin, [16],
p. 258,
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for
(12.21) o =ais, b =bit, (i=1, 2 .., .
Consider
¢t = gi(as, at) = ci(f)
fixing s for a while. Then for (12.21), we have

det _ d¢ia;b) dbi _ 3¢t ,

(12:22) =W @
Now we introduce
(12.23) dadiad = © daalt = at

4

obained from (12.19) into (12.22), it results that

dci 3 i,
== % al(b)ak.
Utilizing (8.13) herein, we obtain

de
dt

k

(12.24) = ai(c)as.

The solution of (12.24) such that c(0)=1css for t=0 is, by (12.28)
and (3.1):
ci(t) = aifs + ).

Thus (12.20) is proved.
N. B. - It is easily seen that conversely the (12.19} holds for the cano-
nieal parameter.

13. - Reciprocal Isomorphism.

THEOREM =~ If iwo r-dimensional (extended) Lie groups (germs) G and
G* be reciprocally isomorphic (cf. [24], ... [31]), then their struclture constanls

¢k and cf are related lo each other by

(13.1) e = — ¢, (4, 4, k=1, 2, .., 1)
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Proor. - Consider the Pfaffians
(13.2) w*ia,da) = BHa)da’,

where (cf. [24], ..., [31)

WMM)
c——O’

(13.3) o) =( s

(13.4) ar (@B} a) =8,  o}f(a)Biia) = 5.

Then as in the case of the Third Theorem of Art. 8, the transformation

under which w*!, ..., o*" are invariant, is

(13.5) a'— o = ¢i(a; k), (i=1, 2, ..

dw** is expressible in the form
(13.6) do*i = cllw* A vk,
We consider the expansions analogous te those in Art. 8:
o} i(b) =8 + dib* + e,
Fib) = 8: — @bk - exe,
w?(b, db) = dbi — djibrdbi 4 }'dbi,
whence we have
(18.7) OF =dij — djz, = — Ch

quite as in the case of (8.20).
Consider the totality G* of

T. 28,  (S,€6).

Then we have
ToTy = (8,8,

so that G and G* become reciprocally isomorphic. If we set

(13.8) T.T, =T, 2 =q*x;y), (=1, 2

. 7).

ey Th
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then it follows that
(13.9) P*ilw;y) = ¢i(y; ).

Hence the theorem.

§ 3. - Extended Lie Transformation Groups.
14. The Lie Transformation Group Germ. - Let @& be an r-dimensional

Lie group germ; Liet D, be # vicinity of a point (x,) of an #n-dimensional
Euclidean space E" taken merely auxiliarily.

(i) Let
(14.1) ot = filx!, ..., x*; a', o’ ..., a”), (=1, 2, ..., n),
be a one-to-one transformation T, mapping a vicinity D, C D, of (xy) into Dj:
x'€D,, filx; a)€ O’ (i=1,2, .., n).
(ii) xt = fix;a) = &, (t=1, 2, .., n)
is the wunit transformation. (It is convenient to write
(ii) X' = fix; a) = xf, (i=1,2, .., n)
in place of (ii)
(iii) It §,-S,= S8, in ‘G, we have
{14.2) filf'e;a), ..., fr(x;a); b4 0% .., b7) =[x, ..., o%; ¢, ¢ .., ¢'),
where
(14.3) ¢t = oka’, o’ ..., a”; b, b ..., b, k=12 ..., r).
The G will be called thereby the parameter group germ of T = (T,).
When the function fiw;a) of (14.1) are regular analytic functions of

# and a for the analytic LiE group germ G, the T is called the analytic
Lie transformation group germ.
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15. Extended Lie Transformation Group in the Large. - The element

(156.1) x = (x', ¥° .., x") [ a = (a%, a®, .., a")
of the
base manifold M | Lie group germ @

admits of being made global by the principle stated in Art. 6, so that we
have

(15.2) wt=F, (i=12,..,mn) | a=1, (=12 ..,7),
where the
g ! 7'
are Il-geodesic parallel coordinates in the global
base manifold M. | Lie group space G.
Hereafter, we assume fhe
xt at
themselves to be the global ones:
3 | 7

and extend the Lim transformation group to the case that a! are functions
of x:

{15.3) at = at(x).

Thus we obtain an extended Lie transformation group G.

A concrete example will be found in the case, where
a=(amE), (r=mn)

in the sense of the right-hand side ot Ari. 6.

If we interpret

af&(i;?—(m—” — d;(m) as a;(wp); (T - nz)’
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then, for the general a'(x) we oblain aﬁ(w") correspondingly and the resulls
for the righi-hand side of Art. 6 applies to the case of general a(x).

In the following articles, the following Fundamental Theorem will be
established.

FUNDAMENTAL THEOREM. - For the extended Lie transformation groups,
the theory (Art. 16-17) of the ordinary Lie transformation groups applies

16. The Fundamental Theorems. - We set

ofe;_afe)

(16.1) 5?(%1, X2, ., XY = ( )a=0, (t=12 ...,n,j=12, .., r)

dat
and
(16.2) ollo(x), da(x)) = Bilalx)da! (), =12 .., 7
as before. Further we set
(16.3) 0 = dart + wi{alx), dafw)Eix), (=1, 2 .., n)

TeEOREM 1°0 - The simultancous total differential equations
(16.4) =0, =0, .., 6"=0
are completely integrable and
(16.5) fix; afx)), e alx), ..., [ {x; alz)
are n independent first integrals of (16.4) such that

fix; 0) = o, (i=1, 2, .., n)

s0 that
(16.6) 0, 6%, ..., 87) = (df*(x; alx)), ..., df*(x;alx)
for the ideals.

Proor. - We differentiate (14.2):
(16.7) FilfHxe; b), o, s b); @ty .o, a7)

= i, ... 7 9Ya;b), ..., 97(a; b)), (=12, .., n)
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with respect to b and set b= 0. Then it follows that
oft e __Off i
(16.8) =1 .

From (8.7) and (16.3), we obtain

afi(xe; o) = f d"—[—af dai

= I 0 — o) + 2L e

Sk

_ 3, ort oft
Sw" duc® Ef dai ) l o
af Pore, ..., o)

Since dfYx;a), .., df"(x;a) are linearly independent, the (16.6) holds.
Q.E.D.
The converse of the Theorem 1° holds as follows.

THEOREM 2°. — When we inlroduce
Eilor) € C7, (1=1,2 .n;§=1 2, .., 7)

appropriately for the fundamental Pfoffians o?, ..., o of an r-dimensional
extended Lie group (germ) G and the simullaneous equations

(16.9) =0, 92=0, .., 67=0

are complelely integrable, the n independent first integrals f°, .., fT such
thot

(16.10) fifw; 0) = o, (=129, .., 17

determine an n-dimensionol extended Lie tramsformation group (germ) and
the given Eiw) satisfy (16.10).

Proor. - If (16.9) be completely integrable, then there exist 2 first
integrals f% f% .., f* satisfying (16.10). It suffices to show that these
satisfy (16.7). Since

&”(w) = ¢(k(x); a(x)), (¢=12, .., 1)

dnnali di Matematica ar
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satisfies

wi(a(x) , dafx)) = o'(a(r), dalx)), (i=1, 2 7),
the functions
(16.11) fiw; a(x)) = filx; o(klx); alx))), (i=1,2 .., n)
satisfy
(16.12) b = da' + 0ifl = du + oiEl =0,  (i=1, 2, .., n),

i.e. (16.11) become the first integrals of (16.9). Since (16.11) implies
Fi(e; olk(x); O) = fi(w; k()

they take values for a =0 with the integrals fif(x;a(x));a(x)) of (16.9)
in common. Hence we must have

fHae ; p(lac) ; afer))) = [(F (; lw)) ; o)), (=1, 2 .., n)

Since thereby dfi€ (6%, ..., 8”), pursueing the process of proof for
Theorem 1° reversedly, we see that {168) must hold. If we set a =0 in
(16.8), then we obtain (16.1), since

, At i
of =3, éfﬁ:@j, Q. E.D.

The first Fundamental Theorem of the extended Lie transformation
group (germ) below makes a liaison between the property of the extended
Lig transformation group germ and the fundamental differential operators.
In order to prove it, we shall try to replace the above properties with those
of the 'simultaneous linear partial differential equations of the first order
by virtue of the following Lemma.

