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1. Introduction 

In [5] Diffie and Hellman described a novel scheme by which two individuals A 
and B could exchange a secret cryptographic key. This system had the advantage 
that all transmissions could be made over a public channel, and yet at the termina- 
tion of this process only A and B would be in possession of the secret key. 

Briefly, the idea is the following: 

(i) A and B agree on a large q, where Fq is some finite field containing q elements; 
and some fixed primitive element g of Fq. Both q and g can be made public. 

(ii) A selects an integer x at random and transmits b = g x (b e Fq) to B. 
(iii) B selects an integer y at random and transmits c = gY (c ~ Fq) to A. 
(iv) A determines k = c~; B determines k = b y (k ~ Fq). k is then used as the secret 

key. 

An individual tapping the line between A and B would know g, p, b, c, but would 
not know x or y. If he could determine x from knowledge of g and b and the fact 
that b = gX, then he could easily compute k. We call the problem of determining 
this x, given b and g, the discrete logarithm problem. 

The values most frequently recommended for q are either 2" or a large prime p. 
In his lengthy survey Odlyzko [ 15] suggests that a greater level of security is possible 
in the latter of these two possibilities. 
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Recently, McCurley [12] described a modified form of the Diffie-Hellman algo- 
rithm in which the field F~ is replaced by the ring Z/nZ, where n is the product of 
two large primes. The advantage of this scheme is that any algorithm which will 
break it for a nonnegligible proportion of inputs, can be used to factor n; hence, the 
scheme is at least as secure as it is difficult to factor n. Also, Koblitz [8] and Miller 
[13] have pointed out that the group of points on an elliptic curve over Fq can also 
be used to develop a secure key-exchange system. 

The purpose of this paper is to describe yet another key exchange system. This 
one makes use of the properties of an imaginary quadratic field ~'~ and is unlike the 
other methods described above because no arithmetic is carried out in Fq or Z/nZ, 
i.e., no modular arithmetic is utilized. Instead, we conduct our arithmetic in the class 
group of ~". The new technique is somewhat more time consuming then those of 
[5] and [12]; but, on the other hand, it may be more secure than either of these 
schemes; comparisons are very difficult to draw. Incidentally, McCurley [12], 
independently of the authors, suggested the possibility of using this particular idea, 
but he provided no details on how it might be done. 

2. Ideals on Imaginary Quadratic Fields 

In this section we present several results concerning ideals in imaginary quadratic 
fields. Most of this material was known to Gauss; but it is usually described in the 
language of quadratic forms. As it is possible by using ideal theory to extend many 
of the theoretical and computational aspects of the material presented here to 
arbitrary number fields (see, for example, [1]), in the interest of possible future 
generalization we describe our results in terms of ideals. However, since, as men- 
tioned above, these results are well known, we state them without proof. Proofs of 
most of the statements made here can be found in standard texts like Cohn [4] (see 
Chapters 7, 9, and 12) or Hua Loo Keng [7] (see Chap_ters 12 and 16). 

Let D < 0 be a square-free inte~ger and let ~,~ = ~.(~D) be the imaginary quadrat- 
ic field formed by adjoining ~/D to the rationals .~. If ~ e 3f', we denote by ~ the 
conjugate of~, by Tr(~) the value of~ + ~, i.e., the trace of~, and by N(c¢), the value 
o f ~  (>  0), i.e., the norm of 0r. Note that I~[ 2 = ~ = N(~). 

If c~, fl ~ Y:, we denote by [c¢, fl] the set ~Z + flZ, where Z is the set of rational 
integers. It is well known that the ring of algebraic integers d~x of ~e" is given by 
[1, co], where 

oo = (~ - I + .,/-~)Ir 

and 
21 when D = 1 (rood 4), 

r =  w h e n D ~ 2 , 3  (mod4). 

If a e oYf, then a e d?jc if and only if Tr(ct), N(ct)~ Z. Also, the discriminant A = 
(¢o - ~)2 of ~" is given by A = 4D/r 2. 

