Da $\[\] _0 \cap A = \[\] _0 \cap A$ segue $S_0 \subset S$ e perciò (ved. 65) $\[\] _0 \cap S_0 \subset \[\] _0$, perché l'altra possibilità ammessa in 65, cioè $S_0 \subset \[\] _0$, darebbe $A = S_0 \cap A \subset \[\] _0 \cap A \neq A$. Confrontando questo risultato con $\[\] _0 = \[\] _0 \cap A \] \cdot S_0 \subset \[\] _0 \cap S_0$ si ottengono le relazioni $\[\] _0 \cap S_0 = \[\] _0$, $S \supset S_0$ qualificanti S come estensione di S_0 . $\[\] _0 \cap S_0 \cap S_0$

74. Ogni anello A intermedio fra un aspetto s e una estensione S di s è base di una sola prospettiva \mathbb{D}_o intermedia fra \mathfrak{p} e \mathbb{D} nel senso, che \mathbb{D}_o sia estensione di \mathbb{D}_o . \mathbb{D}_o è individuata dall'ideale $\mathbb{D} \cap A$.

DIMOSTRAZIONE. - Da $A \supset s$ e $\mathbb{D} \cap s = \mathfrak{p} + s$ segue $A \subset \mathbb{D}$, cosicché esiste (ved. 73) \mathfrak{D}_0 di base A, unica in quanto estensibile a \mathfrak{D} . Allora $\mathfrak{D}_0 \cap A = \mathfrak{D} \cap A$ induce $\mathfrak{D}_0 \cap s = \mathfrak{D} \cap s = \mathfrak{p}$, cioè che \mathfrak{D}_0 è estensione di \mathfrak{p} .

75. Se $A_0 \subset A$ sono sottoanelli di un aspetto S tali che ogni elemento di A sia quoziente $\frac{a}{b}$ con $a, b \in A_0$, $b \subset \vdash \mathbb{D}$, mentre A è base di \mathbb{D} , allora l'anello A_0 è anche esso base di \mathbb{D} .

DIMOSTRAZIONE. – Ogni $x \in S$ è quoziente $x = \frac{a}{b}$ con $a, b \in A, b \subset \mathbb{D}$. Siano $a = \frac{a_0'}{a_0}, b = \frac{b_0'}{b_0}$ con $a_0, a_0', b_0, b_0' \in A_0, a_0, b_0 \subset \mathbb{D}$. Allora $a_0 \cdot b_0' = a_0 \cdot b \cdot b_0$ non appartiene all'origine \mathbb{D} , essendo questa ideale primo. Dunque $x = \frac{a_0' \cdot b_0}{a_0 \cdot b_0'}$ con $a_0' \cdot b_0, a_0 \cdot b_0' \in A_0, a_0 \cdot b_0' \subset \mathbb{D}$, e. d. d.

§ 3. Estensione di una prospettiva con dati elementi.

76. Estendere una prospettiva \mathfrak{p} (un aspetto s) con dati elementi x, y, ... di un anello A contenente s, significa: estendere \mathfrak{p} (risp. s) in modo tale, che il sottoanello [s, x, y, ...] di A generato da s, x, y, ... sia base dell'estensione.

Per poter affermare che una prospettiva $\mathfrak p$ può essere estesa con dati elementi x, y, ... basta constatare l'esistenza di una estensione S di s contenente gli elementi x, y, Infatti tale S conterrà l'anello A = [s, x, y, ...], che individua secondo 74, una estensione di s con x, y,

77. Se la prospettiva \mathbf{p} ' è estensione della prospettiva \mathbf{p} con l'insieme E'. mentre \mathbf{p} è estensione di una prospettiva \mathbf{p} con l'insieme E, allora \mathbf{p} ' è estensione di \mathbf{p} con $E \cup E'$.

DIMOSTRAZIONE. - L'anello [S, E'], base di D', è la totalità delle somme

(*)
$$a + \sum e' \cdot b \quad \text{con} \quad a, \ b \in S, \quad e' \in [E'].$$

78. Non è mai possibile estendere una prospettiva \mathfrak{p} con l'inverso x^{-1} di un elemento dell'origine \mathfrak{p} di \mathfrak{p} .

Infatti, se fosse S una estensione di s con x^{-1} , si avrebbe, designando con 1 l'elemento uno comune (ved. 70) a s e S.

$$1 = x \cdot x^{-1} \subset \mathfrak{p} \cdot S \subset \mathfrak{p},$$

il che è impossibile.

79. Perché una prospettiva $\mathfrak p$ possa essere estesa con dati elementi x, y, ... è necessario e sufficiente, che l'elemento uno di s sia pure elemento uno di A = [s, x, y, ...] e che l'ideale $\mathfrak p \cdot A + A' \cdot A$ generato in A dall'origine $\mathfrak p$ e dall'insieme A' degli elementi di A inattivi in A sia diverso da A.

