Transformations of relations between numerical functions.

By E. T, Beric (at Seattle).

1. On several occasions Cesino (') considered arithmetical identities between functions

$$
f\left[\varepsilon_{\alpha}(x)\right], \quad g\left[\varepsilon_{\beta}(x)\right], \ldots \quad(\alpha, \beta, \ldots=1,2,3, \ldots)
$$

in which $\varepsilon_{\alpha}(x), \varepsilon_{\beta}(x), \ldots$ are single valued fimctions of x, and $f(y), g(y), \ldots$ single valued functions of ℓ, and where, moreover, for every pair of integers $\alpha, \beta>0$,

$$
\begin{equation*}
\varepsilon_{\chi}\left[\varepsilon_{\beta}(x)\right]=\varepsilon_{x \beta}(x)=\varepsilon_{\beta}\left[\varepsilon_{\alpha}(x)\right] . \tag{1}
\end{equation*}
$$

If in (1) we put $\beta=1$, we see that $\varepsilon_{1}(x)=x$, and evidently

$$
\begin{equation*}
\varepsilon_{\chi}(x), \quad x=1,2,3, \ldots \tag{2}
\end{equation*}
$$

form an abelian semi-group $\left({ }^{2}\right)$, whose order may be finite or infinite.
It is noted by Cesiro that obviously it is sufficient, if the $\varepsilon_{x}(x)$ are to form an abelian semi-group, to take for α those integers >0 which are prime to a given integer n. The case above is that in which $n=1$. He considered also $\left(^{3}\right)$ enumerative functions $Q(x)$, such that $Q(x)=1$ or 0 according as the integer $x>0$ is or is not a member of a given class, and in particular he discusses the case for which

$$
\begin{equation*}
\Omega(x) \mathrm{Q}(y)=\mathbf{Q}(x y) \tag{3}
\end{equation*}
$$

viz., that in which the product of two integers of a given class is contained in that class, and the product of two integers not both in the class is not a

[^0]member of the class. Puting $x=1$ we see that $Q(1)=1$. From these considerations Cesiro obtains a remakkable inversion of series (${ }^{(}$) * le plus géneral que l'on comaisse *, and the points out a la possibilité de remplacer le système des nombres entiers par un groupe fermé quelconque, détaché du même système. Cette possibilité a été implicitement recounue par Möbus, qui s'est occupé, il y a longtemps, (Crelle's Journul, vol. 9, p. 105), de l'inversion des séries dans un cas particulier".

I will show that the inversions of Cesiro and Mobrus are abstractly identical, so that, in particular either can be immediately inferred from the other. Incidentally in $\S 2$ there is obtained and stated an extremely general theorem of reciprocity, of which the Cesaro-Möbius theorem is the simplest instance.
2. Let n denote an integer >0. Since $\varepsilon_{n}(x)$ is a single valued function of x for $n=1,2,3, \ldots$, and since $f(y)$ is a single valued function of y, it follows that $f\left[\varepsilon_{n}(x)\right]$ takes a single definite value for each m. A function $\psi(y)$ is called numerical if $\psi(y)$ takes a single definite value for each integer value of $y>0$. We can therefore consider $f\left[s_{n}(x)\right]$ as a numerical function of n, and to emphasize that n rather than x is the variable under attention, we shall write

$$
\left.f \mid \varepsilon_{n}(x)\right] \equiv f_{n}(x) \equiv f_{x}(n) .
$$

I have fully discussed the consequences of this point of view elsewhere (${ }^{2}$).
Here it is sufficient to note the following: $f_{x}(n)$ is a particular instance of $\psi(n)$. Hence, if we have established a specific relation between arbitrary numerical functions $f(n), g(n), h(n), \ldots$, it follows that the relation remains valid when f, g, h, \ldots are replaced by $f_{x}, g_{x}, h_{x}, \ldots$ respectively.

Conversely, if in a specific relation between $f_{x}(n), g_{x}(n), h_{x}(n), \ldots$ we take the special $\varepsilon_{n}(x)$ such that $\varepsilon_{n}(x) \equiv n x$, as obviously is permissible by (1), and if in the result we replace x by 1 , we obtain a relation between the numerical functions $f(n), g(n), h(n), \ldots$, and this relation can be written down at once from the original by suppressing the suffix x in $f_{x}, g_{x}, h_{x}, \ldots$.

Hence either of the relations between f, g, h, \ldots or $f_{x}, g_{x}, h_{x}, \ldots$ implies the other, and the second can be written down from the first by supplying the suffix x, the first from the second by dropping the suffix x.
(1) Amaali, loc. cit., p. 155, (12), (13).
$\left({ }^{2}\right)$ Butletin of the American Mathematical Society, Transactions (of the same) vol. 25 , pp. 145-154.