An (integral) ideal a of Oar is a subset of O~r such that 

(i) a + fl ~ o whenever a, f l e  a, 
(ii) ~ e a whenever ~ ~ a, ~ e O~c. 
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N o w  if a is any ideal of Car, then 

a = [a, b + co~], (2.1) 

where a, b, c • Z and a > 0, c > 0. Further ,  f rom (i) and (ii) it is easy to show that 
c]a, clb, and aclN(b + co~). Also, i f a  = [a, b + co9], where a, b, c • Z, cla, clb, and 
aclN(b + co~), then a is an ideal of  Car. F o r  a given a the value of  a in (2.1) is unique. 
We denote this by L(a); it is the least positive rat ional  integer in a. 

The ideal a is called primitive when it is no t  divisible by any ideal except (1). Such 
an ideal will have c = 1 in (2.1). 

L e m m a  2.1. I f  a is any primitive ideal o f  Car, then there exists some a • a such that 
a = [L(a), a]  and ITr(a)l -< L(a). 

The next result shows that the value of  lTr(a)I in Lemma 2.1 is unique. 

L e m m a  2.2. I f  a is an ideal of Car, a = [L(a), a ]  = [L(a), fl], and ]Tr(c0l ~ L(a), 
ITr(fl)l < L(a), then ITr(,)[ = lTr(fl)[. 

An ideal a of  Car is said to be reduced if a is primitive and  there does not  exist a 
nonzero  fl • a such that I/~1 < L(a). 

Theorem 2.3. I f  a is a primitive ideal o f  Car and a = [L(a), a]  with ITr(a)[ < L(a), 
then a is a reduced ideal if and only if lal -> L(a). 

Theorem 2.4. I f  a is a reduced ideal of Car, then L(a) < Ix/~/3. 

Theorem 2.5. I f  a is a primitive ideal of  Car and L(a) < x / ~ / 2 ,  then a is a reduced 
ideal of Car. 

All of these results can be proved by using the theory of  binary quadrat ic  forms 
once it is seen that, for f l e  a, we have fl = xL(a) + y~t where x, y • Z and 

4[fll 2 = 4N(fl) = (2L(a)x + Tr(a)y) 2 + IAly z. 

I fcq ,  a 2 . . . . .  ak • Car, then 

a = {  ~ ~iOtil~i•car}i=l 

is an ideal of Car, where al ,  a2 . . . . .  a k, are the generators of a. We usually denote 
this by a = (al, az . . . . .  ak)- In fact, for any  ideal a of  Car we know that  there 
exist two elements cq, ct z • Car such that  a = (cq, az), cf. (2.1): (a l, a2) = [cq, a2]. 
When  a = (a), we say that a is a principal ideal. When  a = (al, a2 . . . . .  ak), b = 
(ill, f12, ---, tim), we define the product ideal ab by ab = (cqfl 1, a2fl 2 . . . . .  akflm), the 
ideal with the mk generators aifli (i = 1, 2 . . . . .  k; j  = 1, 2 . . . . .  m). If  there exist non- 
zero a, fl • Car such that 

(~)a = (t~)b, 
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we say that  a and b are equivalent ideals of  CJc and denote this by a --~ b. This is a 
true equivalence relation which causes the set of  all ideals in ¢ ~  to be part i t ioned 
into disjoint equivalence classes. We also have 

Lemma 2.6. I f  a ~ b, then there exists ). e a such that 0,)b = (L(b))a. 

The next theorem shows that there are at most  two reduced ideals in any given 
equivalence class of ideals. 

Theorem 2.7. Let  a, b be primitive ideals o f  (PJc such that a = [L(a), a],  b = 
[L(b), fl] with ITr(a)l < L(a), ITr(b)l < L(b). I f  a ~ b, then L(a) = L(b) and ]Tr(a)l = 
ITr(fl)l. 

In the next section we show that each equivalence class of ideals of d ~  contains 
a reduced ideal. Indeed, we present an algori thm for finding such a reduced ideal. 
This can then be used as the basis of  our  key-exchange system. 

3. The Key-Exchange Algorithm 

We first point  out  that if a = [L(a:,  a]  is a primitive ideal of  C~c, then so is 
b = [N(e)/L(a), - ~ ] .  Further,  

(~)a = (L(a))b; 

hence, a ~ b. 

Algorithm 3.1. 

1. For a given ~zimitive ideal a = a i = [L(a), a] of (P~, put Qo = rL(a) ( >  0), 
Po = ra - x /  D ~ Z. The value of  r here is that defined in Section 2. 

