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Anderson's dissertation, written under A.D. Wallace 

at Tulane in 1956, studied topological lattices from 

the standpoint of topological algebra. Thus, he began 

with a lattice already equipped with any compatible 

topology rather than a lattice with an instrinsic to- 

pology. 

One of his most important results in lattice theory 

was the following: 

Theorem. A locall Y compact, connected to~olo$ical lattice 

i_~s locally convex and a locally convex, t0pological lat- 
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rice is locally connected ([I] and [2]). 

Continuous homomorphisms of lattices were studied 

in [5]. With minor modifications one has the following. 

Theorem. If L is a distributive topological lattice 

of finite breadth then L has enough homomorphisms into 

1-the unit interval. 

In these early years, Anderson's main interest was 

locally compact connected lattices. The next theorem 

combines several results. 

mation of a result from 

authored with L. E. Ward. 

The third part is an amalga- 

[4] with one from [8], co- 

Theo=gm. Let L b.._e a_a!ocally compact connected top- 

olo~ical lattice. 

(I) If dim L = i, then L is a chain [i]. 

(2) If L is planar, then it is simply connected 

and distributive [2]. 

(3) If L is distributive, then its breadth is 

bounded by its codimension. 

Subsequently, planar lattices were further studied by 

Clark and Eberhart [33]. Lawson, [38], showed that 

breadth and codimension were equal for locally compact 

connected lattices. Baker and Stralka, [30], showed 

that every compact and every locally compact connected 

distributive lattice of finite breadth n could be 

embedded in a product of n compact chains. Further 

results are given in [41]. 

Wallace had shown that the centre of a compact 

lattice is peripheral and totally disconnected. A 

contribution of Anderson's in this area is the following. 
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Theorem. If L i__~s~ compact connected distributive 

lattice with dim L ~ n, then card(Centre > ~ 2 n- 2. 

Seeking to characterize I n by its lattice prop- 

erties he obtained the following rather technical result: 

Theorem. Let L be a locally compact connected separable 

metric distributive lattice with 0 and i. Suppose 

that the centre of the sublattices b V(C A L) contains 

no more elements than the centre of a V L whenever 

a ~ b ~ c. Then~ if the centre of L is finite, L is 
n 

isomorphic with I for some n. 

Further investigations along the lines of the last 

two results were done by Choe in [31] and [32]. 

As its title bluntly states, [9] is a study of 

homomorphisms and dimension. There were several starting 

points for this theory; an example of a dimension raising 

homomorphism due to Koch, the well known fact that a 

locally compact group has no dimension raising homo- 

morphisms, and an earlier result that a compact connected 

one dimensional locally connected monoid has no dimension 

raising homomorphisms. 

A semigroup is termed n-stable if some homomorphism 

can raise its dimension by n but none can raise it by 

k > n. The 0-stable semigroups are called stable. 

Certain classes of compact semigroups are shown 

to be stable. Others are found to exhibit stability 

with respect to special sorts of homomorphisms. In 

particular, a compact connected lattice admits no di- 

mension raising homomorphism onto a finite dimensional 

lattice. (After this last result, Anderson was never 
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again to write in lattice theory.) 

Later, [39], Lawson was to establish the dimen- 

sional stability of compact connected locally connected 

semi-lattices. An appropriate notion of co-stability 

was later formulated by Lau, [37]. 

[i0]; [ii] and [13] begin a systematic invest- 

igation of the Green equivalences in a compact semigroup. 

The Sch~tzenberger groups, the nature of S/U, fiberings 

of parts of S over an B-class, minimal idempotents, 

fiberings of ~ by ~ and so forth are studied. Details 

of this theory and its present r~le are given in [34]. 

Further developments have justified this emphas~s on 

these decompositions. 

[12] studied the accessibility of an orbit of a 

compact group operating on a continuum. This was moti- 

vated by the position of H I in a compact connected 

monoid. The condition that assures accessibility, 

namely the 1-semi-local connectedness of the hyperspace 

at the orbit, is taken from the behavior of H I . Ap- 

parently, it remains unknown if this last condition is 

required. 

[17] is, in a way, dual to [9], [i0] and [13]. 

Here, certain dimension lowering homomorphisms are con- 

sidered. Specifically, homomorphisms onto a thread are 

studied along with variants of cross-sections to light 

open mappings. 

The problem of which semigroups can be found in 

compact semigroups is considered in [22] after several 

preliminary papers. The problem is viewed in terms of 

the Bohr compactification, which is perhaps most 
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appropriate. Completely simple semigroups which are to 

be found in compact semigroups are characterized in 

terms of a rather technical condition which, however, 

is quite appropriate for the setting. (This is the 

so-called condition of Frolik.) A substantial part of 

this work is a collection of examples which indicates 

numerous questions of possible interest. Another item 

of interest is the construction of a non-stable ~-trivial 

simple semigroup in any compact connected non abelian 

group. This area has as yet not provoked the same de- 

gree of interest as the earlier papers. 

[19] deals with re-constructing a semigroup S 

from S/~, the Sch~tzenberger groups and the homomor- 

phisms induced on certain subgroups by left and right 

multiplication. If ~ is a congruence and has an al- 

gebraic cross section this can be done in a very clean 

manner. Even in the general case some of this can be 

recovered using endomorphisms on a partial group. 

[23] and [14] are to some extent derivitives of 

[22]. The first concerns the Van der Waerden property ; 

each algebraic automorphism is continuous. The second 

describes finite dimensional connected group compacti- 

fications. (Lawson has reported that a compact con- 

nected locally connected semi-lattice has the Van der 

Waerden property.) 

[25] and [26] do the centralizer conjecture when 

the orbit space of H I is one dimensional or planar. 

The starting point for [27] is the result, given 

in [29], that an~-class of a stable semigroup is the 

class of some (well determined) congruence. It is shown 
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that an Y-class in any profinite semigroup is the class 

of a closed congruence. It follows that an appropriate 

~-class formulation of a result of Rhodes [40] on 

factoring homomorphisms on finite semigroups holds for 

profinite semigroups. 

Finally, [28] establishes dim S - dim H I is an 

upper bound for the dimension of an algebraic irreducible 

semigroup near the identity. 
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