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Abstract. We study the relationship between the multiparty communication com- 
plexity of functions over certain communication topologies and the complexity of 
inverting those functions. We show that if a function of n variables has a ring- 
protocol or a tree-protocol of communication complexity bounded by q~, then there 
is a circuit of size 2°~n  that computes an inverse of the function. Consequently, 
we prove that although inverting N C  ° Boolean circuits is NP-hard, planar NC 1 
Boolean circuits can be inverted in NC, and hence in polynomial time. From the 
ring-protocol theorem, we derive an ~(n 10g n) lower bound on the VLSI area 
required to lay out any one-way function. Our results on inverting boolean circuits 
can be extended to algebraic circuits over finite rings. We prove that on certain 
topologies no one-way function can be computed with low communication com- 
plexity. 

Key words. Communication complexity, Cryptanalysis, Functional inversions, 
Multiparty problems, One-way functions. 

1. Introduction 

One of the most fundamental questions in cryptanalysis is to characterize the class 
of permutations (or functions) whose inverse can be computed in polynomial time 
or by a polynomial-size circuit [1], [16], [18], [25]. Much research in theoretical 
cryptography has centered around finding the weakest possible cryptographic 
assumptions that enable the implementation of major cryptographic primitives [8], 
[7], [ 17]; however, little progress has been made on the characterization of permuta- 
tions with small inversion circuits [18]. 

In this paper we study the relationship between the multiparty communication 
complexity of functions over certain communication topologies and the complexity 
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of inverting those functions. We illustrate some nontrivial classes of functions that 
can be inverted efficiently. 

Multiparty communication complexity is a generalization of two-party commu- 
nication complexity [24]. Suppose f is a boolean function with input variables 
g = { - ~ 0  . . . . .  Xn_ 1} and output variables Y = {Yo . . . . .  Ym-1}- Let Po . . . . .  PN-I be N 
processors connected by a given topology G. Each processor Pi receives a subset Xi 
of X such that (Xo . . . . .  XN-1) is a partition of X. Multiparty communication 
complexity measures the maximum amount of information that one processor will 
have exchange in order for the processors to derive "collectively" the value of output 
variables for an assignment of the input variables. By "collectively deriving the value 
of output variables" we mean that each processor p~ need only work out a share, 
Y~, of the output variables--there is no need for p~ to send the values of Y~ to 
any other processor, provided that the value of each output variable is known to 
some processor. If the communication pattern (topology) is "regular" enough and 
the communication complexity is "low" enough, then, intuitively, Y~ depends weakly 
on the set of the input variables of other processors; thus the values of X~ can "almost 
surely" be inferred from the values of Y~. This intuition leads to a divide-and-conquer 
strategy for functional inversion: Each processor pg independently infers X~ from Y~ 
and meanwhile checks its communication neighbors for consistency. We show that 
the consistency-checking step above depends not only on the communication 
complexity but also (crucially) on the underlying communication topology. 

We first address the problem in a ring-shaped topology (see Fig. 1 (a)) where each 
processor can communicate only with its two neighbors. We show that ifa function 
can be computed on a ring with communication complexity bounded by q~, then 
there is a circuit of size 2°t*~n that computes an inverse of the function. 

We then show that if a function is computable by a polynomial-size planar circuit 
(see Section 5 for the definition) of depth d, then it can be computed on a right 
topology with communication complexity at most 2d. Therefore, every planar N C  1 

Boolean circuit has an inversion circuit of polynomial size and O(tog n) depth. Our 
proof is constructive: Such an N C  1 inversion circuit of an N C  1 planar circuit can 
be found in N C  ~, and hence in polynomial time. Therefore, there is no one-way 
fnction computable by an N C  1 planar circit. This contrasts interestingly with the 
facts that: 

(1) If NP-functions (e.g., SATISFIABILITY) that have no polynomial-size circuit 
(i.e., assume N P  ¢ P/poly) exist, then one-way functions computable by N C  ° 

circuits exist (see [1] and Section 7). 

(a) 

Fig. 1. 

Tree\! 

(b) 

(a) Ring shaped and (b) tree shaped topologies. 
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(2) If P :/: uniform NC, then NC°-permutations that cannot be inverted in NC 
exist [5]. 

We also derive an f~(n log n) lower bound on the VLSI area required to lay out 
any one-way function by using the fact that if a function has a circuit with VLSI 
layout area A in the Thompson model [10], [21], [22] where all inputs and outputs 
are on the boundary of the Thompson grid, then it can be computed by a ring 
protocol with communication complexity O(A/n). 

The result on the ring can be extended to one-dimensional meshes and trees with 
bounded degree (see Fig. 1 (b)): if a function has a tree-protocol of communication 
complexity bounded by ~p, then it has an inversion circuit of size 2°~*~n. Our results 
on inverting boolean circuits can be extended to algebraic circuits over finite rings. 

In contrast, we show that if NP is not contained in P/poly, then functions of 
constant communication complexity exist on a fully connected topology that have 
no polynomial-size inversion circuit. 

2. Definitions and Notations 

Let :~ = {0, 1 }, the field GF(2). Let f be a function from .~" to ~" .  If m = n and f 
is a bijection, then f is called a permutation. A function 9 is an inverse o f f  if, for all 
Y ~ ~ ' ,  9(Y) is defined and f(9(Y)) = Y whenever an x exists such that f (x)  = y. In 
this paper let :~,.r~ denote the set of all functions from .~" to ~ ' .  