2. Compute 
I ql = Ne(Pi/Ol), 

Pi+l qiQi - Pi, (3.1) 

LQ,+I  = (P~I - D)/Q,, 

where by Ne(~) we denote an integer such that I~ - Ne(?)l < ½. (Unique unless 
x = +½.) 

. 
a,+l  = [ Q , / r .  P, + . , / -B)/r]  

is a reduced ideal of  (9~r when 

Qi+l > Qi. 

Proof .  By (3.1) we have 

a +l = EO./r, (Pj + = Ee/r, (-Pj+I + #-B)/r] 

Thus, by the remark preceding this a lgori thm and the formulas of(3.1), we see that 
ifa~+ 1 is an ideal, then so is a~+z and a~+ z --, ai+ i. Further,  ifai+ i = (--Pi+l + v/-D)/r, 
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then tTr(ai+l)l = 12P~+~Irl = 21qiQi - Pil/r = 2Qilqi - Pi/Q,i/r < Q j r  = Z(ai+l). It  
follows from Theorem 2.3 that  a~+ 1 is reduced when N(cq+~) > L(ai+ 1)2, that  is when 

Qi+l >- Qi. [] 

To provide greater ease in computa t ion  we can modify Algori thm 3.1 as follows. 
We first put  T O = IPol,  to = eo/Zo, and Q-1 = (P~ - O)/Qo. It is then easy to show 
that  Step 2 of  Algorithm 3.1 can be reformulated as 

s~ = [ ~ / Q 3 ,  

Ri = remainder on dividing T~ by Q~, 

Mi = Qi - 2Rv 

If M~ >_ 0, then 

if M~ < 0, then 

Ti+l = Ri,  

Qi+l = Qi- i  - s,(Ri + Ti), 

t i +  1 = - -  t i ;  

T/+ 1 -- R i + Mi ,  

Qi+l = Qi-1 -- si(Ri + Ti) + Mi, 

ti+ I --~ t i. 

In  this formulation we have Pj in (3.1) given by Pj = tjTj for a n y j  _> 0. 
We must next show that we ultimately get some i such that  Q~+~ >__ Qv We do 

this in 

Theorem 3.2. I f  a is given as in Algorithm 3.1, then we get Q~+I >- Qi for  some 
i < 2 + [½ logz(3Qo/5 lx/~)]. 

Proof. We first note that 

0 < Qj+I -< ((QJ2) z + IDI)/Q3 = QJ4 + IDI/Qj. 

If  we define pj = Q j I x / ~ ,  then 

pj+~ < pJ4 + 1/pj. (3.2) 

Also, i f K  i = (5"4 j + 1)/3, then f o r j  > t it is easy to show that  

KH4 + 1/Kj_~ < Kj-1.  (3.3) 

N o w  if 2 < Pi < K~ = 7, then by (3.2) it is clear that  Pi+~ < Ko = 2 when pi > 4 
and P~+I < ~ when pl < 4. Thus, by using (3.2) and (3.3) we see that Pl+l < Kj-1 
when 2 < p~ < Kj ( j  > 0). It follows that  if Po < K,,, then p, < K o = 2 for some 
t < m. Put t ing m = [½ log2(3Po/5)] + t, we have 

K,, > Po + ½ > Po; 

thus, for some i < 1 + [½ l o g 2 ( 3 Q o / 5 v / ~ ) ] ,  we have Q~ < 2 I x / ~ .  
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Suppose Q~ < 2 t x / ~ -  If  Qi+l > Qi, then ai+l is reduced. If  Qi+l < Q~, then ai+ 1 
is not  a reduced ideal, and as a consequence there must  exist some nonzero  y e__~÷l 
such that  lY[ is minimal and l?l < Qdr. Further,  by Theorem 2.5 Qdr > x/lAt/2. 
Since 

r21y[ 2 = (xQi 4- yPi) 2 + IDly 2 (x, y • Z), 

we must  have lYl = 1. I f M  = min{IxQ~ + ~llx e z}, then r2ly[ z = M 2 + D, where 
M = Ie~+11 = tq~Qi - e i l  < al/2; hence, we can put  y =~_~-Pi+l + w/-D)/r. Since 
ai+l = [Qi/r, y], we must have ai+2 = [Qi+l/r, (Pi+l + . , /D)/r] a reduced ideal of  
d~.  For  if a~+2 is not  reduced, there must  exist some t3 e a~+ 2 such that  

N(fl)  < L(ai+2) 2 = N(y)/L(ai+l) 2 

and 
L(a~+l)fl = y2 for some 2 • ai+i. 