LIMOSTRAZIONE. – I. Se \mathbb{P} estende \mathfrak{p} con x, y, ..., l'elemento uno di $S \supset A$ coincide (ved. 70) con quello di s. Gl'insiemi \mathfrak{p} e A' generano dunque in A l'ideale $\mathfrak{p} \cdot A + A' \cdot A$, il quale a causa di $\mathfrak{p} = \mathbb{P} \cap s$, $A' \subset \mathbb{P}$ (ved. 69) è contenuto in \mathbb{P} e pertanto è diverso da A.

II. Supponiamo, viceversa, che l'elemento uno di s sia l'elemento 1 di A e sia anche $\mathfrak{p} \cdot A + A' \cdot A \neq A$.

Un teorema generale di Krull (fondato sul postulato di selezione ed immediato, se si sostituisce a quel postulato il lemma di Zorn) insegna, che ogni ideale diverso dall'anello totale è contenuto in un ideale primo altresi diverso dall'anello totale. Esiste dunque in A un ideale primo $c \neq A$ contenente $\mathfrak{p} \cdot A + A' \cdot A \supset A'$. Soddisfacendo c alle premesse del teorema 72, si ottiene una prospettiva \mathfrak{p} di base A individuata da $\mathfrak{p} \cap A = c$ cosieché $\mathfrak{p} \cap s = c \cap s \supset \mathfrak{p}$ mentre si ha $\mathfrak{p} \cap s \subset \mathfrak{p}$ in conseguenza di $s \subset S$ (ved. 65), poiché $s \subset \mathfrak{p}$ si esclude, essendo $1 \in s$ anche elemento uno di $A \subset S$. Abbiamo quindi $\mathfrak{p} \cap s = \mathfrak{p}$, $S \supset s$, e ciò mostra che la prospettiva \mathfrak{p} di base A = [s, x, y, ...] è estensione di \mathfrak{p} .

80. Il teorema precedente si semplifica nel caso di anelli primari caratterizzati dal fatto, che in essi tutti gli elementi inattivi sono infinitesimali (ved. 2).

Perchè una prospettiva \mathfrak{p} possa essere estesa con dati elementi x, y, ... di un anello primario contenente s, è necessario e sufficiente, che l'ideale $\mathfrak{p} \cdot A$ generato dall'origine \mathfrak{p} in A = [s, x, y, ...] sia diverso da A.

DIMOSTRAZIONE. - I. La condizione è necessaria in quanto contenuta in quella del teorema precedente.

II. Per mostrare la sua sufficienza osserviamo anzitutto che l'elemento uno e di s è anche elemento uno di A. Infatti, per z qualunque di A segue da $e \cdot (z - e \cdot z) = 0$ che $z - e \cdot z = 0$, giacché $e = e^m$, in quanto non infinitesimale, è attivo in A.

Dall'ipotesi $\mathfrak{p} \cdot A \neq A$ deduciamo come in 79 l'esistenza di un ideale primo $\mathfrak{c} \neq A$ contenente $\mathfrak{p} \cdot A \supset \mathfrak{p}$. Soddisfacendo ogni elemento i di A inattivo in A ad una equazione $i^m = 0$, tale i sarà contenuto in \mathfrak{c} . Di nuovo sono verificate le premesse del teorema 72, il quale mostra che esiste una prospettiva \mathfrak{p} di base A con $\mathfrak{p} \cap A = \mathfrak{c} \supset \mathfrak{p}$ e quindi $\mathfrak{p} \cap s \supset \mathfrak{p}$, mentre $\mathfrak{p} \cap s \subset \mathfrak{p}$ si verifica come alla fine della dimostrazione precedente.

§ 4. Integrità relativa.

81. Ricordiamo che la totalità degli elementi infinitesimali di un anello commutativo A è un ideale chiamato il radicale di A.

È chiaro che fra il radicale v_0 di un sottoanello A_0 di un anello commutativo A e quello v di A stesso sussiste la relazione

$$\mathbf{v} \cap A_0 = \mathbf{v}_0.$$

Dal fatto evidente che il radicale di un anello primario è ideale primo deduciamo subito che ogni oggetto primario è aspetto presentato da una prospettiva la cui origine è il radicale dell'oggetto. Infatti, ogni elemento x di un oggetto primario R non appartenente al radicale di R ammette, essendo esso attivo in R, un inverso $x^{-1} \in R$. Verificate le premesse del teorema 68, si deduce subito la osservazione suddetta.

Tenendo conto della relazione (*) si può dire ormai che ogni oggetto primario, in quanto aspetto, è estensione di ogni suo sotto-oggetto.

Le considerazioni seguenti che mirano ad inquadrare la nozione aritmetica di « integrità » nel prospettivismo, si limitano al caso di anelli primari. Giova ricordare, a proposito, che nel caso di tali anelli A_0 , A si può sempre concludere da $A_0 \subset A$ il fatto $(A_0) \subset (A)$ per gli oggetti corrispondenti (A_0) , (A).

82. DEFINIZIONE. – Un elemento x di un'oggetto primario R contenente l'anello A è detto integro in R sopra A allora e soltanto allora che ogni aspetto intermedio fra A ed R possa essere esteso con x.