A Boolean circuit [23] is a directed acyclic graph whose nodes have indegree 
either 0 or 2. A node of indegree 0 is labeled either by a variable, called an input 
variable, or by a boolean constant. A node of indegree 2 is labeled by a binary 
boolean operator. A node ofoutdegree 0 has an extra label. It can be either a boolean 
variable, called an output variable, or a special label _1. (called "don't care" nodes). 
We introduce .L to simplify the projection of a circuit to a subset of its output 
variables. A node labeled with an input variable is called an input node and a node 
labeled with an output variable is called an output node. We assume that each 
boolean circuit is reduced in the sense that no two input nodes share the same label, 
and from each input node there is a directed path to an output node. Each circuit 
C with n input nodes and m output nodes defines a function, denoted by fc, from 
~n to ~m. 

A circuit C computes a function f i f fc  = f.  A circuit C' is an inversion circuit for 
f if C' computes an inverse of f .  

The nonuniform and uniform versions of the inversion problem are defined as 
follows. 

Definition 2.1 (Inversion Problem). 

• (Nonuniform) Does a function f have an inversion circuit of polynomial size? 
• (Uniform) Is there a polynomial-time Turing machine that accepts a circuit as 

input and outputs a circuit that computes an inverse of the input circuit? 

In this paper we use the notion of one-way functions as defined by Boppana and 
Lagarias [1]: 
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Definition 2.2 (One-Way Function) [1]. A Boolean function f ~ ~n,m is one-way 
if it is computable by a polynomial-size circuit, but it does not have any inverse 
which is computable by a polynomial circuit. 

Definition 2.3 (NCk.Functions). A function f ~ ~" '~ is an NCk-function if f is 
computable by an O((log n)k)-depth circuit of polynomial size. 

Throughout this paper, for each function f e &,,m, we write f :  2 x ~ 2 r, where 
X = {Xo, Xl . . . .  , x._t} denotes the set of n input variables and Y = {Yo, Yl . . . . .  
YI-~ } denotes the set of m output variables. 

3. Communication Complexity 

3.1. Two-Party Communication Complexity 

Suppose there are only two processors p~ and P2- For each partition (X~, X2) of X, 
p~ receives the values of variables in X t and P2 receives the values of variables in 
X 2. The two-party communication complexity of f with respect to the partition 
(X 1, X2), denoted by c~I(X 1, X2), is the number of bits the processors, using an 
optimal protocol, have to exchange, in the worst case, in order to jointly compute 
the values of all output variables o f f  [24], [19]. An optimal protocol for f with 
respect to the partition (Xt, X2) also induces a natural partition of Y into (Y~, Y2) 
such that, in the protocol, pl is responsible only for the values of variables in Y~ 
(i ~ {1, 2}). 

3.2. Multiparty Communication Complexity 

A communication topology is an undirected graph G =(V,E)  where V =  
{Po . . . . .  PN-t } represents the set of processors and each edge (Pi, Pj) ~ E represents 
a communication link between Pi and Pi" 

The computation of a function f on a communication topology G is guided by 
a distributed protocol which is a set of rules specifying the order and the content of 
messages to be sent from one processor to another. Such a protocol specifies a 
partition (Xo . . . . .  XN_ 1) of X and a partition (Y0 . . . . .  YN-~) of Y such that Pi receives 
the values of X i, and is responsible for computing Yi. We focus on a special class of 
distributed protocols that are called oblivious protocols. In an oblivious protocol ~, 
there are two sets of Boolean variables, called communication variables, Ki,j = 
{c~ 'i . . . . .  c~j-1 } and K~., = {c~" . . . . .  c~'].,-1 } for each edge (i,j) ~ E. The variable c~ 'j 
(0 <_ k < ~p(i,j)) contains the kth bit from pi to Pi- 

Let S~ = Uj. . , , i )~ Ki, j and let R~ = Uj:(~,j)~eKi, i be the set of all communica- 
tion variables whose value p, sends to and receives from, respectively, its neighbors 
in protocol ~. For simplicity, we omit ~ from upper index and use the simplified 
notation throughout the paper. When projected to a processor p~, the protocol 
specifies a boolean function f~ from X~ w R~ to Y~ u S~. Throughout the paper we 
assume that X~, Y, f~, Ri, Si are associated with the most recently discussed distrib- 
uted protocol ~. The protocol is required to be fluent in the sense that there is no 
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cyclic dependency between any pair of communication variables. The protocol ends 
when no message is due to be sent. An important problem in the field of distributed 
computing is to design distributed protocols that minimize the maximum number 
of bits a processor has to receive, to send, or both. In this paper all distributed 
protocols are assumed to be fluent. 

A distributed protocol ~ correctly computes a function f if, for every assignment 
x to X, Pt computes an assignment Yi for Y~ such that y = (Yo . . . . .  YN-X) = f(x).  

For each function, there is a trivial protocol with null communication cost, i.e., 
the one which assigns all inputs and all outputs to a single processor. In order to 
avoid this triviality, we only concern ourselves with the set of balanced protocols. 
We assume N < n in the following definition. 

Definition 3.1 (Balanced-Protocols). A partition (Xo, . . . ,  XN-1) of X is H-balanced 
if [Xt[ < H for all 0 < i < N. A protocol ~ for a function f is H-balanced if its 
input-partition is H-balanced. 

Let ~G. n( f )  denote the set of all H-balanced oblivious protocols that compute f. 

Definition 3.2 (Balanced Communication Complexity). Let H be an integer. For 
each function f ,  define 

Os.n(f)  = ~, ,min~,~.H,y) [max( lR t l+ lS t l ) ] .  

In the definition above, O~,n(f)  is the maximum number of bits a processor has 
to exchange (i.e., send and receive) in an optimal protocol. We first observe that if 
the balanced communication complexity of a function f is small, then f can be 
computed by a circuit of a small size. We use the following classical result from 
Boolean complexity theory [23]. 

Theorem 3.3 [23]. Every boolean function of n input variables and m output vari- 
ables can be computed by a circuit of size O(m2n/n). 

Lemma 3.4. Let G be a graph and let H be a positive integer. Every function f ~ ~n,,~ 
can be computed by a circuit of size O((m/h + n)2h), where h = H + Cbo.n(f). 