Since N(/3) = N(?)N(2)/L(ai+I) 2, we get N(2) < N(?), which, by selection of  ?, is 
impossible. Since a~+ 2 is a reduced ideal we must  also have Q~+z > Q~+~. The 
theorem now follows easily from our  earlier bound  on i. [ ]  

This result is similar to that presented by Lagarias  [9]; however, we have used a 
somewhat  different manner  of  p roof  here. 

We can now set up a method similar to that  of  1-5] for a secret key exchange. Two 
users A and B select a value of  D such that  ID[ is large ( ~  10 z°°) and an ideal a in 
~)a,, The value of D and the ideal a can be made  public. 

(1) A selects at r andom an integer x and computes  a reduced ideal b such that 

b ~ a x. 

A sends b to B. 
(2) B selects at r andom an integer y and computes  a reduced ideal c such that  

C ~  a y. 

B sends c to A. 
(3) A computes  a reduced ideal [1 ~ d ;  B computes  a reduced ideal f~ ~ b'. 

Since I1 "~ cx "~ (a')" = (ax) y ,,~ b" ,-, f.2, we see by Theorem 2.7 that  L([ l )  = L(fz) 
and ift~ 1 = [L(t!l), x l ] ,  ~z = [L(~2), xz] ,  then ITr(x01 = lTr(~2)l. Thus  A and B can 
either use L(~l) = L(~2) or  [Tr(Xl)[ = [Tr(~z)l or parts thereof as their secret key. It 
should, however, be borne in mind that since L(~I)IN(~I), the values o f  L(t~ l) and 
Tr(xl )  are not  independent. 

Indeed, this idea can also be converted into a public-key cryptosystem in a 
manner  similar to that proposed by E1 Gama l  [6]. I f  A wishes to send a secure 
meassage m to B, he can compute  for r andomly  selected x, ~ ~ c x, where f is a reduced 
ideal and c ~ a '  is in B's public file or  has been sent to A by B. (Here, as before, x 
is known  only to A and y is known only to B). The encrypted message is sent to B 
as (M + L([), b), where b ~ a x and M is the first block of  m with M < L(~). Sub- 
sequent blocks of m would be sent in the same way, a l though A must  change x for 
each new block he sends. To  find M, B must  determine L(~); however, since he has 
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b --, a x and y he can compute  

by ,,~ a:~y ~ c x ~ f. 

It remains to consider the problem of finding an  efficient algorithm for multi- 
plication of ideals. The binary method  of  exponentiat ion will then provide an 
efficient algorithm for comput ing a m for large m. We first point  out that  if a and b 
are two ideals of  Oar, then we can find an ideal c of  Car and U ~ Z such that 

(U)c = ab (3.4) 

by using the algori thm mentioned in Shanks 122]. If a = [Q/r, (P + x /~) / r ] ,  
b = [Q'/r, (P + x/-D)/r], then in (3.4) 

U = gcd((P + P')/r, Q/r, Q'/r) 

and c = [Q"/r, (P" + x /~) /r] .  We find Q", P" by first solving 

(Q/r)x 1 = G (mod Q'/r), 

where G = gcd(Q/r, Q'/r), for xl  (mod Q'/r). We then put g = gcd(G, (P + P')/r) 
and solve 

x2(P + P')/r + Gy2 = U 

for x2, Y2. Then 

where 

Q" =. QQ'/(rU2), 

P" = P + XQ/(rU)  (mod Q"), 

X =- y z x l ( P  ' - P) + x2(D - p2)/Q (rood Q'/U). 

In certain cases we can simplify this. Fo r  example, when G = I, we get U = l, 
x 2 = 0, Y2 = 1; hence, 

X = x l (P '  - P) (mod Q'). 

In  the special case of  a = b, i.e., Q' = Q, P '  = P, we get U = gcd(Q/r, 2P/r), x 1 = O, 

(2P/r)xz = U (mod Q/r) 

and 
X - x2(D - p2)/Q (mod Q/U). 