LEMMA. - That the simultaneous total differential equations
(16.10) w! = aw)de’ = 0, (i=1, 2, ..., n)

are completely integrable is equivalent to that the simultaneous linear
partial differential equatiors of the first order

(16.11) Xopaf =0, vy Xpyo f =0, (n=r+s)

are completely integrable. The first integrals are thereby common to (16.10)
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and (16.11). Thereby we have put

(16.12) Xif = b{a) ;ﬂl; G, 1=1,2, ., n)
where (bi(x)) is the inverse transformation of (ai(x)).

TaE First FuNDAMENTAL THEOREM. -~ In an extended Lie transforma-
tion group (germ) G having G as extended parameter group {germ), the
Functions

fHx; a'x)), k=1, 2, .., n)

are wn independent solutions of the complelely integrable simullaneous linear
partial differential equations

of of

(16.18) = &;F(x}fﬁf{a(x)}a—ﬁ, (k=1,2 .., 7
such that
(16.14) xk = fF(xz; 0).

Conversely, when an r-dimensional extended Lie group (germ) G is given,
the (16.13) are completely integrable for certain

Bl e, (i=1,2 «,n; j=1,2 .., 7),
the solutions

fe; o), Hx;af), .., f(x;alx)

satisfying (16.14) determine an extended Lie transformation group (germ)
having G- as extended parameler group (germ).

Proor. - We consider two r-dimensional square matrices 4 and B
defined by

A = (ax(afw), B = (a(), AB= BA=®%),
having defined ax(a(x)) and Bila(w)) by (8.3) and (85). Then

0 = da* + | Bila(x)iE}(%) | da*(w),

\ = du ]
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and

07+ = Bi(a(w))da*(w),

97" = Bi(afe))da*(w)

are linearly independent and the determinant D of their coefficients may be

expressed as follows:
E, ¥
(s )
0 B

where
10...0
01, 0
E, =
0....1

is the unit determinant of n-fh order and E' the determinant obtained
from | E&jx)| by interchanging the rows with columns. The reciprocal

determinant of D is
’ " ”‘_El
D1 =— ( ) .
0 A

We get
i 2
(16.15) Af = (o) 557) £ (=12 ., 1),
(16.16) Xf= (g;‘(w) - ) f, G=1,2 w, ).

By the above Lemma, when the simultaneous total differential equations
(16.17) ' =0, =0, .., 67=0

are completely integrable, the simultaneous linear partial differential equa-
tions

(16.18) Xf=0, .., X.f=0,
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where
(16.19) X= — @) =2+ daf)
* ¥ Bannd 3 awk H aal
=—X,~+Aj, j=1, 2 wey 1)y

are also completely integrable, the first integrals of (16.9) = (16.17) coincide
with the solutions of (16.18).

Now (16.18) and the simultaneous linear partial differential equations

(16.20) Yif =0, .., Y,f=0,
where
— 2 ; d .
(16.21) Y = Blal) % = — Bepla) sy (G, 1=1, 2, oo, 1)

are equivalent.

Hence the Theorems 1° and 2° may be restated in the form of our First
Fundamental Theorem.

N.B. - Our Fuandamental Theorem is often stated in the following
forms Cor. 1° and Cor. 2°,

Cor. 1° - (An Extension of the Lie’s First Fundamental Theorem.) In
the extended Lie tramsformation group (germ) having G as extended para-
meter group (germ), the f¥x;afx), k=1, 2, ..., n) are n independent so-
lutions of the completely integrable simultaneous linear partial differential
equations

B i i . :

(16.22) S = EH@B @), (=12 ., 54 1=1,2 ., )
such that

(16.23) @ = f(z;0).

Conversely, when an r-dimensional extended Lie group (germ) G is
given, the (16.22) are completely integrable for certain

BreC?, i=1, 2, ..., n; i=12 ..,
their solutions
e alx), x;alx), ..., [(e;alx)

satisfying (16.21) defermine an exlended Lie tramsformation group (germ)
having G as extended parameter group (germ).
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Proor. - It we differentiate the two sides of (16.7) with respeect fo
ai(x) and set a = O, then, for

(16.24) 't = f{w; b)), (=1, 2, .., n)

we obtain

ts
__3.70‘ %1

i) = af b))

by (13.2), (13.3) and (13.4). If we solve this by virtue of (13.2), (13.3) and

(13.4), it results that (16.22):

16.25 W e =1, 2 D l=1,2

( . ) W_Ei(w)pl ((m))9 (Z— TR (1 l=1, PRI 7').
These are partial differential equations in the case, where in (16.24),

the (x') are considered as parameters and (x'!)are considered as functions

of b, .., b". Hence our Cor. is proved by proceeding quite as in the case

of our First Fundamental Theorem.

CoR. 20, - In the extended Lie transformation group (germ) having G as
extended parameler group {(germ), the

s a@), k=1, 2, .., n)

are n independent solutions of the completely inlegrable simullaneous linear
partial differential equations

(16.26) A= LG =12 k=12 )
such that
(16.27) ok = f¥x; O).

Conwversely, when an r-dimensional extended Lie group (germ) G is
given, (16.26) are completely integrable for certain

Bwers, (6=1,2 .,n; j=12, .., 1)
their solutions
;s afx), ., ["x;alx)

salisfying (16.28) = (16:27), delermine an extended Lie transformation group
(germ) having G as extended parameter group (germ).
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Proor. ~ Now it suffices to show that (16.1)==(16.26). For it, multi-
plying (16.13):

(16.28) I = o) T,

with ah(a(x)), we see that

aﬁ(a(x))% = &f(m)a%(a(w))ﬁ{(a(m))%, (t=1,2, .., n; 4, b, E=1,2,.., 7)
i ; 0 i 2
= Bafoh oL = gido) T,

by (8.5) and conversely, multiplying the last relation with B(a(x), we return
to (16.28).

Tae SkcoND FUNDAMENTAL THEOREM. - (An Extension of the Lie’s
Fundamental Theorem.) When a given r-dimensional extended Lie group
(germ) G as an extended parameler gronp {germ) has the .structure constants
Cﬁ}, (¢, 4, k=1, 2, ..., #), the necessary and sufficient condition for that
(16.13) snay be completely iniegrable; is that the relations

(16;29) (X, Xi) = O}, th, 4, 1=1, 2, ., 1)
hold for the fundamental operators

i 0 . .
(16.30) X; = ij(m)a? (i=1,2 ..,n;5=12 ..., 7).

Hereby (X;,X;) is the Jacobi’s parenthesis.

PROOF. - We have seen that that the (16.13)=(16.20) is completely
integrable i§ equivalent to that (16.18)is completely integrable. Now it is
known that the necessary and sufficient condition for that (16.18) is com-
pletely integrable- is that X, X,, .., Xr form a complete system 1i. e,
that X,, ..., Xr satisty
(16.31) (X, Xi) = — Cj{w;a)Xn, (5,0, h=1, 2, ..., r\.

Now (16.19):

(16.32) Xn=— Xn+ 4s
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gives

(16.33) (X, X)) = (X;, X)) + (45, 4),

and after setting

(16.34) dot =  Choi \ut, o = Biale)de! @)
(16.35) Ch=—0F,

apply the operator d to
df = oY 4if):

0 = d(df) = (4if)de? + d(4if) A\ o
= 3 CHAnf)oi \o? + A;(dnf)os A o
=i§ ] CHAnf) + (4;, A)f | i \ o,
Thus we obtain
(16.36) (4, &) = — Cjids, (G, 1=1,2, .., ).
Owing to (16.32), (16.33) and (16.36), the (16.31) becomes

(X}, X)) — Cjidn = — Cji(x; a)(— Xa+ An)
go that

(17.37) Chile;a) = C}

and thus finally we have

(16.38) (X;, X)) = CjiXa, G, Lh=1,2 ..,

Tae THIRD FUNDAMENTAL THEOREM. - When r linearly independent
differential operafors

(17,37) Xf = g;i(m)a%:, (=12 .,n;j=12 .., ), EREC

are given, the necessary and sufficient condition for that they are the funda-
mental differential operators for an extended Lie transformation group (germ),
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is that the relations

(16.38) (X, Xy) = CjiXn, (b §y 1=1,2, ;1)
hold for ceriain constanis

(16.39) Ch, (G, by 1=1, 2, ..., 7).