Proof. For each fluent oblivious distributed protocol ~ that computes f,  let C~ be 
a boolean circuit that computes fi: (X, u Ri) ~ (Yi u St). Property connecting C{s, 
we obtain a boolean circuit C that computes f.  The size of C is equal to the sum 
of the sizes of Ci's. By Lemma 3.3, the size of IC~l is bounded by O(I Y~ w S~[2h/h). 
Notice that Z~-o~ I r~l = m and ~.~_--o ~ [St[ < hN = O(hn). Thus, the size of C is 
bounded by O((m/h + n)2h). [] 

4. Communication Topologies and Functional Inversion 

The topology of a communication network plays an important role in designing 
communication-efficient protocols. The set of communication topologies studied in 
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this paper includes cliques, meshes, planar graphs, rings, and bounded degree trees. 
The corresponding protocols are respectively called ideal protocols, mesh protocols, 
planar protocols, rin 9 protocols, and tree protocols. 

In this section we examine the communication power of rings and trees, and show 
that no one-way function can be computed on a ring or a tree with bounded 
information exchange between neighbors. 

4.1. Rings 

T h e o r e m  4.1. l f  f ~  g#,., has an H-balanced rino-protocol with communication 
complexity Ou(f),  then f has an inversion circuit of size (m + n)2 °(n), where h = 
H + Oft(f). 

The remainder of this section gives a proof to Theorem 4.1. 
Suppose ~ is an H-balanced ring-protocol that computes a function f whose 

communication complexity is On(f).  Let (X o . . . . .  XN_ 1) be the H-balanced parti- 
tion induced by ~ on X and let (Yo . . . . .  Y,_x) be the partition induced on Y. Let 
Ui = (ui. x . . . . .  ui.t,) and Vi = (vi. 1 . . . . .  vi.,,) be the set of communication variables 
whose values p~ sends to Pi-1 and Pi+l, respectively, in ~ (see Fig. 2), where li and 
r~ are the number of bits that pl sends to p~_1 and p~+~. (For simplicity, we perform 
all index arithmetic modulo N.) Let h = H + OH(f). By definition, we have 
1i+1 + ri-1 --< h. 

Letf~ be the projected boolean function associated with Pi, from (X i ~ V~_x ~ Ui+x) 
to ( Y~ u U~ u V 3. Because fi has only h input bits, fi is computable by a circuit of size 
O((I Yil + h)2h/h) (see Theorem 3.3). Let Ci be such a circuit that computes fi. 

For  each y e ~" ,  we now define a digraph Gy which has the property that Gy has 
a cycle of length N iff x e &" exists such that f (x)  = y. By our construction, Gy will 
have no cycle of length less than N. 

For  each output y ~ ~ ' ,  let T~ be a 2 t' x 2"'-' x 2 t,÷, x 2"' table whose entries are 
defined as follows. 

For  each i: 0 < i < N, and for each assignment u,, vi_ ~, u~+~, v~ to U~, 
V,_~, U~+1, V~. 

• if there is an assignment xl to Xi, such that f~(x~, vi-t, u i+t )=  

( y .  ui, v3, 
then Ti[ui, v~_~, ui+~, vii = xi. If there is more than one such satisfying 
assignment to X~, then choose such an x~ arbitrarily. 

• else T~[u i, vi-~, ui+~, vi i  = (,~. 

Fig. 2. 

".,,...~.~....,,,,.-" 

The communication variables between neighbors. 
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Notice that U~ ~ V~_I is the set of  all communica t ion  variables between P~-I and 
p~ and U~+~ u V~ is the set of all communica t ion  variables between p~ and pi+l. For  
each assignment u/, vi-1, u:+t, vi to U/, Vi-1, U:+I, Vi, if T/lu:, v:-1, ui+l, vii = xi, then 
we say (u~, vi-t)  and (ui+ ~, vi) are locally consistent with y;. We now show that  if 
assignments (Uo, VN-1), (ul, vo) . . . . .  (UN-I, Vu-2) to (Uo, VN-t), (U1, Vo), . . . ,  
(Us- t ,  VN-2), respectively, exist such that, for all i: 0 < i < N, (u~, vi-t) and (ui+ t, v:) 
are locally consistent with y~, and T~[u~, v~_~, ui+t, v~] = x~, then f (x )  = y, where 
Y = (Yo . . . . .  YN-1) and x = (x0 . . . . .  XN-t). 

We first introduce a digraph G~ = (V, E) where 

N-1 
. . . .  ), 

i=O 

E = {((i, u,, v,_~), (i ÷ 1, ui+,, v/))IT/[ui, vi-t ,  ui+x, vl] 4: f2J}. 

Lem ma  4.2. Gy has no cycle of length less than N. Moreover, Gy has a cycle of  length 
N iff x ~ ~"  exists such that f (x )  = y. 

Proof.  It follows from our construct ion that  Gy has no cycle of length less than 
N. Suppose that  x ~ ~ "  exists such that f (x )  = y. Since ~' computes f ,  for each 
0 < i < N there are xl, ui, and v i such that  (Yi, ui, vi) = fi(xi, vi-~, ui+l), and hence 
((i, ui, vi-1), (i + 1, ui+l, vi) ) is an edge in Gy. Thus  (0, u o, vu_l), (1, u 1, vo) . . . . .  
(N - 1, UN_ 1, VN-2), (0, U o, VU-t) forms a cycle in Gy of length N. On the other  hand, 
suppose there is a cycle of length N in Gy. F r o m  our  construction,  it must  contain 
exactly one node from {i} x ~t~ x ~ " - ' ,  and hence must  be of the form 

(0, Uo, VN-X), (1, UX, V0) . . . . .  (N -- 1, ulv-x, vN-2), (0, Uo, VN-I). 

