
A Theory of Extended Lie Transformation Groups. 

By TSURUSABURO TAKASU (a Tokyo, Japan} 

Summary. - The theory o f  Lie trans]ormation groups is extended to a theory of  extended 
Lie transformation groups by extending the group parameters to functions of  coordi- 
nates in the base manifolds. The result is global both in  the group manifolds (the O. 
Schreier's fundamental  theorems being not taken into account) as well as in  the base 
differentiable manifolds owing to the introduction of  the author's H-geodesic parallel  
coordinates. The Lie's fundamental  theorems are extremely simplified. 

T h e  t r a n s f o r m a t i o n  p a r a m e t e r s  h i t h e r t o  c o n s i d e r e d  h a v e  been  e x c l u s i v e l y  
of the  n a t u r e  of v a r i a b l e  cons t an t s .  Bu t  the  p r e s e n t  a u t h o r  has  s u c c e e d e d  in 
e x t e n d i n g  a l l  the  b r a n c h e s  of the  fo l lowing  t ab le  by  e x t e n d i n g  r e s p e c t i v e  
g r o u p  p a r a m e t e r s  to f u n c t i o n s  of c o o r d i n a t e s  [1, 2, . . . ,  11], the  i n v a r i a n t s  
b e i n g  r e t a i n e d  : 

2< 

¢D 

Lie's higher sphere geometry ............................................................ 

Parabolic Lie geom. 

Equiform Imguerre geom. 

Dual conformal geom. 

Laguerre geom. 

t 
Dual parabolic Lie geom. 

Dual equiform Laguerre geom. 

Conformal geom. 

Dual Imguerre geom. 

i l 
Sphere-geometrical 
Euclidean geom. 

t~ 
Projeetive-geome. 
trical Euclid. geom. 

I J 
Equiform geom. ] 

Eqni-affine geom. 
J 

I 
Affine geom. 

Sphere-geometrical Sphere-geometrical 
lYon-Euclidean geom. DualEuclidean geom. 

~t  ~t 
Projective-geome. Proj cctive.geometrical 
trieal lYon.Euclld. Dual Euclidean geom. 
geom. I 

Dual equiform geom. 

Dual equi-affine geom. I 
I I 

J 
Dual affine geom. 

I 

P r o j e c t i v e  g e o m e t r y  ........ Lie's line-sphere transl. ...................... 
(In three dimension) 
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Thereby I considered the combined manifold:  

a,~(xp) I 4:  0; l, m, p = 1, 2, ..., n) 

of the base manifold lxPl and the extended group manifold ~a~(~ ~)1, the 
xP being the local coordinates in the 

differentiable manifolds 

and the H-geodesic carves  

] classical spaces 

d to I 
= o, (~oz ~ (o2(x~)dx,~ = a2 (x~)dx~) ,  

dt dt 

which exist in the 

differentiable manifolds 1 classical spaces 

owing to the fact that ¢o ~ are  wri t ten  in invariant  forms and behave as for 
meet and join like straight lines, play the important  roles and the global 
H-geodesic parallel coordinates ~ such that 

d~ ~ = ~d-- a~dt 

I p were introduced by introducing at least one system of ~o,~(x)E C °, ( v - -  
positive integer  k) I --  ~},  l --  ¢o}, 

such that 

I ~oS(xp)I 4= o. 

Now the present  author is in the situation to extend his extension of 
group parameters lo functions of coordinates of the base manifolds to the 
general case, and this will be done in the following lines, being led to 
ex~tend the theory of Lie transformation groups by extending the group para. 
meters to functions of coordinates. The abstract theory itself of the Lie groups 
remains however thereby unaltered, allhough the domain of validity is 
enlarged therewith. Thereby the following combined manifolds M ~ G are 
considered : 
[the base manifold M: lxPl] -[- [the extended Lie t ransformation group 

manifold G: tat(x)l], ( p - - l ,  2, ..., n ;  t - - l ,  2, ..., r). 

The famous Fundamenta l  Theorems of O~To SCHREIER [13, 14] have 
hitherto enabled us to reduce the global theory of Lie groups to the case 
of that of the vicinity of unit element. 
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T~e present author has introduced the global H-geodesic parallel coordi. 
nates ~l not only in the base differentiable manifolds M (~) but also in the 
transformation group space ( { ~  t in notation}. Thus they enabled us to 
establish the theory of the extended Lie 

groups I transformation groups 

in the large without taking the Otto Schreier's Fundamental Theorems into 
account. 

The r e su l t i ng - theo ry  of extended LIE transformation groups includes 
the various extended geometries hitherto considered by the present  author  
as special  cases (r----n2), the above parameter  t (cf. Art. 112) being a spe- 
cial canonical  parameter .  

Jus t  as we have obtained d~ ~-- ¢o,n(x )ax , the present  author has ren- 
dered the usual  notation 

k @ 
Z, = a~ (a) ~a k 

in the 

different iable manifold {x z} group manifold {a*l 

into the form 

where  

~ '  ~:d' 

are the n -geodes ic  parallel  coordinates corresponding to 

Thus  the fundamenta l  theorems of the extended LIE transformation 
groups are made extremely simple as the following under lying formulas 
suggest  : 

x ,  = ~ ,  ~ (x,~, xj)  = o, il z ,  _ ~ (z~, zi) = o, 

(') U s u a l l y  the Euc l i dean  space E ~ only  is t r ea ted  as the base  manifold.  

Annali di Matematice ~a 
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the s t ructure  constants 

C}k "-- O ~ 

l m d (o)~(x)dx)  --  O, d (bi'(a)dai) --  O, 

af of 

In Art. 19, E. Cartan 's  theories in his "gdomdtrie des groupes" [15] 
concerning " equipollenee des vecteurs ", " paralldlisme des vecteurs " and  
"gdoddsique" will be extended to the case ~vhere the groups are the e~ctended 
ones in the present author ' s  sense, the fact that his geodesics are H-geodesic 
in the present author 's  sense being shown. 

§ 1 . -  O t t o  S c h r e i e r ' s  T w o  F u n 4 a m e n t a l  T h e o r e m s .  

1. Recapi tu la t ion  of  the  Otto Sehre ie r ' s  Two Fundamenta l  Theorems.  
The s tudy of the global LI]~ groups has hitherto been based on the follow- 
ing principles. 

First  Fundamen ta l  Theorem of  Otto Schreier [13, 14]. If  U be an 
arbi t rary  vicinity of the unit  element of a connectec] topological space G; 
then every element of G is expressible  • as the product  of a finite number  
of elements  a l ,  as, ..., a~ belonging to b\ 

C o R . -  Connected r -d imens iona l  continuous group G may be covered 
by at ~aost enumerable  open sets of the forms asU, ( r - - 1  2, ..., n), where  
U is an arbi t rary  vicinity of the unit  element of G. 

Second Fundamen ta l  Theorem of  Otto Schreier [13, 14]. If  we divide a 
connected r -d imens iona l  cont inuous group into subsets  by the equivalence 
relat ions of locally continuous isomorphism, then each subset  contains only 
one simply connected group, provided that we do not dist inguish the sub- 
sets, which are continuously isomorphic to one another. Every cont inuous 
group belonging to one of the subsets  is continuously isomorphic to the 
coset group of the simply connected group (belonging to the subset) formed 
with its isolated invariant  subgroup as modulus.  

And cofiversely, such a coset group is a continuous group belonging 
to one and the same subset  as its simply connected group. 

In the Firs t  Fundamenta l  Theorem of O~To SC:E[REIER, the expressibi l i ty  
• holds only except  local continuous isomorphism and by the cont inuous 
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group,  local ly  c o n t i n u o u s l y  i somorph ic  subse t  on ly  come in to  our  conside-  
ra t ion.  H e n c e  we see that  the study of connected continuous groups is 
reducible to that of the 

vicinity of the unit element i group germ (local group) 

only. 

§ 2. - T h e  T h e o r y  o f  L i e  G r o u p s  i n  t h e  L a r g e  b y  E x t e n d i n g  

t h e  G r o u p  P a r a m e t e r s  t o  F u n c t i o n s  o f  C o o r d i n a t e s .  

2. Differentiable Manifolds. - In  o rd e r  to f ix  our  not ion,  we wil l  reca .  
p i t u l a t e  some de f in i t i ons  of t e rms  etc.  u n d e r  cons ide ra t ion .  

L e t  R n be au  n - d i m e n s i o n a l  Ca r t e s i an  space  wi th  the rea l  coord ina te s  
(x~j. W e  cal l  the topologica l  r e p r e s e n t a t i o n  of an  open  subse t  U~ of an  
n - d i m e n s i o n a l  man i fo ld  M =  V n on an open subse t  w(U~) of R n a system 
of local coordinates (or a local chart) of M. U~ is ca l led  the domain of the 
chart (or the domain of the coordinate system). To each  po in t  P of U~ C M, 
t he re  c o r r e s p o n d s  a po in t  of R ' ,  wh ich  is r e p r e s e n t e d  by  ($)-) ca l led  the  
coordinates of P in the chart u n d e r  cons ide ra t i on .  

DEFINITIOn. - A d i f f e r en t i a b l e  ma n i fo l d  M of the class C~(v-- pos i t ive  
i n t ege r  or v = ~ or v =  ~o) is an  n - d i m e n s i o n a l  m a n i f o l d  (~), to wh ich  a 
sys tem A(atlas) of char t s  sa t i s fy ing  the fo l lowing  condi t ions  are  a s s o c i a t e d :  

A~. M - -  UU~.  

A2. PEU~A ~ ,  (UI, U~: two d o ma i n s  of cha r t s  of A), and  (~)~)and 
(y~-) a re  the local  coo rd ina t e s  h a v i n g  U~ and  U~ as the  d o ma i n s  respec t ive ly ,  
t hen  

v = I = 

are  f unc t i ons  of class  C ~ such  tha t  

a(Yl' : "  Y'): t= 0. I 
. . . ,  x ' ) - -  J 

~(x, 1, ..., x ' )  
 (yl, y . ) 4 : 0 .  

DEFII~ITIO~. - Two  a t las  A and  B a re  said to be equivalent, w h e n  
the i r  r e u n i o n  is also an a t las  of class C v. 

(2) A topological space is said to be locally Euclidean at a point P, if there exists 
a chart A on a vicinity of P. A~ HAUSDORFF space which is locally Euclidean at each 
point is called a manifold. 
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THEORE)g. - [n order that two atlas A and B of one and the same 
differentiablc manifold M may be equivalent, it is necessary and sufficient 
that A,  B satisfy the axiom A~.. 

DEHNI~ION. - Two equivalent atlas are said to define one and the 
same structure of differentiable manifold of class C ~ on M. 

DEFINITION - A system of local coordinates of M is said to be compa- 
tible with the structure of differentiable manifold (or to be admissible) when 
the reunion with an atlas defining M as differentiable manifold is also an 
atlas of the same class. 

THEOREm. - Every compact differentiable manifold can be covered by a 
finite number of domains of the charts. 

3. T h e  L i e  Groups are r -D imens iona l  Differentiable Manifolds of  
Class C 3. At the end of Art. 1, we have seen that the study of connected 
cont inuousgroup is reducible to that of  the 

vicinity of the unit  element I group germ (local group) 

only. 
Now we have succeeded in introducing global H-geodesic parallel coor- 

dinates t~l  into dif[erentiable manifolds and any point of  a differentiable 
manifold may be considered as the origin by virtue of  the extended affine 
transformation group. 

THEOREm.- The Lie group is a differentiable manifold of  class C ~. 

In  order to prove this fact, we begin with the definit ion of the r-dimen- 
sional LIE group germ. 

DEFInITIOn. - A set G of elements 

Sa = S ( a  1, a s, . . . ,  a") 

having points a - - ( a  ~, a 2 . . . .  , a '~) belonging to a vicinity Uo of the origin 
(0) of the r -d imensional  Eucl idean space as parameters,  is called an 
r-dimensional Lie group germ, when it is characterized by the following 

conditions : 

(i) I f  we take a vicinity U1 C Uo of the origin appropriately, then for 

and 

a = (a 1, a 2, . . . ,  a ~) ~ U, 

b = (b 1, b 2, . . . ,  b ~) e U~, 
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the p roduc t  

s , . s ~  = s~, (o = (~, ~,  . . . ,  ~ )  ~ Uo) 

is def ined ,  w h e r e  the  compos i t ion  func t ion  

o ~ =  ~ ( a  ~, a ~, . . . ,  a~;  b ~, b ~ . . . .  , b~), 

are  of c lass  C ~. 

(ii) F o r  a rb i t r a ry  a E Uo, the re la t ion  

S~ • So - -  So.  S~ - -  S~ 

(3.1) # ( a  ~, a ~, ... ,  a" ;  0, . . . ,  0 ) =  ¢~*(0, . . ,  0;  a ~, ... ,  a") 

= a  s, ( i = l ,  2, ..., r) 
holds.  

(iii) I f  a, b, c E U2 for 
then  the assoc ia t ive  l aw 

(i = 1, 2, . . . ,  r) 

su f f i c i en t ly  smal l  vmin i ty  U2 of the origin,  

s~.  ( ~ .  8o) = ( s , .  8~). s~ 

io e ,  

(3.2) ~ ( a  ; ~(b ; c)) - -  ~t¢~(a ; b); c), 

holds.  

LEM~A. - If  a and b be  su f f i c i en t ly  near  the origin,  then 

~(¢~'(a; b), ..., ~"(a; b)) 
4= 0, ~(a~ aL ..., a") 

so that  we can  solve 

( i - -  1, 2, . . . ,  r) 

P R o o f .  ~T~(a; b) ~ ( a ;  b ) a n d  thus  the f u n d a m e n t a l  de te rmi .  ~a] and ~b~ 

nants  ~(¢~) and are  c o n t i n u o u s  func t ions  in the  v ic in i ty  of the origin.  

is d e t e r m i n e d  for a rb i t r a ry  S a. 

with  r e spec t  to a or  b. 

d - -  ¢p~(a ; b), 

In  par t icu la r ,  Sx - -  S~ -1 

Sx.  S~ = Sa" S~ = So 

(i := 1, 2, ... ,  r) 

such  that  

~(~(a; b), ..., ~"(a; b))%O, T, b. 
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If  we set b - - O  resp. a----O, then, by (3.1), we have 

and thus 

~(a)h=o ,~(b)/==o = I ~j I = 1 

~ ( ~ ) # o ,  ~(~) 

in the vicini ty of the origin. 

If, in particular,  we solve S~.S~ = So, we have 

~ = (8=. 5~). 8= = ~=.(so .  8=) 

by the associative law. Comparing this with Sx---- Sx.So, we obtain 

S a ' S x - -  So. Thus Sx -- S~ -1 exists. 

PRoo~ of the THEOREm. - I. When a vicinity of the unit  element of a 
topological group G is an r -d imensional  LIE group germ, the topological 
group G is called an r-dimensional Lie group. 

II .  A topological group G is an r-dimensional continuous group, 
when G is provided with a vicinity of the uni t  element of G, which is 
homeomorphic to an open hypersphere of the r -d imensional  Euclidean space. 

From I and II, we see that the r-dimensional Lie group G is an 
r-dimensional continuous group, since for the LIE group germ, the existence 
of the vicinity of the uni t  element of G, which is homeomorphic to an open 
hypersphere of the r -d imensional  Eucl idean space, is preassumed. 

Now 

III .  an r-dimensional continuous group is a topological group whose 
group space is an r-dimensional manifold. 

Hence the r-dimensional Lie group G is an r-dimensional manifold. 
By the Cor. above, this r -d imensional  manifold is a differentiable mani- 

fold of class C ~, since, by the Cor. of the  Firs t  Fundamenta l  Theorem of 
0~T0 SCHnEIER, Axiom A1 of Art. 2 is satisfied and by the Theorem 
above, the Axim As of Art. 2 is satisfied. 

Hence the r -d imens ional  LIE group is an r -d imensional  differentiable 
manifold of class Ch 

4. Realization of  the Present Author's Extended Affine Geometry in the 

n-Dimensional Base Differentiable i r-Dimensional Lie Group Spaces. 

Manifolds. l 
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Since the r -d imens iona l  LIE Group is an r -d imens iona l  different iable 
manifold of class C ~, the au thor ' s  extended affine geometry [4, 1t] is reali- 
zable in it. In the following lines, a realization of the present  au thor ' s  
extended affine geometry will be exposed in the 

n-d imens iona l  different iable  r -d imens iona l  LIE group space G. 

manifold M. 

5. H-Geodes ic  (Mrves. Take  

l d e f  COll v ~  . (5.1) co = ~ c  t a ~ ,  

()b t ~, v, . . . - -  !, 2, ..., n), 

where the Pfaf f ians  

co l 

~z ~°~: ~(aP)da*, 

(1,m, n, ... = 1, 2 , . . . ,  r), ( r ~ n ) ,  

are assumed to be anholonomie in general  and to be of rank r, so that the 
condition 

(5.2) I1 ~(~v)II ~4: o ~. ~ j 
is satisfied. 

Since (5.1) is wri t ten in an invariant  form, 

COl 

are global in U U~. 
CL 

For  the given 

we introduce 

9-~(x ~ ) 

by the condit ion:  

(5.3) ~ ~ - -  ~ ~ co~ ~z 

where  ~'s are Kroneeker  deltas. 

We define the connect ion parameters  

k 
A~v I 
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by 

the last identily arising from (5.3). 

Consider a parameterized curve 

x ~ = x~ (t), 

where it is assumed that the t is i nvar ian t .  

We can easily prove the ident i ty:  

d o) ~ z {d2x ~ A~dX~dx~  I 
(5.5} a--t d~t - -  o)~ ~ - d ~  ~- ~ dt  dt ]" 

We consider the combined manifold:  

v 

forming a principal  fibre bundle, the 

making the s tructure  group.  (This group 

l v 

will a f terwards  be enlarged to 

1 v l {%(x ), {Dol). 

Although the group elements  

l v +gx } 

contain the local coordinates 

a z =  a~(t}, 

d a z )[d2cd z dct ~ dat~ 
d-t -dr = ~" ~ t  -~- + A ~ - -  ~t-] dt 

3. p 

l p 

k p k 
l~',~( a ), ~of). 

(~v) ,  I ("% 

the function forms make the group elements (in a certain sense) independent  
of the local coordinates 

(x~ t. I (a~) .  
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F rom (5.5), we have 

d o) l 

(5.,6) dt  dt  - -  0 

d2x~ x dx~ d x  ~ 
~ - - +  h ~  
~-" dt  = d t  a t  

- - 0 .  