Proor. - The necessity is implied in the last theorem. It is known
that when E(x) € C°, (v=2), the Jacobi's parentheses satisfy the identities

(16.40) (X, X)) = — (X;, X3),
(16.41) (%, X;), Xa) + (X7, Xe), Xi) + ((Xr, X)) X;) =O.
For the complete system accompanied by (16.38), the relations (9.4):
(16.42) G = — Cf,
(16.43) CirChi + ClChi + CFiChy = 0, G j, b, l=1,2 .., m)

hold. Hence, by Theorem 2° of Art. 12, there exists an r-dimensional
extended Lim group (germ) G having 0{} as structure constants. If we adopt
this &, we are led to the last Theorem for sufficiency.

TeE Fourrn FUNDAMENTAL THEOREM. - (An Extension of 8. Lie’s Third
Fundamental Theorem). The necessary and sufficient condition for that the
r® given constanis Oﬁ, (h, 4, 1 =1, 2, ..., v} may establish the relations

(Xi, X;) = CiXy,
for the fundamental differential operators X, ... X, of an extended Lie tran-

sformation group (germ), is that they satisfy the following two conditions
(16.42), (16.43):

(16.44) Of = — Cf,
(16.45) Ci:Chie + ClChi + CriChj =0, GGy j, by =1, 2, ..., 7).

17. The Lie Ring composed of the Fundamental Differential Operators. -
We have represented the (extended) parameter group (germ) G by the
extended transformation group (germ) T, so that the abstract (extended)

Annali di Matematica 38
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Lie ring R has become homeomorphic to the extended Lie ring @
consisting of the totality of

X = NX;, (A; = constants).

Thus we obtain the following homeomorphic correspondence :

Abstract (extended) Lie ring R Extended Lie ring ®
{(Extended) parameter group (germ) Extended transformation group (germ)
G T
Basis Fundamental differential operators
E,, E,, .., E, X, Xoy ey X»

A=N EER X=xX;€®

B:WE@'E‘[R Y=95X56®
ad + BB ! aX 4+ BY
(4, B) (X, Y)

Concerning this correspondence, we get the following theorem.

TaeorEM 1°% - In order that an exiended Lie transformation group
(germ) may be a faithful representalion of its extended parameter group (germ)
G, is that the

extended Lie ring composed of the l correspondence of the two sides of
fundamenial differential operators the above table is one-fo-one.

and the abstract (extended) Lie ring \

R wmay be isomorphic to each other.

Proor. - We utilize the canonical parameter { of the extended LIE

group (germ) G. Taking a point (@', .., a”) in the vicinity of the origin
(anit element) and set

FUEY o, 2™ @ o, atl) = FHEY e, 27 8, (E=1, 2, o, n)
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Then, by (16.13) and (12.11), we have

= a* (55;(.1",) §i]> ft=(a*Xy)f*.

Hence, in the case fthat the correspondence between the two sides of
the above table is not one-to-one, we have

(17.2) X=X+ ..+ 31X, =0,

where A%, .., A" are sufficiently small values, which are not zero at the
same time.
If we take them for (a*, .., a") = (1% .., A7), from (17.1), we obtain

oft .
o (i=1,2, .., n
i e.

fie, ..., 2"; a', ..., a"t) = !, (=12, .., n).

Thus G and T do not correspond one-to-one.

In the case, where (17.2) holds when and only when A= i*=..=a",
take a hypersphere with sufficiently small radins ¢ and with the origin as

center. Then, since a*Xyp==0 in (171) for each point (a*, ... a”) on it
we get
(17.3) (FHat, .., x™; a', ..., a"t) %=,

(t=1,2, .., r; | t] <8 ..., a).

Since (", ..., a") is evidently a continuous function of (o, ..., a*), for
the least value 8, of it, we must have

(17.4) To == T,, (a*at < &)

Since T makes an extended group (germ), from (17.4), we can conclude
that @ and 7 correspond one-to-ome in a sufficiently small vicinity of
the origin. Q.E.D.

Let us considsr now the case where R and ® are not isomorphic to
each other generally. Let s (=) out of the r fundamental differential
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operators X, .., X, be linearly independent with constant coefficients. Let
(17.5) Y = WiX;, (i=1,2 .., s

be linearly independent and suppose that in ferms of them we have

(17.6) X;= g]‘IYi, =12 .., 7).

Since Yi, .., Y, are linearly independent, we have

(17.7) Wy} = ®F, i, k=1, 2, .., 3.
Utilizing
(X, X1} = Oy Xom,
we obtain
(Y3, Y;) = Wi X, Xi) = Wins0iXm = Wil Cigh Y, ,
i. e,
(17.8) (YY) = Y%Yp, 6Ji=12 .., s),
where
(17.9) v = hihigh O .

Further we set

(17.10) a, da) = givi (a, da), (i=1,2, .., s).
From (12.4) and (16.38), it results that

(17.11) do™X,.f) —é- o? A ol(X,, X ) =0,

which becomes

(18.12) de(Yif) — 5 ¥ A H T, i) =0

by virtue of (17.6) and (17.10).
Utilizing (17.8), thence we obtain

(17.13) (def — :ﬁ i A ) Yif) = 0,
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Now since Yi, .., Y, are linearly independent, their coefficients must
vanish severally, i.e.

(17.14) deila, da) = 3 it A, G=1,2 .,
Consequently the simultaneous total differential equations

(17.15) ™a,da) =0, ..., ©*(@,da) =0

are completely integrable. Since further Y,, ..., ¥, are linearly independent,

the rank of (g;) is s. Hence 7', .., t* are also linearly independent by

virtue of (17.10). Thus there exist s independent first integrals of (17.15),
which are 0 at the origin. Let them be

ba*, ..., "), .., b*{a}, ..., a") € C?,
where
b0, ., 0)=0, (=1, 2, ..., s)

Taking (r — s) adequate functions

btiat, .., a’), .., b"(a", .., a") € O,
where

b, .., 0)=0, (§ =s+1, s+2, ..., 1),
in addition, we have one-to-one correspondence
(a’l, ey @ )’_'” (bla ey br)

in the vieinity of the origin. Noticing this transformation of the variables,
we write

v, da) = nib, db), (i=1,2, .., s).
Since 6% ..., b* are s independent first integrals of (17.15), the relation
(w', ..., ©®) = (db', ..., db%)
holds, so that we may write

wi(b, db) = ibY, ..., br)dbi, (i=1,2 .., s
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Now, by (17.14), we must have

i71 "
dni(b, db) = a_q)l_(_b_iagh’_b_)

b AdY, (b, =1, 2, ., 7)
1, . ,
= gvirn A mF (Jy k=1,2, .., 5

= g VA, s DI A, e, D)

— TR, o, B, L, b ADR A,
80 that
M0 (=128 B=stl )

Hence we have
i = bip", ..., b°),

and consequently = must be expressible in terms of b ..., &%, db* ..., db
only.

We denote the s-dimensional (extended) Lie group (germ) defined
uniquely by

(17.16) drt :%7:7'/\77:’“, (=1, 2 ., s)

in the s-dimensional neighborhood of the origin of (3%, ..., &) by G. Now,
by Theorem 1° of Art 16, the f*(x; a) are the first integrals of

dut + i (a, da)Ejx) = 0, (i=1,2, .., n

such that fix; 0) =«'. Taking the last differential equations together
with (17.5), (17.6) and (17.10), we can deduce

(17.17) dat 4 i (b, dbyj(x) = 0, (i=1,2 .., n),
. ) 3
for

nie) = WLES ().
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Hence (17.17) are also completely integrable and its first integral is
expressible as

(17.19) i, o, 275 oty o, a”) = glxt, .., x"; bYa), .., b*(a)),

Thus we obtain the following theorem.

THEOREM 2° - When the rank of the fundamental (extended) Lie ring
composed of the fundamental differential operators X, .., X, is s (=v),
there exists an s-dimensional (exiended) Lie group (germ) G as exlended
parameter group (germ) having linearly independent (17.18) as fundamental
differential operators, for which we have (17.19). In this case, the given tramns-
formation group (germ) becomes faithful representation of G

18. The Relation between the II-Geodesic Curves in the Base Manifold
M and the Extended Lie Transformation Group Manifold G. - We must
not overlook that we are considering both the Il-geodesic curves in the

base manifold M. } extended Lie transformalion group
| manifold G.