I fm  = (bo bl b2 "'" bk)2 is the base 2 (binary) representation o f m  (bo = I), then 
let % ~ a and define tl ~ ~ and 

(ti, bi+l = O, 

where t~ and ~i+1 are reduced ideals of  Oar. It is easy to see that  ~k ~ a ' .  If  we select 
a such that L(a) is a prime > I x / ~ ,  then for all of  the multiplications tia we would 
likely have gcd(L(ti), L(a)) = 1. As we have seen above, this simplifies somewhat  the 
determination of  ~+1. In any event we see that  to compute  ~k requires the perfor- 
mance of  O(tog m logi Dr) elementary operations. 

In the next section we describe the security of  our  proposed key-exchange system. 
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4. Security of the Scheme 

From the results of the previous section we see that the complexity of this key- 
exchange system is greater than that of [5] and so is the bandwidth. That  is, to 
communicate about 100 digits of key, it is necessary to exchange about  200 digits 
of information across the communication channel. Thus, to compensate for this 
extra effort, we would like our scheme to be more secure than that of [5]. While we 
cannot formally prove this here, we can provide results which suggest that this is 
the case, 

That  there can only be a finite number  of equivalence classes of ideals in d~ar 
follows from the results of Section 3 and Theorem 2.4. We denote this number  by 
h and call h the class number of J(.  If  fit and c~ 2 are two of these equivalence classes, 
we define the product (~1 ~2) of these classes by 

% = ~e/e2 = (c  = abta ~ ~e~, b ~ ~e~}. 

Under this product operation, it can be shown that the set of all equivalence classes 
of ideals of dg~r forms an abelian group G of order h with identity the class of 
principal ideals. 

We know (see p. 389 of [14]) that 

h < 21Air/2(1 + log(21AI1/2/n)) 

and that for any e > 0 
h > IAI 1/2-~ 

for all sufficiently large A. Indeed under the Extended Riemann Hypothesis (ERH) 
Littlewood [11] has shown that 

n(1 + o(1)) l x / ~  < h < 2(1 + o(1)) ~x//~ log loglAI 

12e ~ log loglAl n 

We can replace the 1 + o(1) here by absolute constants by using the explicit results 
of Oesterl6 [16]. Thus, we would expect h to be of about  the same order of magnitude 

as Ial 1/2. 
Suppose a cryptanalyst who is at tempting to break our system has at his disposal 

the value of D, and the ideals, a, b, c but does not know x or y; his problem is to 
determine fl or f2. One way he might approach this is to attempt to solve the discrete 
logarithm problem in G; that is, given a reduced ideal a and a reduced ideal b such 
that b ~ a x, find x. 

One simple attack (the giant-s tep-baby-step method of [21]) is to put q = 
Ne(IDI 1/*) and assume that x = qk - r, where 0 < r < q. Since we can also assume 
that h > x, and we know that h = O(IAtl/2+~), we see that k = O(IAI1/*+~). We first 
compute ~ ~ a q. We then find all the O(IAI ~/*+~) reduced ideals equivalent to aib for 
j = 0, 1, 2 . . . . .  q - 1 and check for when fi, i = 1, 2 . . . . .  is one of these. Since 
k = O(IAII/*+~), we find i , j  such that ~i = a~b in O(]AI 1/*+") operations. When this 
occurs we have x = qi - j. We note here that for the complexity result given above 
to hold we must sort the list of reduced ideals equivalent to aJb ( j  = 0 . . . . .  q - I). 
In practice, however, it is more efficient to use hashing techniques. 
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The  me thod  of Pohl ig and Hel lman [17] can  be adap ted  to the solut ion of this 
problem.  Indeed,  we can regard this technique as a m o r e  sophist icated version of 
the g i an t - s t ep -baby-s t ep  method.  If  p is the largest pr ime factor  of  h, then this algo- 
r i thm will find x in 0(pl/2 +4) operat ions,  utilizing abou t  the same amoun t  of  storage. 
However ,  in order  to employ  this scheme, we must  know the value of h. The  fastest 
known methods  of  determining h are of  complexi ty  O(1AI l/s+,) (see [10] and [21]), 
assuming the E R H ,  even when h is made  up exclusively of  small  pr ime factors. 

