DIMOSTRAZIONE. – L'ideale $q \cdot S$ è **P**-primario in S (ved. 175) di seguito a $[p \cap s] \cdot S = p$ (ved. 72 o 174). Esso individua pertanto (ved. 177) una figura **P**-primaria **Q** con **Q**(s) = $q \cdot S \cap s$.

Ogni $x \in \mathfrak{q} \cdot S$ è quoziente $\frac{q}{m}$ con $q \in \mathfrak{q}$, $m \in s$, $m \subset [\mathfrak{p} \cap s]$. Se di più $x \in s$. si conclude da $m \cdot x \subset \mathfrak{q}$, $m \subset [\mathfrak{p} \cap s]$ poichè \mathfrak{q} è $[\mathfrak{p} \cap s]$ -primario. Dunque $\mathfrak{q} \cdot S \cap s \subset \mathfrak{q} \subset \mathfrak{q} \cdot S \cap s$ e quindi $\mathfrak{Q}(s) = \mathfrak{q}$.

Se una figura a in V soddisfa inoltre a a(s) = q, si ha $a(S) = a(s) \cdot S = q \cdot S$ e perciò

$$\mathbf{a}(S') \subset \mathbf{a}(S) \cap S' = \mathbf{q} \cdot S \cap S' = \mathbf{Q}(S') \quad \text{se} \quad S' \subset S,$$
$$\mathbf{a}(S') \subset S' = \mathbf{Q}(S') \quad \text{se} \quad S' \subset S,$$

il che mostra $a \geq \mathbf{Q}$.

179. Una figura \mathbb{D} -primaria \mathbb{Q} è individuata da un qualsiasi suo ideale $\mathbb{Q}(s) \neq s$.

Sia $\mathbb{Q}(s') \neq s'$, cioè $s' \subset S$ e $\mathbb{Q}(s') = \mathbb{Q}(S) \cap s'$. La figura \mathbb{Q}' individuata da questo ideale $[\mathbb{P} \cap s']$ -primario (ved. 176) è \mathbb{P} -primaria (ved. 178) con $\mathbb{Q}'(S) = \mathbb{Q}(s') \cdot S = \mathbb{Q}(S)$, donde segue $\mathbb{Q}' = \mathbb{Q}$.

§ 3. Figura individuata da un suo ideale.

180. Da $s \in V(A)$, $S \in V(s)$ segue $S \in V(A)$.

Invero, ogni $x \in s$ è quoziente $\frac{a}{b}$ con $a, b \in A, b \subset p$ e quindi $b \subset p \cap s$ $\subset p$. Applicando l'osservazione 75, si trova A essere base di p.

181. Ogni ideale a_o di un singolo aspetto $s_o \in V$ individua una figura (a_o) in V definita da

$$(a_0)(s) = [a_0 \cap s] \cdot s$$

DIMOSTRAZIONE. – Dobbiamo verificare $[a_0 \cap s] \cdot S = [a_0 \cap S] \cdot S$ per $S \in V(s) \subset V$. Siccome $s \cap s_0$ è base di s (ved. 110) e quindi di S (ved. 180) ogni $a_0 \in a_0 \cap S$ è quoziente $a_0 = \frac{a}{b}$ con a, $b \in s \cap s_0$, $a = a_0 \cdot b \subset a_0 \cap s$, $b^{-1} \subset S$, il che mostra $a_0 \cap S \subset [a_0 \cap s] \cdot S$, mentre $[a_0 \cap s] \cdot S \subset [a_0 \cap S] \cdot S$ è chiaro da se.

182. La figura (q) individuata secondo 181 da un ideale [$\mathbf{p} \cap s$]-primario \mathbf{q} di $\mathbf{s} \in V$ coincide con la figura \mathbf{p} -primaria \mathbf{q} definita in 178.