Now we will seek for how the Il-geodesic curves in the

base manifold M extended Liw transformation group
manifold @

behave in the

extended Lie transformation group base manifold M.
manifold G.

I. For a while, let x* denote the local coordinates in M and consider
a matrix of(z*) in place of ap(x).

We seek for tensors

mﬁ f S!;,
such that
(Dz;dgfn = Q}nwm = Q7 ‘ Q;d(oﬁ = widm" = wl,
i. e. that

(18.1) da* = @ = 3:Qx = o _agj da*, A8l = ol = St =0}, a“’”w
3 * - \P a q m }]
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for which it suffices fo set

Q7
(18.2) ,ﬁ 5507"; = 5%,
Thus the
(w3)

is the inverse tlransformation of
s0z)
dux] "

From (18.1), we have

d 94)‘__ X d o™
(18.3) aaz*gm(mf

m 07 0
+M%m)

d aor
— | T
= ("’" dt)

(e 1,9@9;)
—w4dﬁ+%%ﬁa

=0
giving
(184) Q= Qp(EP)o™ = dic*
s aldtzmﬁdQ,’;,(m:I, very ),

{(@* = const.),

where
2 dwm
(18.5) ;’;:wi’z?‘%—z— —Qr
w® w®
(18.6) A:o- —_— Q7 _ 2Q7, au)?,

O Szeamt = x> dwe

P
o 0% __
4 w7 q*

Q)

du
w? /"

of = o (@ )der = dE!
= gldt = lepda)g, (r=1,..,n),

(¢! = const.),

v

AV _ ggamp 3393
po e T T P

2, P » i

Ap —_Ql Smp _3(!)}L aQ,
re8 — LAPRY I o of
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Thus, by (18.4), the I-geodesic curves (18.4):
(18.7)  dur = Qp(EP)dEm = g di | of = oy (@ )der = adt
for the group wmanifold G, provided that
w: ‘ Qi,
are defined by (18.2).
II. - Let us take now another view point. Let
(wp(*)) | Qi)
be the inverse fransformation of
| e
()

as before. Then

€ an o % a 1
(189 ah 2 ofd0h = o} or £ 2 Qlaul, = 97 2% g
= Aim'wr; = Aﬁudﬂc“,
d “i'n 1 sz}n a oc;‘ d*w
T YT IS A i
U100 G = wl( ar ai 2= %\ ap
AQm d95,\ dol do
LA om TEm ) 1 doy do,
% ar )= 0 e s a ) 0
where
doy Q! 20 3
18.11)  ALIQ e ol L P PN el TR o L
( ) o o 3 Aw = 0y, ¢ dwy,
1812 Qo) = 3. | wfQ) = 8%,
Hence we have
(18.13) am 0l 40 =al, dt, (am__ const.) aﬁi—?——fﬁ%dw;_—: afﬁdt, (“i = const)
= dy} = dn*

Annali di Matematica 39
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by (6.4) and (5.6). On the other hand, by (18.9), we have

(18.14) oby = Aby,or = abdt =dyt. | oy = AL, der = aldt = dn.
d 1w’ Al d o” d daey 2 d*y
(18.15) dt(AW &‘t’)" A,m(&—ﬁ e %<AW&?> — Aw(m.z_
Lo o , o7 day _
—l—Asta‘g Et)—o, +AO‘T dt d{/)_— >
where
r def X v 2’)Als v e“"ra xa
(18.16) A% Ay, L) AT
= AL, B L v
= — Aps o’ =—AW—%T—,
(m: not summed). (v: not summed).

From (18.15), we obtain
(18.17)  Ab,o’ = aldt = dn. ; Al dor = ahdt = dn.
This gives another system of Il-geodesic curves in M. The corresponding
H-geodesic curves in G are given by (18.13).
III. If we multiply (16.3) with Z{x) defined by EE} = 3f [(21.1)], then
(18.19) Eo)0i = Elfxe)dac’ + Bliafe))dai (),
go that the differential equations (16.14) 6* =0, ..., 6" =0 give
(18.20) Ew)dat = — Bl(a(x))dai(x)
i.e. (21.13) = (21.15):
(19.21) dEi = — dui = eidi
by (6.7). Thus fo the II-geodesic curves d&i = eidi in the base manifold M,

there correspond the II-geodesic curves dai—= — eidt in the extended Lie
tramsformation group manifold G.

19. Two Systems of Equipollences of Vectors in the Extended Lie
Transformation Group Space.

(i) Consider an extended Lim transformation group G with r extended
parameters a'(x), a*), ... a"(#). The coordinates o == (w’, x° .., x"), which
undergo the extended LiE transformations afx) will play the quite an acces-
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sory role in the following lines. We will extend the E. CARTAN’S theory
[15] of two kinds of parallelisms of the vecfors in the group space to the
case of our extended Lim transformation group space IE.

Let us denote the elements of G corresponding to a(x) as an operator by
T, and the product of T, and T, by T,T,, and the inverse of T, by
T,7% so that (T,T,) = T,~'T,~"

We will call a pair of points (a{x)) and (b(x)) taken in this order a
vector ab of ¥ and when a(x) =b(x), we will call the vector a nul wvector.

—

(i) DeFINITION. - We will say that two vectors ab and &b are
equipollent of the

first | second
kind, when
(19.1) T, 07 = Ty Ty [ T'T, = Ty Ty

Considering the inverses, we may replace (19.1) by
T,T5 = ToTy' | 17T, = 15 Ty

The equipollences have the following properties.

10, Euvery weclor, which is equipollent lo a nul vector, is nul.
2°. Hwvery vector is equipollent to ifself.

3. If a weclor is equipolient to a second veclor, then the second veclor
is equipollent lo ithe firsi.

40, If two veclors are equipollent, then their inverses are also equipollent.

be. Ewery point of the group spacc X may be considered as the origin
of one and only one veclor, which is equipollent fo a given wvector.

6°. Two veclors, which are equipolient to a third vector, are equipollent
to each other.

7. If ab is equipollent fo ot and e equipollent to b, then the
vector ac is equipollent to ac.

The 7° may be proved as follows. From
TbToTl-”:Tb/T(;lp Tch—lzTc’Tz’-la
we obtain

(T T (T T ') = (T T3y (T Ta)

T, Ta =TT



308 T. Tarasu: A Theory of Estended Lie Transformation Groups

(iiij THEOREM. - When ab gis equipollent of the first kind to oF,
the vector ad is equipolient of the second kind fo by and wice versa.

Proor. - From (19.1), we have

T;lzlengafz 1.’1;_1.T’bllyc—,,‘r':l a’ s
i.e.
—1 1
To To=Ty Ty,

which is of the form (11.2) for aa’ and bb.

THEOREM. - When the first equipollence plays property 7°, the second
equipollence plays the property 6° and vice versa.

Proor. - Suppose that an equipollence satisfying the properties 10— 60
is defined in an r-dimensional space in a certain way. Thence we can dedude
an equipollence of the second kind saying fthat ad is equipollent of the
second kind to 55 when ab is equipollent of the first kind to &¥. It is
easy to see that the properties 1° —5° are verified for this equipollence of
the second kind. But as for the property 6¢, it is not necessarily the case-
Suppose ad’ and bY are equipollent of the second kind to ¢c. This means
that ac is equipollent of the first kind to a’¢ and that B¢ is equipollent
of the first kind to &¢. In order that ae’ and b may be equipollent of
the first kind to &¢. In order that aa’ and B6 may be equipollent of
the sccond kind to each other, it is mnecessary and sufficient that ab is
equipollent of the first kind to a'; in other words, the equipollence of
the second kind will verify 6° when the equipollence of the first kind
verifies 7° and vice versa.

(iv) The two kinds of equipollence are in close relation to {wo groups
of extended parameters of (. Indeed, let us consider the geometrical
operation consisting of laying through a variable point (§(x)) a vector &E',
which is equipollent of the first kind to a fixed vector. Let (a{x)) be the
extremity of the vector which is equipollent to the fixed vector and is
drawn through the origin of . The operation considered is expressed
analytically by

TeT =T
or by

(19.3) Ter== ToTk.

