
Discrete Comput Geom 8:335-360 (1992)
Discrete & Computational Geometry

© 1992 Springer-Verlag New York tnc~

Dynamic Point Location in Arrangements of Hyperplanes*

Ketan Mulmuley I and Sandeep Sen 2

t Computer Science Department, University of Chicago,
Chicago, IL 60637, USA

2 I.I.T. Delhi, India

Abstract. We present algorithms for maintaining data structures supporting fast
(polylogarithmic) point-location and ray-shooting queries in arrangements of hyper-
planes. This data structure allows for deletion and insertion of hyperplanes. Our
algorithms use random bits in the construction of the data structure but do not make
any assumptions about the update sequence or the hyperplanes in the input. The
query bound for our data structure is O(polylog(n)), where n is the number of
hyperplanes at any given time, and the 0 notation indicates that the bound holds
with high probability, where the probability is solely with respect to randomization
in the data structure. By high probability we mean that the probability of error is
inversely proportional to a large degree polynomial in n. The space requirement is
0(nd). The cost of update is O(n d- t log n). The expected cost of update is O(n d- l);
the expectation is again solely with respect to randomization in the data structure.
Our algorithm is extremely simple.

We also give a related algorithm with optimal 0(log n) query time, expected O(n d)
space requirement, and amortized O(n d- 1) expected cost of update. Moreover, our
approach has a versatile quality which is likely to have further applications to other
dynamic algorithms.

For d = 2, 3 we also show how to obtain polylogarithmic update time in the
CRCW PRAM model so that the processor-time product matches (within a poly-
logarithmic factor) the sequential update time.

I. Introduction

Maintaining da ta s tructures that allow per iodic updates has received much
attention in the pas t and in recent years. Typical opera t ions include insert ion and

* Ketan Mulmuley was supported by NSF Grant CCR 8906799 and a Packard Fellowship. Part
of this work was done when Sandeep Sen was in AT&T Bell Laboratories, Murray Hill, NJ 07974,
USA.

336 K. Mulmuley and S. Sen

deletion of elements from a given universe like points, segments, etc., and at any
given stage we may have to answer queries about the present set of elements. One
of the challenging goals in designing data structure for such dynamic environments
is to be able to match the query time with that of the static case (one in which
the set of elements remains fixed but each instance of query could be different). At
the same time it is also critical that we do not expend too much space for the data
structure and also keep the update time minimal. Balanced binary trees supporting
dictionary operations is perhaps the most commonly used dynamic data structure
and it also matches the asymptotic performance of searching in an ordered set.
In order to compete with the static case, the dynamic data structures typically
need to be more sophisticated and sometimes turn out to be prohibitively difficult
to implement. Examples of some sophisticated dynamic data structures include
data structures for planar point location [5], [14], [t8], [19].

A more recent line of attack for designing dynamic data structures has been
the use of randomization. The term randomized algorithms in this paper refers to
algorithms that do not assume any distribution of the input but use random bits
to make choices at different stages of the algorithm for any input. Skip Lists [20]
and Randomized Search Trees [2] are examples of dynamic data structures
recently proposed and use randomization. Their performance bounds compare
very favorably with their deterministic counterparts (that is the balanced binary
trees) and are much simpler to implement. The obvious tradeoff is that the
performance bounds are guaranteed with certain probabilities which in spite of
being less than 1 are usually acceptable for most applications. In particular, if we
can guarantee performance bounds with probability 1 - 1In ~ for a large enough
~t > 1, where n is the input size, then even for moderate values of n this is very
close to 1. Bounds of this form are often referred to in the literature as high-
probability bounds. These are stronger than bounds on the mean behavior,
which cannot predict the probability of deviation from the expected behavior. The
following notation is used in this paper. We say that a function f (n)= 0(g(n))
if, for every ct > t, there is a constant c > 0 such that f(n) <_ c" g(n) with probability
at least 1 - 1/n ~.

In this paper we investigate further the use of randomization for searching in
arrangements of hyperplanes in a dynamic environment. The static point-location
problem for arrangements of hyperplanes has been satisfactorily solved [7] by
making use of randomization and then subsequently derandomizing it efficiently
[31 [4]. Our results are as follows. We give a very simple dynamic point-location
algorithm with O(polylog(n)) query time and O(n d) space requirement and
O(n d- 1 log n) update time, for arbitrary d. The expected update time is O(n d- 1)
and the expected space requirement is O(nd). In dimension two we obtain the
optimal O(log n) query time; the other bounds are the same as before. We can
reduce the query time to 0(log n), with O(n d) expected space and O(n d- i) expected,
amortized update time, for arbitrary d. However, the bounds on space and update
time for this algorithm are only expected and do not hold with high probability.