- -0  
dt d t  

d2 a ~ z da"  da  t O. 
d ~ T -  M t  dt  d t  - -  

Indeed,  we can convert  (5.5) into 

{5.6') Q~ d to ~ d~x ~ A:  da~ d x  ~ d :¢~ d~a ~ da"  d a  t 
d t  d t  - -  d t  + " d--t d--t = + d--i- d--F" 

The  different ia l  equat ions  on the r ight-hand side of (5.6) define the 
autopara l le l  curves of the te leparal le] ism'(E.  CARTA~ (1926), WEI~Z]~B(iCK 
(1928)). The  l e f t . h a n d  s ide  (8) is  c o n v e n i e n t  f o r  the s t u d y  o f  the g l o b a l p r o p e r t i e s  

a n d  is  i n t e g r a t e d  r e a d i l y :  

(5.7) (,~ = eZdt, e ~ = coast.), 

(5.8) o -dr d t  = d t  -~ d, (d = const.), 

~ - -  eZdt, (e ~ - -  coast.), 

f 
6¢ k 
~ [  d t  = e)4 + c )~, (c ~ --" coast.), 

the (5.8) be ing guided by the s imple charac ter  of t i le-r ight-hand side of (5.7). 
:Noticing again the s imple charac ter  of the r i gh t -hand  side of (5.8), we set 

so that  

yo)l f ~ k  
(5.9) ~ z _= d t  dt  = d t  -F c ~. I ~z " -  at- dt  = e~4 -F 

This  means  that  w e  adop t  s u c h  c u r v e s  as  

~z _ axes .  f ~ - -  axes .  

From (5.9), we see that  the cu rve s  r e p r e s e n t e d  by (5.9) or (5.9) behave  as  

f o r  mee t  a n d  j o i n  l ike  s t r a i g h t  t ines  i n  the large.  We will call such 
curves  (4) H - g e o d e s i c  c u r v e s  (read: geodesic curves of the second kind!b 

(a) A glimpse is found (fer the group manifold I ahl) in: E. CAR'rAN, [15], 9.62. 
(4) In  the group manifolds, such curves have been called geodesic curves  (E. CAR'~AN, 

[15], p. 14 and p. 62). The author has just found that the I I -geodes ics  are  geodesics for  m~. 

Annali  di Matematica 33 



258 T. TAKASU: A Theory o] Extended Lie Transformation Gc'oups 

Although the 

are anholonomic in general, we may write it in the form of differentials: 

(5.10) d~ ~ -  ~o ~-- a~(xz (l))dx~(t) 

for H-geodesic tine.elements~ where  

(5 .11)  ~ ~ a ~ f  z~ ~ 

[] a~(x~) H :4== 0 in M. 

d~X --  £. : c¢~(a~(t))da"(t) 

there  exists a curve 

x~(t), 

whose l ine -e lement  

ldx~l 

t ~ ( a ~ ) I ~ O  in G 

The express ions  {5.7) and {5.10) tell us that, for the given 

f a~(t), 

l I dam } 

[ leaf 

with direct ion 

d~ )~ . 

is given by the dif ferent ia l  

d~'. ] 

This  is the case for all the directions 

fell. 

Thus  in (5.10), we may omit 

(5.12) d~= ~(~)dx~, 

notwithstanding the right-hand 

t and write down as follows: 

] d ~ =  ~(a~)da~, 

side is anholonomic in  general. (Hence (5.12) 
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will lead us af terwards  to 

(5.13) ~ =  a~(x~)~ + a~o= ~(~'~), 

(a~ = eonst.), 

el. (6.6}). That  the anholonomic  Pfaf f iau  

a~(~c' )ax ] 

is expressible  in the form of the d i f ferent ia l  

~ = ~ ( a ~ ) a  ~ + ~o = f ( a %  

( ~  = eonst.), 

d~ ~, 

of is an unexpected consequence  of the super ior  qual i ty  
l ine-e lements .  This  point  is the p r i m a r y  di f f icul ty  encounte red  
readers,  who are apt to overlook the different ia l  equat ion  (5) (5.6): 

(5.14) da~.(~cv)dx~ , - -  0 ] d~(a~)da  m -" 0 

for the H-geodesic l ine-elements.  

The first d i f ferent ia l  equat ion  of (5.6) may be rewr i t ten  as follows: 

(5.15) d2~ -- 0. d~r~z- --  0. 
dt 2 dt ~ 

From (5 13) and (5.12), we obtain 

(5.16} d~'~(~v)~ = 0 d ~ ( ~ ) ~  = 0 

along H-geodesic l ine-elements.  
Mult iplying (5.7) wi th  

and taking (5.3~ into account ,  we see that  the re la t ions (~} 

(5.17} dx~ _-- eZ~ " da~__ - e ~  
dt d t  

hold along the H-geodesic l ine-elements.  

the H-geodesic  
by the 

(5) This condition is lacking for the general  Pfaffians.  
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We will call the 

the H-geodesic parallel coordinates corresponding to 

referred to H-geodesic eoordiYtate a~es. The l~l  are global in the atlas U U~. 

6. Extension of the Afllne Transformation Groups by Extending the 
Oroup ]Parameters to Functions of Coordinates. When the differentiable 
manifold 

M I G 

is the classical affine space and the 

tx~l t laPl 

are the ordinary parallel coordinates, the atlas U U~ reduces to a single 
6¢ 

chart U~, whose map is the classical affine space. 
In general case, the H-geodesic parallel coordinates 

can stand for 

so that the atlas U U~ may 

I 

] laPf, 

be considered to consist of a single chart U~ 

and in place of (5.12), we come to consider 

(6.1) d~ ~ -- a~(~)d~ "~, 

for H-geodesic line-elements corresponding lo 

We take H-geodesic curves corresponding to 

f 
as tangents to the curves. 

= 

%(~ ). 
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(6.2) 

We consider u transformation 

~* = a~t i , )~  + al, 

(ia~(~v) l=~ =0 in M) 

accompanying (6.1). 
H-geodesic curves 

~ = ~ ( ~ ) ~  + ~i, 

( [ a ~ ( ~ ) l : ( = 0  in G) 

We will call the transformations (6.2), which transform 

f'~(t) I ~(t) 

into g-geodesic curves corresponding to 

~(~ ), 

e x t e n d e d  a f f i n e  t r a n s f o r m a t i o n s .  By such a transformation, g-geodesic curves 

{6.3) d~Z -- 0 
d t  ~- - -  

are transformed into g-geodesic curves 

(6.4) d~Z 
dt  ~ - -  O. 

Now by (6.1), we have 

d ' ~  ~ d z d~'* . a z , ~ d ~  ~ 
dt  ~ - -  d t  a"(~P)~dt-  "~" ~tq ) dr" " 

(6.5) d a ~ ( ~ ) d ~ ' - -  

d : ~  0 
dt,~ - -  

d ~  - -  O. 
dr2 - -  

d~'~ ~ d a) .  ~, d ~  ~ ~ d ~  
dt  2 - -  d l  ~ ~--dt- -b ae(~') dt~.  . 

Hence by the demands (6.3) and (6.4), we must have 

l d~ ~ A~ d~: d~  l dt~= O 
- - 0  - -  ~ ( ~ )  ~ ~- " ~  d t  d t  

f o r  the  g - g e o d e s i c  l i n e - e l e m e n t s .  

Integrating (6.1) along the H-geodesic 

~1-axis, I ~X-axis, 
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we have 

~ow 

dt --J 

1 ~ = ~,Itv)~ + f~d~(~--~-))dt. 
, dt 

= ; ;  ~---dY- 
--"  e o n s t .  

by (6.5), (the indication of the domain of integration is here omitted), and 
the condition for that the repeated integral may be converted into the double 
integral  being evidently satisfied. Hence for the 

in (6.2), we have 

l 
O~ o ~ e o n s t .  

being led to 

1 (6.6) ~ = a ~ ( ~ ) ~ "  + no, 

( [ a~(~ p) ] =1= 0 in M, ao----- eonst.). 

From (6.2) and (6.5), we see that 

{6.7) ,~,z ~;p~;,, 0 t 

for the H-geodesic line-elements. 

of 

-1  

(~.s) ~ =  .£(~, )~+ ~o, 

([ aZ(~]~, , :4:0 in M, Z~a o - c o n s t . )  

6¢ o 

c~ o - - -  c o n s t .  

~ = ~(~,~,~ + ~ ,  

(I ~(~'~14:0 i~ G, ~o = const  ). 

d~(V t~, ~ = 0 

The totality of the extended affine transformations forms a group, 

O, say. [ ~, say. 

In order to show this analytically, it suffices to show that the product 
(6.6) with 

. I  a o  ~ 

([ ~(~v) I = ~ = 0 , ~  in G, ~o----- eonst.) 
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is of the  fo rm (6.6): 

(6.9) ~ - -  b~,~(~)~ m + b*o, 

(] ~.m ~ ~v~ [ = = ~  ~ 0 in M, b~o == const.), 

w h e r e  

(6.~o) 

- l  p m --1 
(6 .H) b~o = b~tl tao + ao, 

(6.12) -b~(~) a ~ a ~ v ~': 

W e  shal l  see that  

- l  p m - - I  (6.13) b~o --b~(~ )ao -k ao --  eonst., 

for w h i c h  it suff ices  to prove  tha t  

(6.14) '~ -~ ao dbm(~ ~) --  0 

:~ = ~I;(~,)~ + ~, 

I i fi(n ~) 1 4 o in G, ~o - -  const.), 

U, 0- 

~ = ~(~ , )~o  ~ + ~o, 

~t~ --  ~(~t~)£o ~ -b ~o x = eonst . ,  

on s u m m a t i o n  wi th  respec t  to m. Fo r  (6.9), the condi t ion  (6.7) 

m a y  be 

4 d ~ ( ~ '  ) = 0 

for that  the 

~ - a x e s  I ~ - a x e s  

H-geodes ic  curves  co r r e spond ing  to 

becomes  

~°~d52 (~) = o. I ~d;~t~ ~) = o. (6.15) 

W e  sh~ll show that  (6.14) follows f rom t6.15). The  (6.15) becomes  

l a~2(~)i k + a~ I da~  (~) 

- dbm(~ ~) = O, =t o:~(~)~ + ~ l a~(~)  = o, 
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so that  

(6.16) ,a -z ,= -~ ao dam(i p) - -  ao dbra(~ ~) 

= - a~ (f~) d b .  ( f )  

m p -g p lc = -  ae (f )db,(~ )! 

- -  { i ~ d a ~ ( ~ ) ]  . , ~  

by the di f ferent ia l  equat ion  

(6.17) 1~da~(i~) - -  0 

of the H-geodesic  curves  

ag'(f~). 

Thus  we have 

m - - t  - -  m - ~  lo ao dara(~ ~) "-  - -  i~d { a~ (i~)b,a(i)} 

m { o - - I  

---- - -  ~ d b ~ ( i  ~) = 0 

by ~he different ia l  equat ions  

{ 

cor responding  to 

I 

o~ ~., , =  ~od~(~ ) 

= - 

_ - -  - -  

- 1 ~ d ~ ( ~ ' ~ ) }  ~ ( ~ )  

~, d~[(~'~) = o 

~ 1 ~  ). 

~od%(n ~ -~ -~) = - -  ~ d i  ~ ' ; (~ )~ (~ )  t 

= - -  ~ d  I ~ ( ~  ~);~(~) I 

= - -  ~ P,d'O ) = 0  

(6.18) ~db~( i  ~) - -  0 { 

of the H-geodesic  l ine -e lements  corresponding to 

The (6.17) shows (6.14). We have called the 

the 

~ d ~ ( ~ )  = 0 

~(~). 

If 

extended af f ine  group.  The most  general  ex tended af f ine group 
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contains the ordinary affine group 

¢ J 1R 

(in the abstract sense) as a subgroup. The totality of the elements of 

which are free from 

¢ 1R 

together  with the unit  t ransformation,  forms a subgroup, 

lb, :[, 

say, of 

so that 

(6.19) = ¢1b + lb¢.  

I ,  

The geometry  under  the extended affine group has been called by me 
the extended affine geometry. 

7. Realization of  the  Extended  Affine Geometry in the Differentiable 
Mani fo lds . -  Our results of Art. 3 - 6 show us that the author's extended 
a/fine geometry is realized in the differentiable manifolds. 

8. The Fundamenta l  Pfamans  fer  the  Lie Group (Germs) . -  The ordinary 
theory of the fu~damental Pfaffians for the Lie group germs applies still 
when the elements 

a z, ( l : l ,  2, . . . , r ;  i = l ,  2, ..., n) 

of the Lie group germs are extended to appropriate functions of the coordi. 
nares of the base manifold. Such a theory will be exposed in the following 
lines, wri t ing a ~ in place of aZ(x)- al(x~) We assume moreover the coordi~ 
hates (x ~) to be H-geodesic parallel coordinates (~i), which are global. Then 
we may omit the term "germ,, without relying upon the Otto Schreier's 
Fundamental Theorems. 

Annali  di Matematica 34 
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We have assumed in Art. 3 that  the composition functions 

( 8 . 1 )  

a r e  

(82) 

(8.3) 

such that 

d -" ¢~i(a *, ..., a";  b ~, ..., b"), 

We form the matr ix  

- -  \ ~bi ]b = 

Since 

?~ E C". 

(s.4) 

we int roduce the inverse 

~ ( a ) b  (a) = ~i, (8.5) ~ ~ 

where ~i are KRO~EC]~E~ deltas. 

DEFInITIOn. - We call 

(8.6) 

0 

I ~ ( o )  I = I ~ j l  = 1, 

~}(a) by the conditions 

~ (a) ~ ( a )  = ~i,  

m*(a, da) - -  ~(a)dai ,  a ~ -- a*(w~), ~o*E Am(C 2) 

the f u n d a m e n t a l  P fa f f ians  of the extended LIE group 
Am(C 2) is a LIE algebra having ¢o~(a,da) as base. 

Multiplying (8.6) with :¢i(a), we obtain 

(8.7) 

t ia l  

(8.8) 

m a y  be i nvar ian t :  

(8.9t 

( i - -  1, 2, ..., r) 

(i, j - -  1, 2, . . . ,  r). 

(germ), where  

dai  = ~!(a) ~o~. 

THEOREm - The necessary and  suff icient condition for that the differen. 

form 

@ = ~ g~, .., ~p(a) da~ A ... /~ damp E A(C e) 
~1 < ... < ip  

= E g~ ... .  ~p(a) da ~IA ... A d-a~P -~- ffp 
il < . - . < i P  
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for  al l  the t rans format ions  

(8.10) 

wi th  p a r a m e t e r s  
is that  for  

(8.111 

the coefficients 

~i --. ~i(kl ' "",  k" ; a 1, .... ar), (i - -  t ,  2, .. . ,  r) 

(kt(x~}, ..., kr(w~)) belonging to a v ic in i ty  o f  the or igin  (0) 

i~ e ,  

(8.12) 

on one hand and 

(8.13) 

Thus we have 

on the other hand, where b~= ~(a;  c). Apply the inverse of 

~a ~ ) 

to {8.12). Then it results that 

d a ' - "  :¢} (a)G)J. 

= = ~(a)~k(a)~ ~ = ~i~o~ = 

Secondly, in order that (I) may be invariant, the relation 

hi . . . .  ~(a) = h~ ...~(~(k; a)) 

~ =  ~(a~)~, 

~ ( k ;  a) 

, ~¢p~(k; b)3~(a ; ~ (k; a) ~(a) 
- 1  ~ ~b~ ~ i  0 ) ) ° = 0 - -  ~¥ 

PROOF. - We will begin with the proof for that (8.8) are invariant for 
(8.10). Apply the transformation (8.10} to (8.7}; then we have 

h~ 1 ...~p are all  constants .  

- -  ~ h i , . . .o  ~ '  A ... A <~P, 
~1< ... d i p  
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m us t  ho ld  for  al l  va lues  of k. I f  we take  a- - . -O ,  s ince  ¢~+(k;O)--k +, w e  
m us t  have  

h+1 ... +p(O) = h+l ...+p(k). 

t I e n c e  h+ t ... +~ mus t  all  be  cons tan t s .  Q.E.D. 

T l t E O l i E ~ . -  ]For the f u n d a m e n t a l  P f a f f i a n s  o f  r - d i m e n s i o n a l  ex tended 
Lie  group  (germ), i t  holds  that  

1 + . 
(8. t4) d~o + - -  ~ 0ii+¢o7 A "°++, 

where the r '  constant  coefficients Oj~: obey the rules  

(8.15) ( C~i - -  O, 

PROOF. - S ince  m + a re  i nva r i an t ,  do) + mus t  also be inva r i an t ,  s ince  the  
o p e r a t o r  d and  coo rd ina t e  t r a n s f o r m a t i o n  a re  commuta t i ve .  H e n c e ,  by  the  
las t  T h e o r e m ,  we mus t  h a v e  cons t an t s  C~k such  tha t  

am + = o~k+¢ A ¢ok. 

I f  we set (8.t5):  

C}k - -  - C~i, (j > k), C~i - -  0, 

we h ave  

(8.17) 

(8.18) 

T h e r e f o r e  

H e n c e  

1 . . (o +CA(C2), dm +EA(C~), am+ = ~ o+]~,.,+:, A ~k, 

d(&o +} = O. 

i i 
did ~o~} = 2 0 ~ d  ¢°k A m~ -- 20kzm ~ / \  dco ~ 

i k 1 ,~+ ,~k q = Ck~dco A ~z t~kz~vqo ~ A mq/ \  ¢oz= O. 

h l h l h l C~iCh~ + Ci~Ch~ + Ck~Chi = O, (i, j ,  k = 1, 2, . . . ,  r). 
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DE~INZ~IO~. - The r ~ constants C]~ are called the s t ruc tu re  c o n s t a n t s  of 
the r -d imens iona l  extended LIE group (germ}. 

If we develop ¢~(a(xq; b(xq), by virtue of (3.1), then we obtain 

(8.19) ~*(a; b) - -  a ~ -}- b ~ -[- d] ,ai  b ~ Jr. d ,  

where  ~ is an infiniLesimal higher  than the second order in the vicinity of 
the origin. F rom (8.19), it results  that 

= . a  + + 

i i k = - a ia + 

where  e" and aa are infinitesimals.  ]~ence 

(o~(a , da) - -  da  ~ - -  d~iakdai  -[- e~j da i ,  

where  ~i is an infinitesimal.  Hence  it results that 

d °)~ - -  - -  d ~ f l  a~ A da i  -]- de, j  A da t  -.- C]kooi A ¢o~. 

Comparing the coefficients of d a ~ A  da t ,  we obtain 

8.20) oik= ai . 

ST. B. - (i) In  order  to deduce  (8.16) in terms of dt~ directly, we utilize 
(3.2) having wri t ten out the terms of the third degree in {8.19) [16]. 

(it) As for the class C" in the ordinary case, L. PO~TRZAGZ~ [16] has 
taken v ~ 3. L. van der WAERD:EN [17] has assumed that (1) ~qa; b) is once 
differentiable,  (2) ~,(a;b} satisfies the LiPschitz 's  condition for b and (3) its 
converse. G. BZRKHOFF [18] has assumed the existence of the total differen.  
tial of ~qa; b) and its continui ty in the origin. P .A.  Sm~H [19] has proved 

that when for ~ (a ;  b) - -  ai-] - b ~ + ~qa; b), the condition ~da ;  b) O, (a ~ O, l a j  
b---,-0}, where  (I a I - - a 1 2 ~  - ... + ar2), is satisfied, the LIE group (germ} 
may be rendered  into an analyt ic  LIE group (germ). 