By the definition of Gy, there is an xi such that  (Yi, u/, v~) = fi(x/, vi-1, ui+l), and 
hence f (x )  = y. [] 

The following is a procedure for inverting f given C~. 

Algorithm Ring-Inversion 
Inputs: y ~ :~". 

1. Compute T~ (for all 0 < i _< N) using C~; 
2. Construct the digraph Gy, using T/'s; 
3. if Gy has no cycle of length N, then ou tpu t  that  there is no x such 

that  f (x )  = y; 
4. else compute  a cycle (O, uo, vn_l), . . . ,  ( N - - I ,  UN_I, vn_2), 

(0, u o, vN_I) of length N in Gy, and ou tpu t  x = (x o . . . . .  XN_I), where 
x, = T, Eu,, u,+l, v,]. 

Step 1 takes at most  (m + n)2 °~h) time, because, for each processor,  the rea re  only 
2 °~h~ entries to fill and it takes at most (1Y~I + h)2°~h)/h t ime to fill an entry. The graph 
Gy can be constructed in (m + n)2 °~h~ time using the informat ion obtained from step 
1. Fur thermore ,  using the prefix sum path compression technique [4], we can decide 
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in (m + n)2 °¢h~ time whether Gy has a simple cycle of length N, and in (m + n)2 °(h) 
time we can compute such a cycle if there is one. Therefore, the procedure above 
takes (m + n)2 °th~ time. Let C be a circuit that simulates the procedure above. The 
size of C is bounded from above by (m + n)2 °the, completing the proof of Theorem 4.1. 

A function f ~ ~,.m is h-ring-partitionable if it can be computed by an H-ring 
protocol such that H + On( f )  < h. 

CoroUary 4.3. l f  f is O(log n)-ring-partitionable, then f has a polynomial-sized inver- 
sign circuit. Hence, no one-way function is O(log n)-ring-partitionable. 

It worthwhile to point out that the procedure Ring-Inversion is N C  ~ computable. 
Steps l and 2 can be performed in constant time with (m + n)2 °th) processors. Steps 
3 and 4 are basically path compression (prefix sum), hence by Ladner and Fischer 
[9], they are NC 1 computable if2 °th~ is a polynofiaial in m + n. Therefore, we have 

Corollary 4.4. I f  f is O(log n)-ring-partitionable, then there is an N C  1 circuit 
computing an inverse of f .  

4.2. Trees 

The above result on rings can readily be extended to one-dimensional meshes (a 
path of N nodes). A one-dimensional mesh can be viewed as a ring where there is 
no communication between the first and the last processors. In fact, we can extend 
the result even further to any bounded degree tree. 

Theorem 4.5. I f  f e  ~$,.,, has an H-balanced tree-protocol with communication 
complexity On(f) ,  then f has an inversion circuit of size (m + n)2 °the, where h = 
n + OH(f). 

First, notice that the communication complexity OH(f)  in Theorem 4.5 puts an 
upper bound of OH(f) on the degree of the underlying tree, because if there is no 
message between a pair of nodes in the tree, then we can delete the edge that connects 
them without affecting the protocol. Hence, Theorem 4.5 implicitly assumes that 
the degree of the tree is bounded by On(f) .  

We prove Theorem 4.5 by. reducing the inversion problems on trees to the 
following consistency problem on trees. 

A labeled tree is a 3-tuple (T, G, Z) where T is a tree with N nodes {0 . . . . .  N - 1}; 
Z = {Zo . . . . .  ZN-1} is a set of boolean variable sets; and G = {go . . . . .  g~-l} is a set 
of boolean functions. Let NN(i)  denote the set of neighbors of i in T. Each node i 
in T is associated with a set Z~ of k~ boolean variables and a boolean function g~ of 
Ai variables from Z~ w (Uj~NNO Z~), where A~ < IZ~l + ~i~N.~ IZ~l. An assignment 
to variables in Z satisfies g~, if the value of g~ is 1 under this assignment. 

Definition 4.6 (Consistency Problem on Trees). Given a labeled tree (T, G, Z), 
compute an assignment of Z which satisfies all functions gi, 0 < i < N. 

Theorem 4.7 [15]. The consistency problem on trees can be solved in 2 °(ma~ ~')n time. 
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The consistency problem on trees is solved by the dynamic programming ap- 
proach, where the bottom-up dynamic programming evaluation on an input tree 
is supported by the RAKE operation [15], [14], [4]. Using the parallel tree 
contraction technique of Miller and Reif [14], Teng [20] gave an optimal O(log n) 
parallel-time algorithm for this problem when (max~ Ai) = O(log n). 

We now reduce the inversion problem on trees to the consistency problem on 
trees. Let ~ be an H-balanced tree-protocol on T that computes f with communica- 
tion complexity ~u(f) .  Let (X o . . . . .  XN_ 1) be the H-balanced partition induced by 

on X and let (Yo . . . . .  YN-1) be the partition induced on Y. Recall that S~ and R~ 
denote the set of all communication variables p~ sends to and receives from, respec- 
tively, its neighbors. Let f~: X~ u Ri ~ Yi w S~ be the projected function associated 
with p~, as defined in Section 3.2. Notice that tX~l + 1Sil + IRil < H + ~ x ( f )  = 
h. Because f~ has at most h input bits, f~ is computable by a circuit of size 
O([l Yd + ISi[]2h/h) (see Theorem 3.3). Let Ci be such a circuit that computes f/. 

Now, let Z~ = X~ u S~ and let gi be a function from X~ u S~ w R~ to {0, I} such that, 
for an assignment xi to X ,  si to S~, and r~ to R~, gl has value I if(y~ w s~) = f~(xl w r~). 

