
Nonlinear Characterization of Sand-asphalt Concrete by 
Means of Permanent-memory Norms 

Experimental and theoretical investigations demonstrate that 
extended nonlinear, homogeneous constitutive equations using 
pth order Lebesgue norms are readily applicable to defining 
the mechanical behavior of sand-asphalt concrete 

byJ. E. Fitzgerald and J. Vakili 

ABSTRACT--Employ ing a constitutive equation developed 
by Farris end Fitzgerald which accounts for the maximum 
strain ever imposed upon a material as well as a weighted 
overage of the etrQin history, the fami ly of pth order Leb- 
esgue norms, the appl icabi l i ty to a sand-asphalt concrete is 
demonstrated. The inadequacy of l inear viscoelasticity theory 
under repeated or decreasing Ioadings for these materials is 
also demonstrated. Practical laboratory determinat ion of 
the material parameters is described. 

Introduction 
The theory of l inear viscoelasticity is often used for 
determining the stresses and strains in asphalt pave- 
ments due to wheel  loads, the rationale being that 
exper imenta l  re laxat ion and creep curves fit the 
theoretical  results fair ly well. This fit occurs be- 
cause materials  with asphalt binder satisfy one of the 
requirements  for linearity, namely, homogenei ty  
where in  the stress, ~, strain, ~, relat ion is 

or(ale) "-- alcr(e) (1) 

with as constant. However ,  the assumption of ad- 
dit ivity which is also a ] ineari ty requi rement  is not 
valid for these materials  where in  

~(e l  + e2) = ~(e l )  + ~(e2) (2) 

This observation has been previously pointed out for 
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solid propellants, 9 and can be shown by conducting 
other tests such as in ter rupted ramp-st ra in  or reverse  
ramp-st ra in  tests. 

Other  theories have previously been deveIoped to 
characterize nonlinear viscoelastic materials.  Vol- 
terra, s~ by using the Frechet  expansion for nonlinear 
functions of one variable, suggested an approximation 
to a continuous function by a polynomial.  Green and 
Rivlin 11 have developed continuous tensor-valued 
functionals in a power series of homogeneous tensor- 
valued functionals. Hermann  12 suggested an energy 
method for nonlinear viscoelasticity. His assumption 
was that a viscoelastic mater ial  is capable of instan- 
taneous deformation but not of instantaneous dis- 
sipation of energy. By this assumption he found a 
constitutive equation which is essentially the same 
as defined by Green and Rivlin. Coleman and Noll 1~3 
have also contributed to the theory of nonlinear visco- 
elasticity in solids as well  as liquids. 

The work  of all the above ment ioned authors is 
based on the fad ing-memory  assumption which means 
that  the distant past memory  of, say, strain is not as 
effective as the near-present  value of strain in deter- 
mining the present stress state of a material .  Fitz- 
gerald 14 proposed a consti tutive equation where in  the 
stress is a funct ion(al)  of the present value of defor- 
mation gradient and its pth order Lebesgue norm. The 
Lebesgue norm, ii)~(t)ll2, of a function of time, f(t), 
is defined as 

[r y I I . f ( t ) l l P - -  If(~)lPd~ ; 1 - ~ P - ~ . ( 3 )  
, r =  0 

It will  be noted that for P = 2 the above expression 
is the usual R.M.S., root-mean-square,  expression 
from elementary  statistics, i.e., 
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I,~l 11/2 
I l l ( t ) l l2  = If(~)j2d,  . (4) 

7"=0 

Fitzgerald and Farr is  is then enlarged the norm into 
a family of norms by changing the upper  l imit  of the 
integral  f rom T _-- 1 to x = t. Coleman and Noll have 
also suggested these norms as a possible approxima-  
tion for the functionals. Fi tzgerald and Hufferd 2 have 
formulated the general  case of nonlinear  thermovisco- 
elasticity by using the pe rmanen t -memory  assump- 
tion. 