In  our  case, we have assumed " ~ 6  C~,,. This condition is fully utilized 
in (8.18i. But, it will be seen that the result  of Art. 8 hold good also for 
~ 6  C 2, if we notice the following fact. Indeed,  if ¢p~6 C 2, then we have 
¢o~ 6A(Ct), du) ~ 6 A(Co). Thus the first Theorem of Art. 8 is still applicable, 
so that {8.17) holds. Consequently we see that doV6A(C~), so that d(d¢o i) 
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exists and the fact d(do~ i) - - 0  is a consequence of co t E A(C~). Hence  it suf- 
fices to deduce d(d~o ~) = 0 from do) ~ E A(C ~) in another  way. For  this purpose 
we utilize the generalized STOKE!S theorem. When  ~o~EA(C~), ( v ~ l )  is an 
homogeneous expression of r- th  degree and C ''+~ be an algebraic complex 
composed of curved simplex of ~-th class (~ ~ 2), then the relat ion 

f to" "- . f  &,/" 
Acr+t Cr+l 

holds. Thus for an arbi t rary  3-dimensional  curved simplex C 8, we have 

where  

Hence we have 

(C ~, d(dtot)) --  (AO s, d~') --  (5(A08), to~) --  O, 

f + -  = (C  ", +"). 

C r 

d ( d ~  ~) - -  O. 

(iii) The name " fundamen ta l  Pfaf f ians"  arises from the following 
theorem. 

THEOREm.- When r fundamenta l  P fa f f ians  are invar ian t  for 

a ~ - - a t  = at(a), (i - -  1, 2, ..., r), 

which maps  the points  of  a vicinity U of  the origin into a vicinity ~ o f  the 
origin: 

(8.21) ¢o ~ (a, da) --  o)t(a, da), (i - -  1, 2 . . . .  , r), 

the ~(a) coincides wi th  the compositio~ funct ion ~(k; a) : 

(s.~2) +'(a) = ~ ' (k;  a), (i = 1. 2, . . . ,  r) 

for 

(8 ,23 )  ~ i ( o )  - -  k *, ( i  - -  1, 2,  . . . ,  r), 

that is to say, the extended Lie group (germ) is determined uniquely by r 
give~ fundamen ta l  ]Pfaffians. 
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(s.24) 

by pu t t i ng  

and  s ince  

PROOF. - Cons ider  the  s imu l t aneous  total  d i f fe ren t ia l  equa t ions  

~ - - ~ o ~ = 0 ,  ( i =  1, 2, . . . ,  r), 

~ = ~ ( ~ ) d ~ .  

These  a re  comple te ly  in tegrable .  For .  

d(~ ~ o)~} -" E Cjk(a)~ A ~oi A ~ok) 
i < k  

= ~ Oi~ l ~'~ A (~,k _ ~ok) + ( ~ i - -  ~oi)/~ (,~t. 
] < / c  

z 0, (mod: ~1 ~r _ _  0 )  1 , . . .  , ~ t o t ) ,  

I ~ ( a ) I  =t= o, 

the so lu t ions  such that  

t a - ~ =  fi(k ~, ..., k"; a ~, ..., a"), 
(8.25) k ~ = f~(k ~, .. . ,  k" ; O, .. . ,  0), 

exis t  on one hand.  a ~- -  ~ (a )  are  so lu t ions  

( i =  1, 2, ..., r) 

of (8.24) for the in i t ia l  condi.  
t ions (&23) so that,  by  the u n i q u e n e s s  of the s o l u t i o n s  we  have  

+~(a) = fi(k; a), (i = 2, 2, . . . ,  r). 

On the o ther  hand  

a ~ = ~(k ~, ..., k"; a 1, . . . ,  a") 

a re  also the so lu t ions  of (8.24) for  the same ini t ia l  condi t ions  by  the F i r s t  
T h e o r e m  above.  T h e r e f o r e  we mus t  have  

(8.26) ¢~(k; a) -~ f~(k; a) : ~'(a), (i - -  2, 2, ..., r). 

9. A b s t r a c t  Lie Ring.  - In  o rder  to m a k e  the s t r u c t u r e  of the  exten-  
ded  LIE g roups  clear ,  we  give the def in i t ion  of the  abs t r ac t  LIE ring. 

DEFInITIOn. - A vec to r  space  R of r ank  r wi th  

rea l  t comp lex  
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coefficients  is cal led an abstract Lie ring, when the fol lowing condi t ions  
(i) and (ii) are satisfied" 

(i) For  A, B E R, a commutator product (A, B} E R is def ined uni- 
qu ely; 

(ii) (XxA~ + X~A~, B) = X~(A~, B) + X2(A~, B), 

(9.1) (A, B) -- --  (B, A), 

(9.2) ((AB), C) A- ((B, Cl, A) -4- ((C, A), B) = 0. 

THEOREM. - For given bas~s E~, E~, ..., E,. of a vector space, there 
er.ists r-dimensional abstract Lie ring R having the structure constants of 
art r-dimensional (extended) Lie group (germ) G as coefficients of 

= 01i (9.3) (E~,Ej) kE 

PROOF. - Since El, E2, ..., E,. form a basis of a vector  space, we may 
set {9.3). Then  from (9.1) and (9.2), we obtain 

(9.4) 
- -  _ Ci~, 

l ,qh C~ k ~ h l w~] h~ T CinCh{ -~- Ck~Chi-- O. 

Conversely,  if (9.4) holds for cer ta in  r constants  Cj~, we can determine,  
the basis El ,  E2, ..., E .  so that  the commuta to r  product  of them is (9.3) 
and in t roduce  the def ini t ion 

= EJ),  

then  (9.1) and (9.2) hold. Hence  the theorem. 

]q. B . -  W h e n  a proper ty  of an ex tended LIE group (germ) is given, 
we shall  express  it in terms of the cor responding  abstract  LIE ring. 

10. Coordinate  T rans fo rma t ion .  

DEFInITIOn. - W h e n  the re la t ions 

[ g'(~(a; b))--  ~'(g(a); .q(b)), 

(10.1) 
g~(c~(a; b))-'- ~(g(a); g(b}), (i--~ I, 2, ..., r) 
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hold by a certain one- to-one  t ransformation 

t a i - -  g~(a~' ""' a"), 0 - -  g~(O, . . . ,  0),  
(102) 

~ = ~ ( a  ~, . . . ,  a"), 0 = ~ ( 0 ,  ..., 0),  

g~, g~ E C ~ 

between 

extended 

ph io  to each other. Thereby ¢?(a; b) and ~(a; b) are respective 

funct ions in G and G. 

The (10.2) may also be expressed as follows: 

(i - -  1, 2, . . . ,  r), 

certain vicinities U, U of respective origin of two r -d imens iona l  

LIE group (germs) G and (~ hold, G and G are said to be i somor .  

composition 

If ~o. so = so, then ~ , o ~ . ~ ) =  ~(o), 
(10.3) 

if S ~ . S ~ - -  S~, then Sg(~).Sg(~ - -  8 g ~ ,  

(so, so, ...e G, Z~, &, ... e d~. 

When g~ and g~ are, in part icular ,  analytic functions, G and d are 
said to be a n a l y t i c a l l y  i somorph ic .  

If we t ransform the extended parameters  (a 1, ..., ar} of an r -d imens iona l  

extended LIE group (germ) G into (a 1, ..., a r) by g~, . . ,  g"E C 1 such that 

(lO.4) 
a ~ - -  g~(a 1, . . . ,  at) ,  0 = g~(O, ..., 0}, 

then it results that 

(i = 1, 2, ..., r), 

~(~1, . . ,  hr) 
~(~, L~ a") # o, 

which is a special case G - - G  of the above definit ion for isomorphism. 
Thus  a t rea tment  of the isomorphism consequences a t ransformation of the 
extended parameters.  

If  G and G be isomorphic to each other, then introducing 

_ ~-g~ d a  ~ 

Annali di Matematica 3~ 
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and 

t 
~i ~1~=o = ~ ~o' ~o=o\-~I~=o 

obtained by different iat ion of 

¢(a; c) = ¢ ( g ( a )  ; ~(c)) = a'(~(a;~)), 
into 

and solving the resul t ing equations with respect  to 

dan : \ -~-d- --I~ = o \ ~ - 1 ~ =  o o)i (a, da). 

Comparing this with the fundamenta l  Pfaff ians  o~i(a,da), 

~)~(a, da) : h~(ot (a, da), (10.5) 

where  

(10.6) 

Thus  the fundamenta l  
constant  coefficients. 

We  introduce this into 

hj \ ~ i  /7=o" 

Pfaff ians  undergo a l inear  

1 i k d0) ~ = ~ Ckz¢o A (J- 

.- 1 C ~ 7.~7oz~ (~q. 

l h~I -- I nlI -~, ~= k ~-~7-/o= ol 

Then it results that 

Set 

da ~, we obtain 

we obtain 

t ransformation with 
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Then we have 

Comparing this with 

we see that 

d~i = ~  ~kt,~ v , ~  A 

d ~  = 

PI~OOF - Set t ing 

(10.8) Oqa , d~) = h ~  (a , d~, 

1 . - .  @ 
dO~= ~ C~kO~ A 

as in the case of d ~  above. Hence  

Oi(a, da) - -  coS(a, da) - -  O, (i - -  1, 2, ..., r) 

is completely integrable as in the case of (8 .24)and the solution may be 
given by 

a ~ -  g q # ,  . . . ,  at), 0 - -  g~(O, O, .. . ,  0), (i - -  1, 2, . . . ,  r). 

Since these are one and the same integral,  we must  have 

(10.9) gqgi(a)) - -  a ~, g~(g(a)) = a ~, (i = 1, 2, ..., r), 

t ~qg(h), dg(@ = Oqa, aS), 
O~(g(a), dg(a)) -= toi(a, da), (i - -  1, 2, ..., r). 

Taking this resul t  with  the converse, we shall prove the following 
theorem. 

THEOREI~. - The necessary and  suff icient  condit ion for that  two 
r -d imens iona l  (extended) L ie  group (germs) G and  G m a y  be isomorphic to 
each other, is that  the structure constants o f  G and  d are t rans formed by 
m a t r i x  (10.7), where (h~) is a matrix, o f  constants such that ] h~ I =~ 0 and  
(li~) its reciprocal matr ix .  

(10.7) 0~q -J ~ '  - -  (hi h~hq) C~" 
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- (~" i nva r i an t  :Now the composi t ion  func t ions  ~(a; b) of G makes  ¢o ~, . . . ,  

for  a ~ - p ( k ; a )  and  c o n s e q u e n t l y  it makes  also the i r  l i nea r  combina t ions  

0~ ..., 6 -r invar ian t .  H e n c e ,  for the t r ans fo rma t ion  

a~--~ g~(a) -+ ¢p~(g(k) ; tl[k)) - ~  g~( ~(g[k) ; g(a}), ( i - - 1 ,  2, ..., r}. 

we obtain  

o)(a , da) --~ O(a , da) --~ O(a , da) --~ o)(a , da) 

toge ther  wi th  

0 ~ ~(O t = O --+ ¢(g(k); O) = /)~(k) --g~(j(k)) = k ~, 

in pa r t i cu l a r .  
Now by the T h e o r e m  c o n c e r n i n g  (8.22), we mus t  have  

(i = 1, 2, ..., r) 

io e .  

by 

of 

g~(~(g(k); g(a))---- ~'(k; a), (i ~ 1, 2, ..., r) 

~(g(k);  ~ ( a ) ) =  g~(~(k; a)l, (i = 1, 2, . . . ,  ~) 

(10.9). 
lk s imi la r  resu l t  wil l  be obtained,  w h e n  we  i n t e r c h a n g e  the s i tua t ions  

G and  G. 
T a k i n g  these  two resul t s  together~ we ar r ive  at (10.1). 

I f  h e r e b y  ~ ,  ~ E C  8, then  to i, ¢o~,0iEA(C ~-} and  so we see tha t  

g, ~ ~ C/. Q.E.D. 

Res ta t ing  the last  T h e o r e m  in te rms  of the abs t rac t  LIE ring, we obtain 
the fol lowing theorem.  

T~EORE~. - In  order that two r-dimensional (extended) Lie group (germs) 
G and d may  be isomorphic to each other, it is necessary and sufficient that 

the corresponding abstract Lie rings R and _~ become ring-isomorphic by an 
appropriate linear transfor,mation between their bases, that is to say, that to 

A E R there corresponds f(A) == A E R uniquely and that the relations 

t f(z A, 4- ~A2) -----~f~Al} ÷ ~tf(A~), 
| 

I f((A, B))-= If(A), f(B)) 
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hold, the l inear  t r a n s f o r m a t i o n  being 

f(E~) - -  h~E i, (i -" 1, 2, . . . ,  r). 

11. I n n e r  Automorphie  Transformat ions .  

D~'xNITIoz~. - The isomorphism G----G of the type 

(11.1) s ~  s~ = s=8~s~ -~, (8~ G) 

is called an i nner  a u t o m o r p h i s m  of G. 

The t ransformation 

a i - -  g'(a), (i = 1, 2, ..., r) 

t ransforms a vicinity of the origin into a vicinity of the origin in one- to-one  
since g~E C ~, the first theorem of Art. 10 applies, so that  manne r  and 

we have 

(1L2) 

where  the 

the relation 

holds and 

(11.3} 

We set 

(11.4) 

according to 
that 

matr ix  (h~(x)) 

to*(a, da) - -  h~(x)~*(a, da), (i - -  1, 2, . . . ,  r), 

is obtained as follows. Since from (11.1) follows: 

S~S~ - -  SxS~,  

@(a; x) = ~*(x; a), 

consequent ly  

( i  - -  2 ,  . . . ,  r )  

(8.3) and (8.5) and multiply (11.3)with. ~ ,  then it results 
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Next, for 

we have 

whence follows : 

(11.5) 

Thus, if we set 

s ;  = s ~ 8 ~ 8 v  -~ = ( s ~ s ~ ) 8 ~ f s ~ 8 ~ v  ~, 

o~'{a, da) - -  h~{y)co~(a , da)) - -  h~(y)h]k(x)co~(a , da), 

i 
hkt~(x, y)) = h~(~c)h~(y). 

from (11.5), we obtain 

(11.6) H(S~. S~) = H(8~). H (S~). 

This tells us that the set 

(11.~) l (h~(x)); x ~ Uol 

forms a group (germ), which is homomorphic to the r -d imens iona l  extended 
LIE group (germ) G. 

D~.FI~I~Io~. - We  cult (11.7) the adjoint extended group of G. 

1~. B. - The ad/oint  extended group is an  ex~tended Lie  group Igerm). 

12. Existence Conditions and Canonical Parameter. 

DEFInitIOn. - An r -d imens iona l  group (germ) is said to have a cano- 
nical  parameter ,  when the following two conditions are sa t isf ied:  

(i) it is an extended analytic LIE group (germ) i.e. T~(a; b) are ana- 
lytic funct ions of a and b; (ii) for suff iciently small real values  of s 
and t, the relat ion 

(12.1) a~(s ~- t) - -  ~(a~s, ..., a"s; alt, ..., ant), (i = 1, 2 . . . .  , r) 

in a E U 1 ,  i .e.  

(12.2) S~: a ~--  a~t, I t ]  < % (i -~ 1, 2, . . . ,  r) 

forms a one-dimensional  extended subgroup (germ). The (12.2)is  called a 
one-parametr ic  extended subgroup (germ). 

Tt[EORE~ 1 °. - I t  is possible to make a n y  (extended) Lie  group (germ) 
G have a normal  parameter  by an  appropriate change of  parameter ,  re ta ining 
th~ structure constants.  
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This theorem implies also that there exist an  analyt ic  ( e x t e n d e d ) L I E  
group ( g e r m ) G  having the s t ructure  constants with an arbi t rary  given 
extended LIE group (germ} G in common and the G and the G being 
isomorphic to each other. 

This theorem is an immediate  consequence of the" following existence 
theorem having a stronger content. 

TttEOREIvI 2 °. - I f  r 8 constants 

(12.3) elk,  (i, j,  k - - 1 ,  2, ..., r) 

have the properties (8.15) and (8.16), there exists an r-dimensional (extended) 
Lie group  {gew~) -G having the canonical parameter and the (12.3) as 
structure constants. 

For, if we form aa r -d imens iona l  extended LIE group (ge rm)o f  cano- 
nical pa ramete r  having the s t ructure  constants C~ of the given r -dimen-  
sional LIE group (germ) as s t ructure  constants, the G and the G are 
isomorphic to each other by the first  theorem of Art. 10. 

H .B .  - The Theorem 2 0 shows.us  the complete correspondence between 
an r -d imens iona l  LIE group (ge rm)and  an abstract  LIE r ing of rank r. 
Thus  taking the first theorem of Art. 10 together, we have the 

T~EORE~ 3 °. - There exists an r-dimensional  extended Lie g r o u p  (germ) 
corresponding to an arbitrary given abstract Lie ring of  rank r. Consequently 
a class of  mutual ly  isomorphic r-dimensional extended Lie group {s) (gee.ms) 
and a class of  mutual ly  ring-isomorphic extended abstract Lie ring of  rank 
r have one-to-one correspondence. 

Let us now prove Theorem 30 in three steps I, II, I I I .  

I. If  analyt ic  functions b~(a) such that for constants C]k the relations 

. . 

(12.4) d~o~ - -  ~ C;~o'/% ¢o k, 

t O) i i . -" bi(a)da~ , (i "- 1, 2, ..., r). 
(12.5) 

I 
hold, then there exists an r -d imens iona l  analytic (extended) 
(germ) G, for whose composition functions ¢~ the relat ion 

LIE group 

(12.6) (b~(a))-l =- (f ~ (a ;  c) ]o=o) 
holds, so that the C ~ 1~ become the s t ructure  constants for this G. 
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PROOF. (i) The  s imu l t aneous  total  d i f fe ren t ia l  equa t ions  

(1.2.7) ¢o ~ - -  o)~ = 0, 

for  2r  i ndependen t  va r i ab le s  a 1, . . . ,  a ~ ; a ~ , . . . , a  ~ 
the  case  of (8.24) are  "completely in tegrab le .  

Tak ing  the i r  so lu t ions  such that  

I ... k~; ~ ) ,  (i----~, 2 , . . . ,  r). a ~ - - ~ ( k  1, , a ~, . . . ,  
(12.8) 

t k * =  ¢(k ~, . . . ,  k~; O, ..., 0), (i = 1, 2, ... r). 
we def ine  the  p roduc t  

S a ' S o  - -  S~, (co - -  ¢p*(a; b)), (i - -  1, 2, . . . ,  r) 

for  s u f f i c i e n t l y  sma l l  v ic in i ty  of the origin.  Le t  us examine  if an (extended)  
LIE g roup  (germ) G is formed.  

(ii) By  (12.8), we  have  

~(k ;  O) = k ~, (i = 1, 2, . . . ,  r). 

I t  is f u r the r  seen  that  

( i =  l ,  2, . . . ,  r) 

fo rmed  a f te r  (12 .5 )a s  in 

¢~*(0 ; a) - -  a *, (i - -  1, 2, . . . ,  r) 

f rom the fac t  that  both  s ides  are  so lu t ions  of (12.7) for  the ini t ia l  condi t ion  

~'(0;  O) = O. 