For d = 2, 3 we also show how to obtain polylogarithmic update time in the
CRCW PRAM modal so that the processor-time product matches (within a
polylogarithmic factor) the sequential update time.

Dynamic Point Location in Arrangements of Hyperplanes 337

Our data structures can also be used for dynamic ray shooting with the same
query time. See the note at the end of this paper.

Random sampling results in [7], [15], and [22] have contributed significantly
toward our arrangement searching algorithms.

Notation. In this paper we use I I to denote the size operation. Thus if N is a
set, INI denotes its size, if f is a convex polytope, I f l is the number of all its
subfaces, and so on.

2. The Basic Algorithm

In this section we present a high-level, dimension-independent description of our
basic approach. Some steps of our algorithm are dependent on the dimension. We
present the implementation of these steps in later sections where we instantiate
our basic algorithm in various dimensions.

We begin by describing a procedure for building a point-location data-structure
in the static case and subsequently argue that its extension to the dynamic situation
is straightforward. The static algorithm is reminiscent of an algorithm due to
Clarkson [7] turned upside-down. Given a set N of hyperplanes in R a, we denote
the induced arrangement by G(N). The d-cells of G(N) can have an unbounded
number of facets and this turns out to be problematic. Hence, we work with a
certain triangulation H(N) of G(N) that is obtained by decomposing each d-cell
of G(N) into simplices or, in general, cells with a bounded number of facets. We
leave the exact nature of H(N) completely abstract at this point, except that it is
assumed to satisfy the following condition: each d-cell f of G(N) is decomposed
into O(I f l) simplices, or in general cells, each of which is "defined" by a bounded
number of hyperplanes. As an abuse of notation, we refer to the d-cells of H(N)
as d-simplices, even though, strictly speaking, they need not be simplices.

The following basic algorithm builds a point-location structure/~(N) that can
be used to locate the d-simplex of H(N) containing any query point p ~ R a.

Let N = N 1./q(N) =/7/(N1) is defined recursively as follows:

1. Build the triangulation H(N1).
2. For each hyperplane in N1, toss an unbiased coin. Let N 2 be the set of

hyperplanes in N1 for which the toss turned out to be a head. Build/7(N2)
recursively.

3. Associate with each d-simplex A of H(Nz) a list L(A) of hyperplanes in
Nx\N 2 that intersect A and conversely with each hyperplane in NI\N 2,
we associate a list of d-simplices in H(N2) that it intersects. We also say that
the hyperplanes in L(A) conflict with A and L(A) is called its conflict list.

4. Build a data structure Descent(2, 1) that provides a "descending link"
between the second level and the first level. This structure is used in
point-location queries, in a manner to be described soon. At this stage we
leave the nature of this descent structure completely abstract.

An important fact regarding our point-location structure is that, for every I > 1,
Nt is a random sample of N,_ ~ of roughly half the size. Hence, the random

338 K. Mulmuley and S. Sen

sampling results in [7] and [15] imply that, with very high probability, for every
d-simplex A of H(Nt) and every I > 1, [L(A)[= 0(log nJ. In what follows we denote
the size of N~ by n~.

Now let us see how to answer point-location queries. Let p e R d be any fixed
query point. Our goal is to locate p in G(N) = G(N1), the arrangement associated
with the first level. Toward this end we recursively "locate" p in the second level.
We assume that we are given a descent oracle so that, given how p is located in
the second level, p can be located in the first level quickly, i.e., in polylogarithmic
time, assuming that the oracle has the descent structure Descent(2, 1) as well as
the conflict information at its disposal. As the number of levels in H(N) is easily
seen to be 0(log n), this implies O(polytog(n)) bound on the query time. Of
course, we have proven this bound for a fixed query point, but as we shall see
later, this easily translates into a polylogarithmic bound for any query point,
because there will be only polynomially many distinct search paths in our data
structure. To get a tighter bound on the query time, such as O(log n) bound in
dimension two, we need to use refined random sampling results that are proven
later in this paper.