This is thus analytically indentical fo one of the transformations of the
first group of extended parameters (%)

(]) An extension of the analogous result in [12], p. 449,
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Similarly the operation consisting in drawing a vector 34 throngh a
variable point (§(x)), which is equipollent of the second kind to a fixed

vector O, may be expressed analytically by
(19.4) Ty =T:T,.

This is thus analytically identical to one of the transformations of the
second group of extended parameters (%)

(v) The property explained by the Theorem under (ii) is a geometrical
interpretation of the faet that the extended transformations of the two
groups of extended parameters are interchanged among themselves.

The properties 1°—7° are the characteristic properties of the equi-
pollence attached to the groups. We shall prove that when we have defined
an equipollence of wectors in extended group space X playing the seven
properties 1°— 7°, the space X ocan be considerd as a space of group, the
equipotlence defined in I being the first equipollence attached fo extended
group.

For this purpose, let us take au origin (0) in the space X quite
arbitrarily. Let (a(x)) be any point of M. Consider an operation S,, by
which we pass from a variable point (§(x)) to the extremity (E'(x)) of the
vector £, which is equipollent to Oa (a vector which exists by 5°. We
will prove first that these operations constilute a group.

To prove this, we proceed as follows. Those operations contain evidently
the identical operation (by 1°. Let S, abd S be two such operators. Let
‘¢(@)) be the transform of (a(x)) by S,. Executing the operation S, and
S, successively, we pass from the point (§(x)) to the point (E{x)) and then
to (§"(x)) by virtne of

(Sa) EET: —O—&,
(S,) F =0b.

Now, by the hypothesis, ‘ac is equipollent to Ob. Hence %' is equi-
pollent to ac (by 6°. From the equipollences

:E'ET = —6& y E‘_é;/ :-&E?
follows thus (7°) that

whence we obtain

() [12], p. 6383.
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Next, let @ be the group composed of the operations S,. This group
is sémply transitive. This means that it confains one and only one fran-
sformation, which maps a given point (§(x)) to another given point (£(x)),
obtaining the transformation S, corresponding to the extremify of the
vestor Oa, which is equipollent to 2. Consider next two arbitrary equi-
pollent vectors ab and al’. The vector Oc, which is equipollent to ab
is also equipollent to a'd’ (property 6°. Hence the transformation S, maps
(a(x)) to (b(x)) and (a'(x) to (B'(¢)) simultaneously. Now the transformation
S,S,~t also maps (a(@) to (b(x)) (by the mediation of the origin (0)), and
transformation S,.S,~* maps likewise (a'(x)) to (&'(x)-

Hence we have
S, = 8,8, = 8,81,

what shows wus that the equipollence defined in Y is idenitcal with the
equipollence of the first kind attached to the group G.

(vi) The results of the last theorem that the equipollence of the
second kind of the space of group may be considered as equipollence of
the first kind attached to another group admitting the same representative
space. It is easy to see that fhe second group of exlended paramelers will
admit the second equipollence of the group G for the first equipollence.

Now we encounter another important remark. Consider a set of tran-
sformation 7T, depending on # extended parameters, nof forming a group,
but playing the property that the fransformations T,T,~' do not depend on
not more than r extended parameters (when a(x) and b(x) take all possible
values). We can define an equipollence of vectors in the space of this set
of transformations by the equality.

(195) T, 7, = TyTy™

and this equipollence plays the seven properties 1°—7° as we can easily
verify. Choose an arbilrary origin transformation T,. The trapsformation
S, defined above may be expressed as follows:

Te Ty = T, Tt
i,e.
(Sy) Te=T,TyT¢.

Execute the transformations S, and S, successively and set

SbSa == Sc.
We shall obtain
Tﬁl = Ta T()*l Té ’

Ti!/_——- TbTo_lTif: Tng—thaTo—ng: TQTQ’ITg
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by S, and S, successively. Hence the equality

(TyTa™) (T, 107 = Te T~
results, so that the transformations T,7,"' form a group.

This theorem, which is of purely analytical nature, may be proved
else directly. Counsider a set of transformations 7,7, of # extended
parameters. From the product

(ToTo™) (T, Ty

of such transformations, we see that there exists a transformation 7,
such that

(19.6) T Ty = T T

For, the transformations T, TZ', where we let the extended parameters

§ vary, must have all the transformations of set T':F,”, so, in particular,
the transformation T, T%'. Therefore there exists a point (c(x)) such that

7,7~ = T, T,

This equality is equivalent to the equality (19.6). Thus from (19.6),
we deduce

(Ty TV (T Ty = Ty Ty T T, = T, T,

which shows us that the transformations 7,7,~' form a group. Moreover
all the transformations of this group are obtainable by letting (a(x)) fix and
letting (b(x)) vary.

(vii) We know that two groups G and @ of the same order are said
to be dsomorph (holoedrique), when we can establish among their transfor-
mations a correspondence such that to the product of two arbitrary tran-
formations of the first group there corresponds the product of two corre-
sponding transformations of the second group. In the correspondence, which
realize the isomorphism, the identity transformations correspond to each
other. Moreover, to the inverse of transformation of the first group there
corresponds the inverse of the corresponding transformation of the second
group.

Let G and & be two isomorphic groups and X and X' their spaces.

AUl correspondence by disomorphism of two groups may be interpreled by
the point-correspondence of two X spaces and X', such that fo two wveclors
of ®, which are equipollent of the first (second) kind to each other, there
correspond two veclors of X', which are equipollent of the first (second) kind
to each otlher.
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Indeed, we can choose the extended parameters of two groups in sumch
a way that in the correspondence by isomorphism under consideration, the
extended parameters of two corresponding transformations are the same. We
denote -the transformations of the two groups by T and 6. Then the
equality
ToT, =TTy

gignifies that there exists a transformation 7, such thai we have
Ty = TcTa’ Ty=T1T.T,,

whenee follows:

8, =06,0,, Bpr== 0,8,
so that

6,0, =0,08,"" Q. E. D.

The demonstration will be the same for the parallelism of the second
kind
(viii) Conversely, suppose that we can esiablish a poini correspondence
between the spaces ¥ and X' of two groups G and G of the same order r
such that to two vectors of ¥, which are equipollent of the first kind, there
correspond two vectors of X' which are equipollent of the first kind, then
the two groups G and G are isomorphic.

To prove this, let (v) be the point of X' corresponding to the origin (0)
of X, and let (a(x)), (b(x)) and (c(x)) be three arbitrary points of ¥ and
(a(@), (B@), (y(x)) the corresponding points of X' From the equality

Tyl = To= T, Ty™
follows:
00,7 = 0,0,

by hypothesis. In other words, from the equality

Ty=T,T,
follows:
00,7 = (0,0, (0,8,7).

Then we let the transformation 0,0, ' of G correspond fo the tran-
sformation 7, of G. This correspondence shows the isomorphism of the
two groups by the last equality.

‘We can make the remark that it is very easy to establish a correspon-
dence with a given group by interchanging the two kinds of equipollence
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attached to the group: éf suffices to wmake the transformation T,=—=T,*
correspond to the transformation T,. Then the equality

T, T = Ty Tu™

which defines the equipollence of the first kind, becomes changed into the
equality

TB —* Ta = Tgi—l a3

which defines the equipollence of the second kind.

It results from this remark, that in order that two groups of the same
order may be isomorphic, it is necessary and sufficient that we can establish
a point correspondence between the spaces of these two groups transforming

one of lhe spaces info o certain of the spaces by an equipollence of the
second kind.

(ix) The preceding consideration proposes the question of determination
of all the point transformations of a space of group into itself, which play
the property to conserve the two kinds of equipollence of the space.

It is firstly evident that a point transformation, which conserves the
equipollence of the first kind, conserves the equipollence of the second
kind and vice versa. Let (a()), (B(x)), ete. be the points transformed from
(a(x), (b(x)), etc. From the equipollence of the first kind of ab and %
follows that of «f and «F by hypothesis, whence follows that from
the equipollence of the second kind of aa’ and b follows that of ax’ and {337

Let us commence with determination of the point transformations, which
conserve the equipollence of the first kind and let the point origin be inva-
riant. The equality

T, = T,T,~*

expresses simply the equipollence of the first kind of vectors Ob and ac,
whence follows the equipollence of OF and ay, and consequently the equality

CZ’{r — 71@71“—1‘
Hence the transformations sought for are aufoisomorphisms of group G.