(iii) S ince  u n d e r  the two t r ans fo rma t ions  

a i __.. a~ = ¢pi(l; a) ~ a i = ~(k;  ~(l; a)), (i ---- 1, 2, .. . ,  r), 

the  P f a f f i a n s  to 1, ..., o) r a re  invar ian t ,  

a * =  ~ (k ;~ ( l ;a ) ) ,  (i---- 1, 2, . . . ,  r) 

are  so lu t ions  of (12.7) and  sa t i s fy  

~,(k; ~0(~; o)) = ~'~k;~), (i = 1, 2, ... ,  r). 

t t e n e e  by  the u n i q u e n e s s  of the solut ion,  they  co inc ide  wi th  ¢~(~(k;l);a) 
t ak ing  the same va lues  in a - - O :  

~t(k;~(l;  a ) ) =  ~(~(k; / ) ;  a), ( i  = 1, 2, . . . .  r). 

Fina l ly ,  compar ing  

\ d g " /  \ d a " /  
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d e d u c e d  f rom (12.7) wi th  

d a  ~ _ ~ i (k ;  a) daJ 

d e d u c e d  f rom (12.8), we  see that  a ~ - - k  ~ on pu t t ing  a - - O ,  so that  we  
ob ta in  {12.6). Q . E . D .  

II .  S ince  the so lu t ions  b~(a) such  that  (12.4), (12.5) hold are  d e t e r m i n a b l e  
not  un ique ly ,  we shal l  solve the p r o b l e m  u n d e r  an addi t iona l  d e m a n d  
(12.11) below.  

I f  we i n t roduce  (12.5} into (12.4), then it r esu l t s  that  

3a z / A da~ = ~ ~ p q ~ , k -  A da~. 

Compar ing  the coef f ic ien t s  of d a k A  da z, (k < 1), we are  led to solve 

~b~ ~b~ ' ~  ~'~q (i, l, k -  1, 2, r). --" ~ p q t P l U k ~  . . .  (12.9) ~a--- ~ ~a ~ 

(These equa t ions  are  ca l led  M a u r e r - C a r t a n  d i f ferent ia l  equations).  

Le t  us p rove :  

The re  exis~ ~nalyt ic  func t ions  b~( al, . . . ,  a") 
CARTA=~ d i f f e ren t i a l  equa t i ons  such  that  

sa t i s fy ing  the MAUR]~R- 

(12.10) b~O, .. . ,  O) ---- ~ ,  (i, j - -~  1, 2, . . . ,  r), 

(12.11) b~(a)aJ : a ~. 

PROOF (~). - Be fo re  all we  shal l  solve  the s i m u l t a n e o u s  o rd ina ry  diffe.  
r en t ia l  equa t ions  of the f irs t  o rder  

(12.12) df~ ~ . d~ - -  ~j -~ CpqaPf~' ( i, 1 ----- 1, 2, .. . ,  r) 

hav ing  a 1, . . . ,  a r as  pa rame te r s ,  u n d e r  the in i t ia l  condi t ion  

(12.13) f~ = 0, in t ----- 0. 

T h e i r  so lu t ions  

(12.14) ~ 1 • f z(a , ..., a' ; t), 

{6) Substantially duo to F. Schur. Another substantial solution will  be found in :  J. 1:[. 
G Whitehead, ~ote on Maurer ' s  equations. J~our. of London ),~ath. See., 7(1932). 

A n n a l i  di  M a t e m a t i c a  
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are  a n a l y t i c  f u n c t i o n s  of a ~ . . . .  , a '~ and  t. Se t t ing  

b~(a , . . . ,  a ~) - -  f¢(a  , . . . ,  a t ;  

we shal l  see that  (12.9) holds.  ~o r  it, we set 

(12.15) 

S ince  

for  t - -~0 ,  we have  F~ k~ :~-0 

I f  we cou ld  show 

(12.16) 

~0 by  -¢irtue of F~(), =~ O, 

~f i  ~f~ 
f ~  = f ~  = u, ~a~ - ~a~ - 

fo r  t ---- O. 

d F  lk i z 
dt  - -  Cv'aVFi~ ' 

it  wou ld  fo l low tha t  

so tha t  (12 9) holds. 

d 

d t  

I f  we i n t r o d u c e  

0 

H e n c e  we shal l  e x a m i n e  (12.16). 

f~i ~z.ep~ 

- -  C ; ~ f  k - -  

- -  C;~f~ - -  c l~f~ + + ~ 

d ~k 
d t  

C ~ a -  ~ F ~  - -  C ~ , C ~ f ~ f ~ a  ~ -[- ~pq~'=l~ l k  -.[- t~p~ ,=!  k l z  ~ • 

(i ,  k ,  l =  1, 2, . . . ,  r).  

ob t a ined  f rom (12.15) in to  the las t  equa t ion ,  t hen  it fo l lows tha t  

(i ,  k ,  1 = 1, 2, . . . ,  r), 

~ f ~  ~ f ~  
- -  C ~ f z  f k ,  ~a k ~a ~ = - - F r k - -  P x y  
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Replacing the indices (x, p, q) by (y, x., p), (x, p, y) respectively and 
util izing (8.15) and (8.16), we obtain 

dFz~ _ C~ C~v)f ~ f ka 

i z 
= -- C;oa 

In a similar way, for 

i ( t  (12.i7) Gi(t) = f j( , t)ai - -  ta ~, 

we have G~(O) = 0. For (12.17), we examine 

(12.18) d G ~ C~]a ~ G~. 
dt 

We see that Gi( t )~-0  and in particular,  Gi(1)--0. Now 

dG ~ _ (~ + pq J, 
dt - -  C~ a~f%ai- -  ai 

since C~p=0 ,  C ~ = - - C ~ p ,  ( p > q ) ,  so that ( 1 2 . 1 8 ) i s  regit imate ('1. 
That  (12.10) hold% follows from the fact that the solutions of (12.12)for 

a l -  - - a " = 0  becomes f~=Sz t .  

III .  Lastly, we shall prove that when (12.ll) holds, the (extended) LIE 
group (germ) obtained under  I is of the canonical  parameter .  

By (12.6), for the g obtained under  I the relation b~(a) = ~(a) holds for 
the ~}(a)in (8.5). 

(12.19) 

also. 

Next we shall prove that 

(12.20) 

Hence  by (12.11) we have 

- -  a (s + t), (i = 1, 2, ..., r) 

(7) The reason  w h y  we cons ide red  (t2.12) consists in tha t  when  converse ly  (!2.9) and  

(12.11) hold,  i t  is eas i ly  seen that  f } ( t ) - -~ tb~( t )  sat isf ies  (12.12). Cf. Pon t r i j ag in ,  [16], 
p. 253. 
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for 

(12.21) 

Consider 

f ixing s for a while. 

(12.22) 

l~ow we in t roduce  

(12.23) 

obained from (12.19) 

b ~ a ~ - -  aos,. - -  bot, 

d .=- ~ ( a s ,  at) = d(t) 

Then  for (12.21), we have 

d d  ~¢f(a;b) dbt ~____~ a~ ° 

d t  - -  ~bi dt  - -  ~b~ " 

i I , i 
aj(aol)aot ~j(aot)ao = [ = ao 

into (12.22), it resul ts  that  

dv~ ~ i k 
dt  - -  ~ ak(b)ao. 

Util izing (8.13) herein,  we obtain 

(12.24) d d  ~ k =  k(o)ao. 

The solution of (12.24} such that  d ( O ) ~ c ~ s  for 
and (3.1) : 

(i - -  1, 2, . . . ,  r). 

Thus  {12.20) is proved. 

t = 0  is, by (12.23) 

c (O --  a (s + t), 

N. B. - I t  is easily seen that  conversely  the (12.19) holds for the cano- 
nical parameter .  

13. - Reciprocal  I somorph i sm.  

TItEORE~ - I f  two r - d i m e n s i o n a l  (extended)  L i e  g r o u p s  (germs) G a n d  
G* be rec iprocal ly  i somorph i c  (el. [24] . . . .  [31]), then  their  s t ruc tu re  cons tan t s  
i c , i  cjk a n d  ik are  r e la t ed  to each other  by 

(13.1) e~k = -  ci*k ~, (i, j ,  k = 1, 2, . . . ,  r). 
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PROOF. - Consider the Pfaf f ians  

(1~.2) 

where (of. [24], ..., [31]} 

(13.3) 

(13.4) 

o)*~(a , da) - -  ~ ( a ) d a i ,  

)-b7 / o : o '  

Then as in the case of the Third Theorem of Art. 8, the t ransformat ion 
under  which to*l, ..., to*~ are invariant,  is 

f13.5) a ~ -  ~'(a;k), ( i - -  1, 2, . . . .  r). 

dee *~ is expressible  in the form 

(13.6) d~o *~ *~ = cj~o*t A to* ~ 

We consider  the expansions  analogous to those in Art. 8: 

~?,(b) = ~ + ~b~ + ~,~, 

~? ~(b) : 8 ! -  d ~ b k j ik "k" ~,8, 

oJ'~i(b , db) "-" db i -  d~kb~dbi + e~dbJ ,  

whence we have 

(13.7) 

quite  as in the case of (8.20). 

Consider the totality G* of 

T ~ S ~  -1, 

C *~ ~ d ~ C]k 

Then we have 

T~Ty : (Sy8~) -1, 

so that G and G* become reciprocal ly  isomorphic. 

(13.8) T~Ty - -  T~, z ~ = ~ * i ( x ; y ) ,  

If we set 

( i = 1 ,  ~, .. . ,  r), 
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then it follows that 

(13.9) 

Hence  the theorem. 

~*'(x;  y) = ¢ (y ;  ~). 

§ 3. - E x t e n d e d  I A e  T r a n s f o r m a t i o n  G r o u p s .  

14. The Lie Trans format ion  Group Germ. - Let  G be an r -d imens iona l  
LIE group germ; Let Do be • vicinity of a point (xo) of an n-d imensional  
Eucl idean space E"  taken merely auxi l iar i ly .  

(i) Le~ 

(14.1) a~'~= f~(~,  . . . ,  x " ;  a ~, a ~, . . . ,  a~), ( i - - 1 ,  2, . . . ,  n), 

be a one- to-one  t ransformation Ta mapping a vicinity D~ C Do of (Xo) into Do: 

x' 6 Do, f~(~; a) C C~, 

(ii) 

is the u n i t  t r a n s f o r m a t i o n .  

(ii') 

in place of (ii) 

(iii) If S a ' S ~ - - S c  

(14.21 

where  

(t4.3) 

x '~=  f~(x; a) = x i, 

(It is convenient  to wri te  

~'~ = f ( x ;  a) = x ~, 

in G, we have 

( i - - l ,  2, .., n). 

( i = l ,  2, . . . ,  n) 

( i - -  1, 2, . . . ,  n) 

f~(f~(x;a),  . . . ,  f ' ( x ; a ) ;  b ~, b 2, . . . ,  b") =--f~(x 1, . . . ,  x~,~; c ~, c '~, ..., c"), 

o k =  ~k(al, a ~-, . . . ,  a" ; b ~, b 2, . . . ,  b~), (k : i, 2, ..., r). 

The G will be called thereby the p a r a m e t e r  group  g e r m  of T =  (T~). 
W h e n  the function f i ( x ;a )  of (14.1) are regular  analyt ic  funct ions of 

and a for the analytic LIE group germ G, the T is called the a n a l y t i c  
Lie t r a n s f o r m a t i o n  group  germ.  
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15. 

(15.1t 

of the 

base manifold M 

admits  
have 

(15.2) x ~ = ~, 

where the 

Extended Lie Trans fo rma t ion  Gronp in the Large. - The element 

ff] __ (~i, ~2 .., , . . . ,  X') I a = (a ~, a< , a") 

I L~E group germ G 

of being made global by the principle stated in Art. 6, so that we 

( i =  1, 2, ..., n), 

H-geodesic parallel coordinates in the global 

LIE group 

are 

base manifold M. 

ttereafter~ we assume the 

themselves to be the global ones: 

a - - ~ ,  ( l - l ,  2 , . . . , r ) ,  

~z 

space G. 

a I 

and extend the LIE t ransformation group to the case 
o f  ge : 

(15.3} a z - -  aqx). 

Thus we obtain an extended Lie transformation group G. 

A concrete example will be found in the case, where 

a = ( a ~ ( ~ ) ,  (r = W) 

in  the sense of  the r igh t -hand  side o/ Art. 6. 

If  we interpret  

{ ~f~(m; a(x)) a~(x) as aj(x~), (r --  n2), 

that a z are functions 
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then,  for the general a~(x~) we obtain a~(~c p) correspondingly and the results 
for the right-hand side of Art. 6 applies to the case of general aZ(x). 

I n  the  fo l lowing  ar t icles ,  the fo l lowing F u n d a m e n t a l  T h e o r e m  will  be  
es tab l i shed .  

FUnDAmENTAL THEOREM. - For the extended Lie transformation groups, 
the theory (Art. 16-17) of the ordinary Lie transformation groups applies 

16. The  F u n d a m e n t a l  Theorems .  - W e  set  

(16.1} 

and  

(i6.2) 

as  before .  

(16.3) 

THEORE~I 

(16.4) 

~(~' ~" ""' ~ ' ) =  \ aa~ ]o=o 
(i = 1, 2, .... n; j -" 1, 2, ..., r) 

,,'(a(~), d a ( ~ ) ) =  ~}(a(~))da'(~), (1 = 1, 2, . . . ,  r) 

F u r t h e r  we  set  

0 ~-- d x i +  ~oZ(a~x), da(x~))~(x~), (i -" 1, 2, ..., n). 

1 o. - The simultaneous total differential equations 

0 1 - - 0 ,  0 ~ - - 0 ,  ... ,  0 " = 0  

( i -  1, 2 . . . .  , n), 

(01, 0 ~, .... 0") --  (dfl(x; a(x)), ..., df"(x;a(x))) 

are completely integrable and 

(16,5) f~(~; a(x)), r(~;  a(~)), ..., f"(~; a(x)) 

are n independent first integrals of (i6.4) such that 

f~(~; O) = x ~, 

so that  

(16.6) 

for the ideals. 

PROOF.- W e  d i f fe ren t i a t e  (14.2): 

(16.7) f~(f1(x;b), ..., f " (x ;b ) ;  a 1, . . . ,  a"} 

--  f '(x 1, ... x" ; ~l(a; b), ..., opt(a; b)), ( i - - 1 ,  2, ..., n) 
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wi th  respect  to b and set b - - O .  Then  it follows that  

(16.8) 3f i =k ~P ~i ~-~  = gdi " 

From (8.7) and (16.3), we obtain 

dp(x ; a) --  Ofi afi 
- -  ~-~ dx ~ q- f f~  dai 

Of~ ~f~ 
= ~x k (0k__ ~zf~ ~ + ~ (~{~ 

_ o , , _  t ,, - - ~ x  ~ 

- -  OP O k E (e 1, 0 %  - -  ~ "", 

Since df~Ix;a), ..., df"(x;a) are l inear ly  independent ,  the (16.6)holds.  
Q.E.D. 

The  converse of the Theorem 10 holds  as follows. 

TI~EORE~t 2 o. - When we introduce 

~j(x) E C 2, (i = 1, 2, ... n ;  j = I, 2, ..., r) 

appropriately for the fundamental  Pfaff ians to ~, ..., (o" of an r-dimensional 
extended Lie group (germ) 

(16.9) 

are completely integrable, 
that 

(16.1o) 

G and the simultaneous equations 

0~--0 ,  0~--0 ,  ..., 0 " - - 0  

the n independent first integrals fx, ..., f r  such 

f~(x; O) --  x ~, (i = 1, 2, ..., r) 

determine an n-dimensional extended Lie transformation group (germ) 
i x the given ~i( ) satisfy (16.10). 

and 

PROOF. - If  (16.9) be complete ly  integrable,  then  there  exist  n first  
in tegrals  f l ,  r ,  ..., f"  sat isfying (16.10). I t  suff ices to show that  these 
satisfy (16.7). Since 

( i - - 1 ,  2, ..., r) ai(x)-"~(k(x);a(x)),  

Annati dl Matematica 37 
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satisfies 

the functions 

{16.11) 

satisfy 

(16.12) 

i . e .  (16.11) 

they take 

, = o ) ' ( a ( x )  , d . ( x ) ) ,  (i - -  1, 2, ... .  r), 

f~(~; a(~)) --  f~(x.; ~(k(x);a(z))), ( i = 1 ,  2, . . . ,  n) 

~ - i  j i • 6 ~ = dw i + ~J~j --  dx i + (o ~i -- 0', (i --  1, 2, ..., n), 

become the first integrals of (16.9). Since (16.11) implies 

f~(x; ~(k(x); 0)) --  f ' (x;  k(x)), 

values for a =  O with the integrals fi(f(x;a(w));a(~c)) of (16.9) 
in common. Hence  we must  have 

f~(x;~(kz);a(z))) =f~(f(x;k(~));a(x)) ,  ( i - - 1 ,  2, ... ,  n). 

Since thereby d f  ~E(O~, .:., 0"), pursueing the process of proof 
Theorem 10 reversedly, we see that (168) must hold. If we set a - - O  
(16.8), then we obtain (16.1), since 

f o r  

in 

• ~f~  
~ I - - ~ ,  Vx--7 = ~j, Q .E .D.  

Fundamenta l  Theorem of~ the extended LIE t ransformation 
below makes a liaison between the property of the extended 

are completely integrable is equivalent to that the s imultaneous l inear  
part ial  different ial  equatior~s of the first order 

(16.11) X ~ + l f ' -  0, ..., X,.+~f = 0, (n - -  r + s) 

are completely integrable. The first integrals are thereby common to (16.10) 

(16.t0) ~)~ --  a~(ac)d~ - -  O, (i--~ 1, 2, , n) 

The first 
group (germ) 
LIE t ransformation group germ and the fundamenta l  different ial  operators. 
In  order  to prove it, we shall try to replace the above propert ies with those 
of the ' ~simultaneous l inear  par t ia l  different ial  equations of the first  order  
by vir tue of the following Lemma.  

LE~)tA. - That  the s imultaneous total different ial  equations 
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and (16.11). Thereby we have put 

(16.12) X~f= ~ ~f b~(x) ~ ,  

where (b~(@) is the inverse transformation of 

(i, l =  1, 2, ..., n), 

(a~(x)). 
THE FIRST FUNDAMENTAL TKEORE~Y. - I n  an extended Lie transforma. 

lion group (germ) G having G as extended parameter group (germ), the 
functions 

fk(x; alx)), ( k =  1, 2, ..., n) 

are n independent solutio~s o f  the completely integrable s imultaneous linear 
part ia l  differential equations 

(16.13) 

such that 

(16.14) 

~ a  z - -  ( k - - l ,  2, ..., r) 

x ~ = f k ( x ;  0). 

Conversely, whe~ an r -d imens ional  extended Lie group (germ) G is given, 
the (16.13) are completely integrabte for certain 

~(x) E C ~, ( i -~ l, 2, ... , n ; j - - l ,  2, ..., r}, 

the solutions 

/l(x; a(x)), f~(x; a(x)), ..., f°(x;  a(x}) 

sat is fy ing (16.14) determine an extended Lie transformation group (germ) 
having G a s  extended parameter  group (germ). 