Fi tzgerald and Farr is  1,15 developed a specific kind 
of Lebesgue-norm consti tut ive equation for nonlinear  
viscoelastic materials.  They used the nonlinear homo- 
geneous consti tut ive equations of degree one. They 
satisfy the homogenei ty  condition which is one of 
the requi rements  for l ineari ty and appears to be the 
simplest kind of consti tut ive equation for nonlinear 
viscoelastic materials.  They observed that  the me- 
chanical response of filled polymeric materials  were  
t ime dependent, even though the filler particles and 
the polymeric binder were  elastic. They have modeled 
the i r revers ible  t ime-dependent  Mullins'  effect and, 
by using the pe rmanen t -memory  hypothesis, they 
have formulated consti tut ive equations and subse- 
quenl ly  developed a one-dimensional  consti tut ive 
theory and analysis method valid for nonlinear visco- 
elastic materials.  To obtain the exper imenta l  results, 
they used solid propellants which are filled polymeric  
materials.  

The present work  is an extension of their  work  
showing that  these homogeneous consti tut ive equa-  
tions are also a val id  theory for character izing as- 
phal t -binder  mater ia ls  such as sand asphalt. 

We assume a constant tempera ture  in our equations 
herein and all the exper imenta l  tests were  conducted 
at room tempera tu re  (70~ 

Theoret ica l  Background 
The family of norms is, in itself, homogeneous since 

it can readily be seen from eq (4) that 

I la l i ( t ) [ jP  = all ] l ( t )  liP. (5) 

Thus, the ratio of two norms, say the Qth and Pth 
norm, is independent  of the mul t ip l ier  which cancels 
out. The norm ratio then characterizes the normal -  
ized weighted averages of the past history. It wil l  
thus distinguish, by its numerical  value, be tween dif- 
ferent  sequences of loading or straining. 

A second ratio, that of the  absolute present value 
of the function divided by the, say, Pth norm, com- 
pares the present value with the integral  of the 
past weighted average. 

Let t ing P --> oo produces the Chebychev or maxi-  
mum norm wherein  for continuous functions 

] I f ( t )  ]IF=| = max  I f ( t ) [ .  (6) 

Thus, ratios involving the above norm bring into 
play the concept of the m a x i m u m  strain or load on 
the material .  A detailed discussion may be found in 
Ref. 15. 

Asphal t -binder  materials  have general ly  a re laxa-  
t ion-modulus behavior  which obeys an inverse power 
law: 

N 

E(t)  = E fl i t-r '  (7) 
i=1 

Thus, a feasible uniaxia] form for the stress func- 
tional S (t), which verifies the re laxat ion behavior of 
the mater ia l  is: 

" Ile[[~ J 
i=o j=0 

(8) 

For mater ia l  characterization, one restricts the 
number  of these parameters  and determines the co- 
efficients by curve  fitting. For  example,  if one takes 
only the first te rm of the expansion, i -- j = 0, and 
assumes qo ---- 0% we find 

[ Ile(t)']= In~ (9) S( t )  = Aoo ,] 

where  lie[ I= is the Chebychev norm. 
This consti tut ive equat ion is val id for our materials  

only when the strain is a nondecreasing function of 
time. For weakly  monotonical ly increasing strains, 
the m ax im um  strain equals the present strain and 
eq (9) becomes 

Je(t)L 1-. 
Ile-~il~oJ e(t) ( i0) 

For example, assume that the strain is applied as a 
step function of magni tude  %U(t) .  Then the Poth 
norm is 

[.r v o IleoU(t) lleo=eo t=0d~ =eot~/Po (11) 

and the stress f rom eq (13) is 

S (t) = Aooeot-no/Po (12) 

confirming the usually observed inverse-power- law 
stress-relaxation behavior.  

When the strain is a decreasing function or a com- 
bination of increasing and decreasing portions, the 
foregoing equation is no longer valid, because the 
Chebychev norm of the strain is not equal  to the 
current  value of strain. Then we must add some 
additional terms to correct the results. A three- 
term expansion init ial ly yields: 

S(t )  =A00 lle(t) l[po I e( t )  

g + Aol =o(t -- "0 -ml d(T) dr 

( [ e ( t ) , ) n , f ;  
-k Al l  i]e(t)]]p1 =o ( t - - ~ ) - m l e ( T ) d T  (13) 

Equat ion (13) is a more general  case of eq (9) and, 
if the strain function is nondecreasing, eq (13) should 
be reducible  to eq (9), which requires  that:  

A01 = -- Al l  
a n d  

P1 ---- oo . (14) 
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TABLE 1--GRADATION FOR THE AGGREGATE SAND 

Weight Passing through S ieve Remaining on Sieve 
Percentage of Size: of Size: 