So far we have deliberately not stated in precise terms what is meant by locating
p in the ith level. There seem to be several ways of defining what this means. The
first possibility is to define locating p in the ith level as simply determining the
d-cell in the arrangement G(Ni) containing p, but then it is easy to see that
descending from the ith level to the (i - 1)st level is going to be difficult in general,
because the d-cells of G(N~) can have an arbitrarily large number of facets. The
second possibility is to define locating p in the ith level as locating the d-simplex
of the triangulation H(Ni) containing p. This notion is stronger than the first
notion, because given the d-simplex of H(N~) containing p, we can immediately
determine the d-cell of G(Ni) containing p. The third notion is to define locating
p in the ith level as determining the hyperplanes in N~ above and below p with
respect to, say, the xd-coordinate. At this point, let us keep the notion of locating
p in the ith level completely abstract.

To make our data structure dynamic, we adopt the following scheme. Our
procedures for addition and deletion of a hyperplane are such that, at any given
time, the state of our data structure is independent of the actual sequence of
updates that built it. Thus if N were to denote the set of currently existing
hyperplanes that have been added but not deleted so far, then ~(N) will be as
if it were built by the above static procedure applied to N. This ensures that the
random sampling results that are crucial to analyze our static data structure carry
over, more or less unaffected, to the dynamic setting.

Let us now see how to add a new hyperplane h to /-7(N). We first toss an
unbiased coin successively until we get a tail. Le t j be the number of heads obtained
before getting a tail. We simply "add" h to levels 1 through j + 1. For 1 ___ 1 <
j + 1, let Ns denote N, u {h}. Addition of h to the / th level is carried out in three

steps.

1. Update H(NI) to H(NI).
2. Construct conflict lists of the new d-simplices in H(Nz).
3. Update Descent(l + 1, l).

Dynamic Point Location in Arrangements of Hyperplanes 339

The third step is dependent on the exact nature of the descent structures. Hence,
we only elaborate the first two steps.

The zone of a hyperplane (in d dimension) is defined as follows. Let ho be a
hyperplane in an arrangement G(H). A k-face f for 0 _< K < d - 1 is said to be
visible from h o if there is a line segment s that connects f and h 0 such that the
interior of s is contained in ho or in a cell of s~'(H). The zone of h o is the set of
k-faces that are visible from ho. Define Zone(N, h), the Zone of h in the arrange-
ment G(Nt). The Zone Theorem in [13] states that

Theorem 1 (Zone Theorem). The maximum cardinality of Zone(Nt, h) is O(n~- i),
where nl is the size of Nt, and, moreover, Zone(Nz, h) can also be determined in
O(n~- 1) time.

Let f be any d-cell in Zone(N, h). We remove all d-simplices in the old
triangulation o f f . Next we split f along h into two d-cells f l and f2 and triangulate
f l and f2 all over. All triangulation schemes to be considered in this paper are
simple enough so that triangulation of f l and f2 can be carried out in
O(Ifll + If21) = O(Ifl) time.

We also need to construct conflict lists of all d-simplices in the triangulation
of f l and f2. Let h' be a hyperplane in Nt - Nz- t that intersects f . From the old
conflict information, we can figure out all 1-faces (edges) of f intersecting h'. Hence,
by a straightforward search in the new triangulations of f l and f2, we can
determine all d-simplices within f l and f2 that intersect h' in time proportional
to their number. Because the size of every conflict list, new or old, is 0(log n), with
high probability, it follows that the total cost of updating the conflict lists
is 0(~.I Ifl log n) = O(n~-1 log n), where f ranges over all d-cells of G(N,) inter-
secting h.

To summarize:

Lemma 1. The cost of inserting a new hyperplane in f7i(N) is O(n d- 1 log n), ignoring
the cost of updating the descent structures.

Deletion is the exact reversal of addition, that is, the cost of deletion is no more
than inserting the hyperplane immediately afterward. Hence, we merely state:

Lemma 2. The cost of deleting any hyperplane from n(N) is O(n a-1 log n),
ignoring the cost of updating the descent structures.

Our broad objective in dimension d is to obtain a potylogarithmic search time
and O(n d- 1. polytog(n)) update time, where n denotes the number of hyperplanes
currently in the data structure. In the next section we consider the simplest case,
d = 2, to bring out the basic ideas in a simplest setting. We show how to achieve
t~(log n) query time and O(n log n) update time for d = 2. In Section 4 we
consider the general dimension. The case d = 2 is a little bit different from the
general dimension in that we can make use of the low dimensionality of the
problem to achieve optimal 0(tog n) time in a very simple way.