PROOF. - We consider two r -d imens iona l  square matrices A and B 
defined by 

A --  (~k(a(x))), B - (~(a(x))), A B  = B A  --  (~k), 

i r ~ i ,  , having defined ~k(a(x)) and t~(a(x)} by (8.3) and (8.5). Then 

0t = d x l  + l ~k(a(z)t~J(x) t da~(x), 

• . • . . . . . ~ o 

] , n 0" ---- dx ~ + l~k(a(x})~j(x) l dak(x), 
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and 

are linearly independent and the determinant D of their coefficients may be 
expresged as follows : 

where 

1 1 0  . . .  0  

is the unit determinant of tz-th order and X' the determinant obtained 
from I [f(x) 1 by interchanging the rows with columns. The reciprocal 
determinant of I) is 

TVe set 

.... (.!=I, 2, r), 

By the above Lemma, when the simultaneous total differential equatio,ns 

are completely integrable, the simultaneous linear partial differential equa- 
tions 
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where  

(16.19) 

= - x~  + & ,  (j = l, 2, . . . ,  r), 

are also completely integrable, the first  integrals  of ( 1 6 . 9 ) :  (16.17) coincide 
with the solutions of (16.18). 

l~ow (16.18} and the s imultaneous l inear  part ial  different ial  equations 

Y i f  = O, ..., Y , . f  = O, (16.20) 

where  

(16.21) 

are  equivalent.  

r j  = ~ ( a ( x ) ) ~  = - - -  ~(x)~(a(x)) ~--~ , (j, t =  1, 2, ..., r), 

Hence  the Theorems 1 ° and 2 0 may be res ta ted in the form of our Firs t  
Fundamenta l  Theorem. 

N.B.  - Our Fundamen ta l  Theorem is often stated in the following 
forms Cor. 1 ° and Cor. 2 °. 

GOl~. 1 °. - (An Extension of the Lie ' s  First  Fundamenta l  Theorem.) In  
the e~tended Lie transformation group (germ) having G as extended pars .  
meter group (germ), the f~(x;a{x)), (k----1, 2, ... ,  n) are n independent so. 
lutions o[ the completely integrabte simultaneous linear partial  differential 
equations 

(16.22) ~"--~(~)~?~(b(x)), ( i = 1 ,  2, n ; j ,  Z = I , ~ ,  .. . ,  r) ~b z . . . .  , 

such that 

(16.23) ~' = f ' ( x  ; 0). 

Conversely, when an r-dimensional  extended Lie 
given, the {16.22} are completely integrable lot  certain 

their solutions 

group (germ) G is 

~(x) E C 2, ( i - - l ,  2, ..., n; j =  l, 2, ..., r), 

satisfying (16.21) determine an extended Lie 
having G as exlended parameter group (germ}. 

f~(x ; a(~)), f~ (x ;  a(x)), . . . ,  f n ( x  ; a(x)) 

transformation group (germ) 
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PRooF. - I f  we d i f f e ren t i a t e  the two sides of (16.7) wi th  respec t  to 
ai(x) and  set a - - O ,  then,  for  

(16.24) x"  - -  f'(x;b(x)), (i -- 1, 2, ..., n), 

we obta in  

by (13.2), (13.3) and  (13.4). I f  we solve this by v i r tue  of (13.2), (13.3)and 
(13.4), it resul t s  tha t  (16.22): 

(16.25) 3x'* i '  *j ~ y  = ~j(x)~z (b(x)), ( i  = 1, 2, . . . ,  n ;  l =  1, 2, . . . ,  r). 

These  are  par t ia l  d i f fe ren t ia l  equa t ions  in the case, whe re  in (16.24), 
the  (xt) a re  cons ide red  as p a r a m e t e r s  and  (~v'~)are cons ide red  as func t ions  
of. b ~, . . . ,  b". I I e n c e  our  Cot. is proved by p roceed ing  q u i t e  as in the c a s e  
of our  F i r s t  F u n d a m e n t a l  Theo rem.  

CoR. 2 °. - In  the extended Lie transformation group (germ} having G as 
extended parameter group (germ), the 

fk(w;a(x)), (k : 1 ~, 2, ..., n) 

are n independent solutions of the completely integrable simultaneous linear 
part ialdi f ferent ial  equations 

(16.26) 

such that 

; ~f = d ~f ~x~(j,  l = 1 , 2  . . . .  , r ;  i, k - - l ,  2, ...~ n) 

(16.27) w~ = f~(x; 0}. 

Conversely , when an r-dimensional extended Lie group 
given, (16.26) are completely integrable for certain 

~.(x,) E C 2, ( i - - 1 ,  2, ..., n; j -  1, 2, ..., r), 

their solutions 

(germ) G is 

f ' (~ ;  a(.)) ,  .,., f"(x; a(x)) 

s.atisfying (16.23).--(t6~27), determine an extended Lie transformation group 
(germ) having G as extended parameter group (germ). 
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PROO~ ~. - Now it suffices to show that (16.1)~(16.26). For  it~ mi:dti. 
plying (16.13): 

{16.28) 

with ~Zh(a(x)), we see that 

~ ( a ( x ) l  ~f ~ ~ i ~i ?[. 

- i~(~)~i ~f i 
- -  = ~ h ( X )  - - -  ~X ~ ' 

~a z 

( i = 1 ,  2, ..., n ; j ,  h, k = l ,  2, ..., r) 

h by (8.5) and conversely, mult iplying the last relation with ~z(a(x), we re turn  
to (16.28). 

T~E SECO57D FUNDAMENTAL rJ?~EOREI~. - (An Extension of the Lie~s 
Fundamenta l  Theorem.} When a given r-dimensional extended Lie group 
(germ) G as an extended parameter gronp (germ) has the :structure constants 
Ci~/, (i, j, k - - -1 ,  2, ..., r), the necessary and sufficient condition for that 
(16.13) may be completely integrable, is that the relations 

(16;29) (X~-, X~) (h, j, t - -  1, 2, . . ,  r) 

hold for the fundamental  operators 

(16.30) Xj ---- ~ ( x ) ~  ( i - - 1 ,  2, .... n; j - - 1 ,  2, ...~ r). 

Hereby (Xi, Xj)  is the Jaeobi' s parenthesis. 

P n o o F . -  We have seen that that the (16.13)-- (16.20) is completely 
integ~able fs equ4valent to that (16.t '8)is  completely integrable. Now I t : i s  
known that the necessary and sufficient condition for that (16.18) is com. 

pletely in tegrab le  i s  that 2~, X-2, . . . , - ~  form a complete system i.e.  
that X1, ..., X r  satisfy 

(16.31) (:~i, x z ) = -  c~(~;a)~U,  (j, 1, h = 1, 2, ..., r):. 

5Tow (16.19) : 

(16.32) Xh = -- Xh ~- Ah 
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gives 

(16.33) 

and after setting 

( 1 6 . 3 4 )  d~o I = 

(16.35) 

apply the operator d to 

(xi ,  x~) = (xi ,  x~) + (&,  A ), 

O~¢oi A ~J, ~d -- ~}(a(x))daJ (x), 

d f - -  ~Z(Alf): 

0 - -  d(df) - -  (A~f)d~' + d(Aff) A ~' 

1 a i -" ~ Ciz(Anf)~ A Q)~ + Ai(Anf)~)J A mh 

-- ~<,1 c~(.~hf) + (.4i,A,)fl~i A ~' 

Thus we obtain 

(16.~6) (Ai, A,) = --  C~An, 

Owing to (16.32), (16.33) and (16.36), the 

(j, t = 1, 2, ..., r). 

(16.31) becomes 

s o  that 

(17.37) 

and thus 

(16.38) 

finally we have 

O~(x;a) = C~ 

THE THIRD FUNDA]HENTAZ THEOREM. - 
differential operators 

(j, t, h =  I, 2, ..., r). 

When r linearly independent 

(17,37) Xj f = ~(x) ~ ,  ( i - -1 ,  2, ..., n; j -  1, 2, ..., r), (~(x)E C ~) 

are given, the necessary and sufficient condition for that they are the funda- 
mental differential operators for an extended Lie transformation group (germ), 
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is that the relations 

(16.38) 

hold for certain constants 

(16.39) 

PROOF. - The necessity is 
that when ~(x)E C ~, (v ~ 2), the 

(16.40) 

(16.41) 

h 
(X i, Xz) --  CjzXh, ( h , j ,  l = l ,  2, ..., r) 

C]•, 

implied in the last 
Jaeobi' s parentheses 

(x~ , x~) = - ( x j ,  x~), 

((x,, x i ) ,  x~) + ((xi, x~), x,) + ((x~, x~). x i )  = o. 

(j, k, l - - 1 ,  2, ..., r). 

theorem. It  is known 
satisfy the identities 

For the complete system accompanied by (16.38), the relations (9.4): 

(16.42) C~ 7~ , j  - -  - -  C j ~ ,  

(16.43) a ~ a z a C~jCh~ + Ci~Cm + C~Chj = O, (i, j, k, l = 1, 2, ..., n) 

hold. Hence, by Theorem 20 of Art. 12, there exists an r -dimensional  
extended LIE group (germ) G having C~ as structure constants. If we adopt 
this G, we are led to the Iast Theorem for sufficiency. 

THE FOURTI=[ FUNDAMENTAL THEOREM.- (An Extension of S. Lie ' s  Third 
Fundamenta l  Theorem). The necessary and sufficient condition for that the 
r a given constants C~, (h, j, 1 --  1, 2, ..., r) may  establish the relations 

(X~, X i) = O~Xk 

for the fundamental:dif ferential  operators X1, ... X,. of an extended Lie tran- 
sformation group (germ)~ is that they satisfy the following two conditions 
(16.42), (16.43) : 

(16.44) 

(16.45) h z ChCi h CiiCh~ + ik m +  Ck~C~i --  O, ( i, j, k, l - - 1 ,  2, ..., r). 

I7. The Lie Ring composed of  the  Fundamenta l  Differential 0pe ra to r s . -  
We have represented the (extended) parameter  group (germ) G by the 
extended transformation group (germ) T, so that the abstract (extended) 
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LIE ring ~ has become homeomorphic to the extended LIE ring O 
consisting of the totality of 

X = ).iXi, (Xi = constants). 

Thus we obtain the following homeomorphic correspondence:  

Abstract (extended) LIE ring ~ Extended LIE  ring @ 

(Extended) parameter  group (germ) 

G 

Basis 

E~, E~, ..., E~ 

A = k~E~ E ~ 

B =  I~E~ E "IR 

~A + ~B 

(A, B) 

Extended transformation group (germ) 

T 

Fundamenta l  differential operators 

X~, X~, ..., X~ 

X = ).~X~ ~ @ 

~ X +  ~Y 

(x, y)  

Concerning this correspondence, we get the following theorem. 

T] tEOR~ 1 °. - In  order that an extended Lie transformation group 
(germ) may be a fai thful  representalion of  its extended parameter group (germ) 
G, is that the 

extended Lie ring composed of the correspondence of the two sides of 

fundamental  differential operators the above table is one-to-one. 

and the abstract (extended) Lie ring 

may be isomorphic to each other. 

PROOF. - We utilize the canonical parameter  t of the extended LIE 
group (germ) G. Taking a point (#, ..., a ~ ) i n  the vicinity of the origin 
(unit element) and set 

f,(x 1, ..., xn; all, ..., a~t)= ft(x 1, ..., x"; t), (i = 1, 2, ..., n). 
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Then,  by  (16.13) and  (12.11 b we have  

(17.1) 3f'~t - -  ~a f~ az -" (~(a)cd)~.(~) ~ f  

Hence ,  in the case  that  the  co r r e spondence  b e t w e e n  the two sides  of 
the  above  tab le  is not  o n e - t o - o n e ,  we  have  

(172) x = ; ~ x ~ + . . . +  ) , ~ x ~ = o ,  

w h e r e  ),1, ..., ),~ are  su f f i c i en t ly  smal l  va lues ,  wh ich  are not  zero at  the 
same  t ime.  

I f  we take  them for  (a ~, ..., a r ) - - ( k  ~, ... ,  )~r), f rom (17.1), we  ob ta in  

i° e ,  

~f_Z - -  O, 
~ t - -  

f~(x ~, . . . ,  x " ;  a~t, . . . ,  a~ t) ~ x ~, 

( i =  1, 2, . . . ,  n) 

( i =  1. 2, ..., n). 

T h u s  G and T do not co r r e spond  o n e - t o - o n e .  

I n  the  case, whe re  {17.2) holds  w h e n  and  only when  ) , ~ - - ) 2 _  _ ),% 
take  a h y p e r s p h e r e  wi th  su f f i c i en t ly  smal l  r a d i u s  ~ and wi th  the or igin  as 
center .  Then,  s ince  a~Xkdt::O in (17 1) for  each  point  (a ~, ... .  a ~) on it, 
we  get  

(17.3) ~f'(x ~, . . . ,  x "  ; a~t, . . . ,  a ' t )  :t:: x ~, 

(i  = 1, 2, . . . ,  r ;  I t ] < ~ @ ,  . . . ,  a"). 

Since  ~(a 1, . . . ,  a ~) is ev iden t ly  a con t inuous  func t ion  of (a 1 . . . .  , a~), for  
the leas t  va lue  8o of it, we  mus t  have  

(17.4) T~ :4: To, (a'a' < G). 

Since  T makes  an e x t e n d e d  group  (germ), f rom (17.4), we can  conc lude  
that  G and  T co r re spond  o n e - t o - o n e  in a su f f i c i en t ly  smal l  v ic in i ty  of 
the origin.  Q.E.D. 

Le t  us cons ids r  now the case  whe re  ~ and  O are  not i somorph ic  to 
each  o ther  genera l ly .  Le t  s ( ~ r )  out  of the r f u n d a m e n t a l  d i f fe ren t ia l  
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operators  X~, ..., X~ be l inearly i ndependen t  with  constant  coefficients.  Let  

(17.5) ~ - -  h{X j ,  ( i  - -  1, 2, . . . ,  s) 

be l inear ly  independen t  and suppose that  in te rms of them we have 

(17.6) 

Since :Y~, ..., Ys 

(17.7) 

Utilizing 

we obtain 

= gjY~,  ( j  = 1, 2, , r). 

are l inear ly  independent ,  we have 

j k k 
higi = ~ ,  {i, k = 1, 2, . . . ,  s). 

~ X  (X~ , X~) = Okz m, 

7 kTfl f t m  X k l m p 

i. e, 

(17.8) 

where  

(17.9) 

F a r t h e r  we 

(17.10) 

F rom (12.4) 

(17.11) 

which becomes 

(18.12) 

= r{~Yp, 

set 

(% j = 1, 2, . . . ,  s), 

and 

--_ hkh  ~_p r,m y~" i jym~.'kl. 

z~(a , da) ~ " da), 
= gim~ (a ,  

(16.38), it resul ts  that  

imp ~)q(X~ , X q ) f  d~"(x.,f)-- ~ A 

1 
d'd(YJ) - - 9  ,:i A ~k(y j ,  Y k ) f =  0 

= 0, 

( i - -  1, 2, ..., s). 

by vir tue of (17.6) and (17.10). 

Uti l izing (17.8), thence  we obtain 

(17.13) (dz ~ - -  ~ yi~x~/'\ xk)(y~f) = 0 .  
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Now since 
vanish  severally,  

Y~, . . . ,  Y~ are l inearly independent ,  their  coefficients mus t  
i .e .  

1 ~ . ( i - ~ l ,  2,  , s ) .  (17.14) d~*(a, da) = ~ Vikv A ~ ,  ... 

Oonsequent ly  the s imul taneous  total d i f ferent ia l  equat ions  

(17.15) z~(a, 4a) - -  O, . . . ,  ~ ( a ,  da)  == 0 

are complete ly  integrable.  Since fur ther  :Y~, ..., Y8 are l inear ly  independent ,  
the r ank  of (g~) is s.  Hence  ~, ..., ~s are also l inearly independen t  by 
vi r tue  of (17.10). Thus  there exist  s independen t  first in tegrals  of (17.15), 
which  are 0 at the origin. Let them be 

b~(a ~ . . . .  , a~), ..., b~(a ~, . . . ,  a ~) E C 2, 

b ' ( 0 , . ,  0 ) =  0, (i = 1, 2, . . . ,  s). 

where  

Tak ing  ( r - - s )  adequate  funct ions  

where  

b'+ l (a  ~, . . . ,  a~), . . . .  b~(a ~, . . . ,  a ~) ~ O ~, 

bJ(0, . . . ,  0) = 0, ( j  = s + l ,  s + 2 ,  . . . ,  r), 

in addit ion,  we have one - to -one  cor respondence  

(a 1, . . . ,  a ) - - ~ ( b  1, . . . ,  b r) 

in the vicini ty of the origin. Noticing' this t ransformat ion  of the variables,  
we write  

~ ( a ,  da) - -  rd~b , db), (i - -  1, 2, . . . ,  s). 

Since b 1, ..., b 8 are s independen t  first  in tegrals  of (17.15), the relat ion 

(~d, . . . ,  7:~) - -  (db ~, . . . ,  db ~) 

holds, so that  we may wri te  

~ ( b , d b )  = ~ ( b  ~, . . . ,  br)dbJ, ( i -  1, 2, . . . ,  s). 
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Now, by (17.14}, we must  have 

dzd(b , db) - -  ~q~( b~' "" '  b"} 
~b ~ 

so t h a t  

Hence  we have 

and consequent ly  ~d mus t  
only. 

We  denote  
un ique ly  by 

dbhA db*, (h, 1 = 1, 2, ..., r) 

1 ~ . 
= ~jkT:~ A =~ (j,  k = 1, 2, . . . ,  s) 

1 ~ i b  ~ - -  ~ "~¢kq~h( , . . . ,  b")db ~ A ~ff(b ~, . . . ,  b")db ~ 

1 ~61 -  ~ 
- -  ~ "h~. a(b , . . . ,  b ~) ~ ( b  ~, . . . ,  b ~) dba A db ~, 

~ _ _ 0 ,  ( i , j =  1, 2, . . ,  s; k = s + l ,  ..., r). 

(17.16) 

in the s -d imens iona l  ne ighborhood of the origin of (b ~, . . . ,  b ~) by 
by Theorem 1 o of Art 16, the f q x ;  a) are the first in tegrals  of 

dx' + ~J (~, da)~(~) = O, 

= . . . ,  b e ) ,  

be expressible  in terms of b ~, . . . ,  b ~, db 1 ... ,  db 8 

the s -d imens iona l  (extended)  LIE group (germ) def ined 

1 
d~ ~ =~TCA ~ ,  ( i =  l, 2, ..., s) 

G. :Now, 

such that  f q ~ ;  0 } - - ~  ~. Tak ing  the last different ia l  
wi th  (17.5), (17.6) and (17.10), we can deduce  

(17.17) d x  ~ -{- ~i (b , db)~(x)  = O, 

(17.18) Y~ = h~X~ - -  ~.( )~-~ 

for 

Hi(x) J ~ = h ~  (x). 

( i - -  t, 2, ..., n) 

equat ions  together  

(i---- 1, 2, . . . ,  n), 
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t t e u e e  (17.17} are also comple te ly  iateg~'able and  its f irst  in t eg ra l  is 
express ib le  as 

(17.19) f~(x ~, , a ~, ..., a ~) --  ; . . . ,  b'(a)), ... x'~ ; g~(x ~ . . . .  , x" b~(a), 

(i----1, 2, . . . ,  n). 