The  index calculus method  (see [15])  has p roved  to be a very successful me thod  
for a t tacking the discrete logar i thm problem;  however,  it appears  to be ra ther  
difficult to apply  to our  scheme. The reason for this is that  we must  first determine 
what  the order  of  Cg, the class which contains  a, is in the class group. This, of  course, 
is in a sense begging the question. We do not  know how to do that  efficiently. 

I t  appears  then that  the problem of  determining x such that  b ~ a x is a very 
difficult one. The  best -known methods  are of  complexi ty  O([A] 1/4+~) or  possibly 
O([ z~l 1/5 +*). Just  how difficult the p rob lem really is, is not  known.  However ,  by using 
the ideas of  Shanks  [22], we can show tha t  if an efficient me thod  for solving the 
p rob lem is discovered, then this me thod  will very likely al low us to factor  D. This 
suggests that  the p rob lem of finding x is at  least as difficult as the factoring problem.  

If a = [L(a), a]  is any ideal of  (gar, define ~ to be the ideal [L(a), ~]. We say that  
o is an ambiguous ideal of  Ca~ if a = g. No te  that  if a is ambiguous ,  then a + ~ ~ a; 
hence, L(o)[Tr(a). If lTr(a)l  < L(a), we mus t  have [Tr(a)l = L(a). I f a  is primitive and 
ambiguous ,  then since 4N(a) = ITr(a)i 2 + D, we see that  L(a)ID. 

I f  b 2 ~ (1), then b 2 = (fl) for some f l e  (-ga~. Put t ing y = L(b) +/~,  it is a simple 
mat te r  to show that  fly = L(b)y; thus, when c = (y)b, we get c = 2. Tha t  is, i fb 2 ~ (1), 
we must  have an ambiguous  ideal in the cIass of  b. 

I fs[D (s > 0), then [s, ~ /D]  is an ambiguous  ideal when r = 1; further, by Theorem 
2.5 [s, .4/D] is a reduced ideal when s < I,d/[b-~. When  r = 2, [s, (s + , / ~ ) / 2 ]  is an 
ambiguou" s ideal; also, i fs  < ~ x / / ~ ,  then N((" s + x /~) /2)  > s 2 and [s, (s" + x /~ ) /2 ]  
mus t  be a reduced ideal by Theorem 2.3. I f  ~ > s > x / ~ ,  we can use Algo- 
r i thm 3.1 to show that  

a = [(t + s)/4, ((s -- t)/2 + v/-D)/2] 

is a reduced ideal such that  [Tr(a)l _< L(a), where a = ((s - t)/2 + x /~ ) /2 .  
F r o m  these remarks  and Theorem 2.7 it follows that  if a is a reduced ideal 

equivalent  to an ambiguous  ideal, then either L(a) or  2L(a) + ITr(a)f is a factor  of  
D when a = [L(a), e] and ]Tr(e)l _< L(a). Also, this factor  will be a nontrivial  factor 
of  D if a is not  principal. We further r emark  that  if D is a composi te  integer, there 
must  be an equivalence class of  ideals which contains a nonprincipal  ambiguous  
ideal; hence, since a 2 = ag = (L(a)) when a is a pr imit ive ambiguous  ideal, we mus t  
have 21h. 

N o w  assume that  D is a composi te  integer and we can solve the p rob lem of finding 
x for a given a, b such that  b ~ a ~. Since 2]h, the probabi l i ty  that, for b = (1), the 
value o f x  is such that  2Ix is at least 1/2. If we can find x, then for m = x/2 we have 
(a") 2 --~ (1). It  follows that  there must  exist an  ambiguous  ideal c ~ a m and that  a 
reduced ideal equivalent  to c wilt with probabi l i ty  > 1/2 prov ide  us with a nontr ivial  
factor izat ion of  D. 

Of  course, it might  be possible to cryptanalyze  our  scheme without  having to 
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solve the discrete logar i thm prob lem in G. F o r  suppose  that  A is some algor i thm 
that  on being given a, b, c, with b ~ a ~, c ~ a y, produces  ~ = A(a, b, c), where f ~ a ~y. 
By using ideas similar to those developed by Schmuely  [20] and McCurley  [12], 
we can show that  if a cryptanalyst  possesses such an algori thm, then it is very likely 
that  he can easily find a nontr ivial  fac tor  of  D. 