340 K. Mulmuley and S. Sen

3. Two-Dimens ional Arrangements

Let N be a set of n lines in R z and let G(N) denote the induced arrangement. The
convex regions of G(N) need not have a bounded number of sides. Hence, using
a well-known scheme, we decompose each convex region of G(N) into vertical
trapezoids. From each vertex of the convex region (polygon) extend a vertical ray
directed toward the interior until it meets an edge of the polygon (see Fig. l(a)
and (b)). This partitions the convex polygon into trapezoids. (If required these

(a)

(b)

(c)

(d)

Fig. 1. (a) N,, (b) H(NI), (c) H(N,+ 1), and (d) Descent(l + 1, l).

Dynamic Point Location in Arrangements of Hyperplanes 341

trapezoids can be triangulated by drawing a diagonal, but this is not necessary,
since each trapezoid is obviously "defined" by a bounded number of lines.) When
the above procedure is repeated for all convex regions of G(N) we get the
triangulation H(N) that we use in our basic algorithm.

The only thing that remains to be specified in the definition of our search
structure H(N) is the nature of the descent structures. The descent structure
Descent(I + 1,/) between two successive levels l + 1 and l is defined as simply
the superposition of the triangulations H(NI) and H(Nt+t); see Fig. 1. We also
denote this superposition by H(N~)@H(Nz+I). We also associate with each
trapezoid in Descent(t + 1,/) a pointer to the trapezoid in H(Nt) containing it.

Let us turn to point location. Let q e R 2 be a fixed query point. Let r be the
last level in our data structure, which means that N, is empty. Thus locating q in
H(N,) is trivial. Inductively assume that we have located q in H(Nt+ 1), 1 < l < r.
Making use of the descent structure defined above, it is really easy to descend
from level l + 1 to level I. Let A = Al ÷ 1 be the trapezoid in H(N I ÷ 1) containing
the query point q. We determine the first line Q in N~ that intersects the vertical
ray from q directed upward; see Fig. l(c). Obviously Q is either the line bounding
the upper side of A or it belongs to L(A). Let q' be the point of intersection of the
vertical ray with Q. Let v be the intersection of Q with either a line in L(A) or the
boundary of A, which is nearest to q' on its left side. It is easy to determine v in
O(IL(A)I + 1) time. Next we walk within Descent(I + 1,/) from v to q'; see Fig.
l(d). The cost of this walk is again O(IL(A)I + 1). At the end of this walk, we have
determined the trapezoid A' ~Descent(1 + 1,/) containing q; see Fig. l(d). The
required trapezoid A " = A~eH(N~) containing q is the one containing A', see
Fig. l(b).

Thus we can descend from level 1 + 1 to level l in O(tL(At+ 1)1 + 1) time. With
high probability, IL(A~)I = O(log n) for all l, and the number of levels is O(log n).
It follows that the time required to locate a fixed point q is 0(log z n). The following
theorem shows that the query time is, in fact, 0(log n).

Theorem 2. For a fixed query point q, ~i>_1 [L(Ai)I is 0(log n), where Ai is the
trapezoid containing q in H(Ni).

Proof Let NB(s) denote the random variable that is equal to the number of tails
obtained before obtaining the sth head in a sequence of binomial trials with a fair
coin. NB(s) is the familiar negative binomial distribution. When s = 1, it is the
geometric distribution. We show that, for all i, IL(A,)I = O(NB(a)) for some
fixed constant a. Because the coin tosses at each level, used in the definition of
data structure, are independent from the coin tosses used in the preceding
levels, it then follows that, for any fixed constant c, ~/,~c~og. lL(Al)l =
O(NB(ca log n))= 0(log n), using Chernoff bound [6] for negative binomial
distributions. As the number of levels is di(log n), this proves the theorem. []

So fix a level i. Also fix the set N i of lines occurring in the ith level of the data
structure. The set Ni+ 1 is determined by flipping a fair coin for each line in Ni
and retaining those lines for which the toss was head. We prove that:

342 K. Mulmuley and S. Sen

Fig. 2.

""'" " 3 i
! m °°~'°~°.~oo~.., /"

t, /
% 1 ~°°~Oo I

.~ ~° ."p=°o \ " ! ~..

........................ /

q

"" t :: "~'"" i

Id

. , lines in U and D; , lines in R~ (numbers indicate ordering on R~).