DIMOSTRAZIONE. - I. Per $S' \subset S$ si ha (ved. 177 e 178) $\mathbb{Q}(S') = \mathfrak{q} \cdot S \cap S'$, $\mathbb{Q}(s) = \mathfrak{q} \cdot S \cap s = \mathfrak{q}$, $\mathbb{Q}(S') \cap s = \mathfrak{q} \cdot S \cap S' \cap s = \mathfrak{q} \cap S'$, sicchè (ved. 174)

$$\mathbb{Q}(S') = [\mathbb{Q}(S') \cap s] \cdot S' = [\mathfrak{q} \cap S'] \cdot S' = (\mathfrak{q})(S'),$$

perchè $S' \cap s$ è base di S'.

II. Per $S' \subset \mathbb{Z} S$ si deduce da $\mathfrak{P} \cap S' \subset \mathbb{Z} \mathfrak{P}'$ (ved. 112), che vi è $x \in \mathfrak{P} \cap S'$ non appartenente a \mathfrak{P}' . Scrivendo $x = \frac{a}{b}$ con a, $b \in S' \cap s$, $b \subset \mathbb{Z} \mathfrak{P}'$, anche $a = b \cdot x \subset \mathbb{P}'$, ma $a \in \mathfrak{P} \cap s$, poichè $b \in s \subset S$. Con L abbastanza grande avremo $a^L \subset \mathfrak{q} \cap S'$, pur essendo $a^L \subset \mathfrak{P}'$, donde segue $1 = a^L \cdot a^{-L} \subset [\mathfrak{q} \cap S'] \cdot S' = (\mathfrak{q})(S')$, cioè $(\mathfrak{q})(S') = S'$ come $\mathfrak{Q}(S') = S'$.

183. Se ciascun aspetto in una varieta primaria Vè no etheriano, si ha

$$a(s) = [a(s) \cap a(s')] \cdot s$$

per ogni figura a in V e s, s' qualunque \(\xi\) (ved. 110).

DIMOSTRAZIONE. - Siccome s' è noetheriano e primario, ogni divisore primo $\neq s'$ di $\mathfrak{A}(s')$ (ved. 91) individua una prospettiva $\in V(s') \subset V$. Sia

$$a(s') = \bigcap_{j} q_{j}$$

la decomposizione noetheriana di a(s') supposto +s', e designi p_i la prospettiva individuata dall'ideale primo corrispondente all'ideale primario q_i .

I. So $S_i \equiv \mid \supset s$, anche $\mathfrak{p} \equiv \mid \supset \mathfrak{p}_i \cap s$ (ved. 112), sicchè esiste $p_i \in \mathfrak{p}_i \cap s$, $p_i = \mid \supset \mathfrak{p}_i \mid \supset s$. Scrivendo, il che è lecito a causa di $s \in V(s \cap s')$, $p_i = \frac{a_i}{b_i}$ con a_i , $b_i \in s' \cap s$, $b_i \in \mathfrak{p}$, anche $a_i = b_i \cdot p_i \in \mathfrak{p}$, ma $\in \mathfrak{p}_i \cap s'$. Con L abbastanza grande sarà

$$x = (\prod_{S_i = \mid \supset s} a_i)^L \subset \bigcap_{S_i = \mid \supset s} \mathfrak{q}_i, \quad x \in \mathfrak{p}.$$

II. Se $S_k \supset s$, avremo $S_k \in V(s \cap s')$ (ved. 180) in conseguenza a $S_k \in V(s)$, $s \in V(s \cap s')$ (ved. 110). Allora (ved. 174)

$$[\mathfrak{A}(s) \cap s'] \cdot s \cdot S_k = \mathfrak{A}(s) \cdot S_k = \mathfrak{A}(S_k) = \mathfrak{A}(s') \cdot S_k \subset \mathfrak{q}_k \cdot S_k$$

e quindi

$$\mathfrak{A}(s) \cap s' \subset \mathfrak{q}_k \cdot \mathfrak{S}_k \cap s' = \mathfrak{q}_k,$$

essendo $q_k \cdot S_k \cap s'$ l'ideale in s' della figura primaria individuata da q_k (ved. 178).