Lemma 4.8. For each y ~ g~m, there are assignments x~ to Xi, si to Si, and r i to R i 
that satisfy all gi's simultaneously iff there is an assignment x to X such that f ( x )  = y. 

Proof. Suppose there is an x satisfying f ( x )  = y. Then the execution of the tree 
protocol will produce x i, sl, and r~ (0 < i < N) such that (Yi u si) = fdx~ w r~). There- 
fore, all g~'s are satisfied simultaneously. On the other hand, suppose that there is 
an assignment x~ to Xi, s~ to S~, and r~ to R~ satisfying all g~'s simultaneously. This 
implies that (Yl w s i )  = f ( x  i W rl) which in turn implies f ( x )  = y. [] 

Consequently, for each y ~ ~m, in (m + n)2 °th~ time, we can, using the algorithm 
for the consistency problem on trees, compute an x ~ ~"  such that f (x )  = y (if such 
an x exists). Let C be a circuit that simulates the above algorithm. C has size bounded 
from above by (m + n)2 °the, completing the proof of Theorem 4.5. 

A function f ~ ~,.m is h-tree-partitionable if it can be computed by an H-tree- 
protocol such that H + ~ n ( f )  < h. 

Corollary 4.9. I f  f is O(log n)-tree-partitionable, then it has a polynomial-sized 
inversion circuit. Hence, no one-way function is O(log n)-tree-partitionable. 

5. Inverting Planar Circuits 

Definition 5.1 (Planar Circuit) [23]. A boolean circuit C is planar if: 

(1) The underlying graph of C is planar. 
(2) All input nodes are on the same face of the underlying graph, called the input 

face, and all output nodes are on the same face of the underlying graph, called 
the output face. 

We now examine the relationship between the depth of a planar boolean circuit 
and the balanced communication complexity on the ring of the function it computes. 
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Fig. 3. Embedding planar circuits on a cylinder. 

Lemma 5.2. I f  a function f ~ ~ ,m  can be computed by a planar circuitof depth d, 
then f is O(d)-ring-partitionable. 

Proof. Without loss of generality, we assume that C is embedded on the surface 
of a cylinder with the input face at the bottom of the cylinder and the output face 
at the top of the cylinder I13-1 (see Fig. 3). Without loss of generality, assume n is a 
multiple of d, and x o . . . . .  x,_: appear in the conterclockwise order around the input 
face. Let Po be a path from the input node Xo to an output node. Use the following 
process to generate n/d - 1 more paths iteratively. 

• f o r  i = 1 to n/d - 1 

grow a path from xia upward edge by edge until one of the following 
conditions becomes true (for the first time): (i) we reach an output 

i - 1  node; (ii) we reach a node of [,.)i=o Pv Call this path Pi- 

These n/d paths divide the planar circuit into N = n/d regions each of which 
contains at most d-inputs (see Fig. 4). We call these regions Co . . . . .  Cs_ 1 where Ci 
has boundaries Pi-1 and P~ and both P~_~ and Pi belong to Cv Two regions are 
neighbors if their boundaries have some nodes in common. Notice that some 
regions, e.g., C 3 and (74 in Fig. 4, may have more than two neighbors. Fortunately, 
the planarity of the graph implies that this neighboring relation is well nested in the 
sense that if a region C~ has a neighbor Ci-k, then regions Ci-k+ 1 . . . . .  Ci_ ! cannot 
be neighbors to Ci+~. 

We now assign processor Pi to handle region C~. In other words, p~ receives the 
input variables belonging to C~ and is responsible for computing the set of all output 

Fig. 4. Partition of a circuit by d-separators. 
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variables in Ci. To perform the computation, Pi needs to communicate with all its 
neighbors; however, in a ring protocol pi is connected only with P~-I and p~+l. To 
resolve this problem, we use the following simple method. We use examples in Fig. 
4 to illustrate the solution. To send a bit from P3 to Po, P3 first sends that bit to P2, 
and Pz passes it to pl, and p~ to Po. Similarly, P3 can receive a bit from Po. In general, 
a bit from p~ to pj is passed sequentially along the ring. We now need to bound the 
number of bits sent by each processor. Notice that, for each 0 < i < N, there is a 

N - I  unique path starting from xia to an output node using edges only from [,.)j=o Pj. 
This path Q~ is called the extension of P~. Because the regions are well nested, pi only 
needs to pass bits which cross Q~_t from right to left and bits which cross Q~ from 
left to right. Since I Q~I < d, the total communication of each processor is bounded 
by 2d. 

Therefore, we have a d-balanced ring-protocol with N = n/d processors where Pi 
evaluates C~ and communicates with pz_t and p~+x to evaluate nodes on the path 
Q~. The communication complexity q)n(f) is bounded by 2d. [ ]  

Consequently, by Theorem 4.1, we have 

Theorem 5.3. I f  f can be computed by a planar circuit of depth d, then it has an 
inversion circuit of size (m + n)2 °{d}. 

Corollary 5.4. No one-way function is computable by a polynomial-sized planar 
circuit whose depth is O(log n). 

6. Area Requirement of One-way Functions 

In his doctoral dissertation, Thompson 121], 1-22] introduced a grid model, which 
we refer to as the Thompson grid, for the study of VLSI layout. A Thompson grid 
(see Fig. 5) of size m x n is a regular m x n grid, where at each grid point we can 
embed a gate that computes a binary boolean operator. 1 Each grid edge can hold 
a constant number of wires, where we embed a constant number of edges of a 
boolean circuit. All inputs and outputs are located at grid points on the boundary 

F 

.[. 

f 
.'---:i:i 

Fig. 5. The Thompson model for VLSI. 

In general, we can embed gates that compute constant-sized boolean functions. It is straightforward 
to extend our result to handle this case. 
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Fig. 6. The ring protocol for the Thompson layout. 

of the grid.2 The area of an m x n grid is mn. The VLSI area complexity of a function 
f is the area of the smallest Thompson grid on which we can embed a circuit that 
computes f. In this section we give a lower bound of Q(n log n) on the VLSI area 
requirement of one-way functions in the Thompson model. 