Lemma 3. There is an imaginary, on-line ordering h l, h 2 o f all lines in Ni such
that the set o f lines "'defining" or intersecting the trapezoid A~+ 1 always occurs as
an initial subsequence o f hi , h2, By on-line ordering we mean that hk+ 1 can be
chosen on the basis o f the known coin toss results fo r h 1 hk. Note that Ai÷ 1 is
not known to us a priori, because it depends on the results o f coin tosses for the
lines in N i.

As the number of lines defining any trapezoid is at most four, it follows from the
lemma that IL(A~+x)I is O(NB(4)).

Proo f o f the lemma. Consider the ordered set V~ of lines (in the increasing Y
direction) in N i intersecting the vertical line extending upward from query point
q. See Fig. 2.

Initially we toss coins for these lines in V~, in the increasing Y direction away
from q, until we obtain a head, and then (temporarily) stop. Let lu be the line for
which we obtained a head. Let U ___ V~ denote the set of lines before lu for which
we obtained tails. Clearly, I, e Ni÷ 1, whereas no line in U belongs to Ni+l. Thus
I, is obviously going to be bounding the top of the trapezoid A~+ 1, which we do
not know completely as yet. Moreover, all lines in U obviously conflict with A~ + 1.

Now we resume our coin tossing, in a symmetric manner, for the lines in Ni
intersecting the vertical line extending downward from q, until we obtain a head,
and then we again stop temporarily. Let D be the set lines for which we obtained
tails and let l a be the line for which we obtained a head. Obviously, la is going to
be bounding the bottom of the trapezoid Ai÷ i, which we know partially by now.

Now discard (hypothetically) the lines in U and D and consider the intersections
of the remaining lines with I, and ld. Let R~ be the set of remaining lines that
intersect either I, or ld to the right of the vertical line through q. We order R~ as
follows. Given two lines !1 and 12 in R~, we say that ll '~ [2, if the y-coordinate
of either ll c~ I, or I 1 n ld is less than the y-coordinates of both 12 c~ lu and 12 c~ l~.
Figure 2 shows ordering of R~. Now we resume tossing coins for the lines in R~

Dynamic Point Location in Arrangements of Hyperplanes 343

in the increasing order, until we obtain a head. Let lr be the line for which we
obtained a head. It is then clear that l, defines the fight-hand side of At + i in the
sense that the fight-hand side of A~+ 1 extends from the intersection of either lu or
la with l,. Moreover, all lines for which we obtained tails conflict with At+ i.

Now discard (hypothetically) the lines in Rq too. Let Lq be the set of remaining
lines intersecting either I u or I a to the left of the vertical line through q. We order
Lq in a symmetric fashion, and resume tossing coins for the lines in Lq in the
increasing order (away from q) until we get a head and then temporarily stop. Let
I t be the line for which we obtained a head. It is clear that it "defines" the left-hand
side of the trapezoid A~+~, and all lines for which we obtained tails conflict with

Ai+I-
At this point the trapezoid A~+~ containing q in the (i+l)s t level has been

completely determined. Indeed l,, I d, It, It are the lines defining Ai+I and the lines
for which we obtained tails so far are precisely the lines in conflict with A~+ 1. (We
did not take into account the exceptional cases such as when At + ~ is unbounded
or when it is, in fact, a triangle. However, a slight modification to the argument
will cover these cases too.)

We can now toss coins for the remaining lines in any order whatsoever. It
follows that the above on-line sequence of tosses has the desired property. []

In the above theorem we showed that the query time is 0(log n) for a fixed
query point. We further note that there are only polynomially many distinct
combinatorial search paths for a given data structure. By combinatorially distinct,
we imply a different sequence of triangles in the search path. More precisely,
let G(N) be the refinement of G(N) obtained by passing infinite vertical lines
through all intersections among the lines in N. Then, for a fixed region R in G(N),
it is easy to see that the search path in :I(N) remains the same if the query point
lies anywhere in R. This implies that the cost of locating any point is di(log n).

To bound the space requirement of our search structure, first note that, for any
l > 1, the size of the descent structure H(NI+I)~ H(Nl) is O(n2+O. This follows
because, by the Zone Theorem, each line in Nz intersects O(n~+l) trapezoids in
H(N~+ 1). Thus the total space requirement of our data structure is easily seen to
be O (~ n~) = O(n2). Actually it is easy to ensure that the space requirement is
O(n 2) (worst case) without affecting the query time. For this we ensure that r, the
number of levels in the data structure, is such that ~ = 1 n 2 < b. n 2 for some large
enough constant b; the levels (if any) higher than the maximum permissible value
of r are not maintained. During point location we locate the query point in H(N,)
trivially (in O(IN, I) time) and then descend through the data structure as before.
If b is chosen large enough, with high probability this "d ipped" data structure
coincides with the nonclipped data structure, as defined before, and hence, with
high probability, the query time also remains unaffected.