60% No. 30 No. 50 
20% No. 40 No. 100 
10% No. 30 No. 40 
10% No, 50 No. 200 

TABLE 2--CHARACTERISTICS OF SPECIMEN 

No, of Height Diameter Age at Test Time 
Specimen (in.) (in.) (days) 

1 3.282 2.000 4 
2 3.190 2.030 4 
3 3.195 2.030 4 
4 3.130 2.030 4 
5 3.095 2.030 5 
6 3.065 2.030 5 
7 3.005 2.030 6 
8 3.000 2.030 6 
9 2.935 2.030 7 

10 2.920 2.030 7 
11 2.700 2.060 7 

Hence, the above equation becomes with, for con- 
venience in writing, A1 = A00 and A2 ---- A01 

S( t )  =A1 Ile(t)[[~,o e(t)  

[e(t)l ),1 

f 2  ( t - - ' ~ ) - m l e n ( ~ ) d ~ .  (15) 

Now, if e(t) is a weakly monotone increasing func- 
tion, le! = r lell~, and the second te rm of eq (13) 
vanishes and reduces to eq (9). 

The development  of eq (13) follows the specifics as 
originally earried out by the senior author 's  graduate 
student, R. Farris, in his doctoral dissertation, the 
essence of which may be found in Ref. 1. 

Determination of Material Constants 

It was shown in eq (12) that  the stress response to a 
step strain input  was 

S(t)  ---- Aleot -"o/P~ (16) 

so that, in  logarithmic form, 

S(t)  
log ---- log At -- n o  log t 

eo Po 

A 
log (relaxation modulus) (17) 

Thus, the ratio no/Po is determined experimental ly  
from the slope of the relaxat ion curve and A~ is de- 
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Fig. 1--Stress output for a relaxation test on a sand asphalt 

28 

2 4  

2 0  

w 

i i i I I i i i i 

eo = ~'# = O.OI6 & O w  = O 005~7  

0 0 . l  0 . 2  0 . 5  0 . 4  0 .5  0 . 6  0.7" 0 8  0 , 9  1.0 

T I M E ,  t ( m i n u t e s )  

Fig. 2--Stress output for a relaxation test on a sand asphalt 

termined as the value of the relaxat ion modulus at 
t = 1 when a log-log plot is used. 

A constant-s train-rate  test with e( t )  ---- Rt yields 
from eq (15) 

S(t) ~-A1R (Po-F 1) n~176 t(1-no/P~ �9 (18) 

Thus, the value of Po may be found from the inter-  
cept of log S(t)  and therefore, the value of no found 
since no/Po has been determined. 

The values of A2, nl, and - -ml  can only be deter- 
mined by conducting in ter rupted-ramp strain or cy- 
clic-ramp strain tests. 

Experimental Results 

Description of Samples 

The experiments were conducted using 2-in. r X 
3-in. cylindrical specimens of sand asphalt. The speci- 
mens were made with an 88-percent-by-weight  ag- 
gregate and (80-100) asphalt. The gradation for the 
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Fig. 4 - -Re laxa t ion  modu lus  of sand aspha l t  for second test  

aggregate  sand is given in Table 1. 
The t empera tu re  of the asphalt before mixing was 

275~ and that  of the aggregate 350~ The mixing 
t ime was about 2-3 min and all the specimens were  
compacted by 30 blows of a hammer.  The total 
amount  of compaction energy for each specimen was 
500 ft-lb. The characterist ics of the specimens are 
g iven in Table 2. 

Relaxation Tests 

Relaxat ion tests wi th  various strain magnitudes 
were  conducted using an Instron tester. A fast initial 
cross-head speed (about 5 in . /min)  was applied and, 
when the desired strain was reached, the cross head 

Z(t) 
was stopped. Comparison of values of for var i -  

e o  

ous re laxat ion tests indicates that  the mater ia l  obeys 
a homogeneous consti tut ive equation of degree one. 