Among the automorphisms, there exist in particular the transformations
ot the adjoint group

Te= T, 1T,

where {a(x)) is a fixed point.
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It the group G is semi-simpls, the adjoint group is the largest maxi-
mum continuous group of automorphisms of G. (*).

In order to obtain all the point transformations conserving the equipol-
lence of the first kind, it will suffice to combine the preceding point trans-
formations with the transformations

Ter =TT, or Ty =1T,Te,
or further with the transformations
(19.7 Tee=T,T:T,,

(a(x)) and (b(x) denoting two fixed points. The point transformations (19.7)
transform the equality

Ty Te™ = Tl
into the equality:
Tﬂ/Tgr'l == T@Té‘l"l.

Evidently the transformations (19.7) form a group Iy, which is a sub-
group of the total group I' of transformations, which conserve the equipol-
lence of the first kind. It is likewise easy to see that Iy is an invariant
subgroup of I. It suffices to prove that all the transformations of T, are
changed into other transformations of I, by an automorphism of the
group G. If the points (a/(w), H'@), €), (1'@) correspond to (a(x), (@),
(E(x)), (p(x)) by this automorphism, the relation

Ty=T,T:T,
is changed into
Toy=TyTeTy,

the transformation of T'; corresponding to points (a(e)) and (b(x)) is changed
into another transformation of [,, that which correspond to points (a'(x)
and (b'(x).

We will give the name group of isomorphism of XE, to I.

The group of point transformations of M, which conserve the set of
two equipollences will easily be deduced from I' by combining it with

(1%) B. Carran, Le principe de dualité et la théorie des groupes simples et semi-
simples. Bull. Sc. math. 2e série, t. 49 (1925), 363-364.
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the transformation

Ti prnd T{ér.

It may be remarked that the group I, defined by the equations (18.7)
is at most of 2r extended parameters. Precisely, it is of 2r-p extended
parameters, where p denotes the order of the subgroup formod of those
transformations of @, which are interchangeable with all the other transfor-
mations of G. The group [, contains evidently the adjoint group (19.6),
which is itself of r-p extended parameters.

20. - Extension of E. Cartan’s Geodesics, His Two Kinds of Parallelisms
and His Transformations.

(i) In case of the ordinary equipollence of two vectors, the straight
lines play the following characteristic property:

It we take three arbitrary points (a), (b), (¢) on a straight line, the
vector cd, which is equipollent to ab has its extremity (d) on the straight
line.

E. CArTAN [15] has generalized this notion in his space of group. Now
we will generalize his notion further to the case of the groups of extended
parameters as follows.

DEriNITION. - A curve (C) traced in a space of group of extended para-
meters will be called a II',- geodesic (read: the first geodesic of the second
kind), when three arbitary points (a(x)), (b(w)) and (c(x)) are taken on this
curve, the extremxty (d(x)) of the vector c¢d, which is equipollent of the
tirst kind to ab lie also on this curve. The II',- geodesics may be defined
similarly with respect to the equipollence of the second kind.

But we have to make the following important remark.

All the
II',- geodesics | II'-geodesics
are
I1,'- geodesics. | IL/-geodesics.

For, if cd be equipollent of the first kind fo ‘ab, then this implies
that bd is equipollent of the second kird to ac¢ and vice versa.

Thus there exist really only Il-geodesics.

(ii) The primary question arising is that of the existence of the
II-geodesics. Now it is easy to find a priori an infinity of II'-geodesics in
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the spaces of groups with extended parameters. For this purpose, take
of (a(x)) a fixed point (a). Let us consider a one-parametric subgroup g
of @. Denote its general transformation by ©,. The point (£(x)) defined by

(20.1) Te == 0,T,

describes a II'-geodesic. For, if u,, 4, and wu; be three arbifrary particular
values of the parameter u, and (§i(x), (E(x), (Es(x)) the three corresponding
points and if (E,(x)) be the extremity of the vector E;é:, which is equipol-
lent of the first kind to E£,&,, then we have

Ty Ts,' = T, T%

Te, = ngTnggs = @w@;l@“si’a =0,T,. Q. E. D.

Conversely, we can obtain all the 11'- geodesics in this manner.

For, if (§x) and (y(x)) be two variable points aund (a{r)) a fixed point
on a II'-geodesic, then there exists on this II'-geodesiec a point ({(x)
such that

T,HT_{'L =TT, *

and consequently the transformations 7.,7¢* depend only on a single
parameter, whence follows that these transformations and especially the
transformations 7.7, form a one-parametric subgroup g of G. Denoting
its general transformation by ©,, we obtain

Te=06,T,. Q. E. D.
It should be remarked that any II-geodesic may be defined also by
(20.2) T ==T,0q,
the ©, forming a one-parametric group, or more generally by
(20.3) Te==T,0.T,.
Moreover the (20.10) may be rewritten as follows:
Ty = (40,17 (TaTb),

and the transformation 7,0,T,~* constitute a group being led to the tran-
sformation group of g by T,. Thus we fall on the expression (20.1) again.
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(iii) Hitherto we have considered a vector ab to be defined uniquely
by its origin (a{x)) and its extremity (b(x)).  When the parameters of (b(x)) do
not differ much from those of (a(x)), the transformation 7,7,~* belongs to
one and only one-parametric subgroup g of G as in the case of the
theory of continuous groups of S. LIE; consequently the two points (a(x))
and (b(x)) belong to one and only one Il'-geodesic, which is the locus of the
point (&) defined by

Te = 0.7,

where 0, is the general transformation of g. Thus the vector assimilates
to the II'-geodesic segment limited by (a{x)) and (b(ac).}.
We can then state as follows:

All wectors lying on a 1I'-geodesic is equipollent of the first and the
second kind to a defermined vector lying on the Il-geodesic and having for
the origin o given point of this 11'-geodesic.

If we define the equality of two segments by the equipollence of cor-
responding vectors, we can measure the segment of one and the same
IT'-geodesic as soon as we choose a unit segment on this II'-geodesic
segment.

It, in particular, we have taken our parameter t (the affine lenglh: a
generalization of the canonic parameter of 8. Lig) introduced .in (55) for
the parameter u of the general transformation g such that

0,0, = Oy, (=1 u=1)
the measure of the segment Z£, with
Te, = 04,04,  Tg=0,T,,
will be |u, -u, | = |4t —1* |. The change of u into ku_iniea(ns a_g_}_lange of
the nnit of length. The algebraic ratio of two vectors £, and EfF, taken

on one and the same II'-geodesic has the determinate value

254*‘%3_.t4““‘t3
Ug — Uy by — by

Thus we may now drop the dashes (primes) from II'-geodesics and
write down merely II-geodesics in place of II'-geodesics,

THEOREM. - The II'-geodesics in this section are the 1I-geodesics in the
sense of our Art. b.
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(iv) PArarnLenisMs. - If we draw through a point (b(x)) outside of a
II-geodesic (O) passing through (a(x)) vectors, which are equipollent of
the first kind to several vectors lying on (C), we obtain the vector 377,
which is equipollent of the first kind to the vector af whose extremity
(E(x)) describes (C). Hence the point (v) describes a curve (C') and this
curve is a II-geodesic. If we have

Te=Tul,,

then we deduce

T,=1,71,
thence.
We say that (C') is parallell of the first kind to (C) and any vector
lying on (() is equipollent of the first kind to a vector lying on (C).
Two II-geodesics, which are parallel of the first kind 1o a third, are
parallel of the first kind to eack other.

We can define similarly Il-geodesics, which are parallel of the second
kind to each other. When this is defined by

Te=T,0,,

we obtain II-geodesics defined by
T’ﬂ —_ T()@u,
where (b(x)) is an arbitrary fixed point.

Thus we have defined two kinds of parallelisms for the II-geodesics
and for each of these kinds, we have the following properties:

10, Each Il-geodesic is parallel to itself.

20, Two Il-geodesics, which are parallel o a third, are parallel fto
each other.

30 Through any point taken outside of a 1I-geodesic, there exisls one
and only one 1l-geodesic, which is parallel to the former.

It should be remarked that the two parallelisms permit us easily to
construct the vector Zv equipollent of the

first | second

kind to a given vector ab and having a given origin (§(w); for this it
suffices to draw through (§)) the Il-geodesic, which is parallel of the

first | second
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kind to ab and then through (b{x)) the II-geodesie, which is parallel
of the

second | first
kind to af; these two II-geodesics meet in the point (y(x)) sought for.