From the defintions it is evident that $\Omega(y)$ is a particular instance of a numerical function of y. Hence if $f(y)$ is a numerical function of y, so also is $\Omega(y) f(y)$. Note that $Q(y) f(y)$ is the ordinary algebraic product of $\Omega(y)$ and $f(y)$. For n an arbitrary integer >0 it is sometimes convenient to write symbolically

$$
\Omega(n) f(n) \equiv(\Omega /)(n) \equiv(\Omega /)
$$

the parenthesis enclosing ($Q f$) being used to distinguish this type of product from Ωf in $\$ 3$ which does not symbolize the ordinary algebraic product. As before we write

$$
Q\left[\varepsilon_{n}(x) \mid f\left[\varepsilon_{n}(x)\right] \equiv \Omega_{x}(n) f_{x}(n) \equiv\left(\Omega_{x} f x\right)\right.
$$

and note that, if $f(n), g(n)$ are arbitrary numerical functions of n, then a relation involving $f(n)$ remains valid when for f is substituted ($\Omega_{x} g_{x}$), and conversely.

From the foregoing we now have the following general statement: A relation between arbitrary numerical functions

$$
\begin{equation*}
f(n), \quad g(n), \quad h(n), \ldots \tag{3}
\end{equation*}
$$

remains valid when for these functions are substituled respecticely

$$
\begin{equation*}
\left(\Omega_{x}^{(a)} f_{x}\right)(n), \quad\left(\mathbf{\Omega}_{y}^{(b)} g_{y}\right)(n), \quad\left(\mathbf{\Omega}_{z}^{(c)} h_{z}\right)(n), \ldots \tag{4}
\end{equation*}
$$

where the superscripts (a), (b), (c),... refer to any classes $\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots$ of integers respectively, and where the variables $\mathrm{x}, \mathrm{y}, 7, \ldots$ are not necessarily independent, nor the classes $\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots$ necessarily mulually exclusive, nor the abelian semi-groups

$$
e_{\alpha}(x), \quad e_{\beta}(y), \quad e_{\gamma}(z), \ldots \quad(\alpha, \beta, \gamma, \ldots=1,2,3, \ldots)
$$

necessarily distinct.
To pass from the relation for (3) to that for (4) we replace in the former f by $Q_{x}^{(a)} f_{x}, g$ by $Q_{y}^{(b)} g_{y}, h$ by $Q_{z}^{(c)} h_{z}, \ldots ;$ to pass from the relation for (4) to that for (3) we take

$$
e_{\alpha}(x)=\alpha x, \quad e_{\beta}(y)=\beta y, \ldots \quad(\alpha, \beta, \ldots=1,2,3, \ldots)
$$

$A=B=C=\ldots=$ the class of all integers >0, and in the result so obtained put

$$
x=y=z=\ldots=1
$$

3. Let $\eta(n)=1$ or 0 according as the integer $n>1$, and write symbolically

$$
\searrow_{n} f(d) g(\delta)=f g
$$

the summation extending to all pairs (d, δ) of integers >0 such that $n=d \delta$. Then if $f(n)$ is an arbitrary numerical function, there exists a mique numerical function $f^{\prime}(n)$, called the reciprocal of $f(n)$, such that $f f^{\prime}=\eta$, or in full,

$$
\Sigma_{n} f(d) f^{\prime}(\delta)=\eta(n) .
$$

Elsewhere $\left[\right.$ have given the explicit form of f^{\prime} in terms of f, and have developed a simple algebria for determining the reduced form of f^{\prime} when f is a specific function (${ }^{1}$).

Note that if g is any numerical function, $\eta g=g$, so that in this symbolic calculus of numerical functions, η has the multiplicative properties of unity in common algebra or arithmetic, and hence it is called the unit function.
4. Assuming with Cestro that all of the infinite processes concerned are significant, we shall now examine his most general inversion in the light of $\S 2$. For j an arbitrary integer >0, write

$$
\begin{equation*}
F(j) \equiv \sum_{i=1}^{\sum} h(i) f(i j) \tag{b}
\end{equation*}
$$

and let f, g, h denote numerical functions. Note that (5) is the definition merely of $F(j)$. Immediately by $\S 3$ we have

$$
\sum_{j=1}^{\sum} g(j) F(j)=\sum_{j=1}^{ \pm} h g(j) f(j)
$$

and therefore, if in particular $h g=\eta$, we get $g \equiv h^{\prime}$, the reciprocal of h, and obtain

$$
\begin{equation*}
f(1)=\sum_{j=1} h^{\prime}(j) F(j) \tag{6}
\end{equation*}
$$

which can be considered as an inversion of (5). We have shown that (0) implies (6), and will prove next that this proposition implies Cesaro's most general inversion.
${ }^{\left({ }^{1}\right)}$ Tohoku Mathematieal Journal, vol. 17, pp. 221-231; Trans. American Math. Soc., loc. cit..

