Semigroup Forum Vol. 6 (1973), 373.

EDITORIAL NOTE

Editorial Note - concerning the paper

Carruth, J. H., and C. E. Clark, Concerning restrictions of Green's X equivalence, Semigroup Forum 5(1972), 186-188.

The authors ask (Question 2) the following question: "If S is a compact semigroup on which \mathcal{H}_S is a congruence and and T is a closed subsemigroup such that T contains each subgroup (\mathcal{H} -class) which it meets, must \mathcal{H}_T be a congruence?"

The following example shows that the answer to the question is negative.

Let $S_0 = SO(3) \times H* \times \{0,1\}$, and let S_1 be the subsemigroup $S_1 = SO(3) \times [1,\infty] \times \{1\} \cup G \times H \times \{1\} \cup SO(3) \times H* \times \{0\}$; where G is the circle subgroup of SO(3) given by

$$G = \left\{ \begin{pmatrix} \cos t & \sin t & 0\\ \sin -t & \cos t & 0\\ 0 & 0 & 1 \end{pmatrix} = t \in \mathbb{R} \right\}.$$

Let R be the equivalence relation on S_1 which identifies the points (g,t,0) and (g,t,1) for $t \ge 1$, and let $S = S_1/R$. Now clearly \mathcal{H}_S is a congruence relation on S since \mathcal{H} -classes are orbits (=translations) of G X {0} X {1} for points (h,t,1), $h \in G$, t < 1, and otherwise are orbits (= translations) of SO(3) X {0} X {0}. Let T be the subsemigroup determined by SO(3) X [1, ∞] X {0,1} \cup G X H X {1} However, \mathcal{H}_T is not a congruence on T, since, for t = 1, \mathcal{R} -classes are left translates of G X {0} X {1} and \mathcal{L} -classes are right translates. Since G is not normal in SO(3), these translates do not coincide.

© 1973 by Springer-Verlag New York Inc.