(v) It is convenient to say that two Il-geodesics, which are parallel
of the

first | second

kind, have the same direclion of the

first | second
kind.
If we draw through the origin the parallel of the

first | second

kind to a given Il-geodesic, then several points of this parallel represent
the trasformations of a one-parametric group g. Hence we can say that
any direction of the

first | second

kind is defined by a one-paramelric subgroup of G.

If a one-parametric subgroup g of G together with a point (a(x)) of the
space is given, starting from the point (a(x)) we can make a displacement
in the direction of the

first | second

kind defined by g, and thus we obtain {wo distinct 1I-geodesics starting
from (a(x)).

(vi) The equipollences of the first and second kinds permit us, as
we have done in (iii) to define the equality and then the ratio of two
segments lying on two geodesics, which are parallel of the first or second
kind. If on a given II-geodesic, we choose a unit of length, we can thus
measure the segment on all the geodesics, which are parallel of the first
kind to given II-gcodesic and then on any II-geodesic, which is parallel
of the second kind to one of those latter and so on. Suppose that the
given II-geodesic starting from the point of origin and defined by a sub-
group g of transformations ©,, the u being the affine length (canonical
parameter) The Il-geodesics which thus arise by the indicated process are
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the loei of the points (§(x)) given by
ngTaG)“Tb,

the (ax) and the (b)) denoting two arbitrary fixed points, in particular,
those among such II-geodesics, which pass through the point of origin, are
given by

Ty =T,0u.T,";

their directions are defined by the various homologous (gleichberechtigte (%))
subgroups of g in the total group G.1It is only in the set of these directions,
that the space admits of an intrinsic metric.

(vii) Any point transformation of the group of isomorphism of the
space X transforms evidently a II-geodesic into a II-geodesic, the ratio
of segments being conserved. It transforms further two parallel II-geodesic
into two parallel II-geodesics.

Consider, in particular, the transformation
Tey =T,Ts.

By this transformation, the points of the space describe the vectors,
which are equipollent of the first kind fo one another. Moreover any vector
is transformed into another vector, which is equipollent of the second kind
to the former, and any II-geodesic into another II-geodesic, which is
parallel of the second kind. We may give to such a transformation the
name ‘“‘the translation of the first kind”. These translations are the trans-
formations of the first gronp of extended parameters ((ii) of Art. 18).

The equation
Te = TeT,

defines similarly a {translation of the second kind.
The continuous translation of the first kind

Te = 9,7,

(1) Cf. [12], p. 474.
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where ©, denote an arbitrary transformation of the one-parametric group
g(u playing the réle of the time), plays the property, that respective points
of the space describe the Il-geodesics, which are parallel of the first kind
to one another, while respective II-geodesics displace remaining parallel
of the second kind to one another. We will call this continuons translation
the Il-geodesic iranslation of the first kind. We define similarly the
1I-geodesic translation of the second kind.

§4. - Simplification of the Fundamental Theorems omn the
Extended Lie Transformation Groups by Means of the
II-Geodesic Parallel Coordinates.

21. Ii-Geodesic Parallel Coordinates in the Base Manifold and the
Group Space. - In (6.6), we have already introduced II-geodesic parallel
coordinates m in the extended Lie group mawifolds. Now we shall introduce
II-geodesic parallel coordinates § in the base manifold. For this purpose
we introduce a matrix

Baye, 6=1,2 ., n;j=12 ..,7
corresponding to the matrix Ej(x) introduced by (16.1) by the conditions:
@1.1) Bei =8, (ko @ =120, m; 14, L= 1,2, ..., 7).
Multiplying
Bkl = 2%,

where E. are unknowns, by Ei, we obtain Fi = | by virtue of (21.1), so
that it results that

(21.2) EkEl = Bk

and multiplying E%Ef:&i by Ek, we obtain Ei:a arriving at (21.1).
Thus we see that

(21.1) == (21.2).

Annali di Matematice 41
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For,
BAEIEIRE [ELE =& - 1EY
=m0 -0 BE G| = | & . B |- [ e M 0e0-0
0 .m0 0 | EE B EE .. B | (M5 e 7, 00000
g o001 | B B 335 I A MO
Vommih
00...0 g 00...0
000 ? 00...0
we have
@18  |EE| =% =1 l |EE | =8| =1.

Replace m;(wv) of Art, b by
Efu (0=12 ..,r;m, p, g == 1’ 2, ..,m; Tgn)

and consider the Pfaffians

(21.4) o = &, (a)dac™, (Efn(w‘, s w")=(%j@) ai =aj’

which are assumed to be anholonomic in general and to be of rank r, so
that the condition

(21.5) | En(@) | °4=0 in M
is satisfied.

We define the connection parameter Ap, by

i et i OF, & OF;
(21.6) Apg = la—%;'"‘”—’"“ezog%,

the last identity arising from (21.2).
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Consider a parametrized curve
xt = ai(l), (i=1, 2, ..., n).

We can easily prove the identity

a w! | dz A dx" daﬂ

We consider the combined manifold:
(@} + (Ei()

forming a principal fibre bundle, the
OISO

making the structure growp. Although the group elements Zi(x) can con-
tain the local coordinates (x?), the funciion forms make the group elements
(in a certain sense) independent of the local coordinates (x%).

From (21.7), we have

d o APt i du? dax?

(21.8) ada=0 = gty =0

Indeed, we can convert (21.7) into

id o dhxt Al dxe? dac?
1.9 S g = ar T g

The differential equations on the right-hand side of (21.8) define the
autoparallel curves of the teleparallelism. The left-hand side is convenient
for the study of the global properties and is inlegraled readily.

(21,10) ol = ¢'dl, (¢t = const.),

3
@1.11) -':;7 dt = ¢t + d, (@ = const.),

the (21.11) being guided by the simple character of the right-hand side
of (21.10). Noticing again the simple character of the right-hand side of
(21.11), we set

B=clt + dl;
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so that

H
21.12) £ m/Z—tdt = ¢it + db.

This means that we adopt such curves as & — axes in the r-dimensional
space cantaining subspace |xi!.

From (21.12), we see that the curves represented by (21.12) behave as for
meet and join like straight lines in the large. We will call such curves
II-geodesic curves.

Although the o' are anholonomic in general, we may write it in the
form of differentials:

(21.13) 48 = o = Efw(t)dai(t)
for the Il-geodesic line-elements, where
@1.14) | E) | =£0 in M.

The expressions (21.12) tells us that, for the given EAX)dw?, there exists
a curve «%f), whose line-elements |dx’} with directions (¢!} is given by
the differential d&. This is the case for all the directions {¢!!. Thus in
{(21.13), we may omit { and write down as follows:

(21.15) dE! = Bl () duc’

notwithstanding the right-hand side is anholonomic in general.
The first differential equation of (21.8) may be rewritten as follows:

argl
a¢

Multiplying (21.10) with E'(x) and taking (21.1) into account, we see that
the relations

daxt .
21. AL . pgd
(21.16) o =%
hold along the 1l-geodesic line-elements.
We will call {84 the II-geodesic parallel coordinates corresponding fo

El veferred to the gl-axes. The (&} are global in the large.
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From (21.15), we obtain
g — [ Byt = Byt — [ widilm)
21.17) P=Eww + 8. () = const.)

as in the case of (6.8), the differential equations to the II-geodesic curves
being

(21.18) dEix)dat = 0
or
(21.19) wdEw) = 0

ag in the case of (5.14) and (5.16).

22. To prove
e ; 0 P P9
a—gl=izw and W:al]a_ai'
= Egcdwk, of = B]idal,
ol @) . Hxe; a) ,
A(e; @) T P Ww; a) 2ai 0¥
— = lim = hLA et s 1 .
aE d.l}i-——b 0 Ekdmk am dad —»>a B,daf
a(tb(m; a/) i _n al.!)(w; a’) 1 k
o w sa7 k4
= lm Y = l i
F 7% S ExEi v duf o Biano
— lim ligﬁ at!)(w, a) = i l“ i @:E(my a)
da —> 0 57‘5] o0 da —s 0 ahth al
k
= lim =g 2¥% 9 = lim i 2Y(; a)
det s 0T hig dad g * dal
_shei OPX; @) i dd(x; a) r j oV(x; @) (s a)
= 51 Eh awi == G @wi . == 51 A aaj fr OC% E)OL;. .
Hence
a ot a E-) i Z)
(22'1) a—gl— El”a":m—z- m—-al Taj.
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23. Simplification of the First Fundamental Theorem on the Extended
Lie Transformation Group by means of the 1I-Geodesic Parallel Coordinates.
The First Fundamental Theorem of the Theory of the Extended Lie Tran-
sformation Groups has been stated in the form of Cor. 20 of Art. 16. Now
by virtue of the last article, it may be simplified and made global as follows..