This VLSI area lower bound is derived from the following simple observation. 

Lemma 6.1. If a function f has a circuit with layout area A, then f is O(A/n)-ring- 
partitionable, where n is the total size of the input and the output. 

Proof. Let x be the width and let y be the height of the optimal layout off. Because 
all inputs and outputs are on the boundary of the Thompson grid, we have 

Assume, without loss of generality, that y 5 x. We thus have x 2 4 4 ,  and hence 
y 5 4Aln. 

We assign each column of the grid to a processor in a ring protocol with x 
processors as shown in Fig. 6. Each processor performs the function of its associated 
column. Because the height of the grid is y, each processor receives at most O(y)  
bits during the execution of the ring protocol. Furthermore, the first and the last 
processors have at most y input bits and all others have at most 2 bits. Therefore, 
f is O(3y + 2)  = O(A/n) ring-partitionable. 0 

Consequently, by Theorem 4.1, 

Theorem 6.2. If a function f has a circuit with layout area A, then f has an inversion 
circuit of size 2°(Ain'n. 

Corollary 6.3. The area required to layout any one-way function is at least 
R ( n  log n). 

The model with inputs and outputs on the boundary of grids is one of the most commonly used 
models, especially for studying 10-comjplexity in VLSI. 
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7. Negative Results 

We have shown that if the balanced communication complexity of a function on 
trees or rings is small, then the function has "small" inversion circuit. The following 
observation shows that it is unlikely that the result can be extended to all topologies 
with a bounded degree. Our proof makes use of a result due to Boppana and 
Lagarias [1]. 

Theorem 7.1 (Boppana and Lagarias). I f  S A T I S F I A B I L I T Y  does not have a 
polynomial-size circuit, then a one-way function exists. 

Each boolean function f e M,.,. induces m functions go, 91 . . . .  , g,,_~, where 
g; ~ N.. ~ is a boolean function which computes the ith output variable of f .  In other 
words, for each assignment x to X, (9o(X), 9a (x) . . . . .  g,,-a (x)) = f(x). 

In general, gi depends only on a subset D,. of input variables X. Let k be a positive 
integer. The function f is a (k, k)-function if JDi7 <- k for all i, 0 _< i < m, and each 
input variable belongs to at most k Di's. The next lemma follows immediately from 
Theorem 3.3. 

Lemma 7.2. l f  f ~ ~.,,,  is a (k, k)-function, then f is computable b.y a circuit of size 
O(m2k/k) and depth k. In particular, if k is a constant, then f is an NC°-function. 

7.1. (3, 3)-One-Way Functions 

The following is a useful lemma for establishing the negative results. 

Lemma 7.3. I f  one-way functions exist, then one-way (3, 3)-functions exist. 

Proof. The lemma can be established by an argument similar to that used by Cook 
[2] and HSstad [6]. 

Suppose f s N,.,, is a boolean function computable by a polynomial-size circuit 
C. Based on C, we construct a (3, 3)-boolean function F s N,, ,,, such that: 

(1) n' and m' are polynomial in n and m. 
(2) F is computable by a polynomial-size circuit. 
(3) I f f  is a one-way function, then F is also a one-way function. 

To construct such an F, we first construct a boolean function F'  such that F'  
satisfies conditions (1), (2), and (3) above. Moreover, each output variable of F'  
depends on at most three input variables of F'. 

For each internal node s of C, we introduce two boolean variables u~ and vs, where 
u~ and v~ are called the output variable and input variable of s, respectively. For  
convenience, we call the variable of an input node of C its input variable and the 
variable of an output  node of C its output variable. The set of input variables of F '  
is the set of all input variables of nodes in C and the set of output variables o f  F '  is 
the set of all output  variables of nodes in C. 

For  each node s, let c a (s) and C2(S ) denote its children and let vc,ts) and v~2ts ) denote 
their input variables, respectively. In function F'  let u S be an output variable of F '  
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defined to be the function of vs, vc,t~, and vc2t~ ) such that u, = 1 if vs = v~,~,) (3 vc2ts ), 
and 0 otherwise, where O is the binary boolean operator  associated with node s. 
For each output node t with variable Yi, binary operator  Q, and children cl(t ) and 
c2(t), we require Yi = re,co O v~,tt~. Clearly, each output  variable in F '  depends on at 
most  three input variables. Note  that we do not need the u-variables for output 
nodes in the construction of F', but we may  introduce them for simplicity. 

Observe that in F'  some input variables could influence more than three output 
variables. Suppose there are k output  variables u I, u 2, . . . ,  u k that depend on an 
input variable v. We now introduce 2k - I variables z(v h ,  z(v)2 . . . . .  Z(V)k and w(vh, 
w(v)2 . . . . .  w(v)~_~. Let Z(v) = {z(vh, z(v)2, . . . .  Z(V)k} and W(v) = {w(v)~, w(v)2 . . . . .  
w(v)k_ ~ }. The set of input variables X'  of F is defined as 

x '  = U zOO. 
v is an input variable of  F" 

Let Y(F') be the set of output variables of F'. Then the set Y' of output variables of 
F is defined as 

Y ' =  Y ( F ' ) u (  U W(v)). 
o is an input v a r i a b l e  of F '  

In F, we require w(v)i = z(v)i ~ z(v)i+ 1 for all 1 < i < k. Also we replace v by z(v)i, 
symbolically, in set of variables on which ul depends in F', for all 1 < i < k. (2) 
Clearly, F is a (3, 3)-function. 