However,  the other tests demonstrated that  the second 
requi rement  for linearity, additivity, is not val id for 
the sand asphalt. The results  plot ted logari thmical ly 
have the straight-l ine form of eq (17). The tangent  

n 
of this l ine is the value  of - -  and one can also find 

P 
the value of the coefficient A from the re laxat ion 

n 
curves. Analyzing Figs. 3 and 4, the values o f -  and 

P 
A are: 

n /P  ---- .48 A ---- 310 psi 

Constant-strain-rate Tests 

This test was conducted for various values of strain 
rate. The slope of S (t) on a logari thmic scale is the 
value  of (1 -- n/P).  Looking at Fig. 5, one observes 
that  the va lue  of n / P =  .48 obtained f rom the re laxa-  
tion test is also justified by the constant-s train-rate  
test. The value  of P, and hence n, may also be found 
from the exper imenta l  stress curve for the constant-  
s t rain-rate  input and is f rom eq (18) 

P ---- 9 n ---- 4.32 

Interrupted-ramp Strain Tests 

In this test, an arbi t rary  constant strain rate, R, was 
applied to the specimen for a t ime T1 and the cross 
head stopped. After  a t ime T2, the same rate  of strain 
was again applied for the same increment  of t ime T~ 
and the procedure repeated K times. 

Introducing the reduced t ime t' wherein  

t '  = t -- (K -- 1) (T1 + T2) (19) 

and defining the parameters  

t" T2 
~ = - -  , h = ~  ( 2 0 )  

T1 T1 

one introduces the evaluated norms into eq (15) 
which yields 
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h K--1 I - - n i P  
K ~ j e  

(21) 

One may  wr i te  the expression (21) in the form: 

L o g S ( t )  ---- L o g C  -- - - L o g  (a 4- D) 
P 

where 

and 
C = KA RT1 (1-n/P) 

K h K-I  
D : ~ + ~ #  Je (22) 

P 4 - 1  K--P'- j = 1 

Then the slope of the decreasing parts of the experi-  
mental  curve of S( t )  on a logari thmie scale should 
be the value of n /p .  

Figure 6 shows that the value of n /P  = .48 is again 
justified. In Figs. 7 and 8, exper imenta l  curves of 
in ter rupted-ramp strain are compared with the theo- 
retical  points. It is obvious that  the type of constitu- 
t ive equation usecl in this study is a good approxima-  
tion to the consti tut ive equation for a sand-asphalt  
material.  

In Fig. 9, the inadequacy of the theory of l inear 
viscoelasticity for this mater ia l  is shown. It is ob- 
served that  the assumption of addit ivi ty is not valid 
for the sand asphalt. 

Reverse-ramp Strain Tests 

In this test, we effectively cycle the stress which 
is raised to an arb i t ra ry  va]ue with a constant strain 
rate and is decreased wi th  the  same but negative 
strain rate. When the stress reaches zero, the strain 
is increased again at the same rate and so on. Figure 
10 shows one cycle of the curve of stress vs. strain; 
we observe that the second term in eq (15) must be 
of importance. As the stress reduces to zero, the 
strain has decreased to only 80 percent of its maxi -  
mum value. By curve fitting, Figs. 10 and 11, we find 
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SHIFTED TIME, t I (minutes} 

Fig. 6--Stress output for two different ramp relaxation 
tests 

convenient  values for the parameter ,  m, and the co- 
efficient, A2; 

m : .8 A2 ---- A1 = 310 psi 

In Fig. 11 we observe that the va]ue found for m is 
also applicable for the second cycle of the curve  of 
stress vs. time. 

Combining these resu]ts, the consti tut ive equation 
for the sand asphalt becomes: 

f S(t) =310 [ e(t) 

+ 1-Ilell----~ 

C o n c l u s i o n  

Based on the l im i ted  theoret ical  and exper imenta l  

Fig. 7--Stress output for interrupted-ramp 
strain input 
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Fig. 8--Stress output for 
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input 

s tudy presented  herein, the  fol lowing conclusions can 
be drawn:  

1. L inear  viscoelast ici ty  does not seem to be an ap- 
p l icable  theory  for character iz ing mater ia l s  wi th  
asphal t  b inder  under  repea ted  loads. 

2. An  analysis  of the exper imen ta l  resul ts  and a 
comparison wi th  theore t ica l  da ta  demons t ra te  
tha t  ex tended nonlinear,  homogeneous const i tu-  
t ive equations using pth order  Lebesgue norms 

become a powerfu l  theory  to define the mechani-  
cal behavior  of sand-asphal t  concrete. 

3. The simple th ree - t e rm expression used here in  
may  be ra ther  obviously ex tended  by  uti l izing 
the expansion of eq (8) when such an extension 
is required.  
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