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Fig. 9—Interlaminar matrix stresses in two-layer
model. Points on graphs indicate stress values at
discrete locations in the Y direction (Fig. 1). Locations
may be identified with respect to fibers below graph.
ox = 0x/S, oy = 0y/S, etc., where S = P/A (average
normal stress due to applied load). h = 1 in. (25.4 mm)

Stresses were determined in the data collection region
with respect to X, y, z coordinates and then trans-
formed to the X, Y, Z coordinate system.l Figure 10
shows stress values continuously along lines in three
planes normal to the Z-axis in the solution region of
the four-layer model. The location of this line may
be found with the assistance of Fig. 2.

In both analyses, the matrix stresses were found to
be significantly higher than theoretically predicted
composite stresses.1

Summary

A procedure has been described for producing
multilaminar fibrous-composite models. Included
were dimensional analysis, molding procedure and
model-material preparation. Methods described were
used with scattered-light photoelastic analysis to
study the matrix interlaminar stresses between the
fiber layers of two composite models.
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Fig. 10—Interlaminar matrix shear stress in
four-layer model. Values obtained in three planes
of solution region. Plane 2 is centered between
upper two fiber layers (Fig. 2). Planes 1 and 3 are
0.05 in. (1.3 mm) to either side. Txz = txz/S where
S = P/A {average normal stress due to applied
load)
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ERRATA:

Photoelastic Analysis of Interlaminar Matrix Stresses in Fibrous Composite Models

by D. G. Berghaus and R. W, Aderholdt

Please note that Fig. 8 on page 415 of the November
1975 issue of E/M has been rotated 90 deg (clock-
wise) from its proper position. Thus, the “top” re-
ferred to in the caption is the right edge of the fig-

ure. The trace referred to as being on the left is the
upper trace in the figure as it stands. The trace re-
ferred to as being on the right is the lower trace.
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