Now let us estimate the cost of adding or deleting a line. We only consider
addition, because deletion is the reversal of addition. By Lemma 1, we only need
to worry about the cost of updating the descent structures Descent(l + 1, l),
1 < l < j + 1, where j is the number of successive heads obtained. Consider first
the simpler case when l = j + I. In this case the line h is to be added to Nz but

344 K. Mulmuley and S. Sen

A

"-" I
(a) " (b) "

7

~c}

\

Fig. 3, Addition of a new line h.

not to Nz+ 1. Let A eH(Nt+I) be any trapezoid intersecting h. For every such
trapezoid A, we need to update the restriction ~ of Descent(t + 1,/) to A. This is
done as follows (see Fig. 3). First we add h to the trapezoidal decomposition ~.
This means all vertical attachments in ~, such as the one through the intersection
x in Fig. 3(a), are split and vertical attachments through new intersections on h,
such u and w in Fig. 3(b), are added. The cost of adding h to ~ is O(IL(A)I + 1).
This easily follows by applying the Zone Theorem to the restricted arrangement
G(Nt) c~ A.

Consider now the case when l < j + 1. In this case, h is to be added to N t as
well as Nt+ 1. To take this into account, we only need to extend the above
procedure of adding h to 2~ as follows. First, if h intersects the lower (or upper)
border of A, then the vertical attachment through this point of intersection w must
extend to the opposite border of A (Fig. 3(c)). This is because w belongs to the
new trapezoidal decomposition associated with the (l + 1)st level and hence the
vertical attachment through w cuts through the lines in L(A) which do not belong
to this level. The cost of adding such an extended vertical attachment through w
is clearly dominated by the size of its zone in the restricted arrangement G(N~) c~ A

Dynamic Point Location in Arrangements of Hyperplanes 345

(shown shaded in Fig. 3(c)), where N~ = N I w {h}. By the Zone Theorem this cost
is O(IL(A)I + 1). Finally, if h intersects the left (or the right) border of A, then that
border has to split appropriately as shown in Fig. 3(d). The reason is this border
corresponds to a vertical attachment through some intersection v in the old
decomposition H(NI÷I), and hence occurs in the new decomposition associated
with the (l + l)st level in a split form.

It follows that the cost of updating the restriction of Descent(l + 1,/) to any
trapezoid A E H(NI+ 1) is O(IL(A) + 1) = 0(log n). By the Zone Theorem the num-
ber of trapezoids in H(NI+I) intersecting h is O(nt+ O. Hence, the total cost of
updating Descent(l + 1,/) is 0(nt+ j log n). Summing over all levels, it follows that
the total cost of updating the descent structures is 0(log n ~t nt)= O(n log n).
Using the results in [8], we can show that, for all i, the average conflict size of the
trapezoids in H(N~) intersecting h is O(1) (the average is taken over all trapezoids
in H(NI) intersecting h). This immediately implies that the expected cost of update
is O(n).

There is another method for bounding the cost of updating Descent(l + 1, t),
which is interesting in its own right. It is based on the observation that the cost
of updating Descent(l + 1,/) is obviously bounded, up to a constant factor, by the
total number of vertices in G(Nz) which lie in the trapezoids of H(Nz+ 1) intersected
by h. It follows from the following lemma that this number is O(n~ log n). This
lemma turns out to be useful later in Section 6.

Lemma 4. The total number of vertices in G(Nz), which lie in the trapezoids of
H(Nj÷ 1) intersected by h, is O(nl log n).

Proof Define the vertical distance of any vertex v e G(NI) from h as the number
of lines in N t that intersect the open vertical segment joining v and h. It is clear
that the vertical distance of any vertex of G(N~), lying in a trapezoid of H(Nt+ 1)
intersected by h, is bounded by the conflict size of that trapezoid, which is
0(log n). Hence, it suffices to bound ~k= 1 s j, where k = O(log n) and s~ denotes the
number of vertices in G(N~) at a vertical distance j from h. By the Zone Theorem,
So = O(n~). This, in conjunction with the results in [8] on abstract k-sets, implies
that ~k= 1 Sj = O(kn~). []

We summarize our main result as follows:

Theorem 3. Let G(N) be an arrangement of n lines in a plane. There exists a
dynamic point-location data structure of O(n 2) size allowing 0(log n) query time
which also allows insertion~deletion of lines in O(n log n) time. The expected cost
of update is O(n).