From our construction, it is easy to check that F satisfies conditions (I) and (2). 
We now prove that F satisfies condition (3). Suppose f is a one-way function and 
suppose F is not. Let C' be a polynomial-sized boolean circuit that computes an 
inverse of F. The set of input variables of C' and Y' and the set of output  variables 
of C" is X'. The following process constructs a polynomial-size circuit C" from C' 
such that C" computes an inverse o f f .  

1. If an input node of C' has a label from one of the W(v) above, then label it 0. 
2. If an input node of C' has a label from Y(F') which is associated with an output 

variable of an internal node of C, then label it 1. 
3. If an input node of C' has a label from Y(F') which is associated with an output 

variable yi in C, label it y~. 
4. If an output node of C' has a label from Z(v), such that v is an input variable 

of an internal node of C, then label i t / .  
5. If an output node of C' has a label from Z(v), such that v is an input node of 

C with variable x i, then, if the label is z(xi) ~, label it x i, otherwise label it _L. 

From our construction of F', F, and C", it can easily be shown that C" computes 
an inverse off .  A similar construction can be used to show that F' satisfies condition 
(3). [] 

As a consequence of Theorems 7.1 and 7.3, we have the following corollary. 

Corollary 7.4. I f  SA T I S F I A B I L I T Y  does not have a polynomial-sized circuit, then 
NC ° one-way (3, 3)-functions exist: 
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7.2. Cliques 

We say a function f ~ ~n.m is h-partitionable if there is an H-balanced protocol for 
f on an N-clique such that H + On(f )  < h. 

Lemma 7.5. I f  S A T I S F I A B I L I T Y  does not have a polynomial-size circuit, then 
there is a 4-partitionable function f that has no polynomial-size inversion circuit. 

Proof. By Lemma 7.3 and Theorem 7.1, if SATISFIABILITY does not have a 
polynomial-size circuit, then a one-way (3, 3)-function exists. For  such a one-way 
function f ,  we assign each Yi and xi to a processor. To evaluate Yi, each processor 
needs to receive at most three bits from other processors. Moreover, each processor 
needs to send one bit to at most three other processors. Therefore, f is 
4-partitionable. []  

Consequently, 

Corollary 7.6. I f  S A T I S F I A B I L I T Y  does not have a polynomial-size circuit, then 
there is a 4-partitionable function f which is neither O(log n)-rin# partitionable, nor 
O(log n)-tree partitionable. 

Similarly, we have 

Corollary 7.7. Let k be a positive integer. I f  S A T I S F I A B I L I T Y  does not have a 
circuit of size O(2 l°gk n), there is a 4-partitionable function f which is neither (log k n)- 
ring partitionable nor (log k n)-tree partitionable. 

8. Final Remarks 

8.1. The Uniform Inversion Problem 

Most results presented in this paper are stated in a nonuniform form. Our construc- 
tions from Sections 4.1 and 4.2 yield the following set of uniform results. 

In the following statements, "given a protocol ~ for f "  means that ~ is given in 
a circuit form, i.e., we are given a set of circuits C; that compute f~ which is defined 
in Section 3.2 (see also Lemma 3.4). 

Theorem 8.1. 

1. Given an oblivious H-balanced ring-protocol or tree-protocol for f ,  an inversion 
circuit for f with size (m + n)2 °th) and height O(log(m ÷ n) + h) can be con- 
structed in (m ÷ n)2 °~h~ time sequentially, and in O(log(m + n) + h) parallel time, 
using (m + n)2 °(h) processors, where h = H + ¢~( f ) .  

2. Given a planar circuit C of depth d, an inversion circuit for C of size (m + n)2 °td) 
and height O(log(m + n) + h) can be found in O(d + log(m + n)) parallel time 
using (m + n)2 °td) processors. 
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The uniform assumption makes it much easier to establish negative results. 
Instead of addressing the question of whether small inversion circuits exist, the 
uniform problem asks whether small inversion circuits that can be found efficiently 
exist. For example, it has been shown (see p. 259 in [3]) that the satisfiability 
problem, in which each clause contains at most three variables or the negation of 
variables and each variable or its negative is in at most three clauses (referred as 
the 3-3-condition), is NP-complete. Simply from the NP-completeness result above, 
it can be concluded that i fNP  ~ P (rather than NP dg P/poly) then an NP language 
exists that is 4-partitionable but its inversion problem is not in P. 

In the definition of a planar circuit, it is crucial to impose the restriction that all 
inputs are one the same face. When this restriction is removed, the class of resulting 
circuits is called general planar circuits. We show that, in the uniform case, the 
computational power of general planar circuits is greater than that of planar circuits. 

Theorem 8.2. The uniform problem of inverting general planar circuits with constant 
depth and polynomial size is NP-hard. 

Proof. To prove the theorem, we use the following result due to Lichtenstein [11] 
(also see p. 259 in [3]). 

Define a planar 3-formula to be a set of clauses C over a variable set U such that 
Icl -< 3 for all c e C and the bipartite graph G = (V, E), where V = U u C and E 
contains exactly those pairs (u, c) that either u or its negation belongs to the clause 
c, is planar. Lichtenstein [11] showed that the stability problem over planar 3- 
formulae is NP-complete. 

Observe that each planar 3-formula defines a boolean function f whose input 
variables are U and whose output variables are C. Clearly, f can be computed by. 
a general planar circuit of depth 3. If the uniform problem of inverting general planar 
circuits with constant depth can be solved in polynomial time, then we can use it 
to find the preimage of the all 1 assignment to solve the satisfiability problem of 
planar 3-formulae in polynomial time. [] 

Theorem 8.2 implies that for a polynomial-time Turing machine T, a general 
planar circuit of constant depth exists such that either it does not have a polynomial- 
size inversion circuit or T cannot find such an inversion circuit in polynomial time, 
provided that NP v ~ P. 

It remains open whether the problem of inverting general planar circuits with 
constant depth and constant fan-out is in polynomial time. 