Thus  we obta in  the fo l lowing theorem.  

T~EORE~ 2 °. - When the rank of  the fundamental  (extended) Lie ring 
composed of  the fundamental  differential operators X~, ..., X~ is s (~r ) ,  
there ex~ists an s-dimensional (extended~ Lie group tgerm) d as extended 
parameter group {germ) having linearly independent (17.18) as fundamental  
differential operators, for which we have i17.19t. In  this case, the given trans. 
formation group (germ) becomes fai thful  representation of G. 

18. The  Re la t i on  between the  II-Geodesie  Curves  in t he  Base Mani fo ld  
M and  the  E x t e n d e d  Lie T r a n s f o r m a t i o n  Group Manifold  G. - W e  m u s t  
not  over look tha t  we are considering both the H-geodesic curves in  the 

base manifold M. i extended Lie transformation group 

I manifold G. 

Now we will  seek for how the H-geodes ic  curves  in the 

base man i fo ld  i~/ ex tended  LIE t r ans fo rma t ion  g roup  

man i fo ld  G 

behave  in the 

ex tended  LIE t r ans fo rma t ion  group base man i fo ld  M. 

man i fo ld  G. 

I. Fo r  a while,  let  x ~ denote  the local coordinates in M and consider  
t v a ma t r i x  (o~(x~)in place of araIx ). 

W e  seek for tensors  

such  tha t  

(Oft 

i . e .  that  

n -  d x~ , 
• "~ ~ x  ~ 

l p l v 
~ p d t %  ---'-- u ) v d x  " - -  to ~, 

0) p 

- - -  ~ ~q(t) q - -  p o )q  
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for wh ich  it suffices io set 

(!8.2) ~, ~ '  ~ .  

Thus  the 

(~) 

is the inverse t rans format ion  of  

F r o m  (18.1), we have 

a gt~ 
(18.3) at  dt 

giving 

(18.4) 

where  

(18.5) 

(18.6) 

- ~ \ ~ t  ~ /  

O) r ¢0 s ) 

-_( aeal d ~o~ 
- -  dt dt  ] 

--  ~% \ dt~ - -  -e: dt  dt ] 

- - 0  

~ .  - -  ~) .  p o)m ,~(~ ) = d z ~  

~. k n - -  a d t - -~%d~m,(m--1, . . . ,n) ,  

(a ~ --  const.), 

- d F - -  ~q" 

(~ 

d (t) 1 t [ d 2 x v  

a ~  d,_~ 1 
-[- Ap~ dt dt ] 

d ~ do) ~ 

- - ~  \ dt ~ + A S  dt d t  ] 

- - 0  

p = a~dt --  Qpdo)e, (}t-- 1, ..., n), 

(a ~ = const . ) ,  
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Thus ,  by (18.4), the H-geodesic curves (18.4): 

(18.7) dxX -" ~m({~°Jd{ m -- a~dt I m z -- %(x tax a~dt 

for the group manifold G, provided that 

), 1 

are defined by (18.2). 

I I .  - Le t  us take  now a n o t h e r  v iew point.  Le t  

(~(~)) 1 (~(~)) 
be the inverse  t r an s fo rma t ion  of 

y (%(~)) 

as before.  T h e n  

l r 
- - -  A r / v r (  D , 

d 
{tS.lO) dt d t -  o,~ ~ 

-~ A% dt -dr ] = 0 '  

where  

(18.11) A)~ d~fa~t°~  __ 1 ~ 

(18.12) Q~o ~ ~" ~ --- ~ .  

I-tence we have 

(18.13) z d,f~oz~,~ ~ z % n ~  ) ~ a ~ = a ,  dr, (a,~ = eonst.) 

d~ ~ 

l 
. ) ~ d e f  ~. / /~. ~(.0! % = ~zdo)~ = ~ dx  ~ 

- - A  x -  

/ 2 

dt d l -  \ dt ~ 

d~ d~;l 
Jr- A~  dt dt ] - " 0 '  

d~ ~ 

• 4 n n a l l  d i  M a t e m a t i c a  39 
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by (5.4) and (5.6). 

(18.14) 

(18.15) 

l l r ~ ----- A~n,,to : a~dt = d~ ~. 

d ~ tot 

Arst los tot + ~ / ~  = o, 

where  

A z r defer  ~ ms 
(18.16) h~t = ~ . a -  to t 

~ r o m  

(18.17) 

= AL~7~* 
tot ' 

(m: not  summed) .  

(18.15), we  o b t a i n  

AZm~r = a Z.,dt ---- d~t 

On the o ther  hand,  by (18.9), we have  

x ~ a~dt d~L % = A~,dx = 

d (. d ~ \  ,~[d~,  ~ 

d~o d ~ =  0, 
+ A~ dt dt ] 

d e f e r  3Al~c~ 

(t~: not  summed) .  

" a ~ d t  = d~L A ~ d x  

This gives another system of H-geodesic curves in M. The corresponding 
H-geodesic curves in G are given by (18.13). 

- 1  I I I .  I f  we mul t ip ly  (16.3) wi th  ~,(x) def ined  by  ~i'~iz_ ~[ [(21.1)] , then 

(18.19) i ~(x)o = ~ ( . ) d~  + ~a(~))dai(x), 

so that  the  d i f fe ren t i a l  equa t ions  (16.14) 0 ~ = 0, ..., 0" = 0 

(18.20) 

i . e .  (21.13) - -  (21.15): 

(19.21) 

- l  i ~,(x)d~ = --  ~(a(x))dai(x) 

by (5.7). Thus  to the 
there correspond the II-geodesie curves 
transformation group manifold G. 

give 

19. Two Sys t ems  o f  Equ ipo l l enees  o f  Vectors  in the  E x t e n d e d  Lie  
T r a n s f o r m a t i o n  Group  Space. 

(i) Cons ider  an ex t ended  LI]~ t r ans fo rma t ion  group  G wi th  r ex t ended  
p a r a m e t e r s  al(x), a2(x), ..., a"(x). The  coord ina tes  x = (~.  x 2, ... ,  ~'~), wh ich  
unde rgo  the ex t ended  LIE t r ans fo rma t ions  a(x) wil l  p lay the qu i te  an aeees-  

d~i-- - -  dai = eJ dt 

II-geodesie curves d~i - -  eidt in the base manifold 31, 
d a i - - -  eJdt in the extended Lie 
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sory r01e in the following lines. We will extend the E. CARTA:bT'S theory 
[15] of two kinds of parallelisms of the vectors in the group space to the 
case of our extended LIE t ransformation group space ]E. 

Let  us denote the elements of G corresponding to a(x) as an operator  by 
Ta and the product  of T a and To by ToTa, and the inverse of T a by 
Ta -~, so tha t  (T~Ta)-~= Ta-~T~ -~. 

We will call a pair of points (c~(x)) and (b(~c)) taken in this order a 
vector a'-~ of ~ and when a ( w ) =  b{~), we will call the vector a nut  vector. 

(it) DEFINITIO:~.- We will say that two vectors ab and a'b' are 
equipollent of the 

first ] 

kind, when 

second 

= =T- j ,  Tb,. Tb, T~, . (19.1) ToT[~ -~ -~ I -I T ; T o  

Considering the inverses, we may replace (19.1) by 

The equipollences have the following properties. 

1 °. Every vector, which is equipollent to a nul  vector, is nul.  

2 °. Every vector is effuipollent to itself. 

3% I f  a vector is equipollent to a second vector, then the second vector 
is equipollent to the first. 

4 °. I f  two vectors are equipollent, then their inverses are also equipollent. 

5 °. Every point  of the group space ~ may  be considered as the origin 
o f  one and  only one vector, which is equipotlent to a given vector. 

6 °. Two vectors, which are equipollent to a third vector, are equipollent 
to each other. 

7 °. I f - ~  is effuipollent to a~b -~-' and b'-~ effuipoltent to b'~', then the 

vector ac is equipollent to a'd. 

The 7 o may be proved as follows. From 

w e  

i .e .  

obtain 
T o T j  1 --~ Tb, T~  ,1, TcT~ -1 --~ T~,TV ~, 

- - 1  (T~T[ I ) (TbT j  1) ----(T~,Tb ) (Tb, T~V 1) 

T~ T~ ~ = To, Tj, ~. 
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(iii) THEOREm[.- When ab ~ is equipollent of the first kind to a'b', 

the vector aa' is equipollent of the second kind to bb' and vice versa. 

PROOF. -  From (19.1), we have 

Tb Tb, T~, To,, 
i .e .  

- - 1  To T~,= TblTb,, 

which is of the form (11.2)for  aa '  and bb'. 

TKEOREM.- When the first equipollence plays property 7 °, the second 
equipollence plays the property 6 o and vice versa. 

PaooF.  - Suppose  that  an equipol lence satisfying the propert ies  1 ° -  60 
is defined in an r -d imens iona l  space in a certain wa_yj Thence we can dedude 
an equipol lenee of the second kind saying that aa' is equipollent  of the 
second kind to bb --r when a--b ~ is equipol lent  of the first kind to a-~'. I t  is 
easy  to see that the propert ies  1 o - -50  are verified for this equipollence of 
the second kind. But  as for the proper ty  60 , it is not necessar i ly  the ease. 
Suppo~se a-~a' and ~ are equipollent  of the second kind to "~c'o This means 
that ac is equipollent  of the first kind to a'c --v and that b'-c ~ is equipol lent  
of the first  kind to b'd'--'-. In  order that "~a' and b'-b ~ may be equipollent  of 
the first kind to b'e'. In order that aa '  and bb' may be equipollent  of 
the second kind to each other, it is necessary and sufficient that ab is 
equipollent  of the first kind to a'b'; in other words, the equipollence of 
the second kind will verify 60 when  the equipollence of the first  kind 
verif ies 70 and vice versa. 

(iv) The two kinds of equipolIence are in close relat ion to two groups 
of extended parameters  of G. Indeed,  let us consider the geometrical  
operation consisting of laying through a variable  point (~(x)) a vector ~ ' ,  
which is equipollent  of the first kind to a f ixed vector. Let  (a(x)) be the 
extremity  of the vector which :is equipollent  to the fixed vector  and is 
d rawn  through the origin of ]5. The operation considered is expressed 
analyt ical ly  by 

T~,T -~- T~ 
or by 

(19.3) T ~ , -  T~T~. 

This is thus analyt ical ly  indentical  to one of the t ransformations of the 
first group of extended parameters  (s). 

(s) A n  ex tens ion  of the analogous resul t  in  [12J, p. 44:9. 
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Similarly the operation consisting in drawing a vector ~'-~' throngh a 
variable point (~(x)), which is equipotlent of the second kind to a fixed 

vector Oa, may be expressed analytically by 

(19.4) T~, : T~ T,.  

This is thus analytically identical to one of the transformations of the 
second group of extended parameters (9). 

(v) The property explained by the Theorem under  (it) is a geometrical 
interpretat ion of the fact that the extended transformations of the two 
groups of extended parameters are interchanged among themselves. 

The properties 1 ° --70 are the characteristic properties of the equi. 
pollence attached to the groups. We shall prove that when we have defined 
an equipollence of vectors in extended group space ]5 playing the seven 
properties 1 o -  7 o, the space ]5 can be considerd as a space of group, the 
equipotlence defined in ]5 being the first equipollenee attached to extended 
group. 

For this purpose, let us take au origin (0) in the space ]5 quite 
arbitrarily. Let (a(x)) be any point of ]5. Consider an operation S~, by 
which we pass from a variable point (~(x)) to the extremity (~'(x)) of the 

vector ~', which is equipollent to Oa (a vector which exists by 5°). We 
will prove first that these operations constitute a group. 

To prove this, we proceed as follows. Those operations contain evidently 
the identical operation (by 1o). Let S~ abd Sb be two such operators. Let 
• c(x)) be the transform of (a(x)) by Sb. Executing the operation S a and 
Sb successively, we pass from the point (~(x)) to the point (~'(x)) and then 
to (~"(x)) by virtne of 

(Sa) ii--r = o-~,, 

(8o) i,i-~/= 0--~. 

Now, by.._ the hypothesis, a'-c is equipollent to O-b. Hence ~'~ is equi- 
pollent to ac (by 6°). From the equipollences 

follows thus (70 ) that 

whence we obtain 

~ ' =  Oa, ~ '~"=ac,  

~ '  = Oc , 

SbS~ = S¢. Q. E. D. 

(9) [12], p. 633. 
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Next, let G be the group composed of the operations S a. This group 
is s imply  transitive. This means that it contains one and only one tran- 
sformation, which maps a given point (~(~))to another  given point (~()), 
obtaining the t ransformation S~ corresponding~ to the ext remi ty  of the 
vector On, which is equipollent tD ~' .  Consider next two arbi t rary  equi- 

pollent vectors ab and a'b'-~'. The vector Oc-~, which is equipollent  to a'--b 
is also equipollent to a'b' (property 6°). Hence  the t ransformat ion S~ maps 
(a(x)) to (b(x)) and (a'(x))to (b'(c)) simultatleously. Now the t ransformation 
SbSa -1 also maps (a(w)) to (b(x)) (by the mediation of the origin (0)), and 
transformation S~,Sa, -~ maps likewise (a'(x)) to (b'(x)). 
Hence  we have 

S~ - -  S~S~ -~---  S~,S~, -~, 

what shows us that the equipollence defined in ]~ is idenitcal with the 
equipollence of the first kind at tached to the group G. 

(vi) The results of the last theorem that the equipollence of the 
second kind of the space of group may be considered as equipollence of 
the first  kind at tached to another  group admitt ing the same representat ive  
space. I t  is easy to see that ithe second group of  extended parameters will 
admit the second equipollence of the group G for the first equipollence. 

Now we encounter  another  important  remark. Consider a set of tran- 
sformation Ta depending on r extended parameters,  not forming a group, 
but playing the property that the transformations TbT~ -~ do not depend on 
not more than r extended parameters (when a(x) and b(x) take all possible 
values). We can define an equipollence of vectors in the space of this set 
of t ransformations by the equality. 

(19.5) T~T~ - l  = Tb,T~, -1, 

and this equipollence plays the seven properties 1 ° - - 7  ° as we can easily 
verify. Choose an arbitrary origin transformation To. The transformation 
S a defined above may be expressed as follows: 

T~,T~-~_~ T~Tc ~ 
i,e. 

(S~) T~, = T~To-~T~. 

Execute  the t ransformations Sa and So successively and set 

We  shall obtain 

S b S ~ = S ~ .  

T ~ , ~  rp qp _ I T ~  ~ a  ~ o  ~ 

= ToT° T:To 2~-- ToTo-:T~ 
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by Sa and So successiyely.  Hence  the equal i ty  

(T~7~ -~) (T~To-9  = T~To -~ 

results,  so that the transformations T~7'o -~ form a group. 

This theorem, which is of purely  analytical  nature,  may be proved 
else directly. Consider a set of t ransformations TbTa -~ of r extended 
parameters .  From the product  

(Tb, Ta, -~) (TbT. -~) 

of such transformations,  we see that there exists a t ransformation T~ 
such that 

(19.6) T-fi, ITb : T~7~7"~. 

For, the t ransformations TbT7 ~, where  we let the extended parameters  

vary, must  have all the t ransformations of set T~T'~ ~, so, in part icular ,  
the t ransformation T~,T~7 ~. Therefore  there exists a point (c(w)) such that 

T~T-~__ - Ta, Tb,-L 

This equal i ty  is equivalent  to the equal i ty  (19.6). Thus  from (19.6), 
we deduce 

(Tb, T, , - ' )  (7'~ T~ -1) ------ T~,Tb,-1TcTa -~ : Tc 7a -~, 

which shows us that the t ransformations TbTa -1 form a group. Moreover 
all the t ransformations of this group are obtainable by lett ing (a(x)) fix and 
lett ing (b(x)) vary. 

(vii) We know that two groups G and G' of the same order arc said 
to be isomorph (holoedrique)~ when we can establish among their transfor- 
mations a correspondence such that to the product  of two arbi t rary tran- 
formations of the first group there corresponds the product  of two corre- 
sponding t ransformations of the second group. In the correspondence,  which 
realize the isomorphism, the identi ty t ransformations correspond to each 
other .  Moreover, to the inverse of t ransformation of the first  group there 
corresponds the inverse of the corresponding t ransformation of the second 
group. 

Let  G and G' be two isomorphic groups and 1~ and :~' their  spaces. 

All  correspondence by isomorphism of two groups may be interpreted by 
the point-correspondence of  two ~spaces  and ~' ,  such that to two vectors 
of  ~,  which are equipollent o f ,  the first (second) kind to each other, there 
correspond two vectors of ]~', which are equipollent of  the first (second) kind 
to each other. 
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Indeed,  we can choose the extended parameters  of two groups in such 
a way that in the correspondence by isomorphism under  consideration, the 
extended parameters  of two corresponding transformations are the same. We 
denote t h e  t ransformations of the two groups by T and O. Then the 
equal i ty  

Tora-1_~ Tb,Ta ,-I 

signifies that there exists a t ransformation T~ such that we have 

whence  follows: 

so that 

T ~ = T ~ T ~ ,  Tb, = To T~, , 

(% -= 0~ @a, Oh, = (9c @a', 

0~0~ -~ = @b,@~, -~. Q .E .D .  

The demonstrat ion will be the same for the parallel ism of the second 
kind 

(viii) Conversely, suppose that we can establish a point correspondence 
between the spaces ~ and !5' of  two groups G and G' of the same order r 
such that to two vectors of 15, which are equipollent of  the first kind, there 
correspond two vectors of 15' which are equipollent of the first kind, then 
the two groups G and G' are isomorphic. 

To prove this, let (~o) be the point of 15' corresponding to the origin (0) 
of IE, and let (a(x)), (b(x)) and (c(x,)) be three arbi t rary points of IB and 
(~(x)), (~(x)), (7(x)) the corresponding points of 15'. From the equali ty 

T~Ta-1-- - % =  % To -1 

follows: 

@~0~ -1 = @~0. -1 

by hypothesis.  In  other words, from the equali ty 

T~----- ~ccT, 
follows : 

0~0~ -~  = ((9~0~0 -1) (0~0~ -1). 

Then  we let the t ransformation 0~@, -1 of G' correspond to the tran- 
sformation T a of G. This correspondence shows the isomorphism of the 
two groups by the last equality. 

We can make the r emark  that  it is very easy to establish a correspon- 
dence with a given group by interchanging the two kinds of equipollence 
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attached to the group: it suffices to ~nake the transformation T~ ~ Ta -~ 
correspond to the transformation T a .  Then the equality 

T ~ T j ~  : Tb, T~,-% 

which defines the equipollenee of the first kind, becomes changed into the 
equali ty 

T~ -~ T= : T~,-~ T+ , 

which defines the equipollence of the second kind. 
It results from this remark, that in order that two groups of the same 

order may  be isomorphic, it is necessary and sufficient that we can establish 
a point  correspondence between the spaces of  these two groups transforming 
one of the spaces into a certain o/ the spaces by an equipollence of  the 
second kind. 

(ix) The preceding consideration proposes the question of determination 
of all the point transformations of a space of group into itself, which play 
the property to conserve the two kinds of equipollenee of the space. 