Remark. Using the best-known deterministic schemes for dynamic point location
l-5], [19], we can achieve O(log 2 n) and O(n log n) bounds for search and update
times, respectively. These are considerably more involved procedures.

346 K. Mulmuley and S. Sen

4. Extension to Higher Dimensions

In this section we extend the algorithm in Section 3 to arbitrary dimension. Our
algorithm works by induction on the dimension d. For the basis case d = 2, we
use the algorithm in Section 3.

In general dimension the algorithm follows the same basic scheme as in Section
2. However, the triangulation scheme that is used is somewhat different in nature.
Let N be a set of hyperplanes in R d, and let G(N), as before, denote the induced
arrangement. The triangulation H(N) of G(N) that we use is the so-called bottom-
vertex triangulation that is defined as follows. We triangulate the j-faces of G(N),
j < d, by induction on j. If j = 1 this is trivial. Otherwise, let f be any j-face of
G(N), j > 2. Let v denote the vertex of f with the smallest Xd coordinate; it is
possible that v lies at "infinity." 1 By our inductive hypothesis, all facets of f have
been triangulated. So we simply extend the "simplices" on the boundary of f to
cones with apex at v. This gives us a simple triangulation of f . When all j-faces
of G(N) are triangulated in this fashion, we get the triangulation H(N) that we
sought. H(N) is called an Xd triangulation or bottom-vertex triangulation of G(N).
The reader might wonder why we did not use this triangulation scheme in Section
3. The reason is that, for some subtle reasons, the superposition scheme used there
for defining the descent structures fails. It is possible to define alternative descent
structures in this case, but then the cost of point location goes up to 0(log 2 n).

Let us now define the point-location structure/7(N) to be associated with the
arrangement G(N). We use induction on d. When d = 2 we use the point-location
structure in Section 3. For d > 3 we apply the scheme in Section 2, with the
triangulation H(N) as defined above. We only need to describe the descent
structures. Descent(i, i - 1) contains a dynamic point-location structure for the
(d - 1)-dimensional arrangement G(N i_ 1) c~ Q for each hyperplane Q ~ N i_ 1. We
denote this structure by ~q(Ni-1, Q). When d = 3 the planar point-location
structure l-7(Ni_ 1, Q) is defined as in Section 3, with some minor modifications
described below. For d > 3 it is the (d - 1)-dimensional point-location structure
that has already been defined, because of our inductive hypothesis. Maintenance
of H(N~_I, Q) is done by recursively applying our lower-dimensional point-
location algorithm.

I t immediately follows from Lemma 1, Lemma 2, and simple recurrence
equations that the cost of adding or deleting a hyperplane is O(n d- 1 log n). O(n n- t)
bound on the expected cost of update easily follows if we were to use, as in Section
3, the results in [8] on average conflict size. Arguing as in dimension two, it is easily
seen that the size of our data structure is O(nd). In fact, we can also ensure that
the worst-case space requirement is O(na), by applying the clipping procedure
described in Section 3.

It remains to see how to answer point-location queries. Let p e R n be a fixed
query point. We cannot use our point-location structure to locate the d-simplex
of H(N) containing p. However, remember that our main goal is to locate only

1 We can assume that N contains symbolically defined 2d hypcrplanes bounding a cube (not paraUd
to the xd axis) approaching infinity, and then confine our attention within this cube.

Dynamic Point Location in Arrangements of Hyperplanes 347

the d-celt of the arrangement G(N) containing p. This can be done as follows. We
determine not just the d-cell of G(N) containing p but the full "antenna" [4-1 of p
in G(N). Antenna of the query point p in G(N) is defined as follows. Let p~ (resp.
P2) be the point of intersection of the vertical line through p and the hyperplane
in N immediately above (resp. below) p. Then antenna (p) is defined to be the union
of the segment [_Pi, P2] together with the recursively defined antenna(pO and
antenna(p~). Note that the algorithm for d = 2 in Section 3, with minor modifica-
tions, also tells us the antenna of the query point in G(N). Indeed, once we know
the trapezoid in the trapezoidal decomposition of G(N) containing p, we also know
the lines in N above and below p. If we additionally maintain, for each line Q ~ N,
the ordered list of all intersections on it in the form of a balanced binary tree, we
can easily determine the full antenna of p in G(N).