We assume as before that  D is composi te .  Let  Sz be the Sylow 2-subgroup of G 
and let 2"1[h. N o w  $2 can be writ ten as a direct p roduc t  of  cyclic groups C(rnl) with 
mi[2 m (i = 1, 2 . . . . .  t), i.e., 

S2 = C ( m l )  x C ( m 2 )  x . . .  x C(mt) .  

If  2 j = max{m1,  m2 , . . . ,  m,} _> 2 and  s = h / 2 %  then for  any ideal class ~ in G we 
have 

cg2~s = 1; (4.1) 

further, there must  exist an  ideal class 8 in G such that  

o ~2j = 1 and  ~ 2j-I  # 1. 

Thus,  if (~ 23-ts ~- 1, then (c¢¢)2J-,~ # 1 and  it follows that  at least half of  the ideal 
classes in G possess the p roper ty  tha t  if °f is such a class, then rf2J-: is of  even order.  

Let  c¢ be any element of G and s = 2u -- 1. By (4.1) we have 

~2i+~ = c~2J. (4.2) 

Hence, the subgroups  of G generated by c¢2~ and  c¢2J+, are identical. By our  previous  
remarks  we see that  if we select at r a n d o m  an ideal g of  6:r,  then with probabi l i ty  
> 1/2, we wilt find that  gzJ-,, is no t  pr incipal  whenever  v is odd. Fo r  such a g put  
a ~ g z J+', select odd x, y at r andom,  and  put  b ~ gzJ~, c ~ g2Jy. By (4.2) we have 

[2 ~ g2~x ,~ g2J÷lxu ~ aXU, 

thus, we m a y  use algori thm A to p roduce  

= A(a, b, c) ~ a x y u :  ~ g 2"i+txyu:. (4.3) 

N o w  
2J+lu 2 ---- 2 J - i s  2 -k 2 j - I  (rood 2Js); 

hence, by (4.1) and (4.3) we have 

~ g2J~tS2xYg2J-lxy 

and 

If  

then 

[2 ~ g2Jxy. 

~2J-lxY ~ ~, 

g2~-,s~x~ ~ ( i ) ,  

which, by selection of g, is not possible (s2xy is odd); thus, 

b ---- r~  2~-Ixy 
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is not a principal ideal, but b 2 ~ (1). Also, we can compute b by making a call to 
A(g2,-,, ~2,-,x, g2,-ly) to find g2~-,xy. As we have seen above, the knowledge of such 
an ideal b provides us with information that allows us to factor D very easily. It 
might be argued that we need to know the value o f j  here, but since j < log 2 h = 
O(tog D log log D), there is no dit~culty in attempting to guess its value. In many 
special cases (see below) we can obtain much better bounds on j. 

One other problem that might arise in our scheme is that the order of the class 
cg of a might be very small. However, this seems to be most unlikely. Recently, Cohen 
and Lenstra [3] presented several heuristic results concerning the class group of o,~ff. 
We list some of those below: 

(a) The probability that the odd part of the class group is cyclic is 

97.757~o. 

(b) If m is any odd integer, the probability that m divides h is 

l~ {i  l ~ I ( l  - t " / ~ - 1  (1 

(c) If e is a fixed odd integer, the average number of elements of the class group 
which are of order exactly e is I. 

(d) If p is an odd prime and rp the p rank of the class group, then the probability 
that rp = a given r is 

Extensive numerical results of Buell [2] tend to confirm these heuristics. 
Now if 2 is the number of distinct prime divisors of A, it is known that 2z-llh. 

For  many values of D we can guarantee 2z~ h by using results of Rrdei [18]. For  
example, ifD = --PlPz - 1 (mod 4), where Pl, P2 are primes such that the Legendre 
symbol (Pl/P2) = - 1 ,  then 4~h. Thus, we can select many values of D such that 
the exact power of 2 which divides h is small. For  such D values we would expect 
the class group to be cyclic or nearly so. Since in a cyclic group of order m, there 
exist q~(d) generators for any subgroup of order dim and 

q~(d) ( 2.50367 ,~-1 
- 7 -  > : log log d + 

(see (3.42) of [19]), the chance of selecting an ideal a such that ~ has small order is 
very small when h is large. 
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