It is firstly evident that a point transformation, which conserves the 
equipollenee of the first kind, conserves the equipollence of the second 
kind and vice versa. Let (~(x)), (~(x)), etc. be the points transformed from 
(a(x)), (b(x~)), etc. From the equipollence of the first kind of a--b-and a'b "-~' 
follows that of ~ and ~'~t' by hypothesis, whence follows that from 
the equipollence of the second kind of ~ and b-b' follows that of az¢'-~ and 

:Let us commence with determination of the point transformations, which 
conserve the equipollence of the first kind and let the point origin be inva- 
riant. The equality 

T~ = TbT= -I 

expresses simply the equipollence of the first kind of vectors O'-b and ac --~, 
whence follows the equipollence of ~ a n d  ~ and consequently the equality 

~ / ~ 7 ~  . 

Hence the transformations sought for are autoisomorphisms of group G. 
Among the automorphisms, there exist in par t icular  the transformations 
of the adjoint group 

Ta = Tj1T~ Ta, 

where (a(x)) is a fixed point. 

Annali di Matematica 40 
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If the group G is semi-simpls,  the adjoint group is the largest maxi- 
mmn continuous group of automorphisms of G. (~0). 

In  order to obtain all the point transformations conserving the equipol- 
lenee of the first kind, it will suffice to combine the preceding point trans- 
formations with the transformations 

T~, ~ T~T a or  T~, "~ TaTs,  

or fur ther  with the transformations 

(19.7) T~, - -  T~T~ T~ , 

(a(x)) and (b(x) denoting two fixed points. The point t ransformations (19.7) 
transform the equality 

into the equali ty:  

T~ T~-I--T~T~ -I. 

T~,T~, -1 __--_ T~T~, -I .  

Evidently the transformations (19.7) form a group to, which is a sub- 
group of the total group r of transformations, which conserve the equipol- 
lence of the first kind. It is likewise easy to see that ro is an invariant  
subgroup Of l:. It  suffices to prove that all the transformations of r 0 are 
changed into other transformations of I~0 by an automorphism of the 
group G. If  the points (a'(x)), (b'(x)), (~'(x)), (~7'(~)) correspond to (a(~)), (b(~)), 
(~(x)), (~(x)) by this automorphism, the relation 

is changed into 

T~:=TaT~T b 

T~, = Ta,T~,T ~, , 

the transformation of Fo corresponding to points (a(x)) and (b(w)) is changed 
into another transformation of £o, that which correspond to points (a'(x)) 
and (b'(~)). 

We will give the name group of  isomorphism of ~ ,  to l?. 
The group of point transformations of ~ ,  which conserve the set of 

two equipollences will easily be deduced from F by combining it with 

(t0) E.  (J~ARTAN~ LO principe de dualitd et la th4orie des groupes simples et semi- 
simples. Bull. Sc. math. 2e sdrie, t. 49 (1925), 363-364:. 
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the t ransformation 

T~ ---- T~,. 

It  may be remarked  that the group P0 defined by the equations (18.7) 
is at most of 2r extended parameters .  Precisely,  it is of  2r-p extended 
parameters ,  where ~ denotes the order of the subgroup formed of those 
t ransformations of G, which are in terchangeable  with all the other transfor- 
mations of G. The group 1~o contains evidently the adjoint group (19.6)~ 
which is itself of r -~ extended parameters .  

20. - Extens ion  o f  E. Cartan's Geodesics, His  Two Kinds o f  Paral le l i sms  
and His  Transformations .  

(i) In  case of the ordinary equipollence of two vectors, the straight 
lines play the following character is t ic  proper ty :  

I f  we take three arbi t rary  points (a), (b), (c) on a straight line, the 
vector cd, which is equipollent to ab has its extremity  (d) on the straight 
line. 

E. CAn~A~T [15] has generalized this notion in his space of group. Now 
we will generalize his notion fur ther  to the case of the groups of extended 
parameters as follows. 

D~.FnCI~J[O~. - A curve (C) t raced in a space of group of extended para- 
meters  will be called a II'~-geodesie (read: the first geodesic of the second 
kind), when  three arbi tary points (a(x)), (b(x)) and (e(x)) are taken on this 
curve, the ext remi ty  (d(~c))of the vector cd--~ which is equipollent of the 
first  k ind to ab "-~, lie also on this curve. The II '~-geodesies may be defined 
s imilar ly with respect  to the equipollence of the second kind. 

Bat  we have to make the following important  remark.  

All the 

II'l- geodesics 

are 

I I 2'- geodesics. 

t II2'- geodesics 

I I I l ' -  geodesics. 

Fo._~r, if cd be equipollent  of the first  kind to ab, then this implies 
that bd is eqaipol lent  of the second kil~.d to a'-~ * and vice versa. 

Thus  there exist really only H-geodesics. 

(ii) The pr imary  question arising is that of the existence of the 
II-geodesies.  ~ow it is easy to find a priori  an infinity of I I ' -geodes ics  in 
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the spaces of groups with extended parameters.  For this purpose, take 
of (a(x)) a f ixed point (a)o Let us consider a one-parametr ic  subgroup g 
of G. Denote its general  t ransformation by 0,~. The point (~(~c)) defined by 

(20.1) T~. ~--- ~)~T a 

describes a I I ' -geodesic .  For, if u~, u2 and ua be three arbi t rary  par t icular  
values of the parameter  u, and (~.i(~)), (~2(x)), (~8(x)) the three corresponding 
points and if (~4(x)) be the extremity  o[ the vector ~3~+, which is equipol- 
lent of the first kind to ~1~2, then we have 

i ,  e ,  

- - 1  - - 1  

Conversely, we can obtain all the l I ' -geodes ics  in  this manner .  

Foc, if (~(x)) and (~7(x)) be two variable points and (a(x)) a fixed point 
on a iY-geodesic, then there exists on this IF-geodes ic  a point (~(~)) 
such that 

and consequent ly the transformations T.aT~ -1 depend only on a single 
parameter ,  whence follows that these t ransformations and especially the 
t ransformations T~T, - I  form a one-paramet r ic  subgroup g of G. Denoting 
its general  t ransformation by 0~, we obtain 

It  should be remarked that any II-geodesic  may be defined also by 

(20.2) T~ = T~+)+~, 

the Ou forming a one-parametr ic  group, or more general ly by 

(20.3) T~ ~- TaO~Tb. 

Moreover the (20.10) may be rewri t ten as follows: 

T~ == (Ta~aTa -~) (TaTs) , 

m J: and the t ransformation TaOuT a constitute a group being led to the tran- 
sformation group of g by T a .  Thus we fall on the expression (20.1) again. 
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(iii) Hitherto we have considered a vector ab to be defined uniquely  
by its origin (a(x)) and its ext remi ty  (b(x))." When the parameters  of (b(x¢) do 
not differ  much from those of (a(x)), the t ransformation TbTa -~ belongs to 
one and only one-paramet r ic  subgroup g of G as in the case of the 
theory of continuous groups of S. LIE; consequent ly  the two points (a(x)) 
and (b(~v)) belong to one and only one IV-geodesic, which is the locus of the 
point (~(x)) defined by 

where  0~ is the general  t ransformation of g. Thus the vector assimilates 
to the I[ ' -geodesic segment l imited by (a(x)) and (b(x)). 

We can then state a s  follows: 

All  vectors lying on a II'-geodesio is equipollent of  the first and the 
second kind to a determined vector lying on the II-geodesio and having for 
the origin a given point of  this II'-geodesic. 

If we define the equali ty of two segments by the equipollence of cor- 
responding vectors, we can measure  the segment  of one and the same 
I I ' -geodes ic  as soon as we choose a unit segment on this I I ' -geodes ic  
segment. 

If, in particular,  we have taken our parameter t (the affine lenglh: a 
generalization of the canonic paramete r  of S. LIE) introduced ~in (55) for 
the paramete r  u of the general  t ransformat ion g such that 

the measure  of the segment ~1~'-~ with 

will be I u ~ - u l ] - - - ~  I t 2 - - t l  I .  ]:he change o f u i n t o  ku means a change of 
the unit of length. The algebraic ratio of two vectors ~1~'-~.~ and ~8~4 taken 
on one and the same I I ' -geodes ic  has the determinate  value 

U ~  - -  ~ 14 - -  t3 

U2  - -  U~  t 2 -  tl 

Thus we may now drop the dashes (primes) from IF-geodes ics  and 
write down merely II-geodesics in place of II ' -geodesics .  

THEOREM. - The IY-geodesics in this seotion are the lI-geodesics in  the 
sense of  our Art. 5. 
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(iv) PARA_LLELISI~S. - I f  we draw through a point (b(w)) outside of a 
I I-geodesie  (C) passing through (a(x)) vectors, which are equipollent of 
the first kind to several  vectors lying on (C)~ we obtain the vector b~, 
which is equipollent of the first kited to the vector a~ whose ext remi ty  
(~(x)) describes (G). Hence  the point (~) describes a curve (C') and this 
curve is a II-geodesic.  If we have 

then we deduce 

T ~ = T ~ T a ,  

T., == TuTo 
thence. 

We say that (C') is parallel l  of the first k ind  to ( C ) a n d  any vector 
lying on (C') is equipollent of the first kind to a vector lying on (C). 

Two II-geodesics, which are parallel  of  the first k ind to a third, are 
paral le l  of  the first k ind  to eack other. 

We can define similarly II-geodesics, which are parallel of  the second 
k ind  to each other. W h e n  this is defined by 

T~---TaOu , 

we obtain II-geodesics  defined by 

T,, = T~0~, 

where  (b('~)) is an arbi t rary  fixed point. 

Thus we have defined two kinds of parallel isms for the II-geodesics  
and for each of  these kinds, we have the following properties:  

1 °. Each II-geodesic is parallel  to itself. 

2 o. Two II-geodesics, which are paral lel  to a third, are parallel  to 
each other. 

3 o Through any  point taken outside of  a II-geodesic, there exists one 
and  only one ll-geodesic, which is parallel  to the former. 

It  should be remarked  that the two parallel isms permit  us easily to 
construct  the vector ~'~ equipollent of the 

first  I second 

kind to a given vector a'-b and having a given origin (~(~)); for this it 
suffices to draw through (~(x)) the II-geodesic,  which is parallel  of the 

first t second 
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kind to ab and then through (b(x)) the II-geodesic ,  which is parallel  
of the 

second ] f i r s t  

kind to a~; these two I [ -geodesics  meet in the point (~(x)) sought for. 

(v) It  is convenien~ to say that two II-geodesics,  which are parallel  
of the 

first  I second 

kind, have the same direction of the 

first I second 

kind. 

If we draw through the origin the parallel  of the 

first ] second 

kind to a given H-geodesic ,  then several  points of this parallel  represent  
the t rasformations of a one-parametr ic  group g. Hence  we can say that 
ebny direction of the 

first [ second  

kind is defined by a one-parametric s~bgroup of G. 

If a one-parametr ic  subgroup g of G together with a point (a(x)) of the 
space is given, start ing from the point (a(x)) we can make a displacement  
in the direct ion of the 

first  I second 

kind defined by g, and thus we obtain two distinct II-geodesics start ing 
from (a(~)). 

(vi) The equipol lences of the first and second kinds permit  us, as 
we have done in (iii) to define the equal i ty  and then the ratio of two 
segments lying on two geodesics, which are parallel  of the first or second 
kind. If on a given II -geodesic ,  we choose a unit of length, we can thus 
measure  the segment on all the geodesics, which are parallel  of the first  
kind to given I I -geodes ic  and then on any [I -geodesic ,  which is parallel  
of the second kind to one of those lat ter  and so on. Suppose  that the 
given I I -geodes ic  start ing from the point  of origin and defined by a sub- 
group g of t ransformations Ou, the u being the affine length (canonical 
parameter)  The I I -geodes ics  which thus arise by the indicated process are 



320 T. TAKASU: A Theory of Extended Lie Transformation Groups 

the loci of the points (~(x)) given by 

T~ ~ TaOuTb, 

the (a(x)) and the (b:w)) denoting two arbi t rary fixed points, in part icular,  
those among such II-geodesics,  which pass through the point of origin, are 
given by 

T~ -~ Ta(guTa-1; 

the i r  directions are defined by the various homologous (gleichberechtigte (11)) 
subgroups of g in the total group G. it is only in the set of these directions, 
that the space admits of an intrinsic metric. 

(vii) Any point t ransformation of the group of isomorphism of the 
space ~ t ransforms evidently a I~-geodesie into a II-geodesic,  the ratio 
of segments being conserved. It t ransforms fur ther  two parallel  I I -geodesic  
i~ato two parallel  II-geodesics.  

Consider, in part icular ,  the t ransformation 

T~, -~ T~T~. 

By this transformation,  the points of the space describe the vectors, 
which are equipollent of the first kind to one another. Moreover any vector 
is t ransformed into another  vector, which is equipollent of the second kind 
to the f o r m e r ,  and any II-geodesic  into another  II-geodesic,  which is 
parallel  of the second kind. We may give to such a t ransformation the 
name "the translation of the first kind".  These translations are the trans- 
formations el the first group of extended parameters  ((ii) of Art. 18). 

The equation 

T~, ~ T~T~ 

defines similarly a translation of the second kind. 

The continuous translat ion of the first kind 

('~) Cf. [12], p. 4:74. 
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where  O~ denote an arbi t rary  t ransformation of the one-parametr ic  group 
g(u playing the r61e of the time), plays the property, that respective points 
of the space describe the II-geodesies,  which are parallel  of the first kind 
to one another, while respective I I -geodesics  displace remain ing  parallel  
of the second kind to one another.  We will call this continuous translat ion 
the II-geodesie translation of the first kind. We define similarly the 
II-geodesic translation of the second kind. 

§4. - S i m p l i f i c a t i o n  o f  t h e  F u n d a m e n t a l  T h e o r e m s  o n  t h e  
E x t e n d e d  L i e  T r a n s f o r m a t i o n  G r o u p s  b y  M e a n s  o f  t h e  

I I - G e o d e s i e  P a r a l l e l  C o o r d i n a t e s .  

21. I I -Geodesic  Paral lel  Coordinates in the  Base Manifold and the 
Group Space. - In  (6.6), we have already introduced II-geodesic parallel 
coordinates ~ in the extended Lie group manifolds. ~ow we shall introduce 
II-geodesic parallel coordinates ~ in the base manifold. For this purpose 
we introduce a matr ix  

~i(x)~C 2, (i-~ l, 2, ..., n; j ~  l, 2, ..., r) 

corresponding to the matr ix  [~(x) introduced by (16.1) by the conditions: 

(21.1) ~.~ = ~i, (i, k, p, q, . . . .  1, 2 .. . .  , n ;  h, j ,  l, ...---- t, 2, ..., r). 

~u l t ip ly ing  

Zk~z ~ ~k, 

where  ~ are unknowns,  by ~{, we obtain ~ - - - ~ /  by virtue of (21.1), so 
that it results that 

(21.2) z ~ • 

~k{z= k by ~ ,  we obtain N~ = ~ /  arr iving at (21.1). and mult iplying z ~ ~ - -  
Thus we see that 

(21.1) ~ (21.2). 

Annali dl Matematica al 
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For, 

- ]  i 

I t ~ ,~  .. ~ 0  -.  0 

~ ,~  .. ~ 0  . .  0 

"~,~ .. ~ 0 . . 0  

• ~',~i ... ~'~ 

• , • ° • • 

0 0 . . . 0  

0 0 . . . 0  

0 0 , . . 0  

0 0 . . . 0  

• I~l'~ ... ~ ' .  o . . .  o 

I ~  ... ~ .  o . . . o  

~ • . • ° • ° • , 

r ~ n  

we have 

- i  i (21.3) [ ~,~z ] - -  I 8i] - -  1. [ 

Replace ~oz(x ~) of Art, 5 by 

- I  
~,~, (1 ~ 1, 2, . . . ,  r ;  m, p ,  q ~ 1, 2, . . . ,  n;  

and consider the Pfaff ians  

- i  ~ 8i I~ ,~*[  = I z l - - 1 .  

r > n )  

-~ ,u (-z l _ ( .~f~(~' ,a(x) ) )  
o~ ~ - -  ~m(x)dx , ~m(w , . . . ,  x ' )  \ ~ai ai  = aio ' 

assumed to be anholonomic in general  and to be of r ank  

(21.4) 

which are 
that the condition 

(21.5) II ~ ( x )  II ~ o in M 

is satisfied, 

We define the connection paramete r  A~ by 

(21.6) A ~ a~ :i 0~-~ -z ~ 

r~ SO 

the last identi ty arising from (2t.2). 
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Consider  a parametr ized  curve 

We can easily prove 

d co 1 

(21.7) dt dt 

x * = ~*(t) ,  

the ident i ty  

-~ i d~x ~ ~ dx" dx~q I 

(i ~--- 1, 2, ..., n). 

We consider  the combined mani fo ld :  

forming a pr incipal  fibre bundle,  the 

{~t(x) l = ( ~ l ( x ) !  

-1 making  the structure group. Although the group e lements  ~(w) 
rain the local coordinates  (w~), the function forms make  the group 
(in a cer ta in  sense) independen t  of the local coordinates  (x~). 

F r o m  (2t.7), we have 

can con- 
e lements  

(21.8) d col d2~i ~ d ~  dxq O. 
dt d t w  O ~ - ~  ~ A;q dt dt - -  

Indeed,  we can convert  (21.7) into 

(21.9) 
d col d~x~ ~ dxp dxq 

The dif ferent ia l  equat ions  on the r i gh t -hand  side of (21.8) define the 
autopara l le l  curves  of the te leparal le l ism.  The le f t -hand side is convenient 
for the study of  the global properties and is integrated readily. 

(21.10) ¢d -~ ddt, (d --- const.), 

co l 
(21.11) -d-tdt -~ dt  + d l, (d 1 ~ const.), 

the (21.11) being guided by the s imple charac ter  of the r i gh t -hand  side 
of (21.10). Not ic ing again the s imple charac ter  of the r i gh t -hand  side of 
(21.11), we set 

~z ~ dt -~ d z, 
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so that 

(21.12) ~z= ~-i d t =  dt ~ d z. 

This means that we adopt such curves as ~ - - a x e s  in the r-dimensional  
space cantaining subspaee t x~ !. 

From (21.12), we see that the curves represented by (21.12) behave as for 
meet and join like straight lines in the large. We will call such carves 
II-geodesic curves. 

Although the ~o ~ are anholonomie in general,  we may write it in the 
form of d i f ferent ia ls :  

(2L13) 

for the II-geodesic line-elements, where 

(2L14) l] ~*(.) it :~= 0 in M. 

The expressions (2L12) tells us that, for the given ~(x) dx~, there exists 
a curve x~(t)~ whose l ine-e lements  t dx~l with directions i d f  is given by 
the different ial  d~ ~. This is the case for all the directions td! .  Thus in 
(21.13), we may omit t and write down as fotlows: 

(21.15) d~ : ~i(x)dx 

notwithstanding the r igh t -hand  side 'is anholonomic in general. 
The first differential  equation of (21.8) may be rewri t ten as follows: 

d2~Z-~ O. 
dt 2 

Multiplying (21.10) with ~(x) and taking (21.i) into account, we see that 
the relations 

(21.16) dx~-- ~ cz~ 
dt 

hold along the II-geodes'ic line.elements. 