Da I e II segue $x \cdot [\mathfrak{A}(s) \cap s'] \subset \bigcap_{S_i = \supset s} \mathfrak{q}_i \cap \mathfrak{q}_k = \mathfrak{A}(s')$ o piuttosto

 $x \cdot [\mathfrak{A}(s) \cap s'] \subset \mathfrak{A}(s') \cap \mathfrak{A}(s)$ e pertanto $\mathfrak{A}(s) \cap s' \subset [\mathfrak{A}(s') \cap \mathfrak{A}(s)] \cdot s$, il che mostra

$$\mathfrak{a}(s) = [\mathfrak{a}(s) \cap s'] \cdot s \subset [\mathfrak{a}(s) \cap \mathfrak{a}(s')] \cdot s \subset \mathfrak{a}(s).$$

Nel caso a(s') = s' si osservi $a(s) = [a(s) \cap s'] \cdot s$ (ved. 174).

184. Se ciascun aspelto in una varietà primaria V è noetheriano, la figura (\mathfrak{A}_0) individuata da un suo ideale $(\mathfrak{A}_0)(\mathfrak{s}_0) = \mathfrak{A}_0$ è minima fra tutte le figure \mathfrak{A} con $\mathfrak{A}(\mathfrak{s}_0) = \mathfrak{A}_0$.

Invero, tenuto conto del teorema precedente, si conclude da $a(s_0) = a_0$ che $a(s) = [a(s_0) \cap a(s)] \cdot s \subset [a_0 \cap s] \cdot s = (a_0)(s)$ per ogni $s \in V$, il che significa $a \geq (a_0)$.

185. Se ciascun aspetto in una varietà $primaria\ V$ è no et h eriano, per le figure (a_0) , (b_0) individuate da ideali a_0 , b_0 di un medesimo aspetto $s_0 \in V$ valgono le relazioni

$$(\mathfrak{A}_0) \geq (\mathfrak{b}_0), \quad \text{se} \quad \mathfrak{A}_0 \subset \mathfrak{b}_0 \,, \quad \text{e} \quad (\mathfrak{A}_0) \cap (\mathfrak{b}_0) = (\mathfrak{A}_0 \cap \mathfrak{b}_0) \quad \text{sempre.}$$

DIMOSTRAZIONE. - I. Da $a_0 \subset b_0$ segue (ved. 181)

$$(\mathfrak{a}_0)(s) = [\mathfrak{a}_0 \cap s] \cdot s \subset [\mathfrak{b}_0 \cap s] \cdot s = (\mathfrak{b}_0)(s)$$

eioè $(a_0) \geq (b_0)$.

II. – Siano a_0 . b_0 ideali qualunque di s_0 . Applicando il risultato I si trova $(a_0 \cap b_0) \geq (a_0)$, $(a_0 \cap b_0) \geq (b_0)$ e pertanto $(a_0 \cap b_0) \geq (a_0) \cap (b_0)$. Ma $(a_0 \cap b_0)(s_0) = a_0 \cap b_0 = (a_0)(s_0) \cap (b_0)(s_0)$ mostra $(a_0 \cap b_0) \leq (a_0) \cap (b_0)$, poichè $(a_0 \cap b_0)$ è minima fra le figure aventi in s_0 lo stesso ideale (ved. 184).

Osserveremo che la conclusione:

$$da \ \mathfrak{A}_0 \subset \mathfrak{b}_0 \ seque \ (\mathfrak{A}_0) \geq (\mathfrak{b}_0)$$

è indipendente da qualsiasi ipotesi sulla varietà.

§ 4. Prospettive essenziali di una figura.

186. Ogni prospettiva $p \in V$ in cui una data figura a presenta un suo aspetto (ved. 169), sara detta prospettiva di a. Le altre prospettive, cioè quelle a con a(s) = s, non sono prospettive di a.

La figura prima (p) individuata (ved. 178 e 182) dall'origine p di una prospettiva p di a si chiamerà figura prima di a. Tale figura (p) è contenuta in a, poichè (p)(s') = $p \cap s' \supset a(s) \cap s' \supset a(s')$, se $s' \subset s$, e (p)(s') = $s' \supset a(s')$ se $s' \subset s$. Viceversa, se una figura prima (p) è contenuta in a, l'ideale $p = (p)(s) \supset a(s)$ è origine di una prospettiva p di a. Le figure prime (p) di una figura a sono dunque caratterizzate da $a \geq (p)$.