In (b) take $f \equiv f_{x}$, and define I_{x} by

$$
\begin{equation*}
F_{x}(j)=\Sigma_{i=1} h(i) f_{x}(i j) \tag{7}
\end{equation*}
$$

which is a paticulto instance of (5), and which, therefore, by the proposition just proved, implies

$$
\begin{equation*}
f_{x}(1)=\sum_{j=1} h^{\prime}(j) F(j) \tag{8}
\end{equation*}
$$

so that (7), (8) constitute a particular instance of the inversion (5), (6). We note that (7) is implied by its apparently special case $j=1$, for

$$
\begin{equation*}
F_{x}(1) \equiv \sum_{i=1}^{\sum} h(i) f_{x}(i) \tag{9}
\end{equation*}
$$

on transforming to the other notation, is

$$
F(x) \equiv \sum_{i=1} h(i) f\left[e_{i}(x)\right]
$$

and if in this we replace x by $e_{j}(x)$ and transform back to the first notation, we obtain (7). Hence (9) implies (8).

By a further specialization we reach Cesano's inversion. Let $\Omega^{(u)}$ refer to $u_{i}(i=1,2,3, \ldots)$, and be such that $\Omega^{(u)}(m) \Omega^{(u)}(n)=\Omega^{(u)}(m n)$. Take in (7) for $h(i)$ the particular function $Q^{(a)}(i) h(i)$. Then the reciprocal function is $Q^{(u)}(i) h^{\prime}(i)$, where, as before, h, h^{\prime} are reciprocals. For we have

$$
\Sigma_{n} \mathbf{Q}^{(u)}(d) h(d) \mathbf{Q}^{(u)}(\delta) h^{\prime}(\delta)=\Sigma_{n} \Omega^{(u)}(d \delta) h(d) h^{\prime}(\delta)=\mathbf{Q}^{(u)}(n) \eta(n)
$$

and hence, since $\eta(n)$ is the unit function, the value becomes $\Omega^{(u)}(1)=1$, or 0 , according as $n=1$, or $n>1$. As a special case, then, of the result just proved that (9) implies (8), we have now shown that
which, transformed to the other notation,

$$
F_{x}(1) \equiv F(x), \quad f_{x}(i) \equiv f\left[e_{i}(x)\right], \quad f_{x}(1) \equiv f(x), \quad F_{x}(j) \equiv F\left[e_{j}(x)\right]
$$

is Cesíro's most general inversion, with $h h^{\prime}=\eta^{\prime}$ and $\Omega^{(w)}(m) \Omega^{(w)}(n)=\mathbf{Q}^{(u)}(m m)$.
We have shown therefore that this most general inversion is implied by its apparently special case (5), (6).

To show next that the inversion (5), (6) is implied by (10), we replace x by $e_{j}(x)$ in the first of (10), take $u_{i}=i(i=1,2,3,),. \Omega(i)=i, e_{2}(x)=i x$, and in the result put $x=1$.

We have proved then that each pair of inversions (5), (6) and (10) implies the other; that is, the pairs are equivalent.
5. The purpose of such transformations as we have discussed in $\S 2$ and illustrated in $\$ 4$, is to throw arithmetical identities into more suggestive forms. For example, taking $u_{i}=u(i=1,2, \ldots)$ where the u_{i} are prime to a given integer n, and choosing for $f_{x}(i)$ the function $g_{x}(i) \lambda(i)$, where g_{x} is an arbitrary numerical function, and $\lambda(i)=1$ or 0 according as $i<n$ or $i>n$, we transform a specific identity involving n into another involving only the integers not greater than n and prime to n.

[^0]: (1) $^{(1)}$ Annali di Matematica pura ed applicatt, serie 2^{2}, vol. 13, pu. 235-351: reprinted in Lxcursions arithmétiques à l l infini, pp. 10t-117, Paris, 1885; also elsewhere, cf. references in Drekson's: History of the Theory of Numbers, vol. I (Washington, D. C., 1919).
 $\left.{ }^{(2}\right)$ It is inexact to say that the functions (2) form an abelian group. Thus, for example, if x_{0} is prime, $z_{x}(x)$ has no inverse in the set (2). Cusàro, (Annali, vol. 14, p. 155), calls (2) a groupe ferme; the nomenclature here employed is in accoriance with modern usage. Likemise for ('msìno's Q.
 ${ }^{(3)}$ Mémoires de l'Acadomie de Belgique, 6 février 1886 ; A wheli, vol. 14, pp. 141 et seq.