We wilt call I~t the II-geodesic parallel coordinates corresponding to 

~ refer red  to the ~-axes.  The I ~  are global in the large. 
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F r o m  (21.15), 

(21.17) 

as in the case of (6.8), 
be ing  

(21A8) 

o r  

(21.19) 

we obta in  

:= /a~ d~(x), 

~ 71 . .a3  { ~l = ~ x )  + ~o. (~o = const.)  

the d i f fe ren t i a l  equa t ions  ~o the I I -geodes i e  curves  

d{dx)dm 0 

t -1 X d{,(x) = 0 

as in the case of (5.14) and  (5.16). 

22. To prove 

"~= ~ax~, 

a ¢i a 
a{q = 

a+(x,; a) dac~ 
aO~(x ; a) _ l im am~ 

• - l  k 

lira r*~ ,-k ] 
a~ i--+ o gk~i ~: 

- -  l im 7 ~ . ~  
dzi-+ o ~j~ 30~ i 

-- l im - -  ~ 
d~  i ~ o ,~Z $Og~ 

_ 8h:~ a+(x; a) {~ a~(x; a) 

H e n c e  

(22.1) a{z --  

and 
a ~i a 

~ =  ~d~" 

a~(x ; a) dai 

$~(x; a) l im ~ai 
axZ d#- -  ~ }~dai 

a+(z; a) :¢id~k fa] 
---~ lira 

d J - - o  ~ai:¢ h 

~k a+(x; a) 
= j i m  

d~--o 8 ~  - h a k  aai 

~k - a~p(x; a) 
- -  lira ~- =~ 

daJ ~ o ~ a ]  

O: ]k 
x ;  a) iVY(x; a) 

= . 

a o:-~z = ~ z jW" 
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23. Simpli f icat ion of  the  F i rs t  F u n d a m e n t a l  Theorem on the  Extended  
Lie T r a n s f o r m a t i o n  Group by means of  the  l [ -Geodesie  Para l le l  Coordinates.  
The Firs t  F u n d a m e n t a l  Theorem of the Theory of the Extended  Lie  Tran- 
sformat ion Groups has been stated in the form of Cor. 20 of Art. 16. Now 
by vir tue of the last article, it may be s implif ied and made global as follows.. 

TttE FIRST FUNDAMENTAL TItEORE~ (the s implif ied form). In  the 
extended Lie transformation group G as extended parameter group, the 
fk(~; a(~)), (k =1,  2, ..., n) are n independent solutions of  the completely integrable 
simultaneous linear part ial  differential equations 

(23.1) ~f ~f  ~ a - - i = ~ ,  (j, l = 1 ,  2, . . . ,  r; i, k = 1 , 2 , . . . ,  n) 

such that 

(23.2) ~ = f~(~; 0), (i = 1, 2, ..., n). 

Conversely, when an r-dimensional extended Lie group G is given, the 
(23.1) is completely integrable, their solutions fl(~; a(x)), (l-= 1, 2 . . . .  , r) sati. 
s fyl ing (23.2), determine an axtended Lie transformation group having G 
as extended parameter group. 

SOLU~Io~ oF (23.1) The  Lag range ' s  auxi l iary  different ia l  equat ions of 
(23.1) are 

(23.3) d~ ~ = - -  d£,  df(~; a(x)) = 0. [(16.3), (16.9)] 

The  (16.19) becomes in this case:  

(23.4) 

Consider  

(23.5) 

- j - ~  ~ ( ~ ~)  X = e i j ~ - -  e ' ~ j ~  i = eJ - - ~ +  ~ . 

- -  X f = = 0 .  

The  Lagrange ' s  auxi l iary  dif ferent ia l  equat ions  become 

dx  i da ~ 
- -  - -  dt 

~dx~ ~da~ 
- -  = l  ~ ] l k 

_ d ~  ~ d £  

- -  eJ~ = - eJ~ ' 
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in  the differentiable 

base manifold. 

so tha t  

(23.6) d~ z = - -  d~ l = e~dt 

in confo rmi ty  wi th  (23.3), w h e n c e  fol lows:  

(23.7) ~z = ~ __ a~(x) _ el(t _ to), 

which represents a II-geodesie curve corresponding to 

I 

(~zo, to = cons t . ) ,  

l 

(~Zo=Const., i = 1 , 2 ,  ..., n ;  l = l ,  2 , . . . , r ) ,  

+ = 

~ o -  ~o(X)x' - ~ = ~ o -  

transformation of (23.9) was 

i 
x~ ~ ~](~.)~J + ~ .  (~Jo - -  const.). 

d i f fe ren t i a l  equa t ions  (16.13) r e d u c e  to (23.1). (ii) The  dif- 
f e ren t i a l  equa t ions  (16.22) r e d u c e  to d ~ ' l =  d~*l(a(~)). 

24. S impl i f ica ton  o f  t h e  Second F u n d a m e n t a l  Theorem.  - When a given 
r-dimensional  extended Lie group G as an extended parameter group has 
the structure constants 

c~ ,  (i, j, k =  l, 2, ..., r), 

Compar ing  (23.7) with 

(23.9) ~ t =  ~(x)x~ + ~o, 

we see that  

(23.10) 

so that  

(23.11) 

The  inverse  

(23.12) 

N.B.  (i) The  

I group manifold. 

The  complete integral consis ts  of (23.7) and  the general integral is 

(23.8) X(~ ~ Jr- ~1(~), ~ + a2(~), ..., ~ -k- ~(~1), 

w h e r e  X is an a rb i t r a ry  funct ion.  
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the necessary and  and  sufficient condition for that (23.1) may  be comple- 
tely integrable, is that the relations 

(24.1) C~ = 0, (h, j ,  l = 1, 1, ..., r) 

holds. 

P R o o F . -  I n  (16.29)~ we have  

~ ~2 
- -  ~ : ~  ~ z ~ i  = 0 

a n d  Xj  are  l i nea r ly  i n d e p e n d e n t .  

25. S imp l i f i c a t i on  of  t h e  T h i r d  F u n d a m e n t a l  T h e o r e m .  - When r 
l inearly independent differential operators 

~f  Vf (i = 1, 2, n; j = 1, "2, r), (25.1) X j f  = ~i(x) ~ --  ~ i '  ""' ""' 

(~i(x) ~ c ~) 

are given, the necessary and  sufficient condition for that they are the funda-  
mental  differential operators for an extended Lie transformation group, is 
that the relations 

(25.2) C~  = 0, (h, j ,  k = 1, 2, . . . ,  r) 

hold. 

26. Simplifi~'ation o f  t he  F o u r t h  F u n d a m e n t a l  T h e o r e m .  - T h e  r a 

constants 

c ~  = o, (h, j,  l = 1, 2, . . . ,  r) 

for the f undamen ta l  differential operators 

~ , ,  ~ ,  ..., ~ 
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of an  extended Lie transformation group make the following three conditions: 

h (16.29) (Xi ,Xt )  "-C~lXh, (h, k, j, l - - 1 ,  2, . . . ,  r), 

(16.44) c ~ = -  c~, 

(16.45) ~ I h z ~ l CqCh~ + C~kCh~ + Ck~Chj = O, (i, j, k, l = 1, 2, ..., r) 

identities, so that the Fourth  Fondamenta l  Theorem of Art. 16 holds. 

§ 5. A d j o i n t  E x t e n d e d  L i e  T r a n s f o r m a t i o n  G r o u p s .  

27. ldjoint  Extended Group of Extended Lie Transformation Groups. - 
In  Art. 11, we have  ex tended  the concept  of ad jo in t  group ([12], p. 450) of 
a LIE t r an s fo rma t ion  group to the case of the  adjoint  extended group of an  
extended Lie transformation group G. 

I. W e  shal l  f i rs t  s tudy  the ad jo in t  ex tended  t r ans fo rma t ions  

; ~ =  ~(c ~, c ~, ..., c")e~, 

where  the e z are  those, which  we have  cons idered  in (23.4). 

Since 

(27.1) x'(t) = eq  + Co, (Co = const . )  

for the I I -geodes i c  c.urves in the  manifold ,  the (23.6) and  ( 2 3 . 7 ) m a y  be 
r ewr i t t en  as fol lows:  

(27.2) 

so tha t  

d~ l -" ~(x)e'dt --  etdt, ~ l  - l  ~ ~  • - = ~(x) (e  t + ~ )  + e~ 

= e z + d ,  (d  = cons t . ,  ~ t  = ~zo) ' 

(27.3) -~ -* ~o(X)Co -~ 7o --  c t, ~ ( x ) e  = e~, f -z -~ 

whose inverse  t r an s fo rma t ion  is 

(27.4) ~ ,= ¢~(x)e'. ] ~'o= ~i(~)~' + ~. 
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Thus 

undergo the extended affine t ransformations 

(27.3). I (27.5). ]i (27.3). [ (27.4). 

II.  :Next we will consider the general  case. Let us denote the operator 
corresponding to 

(27.5) x '~  - "  f~(x,; a) 

by X'z f .  Then we shall have 

(27.6) e h X h f  - -  e 'hX'hf,  

where  e 'h are cer tain functions of 

~ l  a s, "* , ~,, e l  e~ . . ' ,  e~ 

by vir tue of (27.4). 
If we set f =  x'  in (27.6), then it results that 

(27.7) e~i~(x) = e'~X'l~ ~, ( i  = 1, 2, .. . ,  n). 

(p) 
If  we give r de terminate  values w ~, ( p - - l ,  2, .... r) to x ~, then x'~ 

becomes j functions of a ~, a s, ..., a ~. T h u s - w e  obtain 

.(P) k(P) ~ 1  
( 2 7 . S )  e T z ( x )  = e z , • 

Thereby we assume that r values ( p - - 1 ,  2, ..., r) of ~ have been 
so chosen that 

~(P) 
(27.9) t ~z(x) ] =~ 0, (i - -  1, 2, ..., n). 

-j(p) 
Let ~(x) be a matr ix  such that 

i (P)- "(p) 
(27.10) ~l(x)~(w)-" ~, (p: summed;  i:  not summed), 

_.ip) 
and mult iply (27.8) with ~!~c) and sum the result  with respect  to 19. 
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Then we obtain 

, ,~  - . ( P )  r ~ l  
" L~X ]xi=w i 

i.e. 

(27.11) ei= ~[(a(~))e q, ( t  p~(a(x))I =~= 0), 

where 

(27.13) 

and 

(27.14) 

(p : summed) 

(27.12) pi(a(~)) = ~k(w)~(~c~[~]  (,). (p: summed). 
" Ida3 J~,=~ ' 

If we denote the inverse transformation of (27.12) by ~}(a(~)), we have 

e" = ~}(a(x))e~. 

That (27.1i) [orms a group may be proved as in the case of [12], 
p. 452. 

28. The Adjoint  Extended Transformat ion Group in terms of the 
I[-Geodesie Paral lel  Coordinates. The (27.5) becomes 

~f (28.1) ezX, f z ~f e,~X, zf = e,~ 

when ~ and ~,l are respective II-geodesic parallel coordinates, such that 

(28.2) i ' = ~f(1)lJ, 

If w e  set f =  G we obtain 

{~= {~({'){'i. 

i,e. 

(2s.3)  e' = e'ifJ(i'), e" = ~(1)e~.  

Thus ~(~') and ~(~) themselves play the rdles of 9}(a(~'))and p~(a(~)) 
in (27.11) and (27.14) respectively. 
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29. The Canonical Equations of  an r -Dimens iona l  Extended  Lie Tran- 
sformat ion G r o u p . -  The following theorem is an extension of a theorem 
([12], p. 454, Theorem 32) of Sophus Lie:  

TREORE~. - If 

1 
(29.1) ~'~ --  ~' q- e~Xtx, ~ q- ~.. eJ#Xi XF, ~ q- ... 

be the canonical e~uations of  an r-dimensional  e~lended Lie transformation 
gronp X~f, Xff ,  ..., X~ f  in  n variables ~ ,  ~ ,  ..., x ~ and i f  we apply the 
transformation {27.4), then the transformations (e ~, e ~, .... e ~) are transformed 
into (e '~, d 2, ..., e") by the transformations 

where 

(27.14), { (28.3), 

l e}(a(x)){ 4 o. 

The transformations 

(27.4) 

form a group and the relation 

(27.6) 

holds. 

The part concerning 
([12], p. 454, Theorem 32). 

I (28.3) 

I (28.1) 

(29.1) may be proved quite as in the case of 

REFERENCES 

[1] T. TAKAS•, Erweiteruvtg des Erlanger Programms dutch Transformationsgruppener. 
weiterungen. ~ Proe.  J a p a n  A.ead. )>, 34~ (1958), 4:71-4:76. 

[ 2 ] - - - ,  Extended Euclidean Geometry and Extended Equiform Geomet~ under the 
Extensions of  Respective Transformation Groups. I.  c Y o k o h a m a  M a t h . J . , ,  6 {1958) 
89-177. 

[3] --  - - ,  Extended Euclidean Geometry and Extended Equiform Geometry under the Exten- 
sions o f  Respective Trasformation Groups. I I .  c Y o k o h a m a  Math. J.)), 7 (1959), 1-88. 

[4:] - -  - - ,  Extended Aff ine Geometry. I .  ~ Yokohama  51ath. J .  )), 7(1959), 154:-185. 
[5] - -  - - ,  Extended Non-Eaelidean Geometry. ~ P r o c  J a p a n  A e a d . , ,  3J (t960), 179-182. 
[6] - -  - - ,  Extended Non-Euclidean Geometry obtained by Extending the Group Parameters 

to Fu~ctions of  Coordinates. ~ Yokohama  Math. J .% 8 (1960), 1-5~. 
[7] ~ - - ,  Adjusted Relativity Theory: Applications o f  ~xtended Euclidean Geometry, 

Extended Eq~iform Geometry and Extended Laguerre Geometry to ~Physics. ~ Y o k o h a m a  
Math. J .  % 7 (1959)~ 1-4:2. 



T. TAKASU: A Theory of Extended Lie Trans]ormation Groups 333 

[8] - -  -- ,  Extended Conformal Geometry obtained by Extending the Group t~ara'meters to 
Ennetions of Coordinates. I~ ~ Yokohama Math. J-.,, 8 (1960), 85-172. 

[9] - -  - - ,  Extended Projective Geometry obtained by Ex~ending the Group Parameters to 
Fu~ctions of Cobrdinates. L t Y o k o h a m a  Math. J. ~, 9 (1961i, 29-8:k 

[ 1 0 ] - - - ,  Extended Lie Gsom~try, Extended Parabolic Lie GeoJnetry, Extended Equifbrm 
Laguerre Geometry a~d Eten~ed L'~g~erre Geometry and their Realizations in the 
Different[able Manifolds ¢ Yokohama Mat'J. J. ,~ 9 (t952), 8 5 -  130. 

[11] - -  - - ,  Extended Affine Prinzipal ~ibre B~ndles. ¢ A_anali di 3[atematiea P u r a  e Ap- 
plioata. ~ Serie IV" - T o m o - L I V -  (1961), 85-97. 

[12] SoPI~US LIE - GEORG SC[-IEFFERS, Vorles~eagen i~ber cent[haiti[the Grnppen mit  geome- 
trischen and anderen Anwendungen. ,, Leipzig, ]3. G. Teubne r  ~>, {1893), 1-810. 

[t3] OTTO SCHREIER, Abstrakte ko~tiuuirliche G r u p p r n .  ¢ H a m b u r g e r  A b h a n d l u n g e n  ~, 
(1926). 

[14] - -  -- ,  Die Ve~vandschaft stetiger Gr~ppen im Grossen. ~ H a m b u r g e r  A.bhandlungen,~ 
5 (t927). 

[[5] E. C/kRT~kbT, Lr~ Galore#rio des Grottpes de Transformations. (~Lionvilles J o u r n a l  de 
.Mathdmatiques pures ed appliqueds~>~ VI ,  Fuse., (1927)~ 1-119. 

[16] L. POSTRIA~IS, Topological groups (t939). 
[17] L. v.~N DE~ WAERDZS, Vorlesut~gen i£ber kontinuirliche Gruppe~b (1959). 
[[8] G. BIRKtIOFF, Analytical groups. • Trans  Amer.  Math. See., 43 (t938). 
[19] P.  A. S~rTH, Foundation of Lie Groups. (, Ann .  of. Math.>>, 48 (19~7). 
['20] ANDR~ LICHNEROWiCZ, Gdomdtrie des Groupes de Transformations. Dunod  Par i s  (1958). 
[21] 2~. ~ O ~ E ,  On the holonomy group spaces. Memoirs  of the College of Science,  Univ .  

of Kyoto,  Ser. A, Vol. X X V I I I ,  Math. ~o  2 ([953), 16i-167. 
[22] - -  --,On some properties of trajectories of the group spaces. Memoirs of the College 

of Soienee~, Univ .  of Kyoto,  Se~'. A, Voh X V ~ [ [ ,  Math. 5T% 2 (1953), 169-178. 
[ 2 3 ] - - - ,  On cyclic points of the group spaces. Memoirs  of the College of Science, 

Un iv .  of Kyoto,  Ser. A, Vol. X X I X ,  ) la th .  ~o. ] (1955), 35-41. 
[24:] - -  - - ,  On the group-space of the continuous transformation group~vith a Riemannian 

metric. <(Memoirs of the College of Science, Un iv .  of Kyoto>>, Math. 57 ° . 1 (1956) 
2342 .  

[25] J.  K.  AgN, On the parameter group manifold, t K y u n g p e o k  Math. Jour.  >) ~rol. 2. 570. 2 
(1959), 39-i5.  

[ 2 6 ]  - -  - - ,  The Correspondences of the Fundamental  Frames on the Parameter Group Mani- 
folds. • K y u n p o o k  Math. J o u r . , ,  Vol. 3, 57o. 1 (1980), 3[-37.  

[27] O. Y. BARK, The Infinitesimal Transformations in the ~arameter Group Manifolds. 
t K y u n p o o k  Math 3-oar. ~ Vol. ~, N °. 1 (1981), 5-12. 

[28] G. E. B~ED0S, Some theorems on transformation groups. ¢ A_nn. of Math. ,), 67 (1958), 
10~-118. 

[29] A. M. GLEASO~, Spaces with a compact Lie group of transformations, tP roe .  Amer.  
Math. Soe.,~ 1 (1950), 3543 .  

[30] D. MONTGOMERY" AND IL ZlPPIN, Topological Transformation Groups. I .  ~ Ann .  of 
Math. ~>, 41 (1040), 778-79I. 

[31] - -  --,  Topological Transformation Groups. In terse iencc  Press  (1955). 

[32] T. KARUBE, The lo~al s~ructure of an orbit of  a transformation group, ~Proe. J-ap. 
A.cad.,,, 37 (1961)- 212-21~. 

[33] - -  - - ,  The Local Structure of an Orbit of a Transformation Group. <,Prec. J apan  
A c a d . . ,  37 (1961), 212-21~. 

[3~:] T. TAKASU, Duality in the Linear Connections in the Large. ,,The Tenso r ,  (1963) 
u n d e r  press. 