8.2. Other Communication Topologies 

We have observed that our result can be obtained for O(log n) by n meshes. 

Theorem 8.3. I f  f ~ ~,,m has an H-balanced mesh-protocol on the O(log n) x n mesh 
with communication complexity On(f), then f has an inversion circuit of size 2 °th log n) n, 
where h = H + On(f). 

It is remains open whether a similar result can be extended to n by n meshes. 
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8.3. Two-Party Communication Complexity 

Finally, is there a nice way to relate the two-party communication complexity to 
the complexity of inverting permutations? We make the following conjecture: Let 
Sn be the set of all permutations from {1 . . . . .  n} to (1 . . . .  , n}. For each rc e S., let 

= { ( { x . t l ,  . . . .  , . . . . .  x <__ k _< n } .  

The permutational communication complexity of f denoted by ~¢-g(f), is defined 
to be 

~ g ( f )  = min F max ~I(X1, X2)]. 
~ S .  L(xl,x2)e ~,(x) 

Conjecture 8.4. I f  the permutation communication complexity of a function f ~ 8.,, ,  
is qJ, then f has a rin9 protocol of communication complexity O(¢p). 

Acknowledgments 

I would like to thank Alan Frieze, Merrick Furst, Hillel Gazit, Manpreet Khaira, 
Gary Miller, and Zhi-Li Zhang for helpful discussions. I would like to express my 
special thanks to all my referees for pointing out errors in the earlier version of the 
paper, and for valuable suggestions that greatly improved the paper. I thank Dan 
Spielman for his careful proof-reading and helpful discussions. 

References 

[1] R. Boppana and J. Lagarias. One-way functions and circuit complexity. In Proc. Structure in 
Complexity Theory. Lecture Notes in Computer Science, Vol. 223. Springer-Verlag, Berlin, pages 
51-65, 1986. 

[2] S. A. Cook. The complexity of theorem-proving procedures. Proceedings of the 3nd Annual ACM 
Symposium on Theory of Computing, pages 151-158, 1971. 

[3] M. R. Garey and D. S. Johnson. Computer and Intractability: a Guide to the Theory of NP- 
Completeness. Freeman, San Francisco, 1979. 

[4] H. Gazit, G. L. Miller, and S.-H. Teng. Optimal tree contraction in the EREW model. In Current 
Computations (S. K. Tewsburg, B. W. Dickinson, and S. C. Schwartz, eds.), Plenum, New York, 
pages 139-156, 1988. 

[5] J. H~stad. Computational Limitations for Small Depth Circuits. MIT Press, Cambridge, MA, 1986. 
[6] J. HS.stad. One-way permutations in NC °.lnform. Process. Lett., 26: 153-156, 1987. 
[7] M.-D. A. Huang and S.-H. Teng. Security, verifiability, and universality in distributed computing. 

J. Algorithms, 11:492-521, 1990. 
[8] R. Impagliazzo and S. Rudich. Limits on the provable consequence of one-way permutations. 

Proceedings of the 21st Annual ACM Symposium on Theory of Computin 9, pages 44-61, 1989. 
[9] R. E. Ladner and M. J. Fischer. Parallel prefix computation. J. Assoc. Comput. Much., 27(4):831- 

838, 1980. 
[10] F. T. Leighton. Complexity lssues in VLS1. Foundations of Computing. MIT Press, Cambridge, 

MA, 1983. 
[11] D. Lichtenstein. Planar formulae and their uses. SIAM J. Comput. 11(2):329-343, 1982. 
[12] R. J. Lipton and R. E. Tarjan. Applications of planar separator theorem. SIAM J. Comput., 

9(3):615-627, 1981. 



170 Shang-Hua Teng 

[13] G. L. Miller. Finding small simple cycle separators for 2-connected planar graphs. Proceedings of 
the 16th Annual ACM Symposium on Theory of Computing, pages 376-382, 1984. 

[14] G. L. Miller and J. H. Reif. Parallel tree contraction and its applications. Proceedings of the 26th 
Symposium on Foundations of Computer Science, pages 478-489, 1985. 

[15] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley, 
Reading, MA, 1984. 

[16] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digitial signatures and public-key 
cryptosystems. Comm. ACM, 21(2): 120-126, 1978. 

[17] J. Rompel. One-way functions are necessary and sufficient for secure signatures. Proceedinas of the 
22th Annual ACM Symposium on Theory of Computing, pages 387-394, 1990. 

[18] C. Sturtivant and Z.-L. Zhang. Efficiently inverting bijections given by straight line programs. 
Proceedings of the 31st Annual Symposium on Foundations of Computer Science, pages 327-334, 
1990. 

[19] M. Szegedy. Functions with bounded symmetric communication complexity and circuit with mod 
m gates. Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, pages 278-286, 
1990. 

[20] S. H. Teng. Fast parallel algorithms for tree-based constraint satisfaction problems. Manuscript, 
Carnegie Mellon University, 1990. 

[21] C. D. Thompson. A Complexity Theory for VLSI. Ph.D. thesis, Department of Computer Science, 
Carnegie Mellon University, 1980. 

[22] C.D. Thompson. The VLSI complexity of sorting. IEEE Trans. Comput., 32(12): 1171-1184, 1983. 
[23] I. Wegener. The Complexity of Boolean Functions. Wiley-Teubner Series in Computer Science. 

Wiley, New York, Teubner, Stuttgart, 1987. 
[24] A. C.-C. Yao. Some complexity questions related to distributive computing. Proceedin#s of the 

I I th Annual A CM Symposium on Theory of Computing, pages 209 - 213, 1979. 
[25] A. C.°C. Yao. Theory and application of trapdoor functions. Proceedings of the 23th Anual 

Symposium on Foundations of Computer Science, pages 80-91, 1982. 