Tae First Funxpamentan THrEOREM (the simplified form). In  the
extended Lie ftransformation group G as extended parameter growp, the
FEE; a®), k=1, 2,..., n) are n independent solutions of the completely integrable
simullaneous linear partiol differential equations

o _f .. o
(23.1) 3= 38 (g, 1=12,..,r; 4, k=12,.., w
such that
(23.2) i=fYE; 0), #=12 .., n)

Conversely, when an r-dimensional exiended Lie group G is given, the
(23.1) s completely infegrable, their solutions fYE; ax), (=1, 2. .., r) safi-
sfyling (23.2), determine awn axtended Lie {ransformation group having G
as extended parameter group.

SorLurioN oF (23.1) The Lagrange’s auxiliary differential equations of
(23.1) are

(23.3) A2 = — dot, df(x; a(w)) = 0. [(16.3), (16.9)]

The (16.19) becomes in fthis case:

(23.4) X = ol L — ol é%l = ol (_ a% + a%“:) .
Consider
(23.5) — Xf=0.
The Lagrange’s auxiliary differential equations become
i k
i~ ow
_ Bdxi ahdak
- efﬂﬁj- - e?'oafrcac;-“
dg dat

= —g = —,
6751' — 676]-
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so that
(23.6) dgl = — do! = el
in conformity with (23.3), whence follows:
(23.7) B = a) — alm) = et — 1), (b, §, = const.),
which represents a Il-geodesic curve corresponding fo
3 | ‘

in the differentiable
base manifold. | group manifold.

The complele integral counsists of (28.7) and the general integral is
(23.8) xE + «'E), B + @), ..., & 4 (8),

where y is an arbitrary function.

Comparing (23.7) with
(23.9) B=CExw + 8, (=oconsh, i=1,2 .., n; =12 ..,1),

weo see that

(23.10) Ea)ot + & = ab — o'(),
80 that
(@3.11) @) = oy — B! — B = o — EL.

The inverse transformation of (23.9) was

23.12) ot = EJBE 4 B (8] = const.).
N.B. (i) The differential equations (16.13) reduce to (23.1). (ii) The dif-
ferential equations (16.22) reduce to d&!= da*Ya(E)).

24. Simplificaton of the Second Fundamental Theorem. - When a given
r-dimensional extended Lie group G as an exiended parameter group has
the structure constonts

o, G, k=1,2 .., r)
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the necessary and and sufficient condition for that (23.1) may be comple-
lely integrable, is that the relations

(24.1) Ch=0, (hjl=11, .,

holds.
Proor. - In (16.29), we have

2 r 2
(X, Xi) = Elw) 55 ) o — @) Sl @)

S
= g

and X; are linearly independent.

25, Simplification of the Third Fundamental Theorem. -~ When r
linearly independent differential operalors

i 9 3 : .
(25.1) X;f= E,‘(m)a—gzéi, ¢t=1,2 ..,n; j=1, 2 .., n),

Ej(x) € O

are given, the necessary and sufficient condition for that they are the funda-
mental differential operalors for an extended Lie iramsformation group, is
that the relations

(25.2) 0 =0, hy §, k=1,2, .., 7
hold.

926. Simplification of the Fourth Fundamental Theorem. - The »°
constants

Ch=0 (b j 1=1,2 .., 7

for the fundamental differential operators
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of an extended Lie transformation group make the following three conditions:

(16.29) (X, X) = Gj?;th h, k j, 1=1,2, ..., 1),
(16.44) Ch=— O
(16.45) CfiChw + CjuChi + CriChy = 0, G b 1=1,2, .., 1)

identities, so that the Fourih Fondamental Theorem of Art. 16 holds.

§ b. Adjoint Extended Lie Transformation Groups.

27. Adjoint Extended Group of Extended Lie Transformation Groups. -
In Art. 11, we have extended the concept of adjoint group ([12], p. 450) of
a Lie transformation group fo the case of the adjoint extended group of an
extended Lie transformation group G.

I. We shall first stndy the adjoint extended transformations
¢ = EYct, ¢, .., ¢")el,

where the e’ are those, which we have considered in {23.4).
Since

(27.1) wl(l) = e't + i, (o = const.)

for the II-geodesic cumrves in the manifold, the (23.6) and (23.7) may be
rewritten as follows:

(27.2)  dE = E{w)etdt = e'di, Bt = Efa) (et + ob) + ¢

= e} ¢!, (¢! = const., ol = EQ),
go that

27.3) Byt = e, Bl + ¢, = ¢,
whose inverse transformation is
(7.4) of = Ei(x)el. ¢o = Eix)c! + .

Annali di Matematica 42
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Thus
el 1 et I ¢! ch
undergo the extended affine transformations

27.3). | (27.5). I 27.3). ; 27.4).

II. Next we will consider the general case. Let us denote the operator
corresponding to

(27.5) xt= flx; a)
by X';f. Then we shall have
(27.6) "X, f = " X', f,
where ¢? are certain functions of
o, af ., a”,e', & .., e

by virtue of (27.4).
If we set f=—a' in (27.6), then it results that

27.7) olEix) = &' X, (=1, 2, .., n).

(p)
It we give r determinate values ! (p=1, 2, ..., r) to x! then o't
becomes j functions of o', o .., a'. Thus we obtain

.(p) (p) t
@1.8) el = i) 2]
‘a m wz =3 wi

(D)
Thereby we assume that » values (p=1, 2, ..., r) of x* have been
8o chosen that

7.9 EOIE) =12, ., n)

. :(p)
Let Ei—(gc) be a matrix such that
(B (p) .
(27.10) E@)El() = 3, (p: summed; ¢: not summed),

_p)
and multiply (27.8) with &i(g;) and sum the result with respect to p.
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Then we obtain

i = otd] = &2 i) [%L @, (p: summed)
ie. B
(27.11) o = plla(@)e’, (| pila@) | == 0),
where
@712 o) = F@HO [0 @, (p: swmmed)

If we denote the inverse transformation of (27.12) by pé(a(m)), we have

(27.13) or(a@)pk(alr) = 3%,  eklal®)pl(alx) = 3%,
and
(27.14) o' = pl(a(x)el.

That (27.11) forms a group may be proved as in the case of [12],
p. 462.

28. The Adjoint Extended Transformation Group in terms of the
Ii-Geodesic Parallel Coordinates. The (27.5) becomes

3 _ iy wf
(28.1) o X[ =o' 5= "X f = o g0

when & and & are respective II-geodesic parallel coordinates, such that
(28.2) B =, B =gEE.

If we set f=2E) we obtain

¢
o = eif = ¢ %—E-; = ¢IEi(E)

i.e.

(28.3) el =eigE), ol =EiEe

Thus E}(&’) and Ef,-(&) themselves play the roles of pﬁ-(a(&')) and 55{&(&))
in (27.11) and (27.14) respectively.
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29. The Canonical Equations of an r-Dimensional Extended Lie Tran-
sformation Group. - The following theorem is an extension of a theorem
((12], p. 454, Theorem 32) of Sophus Lie:

THEOREM. - If

(29.1) w%=w+d&W+§ﬁw&X@w~"

be the canonical equations of an r-dimensional extended Lie transformation
gronp X.f, Xf, ..., X.f in n variables ', ©°, ..., " and if we apply the
transformation (27.4), then the transformations (¢!, €, .., €") are transformed
info (e, €7 ..., €7) by the transformations

(27.14), { (28.3),
where
| el(a) | 0. 1 | E&E) | 0.
The transformations
(27.4) | (28.3)
form a group and the relation

(27.6) y (28.1)
holds.

The part concerning (29.1) may be proved quite as in the case of
(12}, p. 464, Theorem 32).
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