Let us get back to the general dimension. Our goal is to determine the antenna
of the query point p in G(N) = G(N1). Inductively, assume that we have determined
the antenna of the query point p in H(Ni). The descent from level i to level i - 1
is carried out as follows. Let Q1 (resp. Q2) be the hyperplane in N i immediately
above (resp. below) p. Let Pl (resp. P2) be the point of intersection of the vertical
line through p with QI (resp. Q2). Then antenna(p) in G(NI) is the union of the
segment [pl, P2] together with the recursively defined antenna(pO and antenna(p2).
Let v~, v2 v2~ be the terminal points of this antenna. We assume here that
the antenna is bounded. This can be ensured by adding to all levels of our data
structure 2d hyperplanes bounding a large cube approaching infinity, and restrict-
ing everything within this cube. z

Lemma 5. The hyperplane in N i_ 1 that is immediately above (below) p is either
Ql (Q2), or it must intersect some d-simplex in H(N~) adjacent to some vl, 1 < i < 2 d.

Proof We proceed by induction on d. For the sake of induction we prove a
somewhat stronger statement. We prove that any hyperplane Q eNi_x\NI that
intersects antenna(p) must intersect a d-simplex in H(Ni) adjacent to some v~,
t<_ i<2 d.

If Q intersects either antenna(p 0 or antenna(p2), then by the inductive assump-
tion it must intersect some (d - D-simplex A in the restriction of H(Ni) to Q1 or
Qz, and hence it intersects the two d-simplices in H(Ni) adjacent to A. Otherwise,
Q intersects [p~, p2], but neither antenna(pO nor antenna(p2). This means anten-
na(pO (resp. antenna(pz)) lies completely above Q (resp. below Q). Let f be the
d-cell in G(N~) containing p and let v be the x :minimum on f . Assume, without
loss of generality, that v lies below Q, the other case being symmetric. Then, because
antenna(p 0 lies completely above Q, it is clear that Q must intersect all d-simplices
m H(Ni) adjacent to the terminals of antenna(pO. []

By Lemma 5, if we simply check through the conflict lists of all O(1) d-simplices
adjacent to the terminals of antenna(p), we can easily determine the hyperplanes Q~
and Q~ in N i_ x that are immediately above or below p. As conflict lists have
- - - - . - - - - _ . _ . _ _ _

2 The hyperplanes bounding this cube are to be defined symbolically.

348 K. Mulmuley and S. Sen

O(log n) size, this takes 0(log n) time. If we appropriately use the recursively defined
dynamic point-location structures//(Nt- 1, Q~) and/-I(N i_ 1, Q~), we can determine
the whole antenna ofp in H(Ni- 1) in polylogarithmic time, with high probability.

From the fact that our data structure has 0(log n) levels, it easily follows by
induction on d, that the query time for a fixed query point is 0(log d- 1 n). As the
number of distinct search paths in the data structure is easily seen to be polynomial
in n, it follows that this bound holds for any query point. To summarize:

Theorem 4. Let G(N) be an arrangement o f n hyperplanes in R d. There exists a
dynamic point-location structure o f O(n a) size allowing t~(log d-I n) query time
which also allows insertion~deletion of hyperplanes in O(n ~-1 log n) time. The
expected cost o f update is O(n d- 1).

5. Top-Down Dynamic Sampling

It is also of theoretical interest if the query time can be brought down to O(log n)
in arbitrary dimension. In this section we give an alternate dynamic point-location
algorithm with 0(log n) query time in arbitrary dimension. The expected space
requirement of our algorithm is O(nd), and the expected amortized cost of update
is O(n d- 1). We do lose something as far as the cost of update is concerned, because
our bound holds only in the expected sense (where expectation is solely with
respect to randomization in the data structure), whereas for the algorithm given
in the last section we could prove a high probability bound for the cost of update.

The organization of this new algorithm is quite different. Roughly speaking,
the data structure in Section 4 is defined in a bottom-up fashion, whereas the data
structure in the present section is defined in a top-down fashion, very much like
the previous static data structures based on random sampling [7], [15].

Given any set N of hyperplanes, our goal is to maintain a dynamic point-
location structure so that, given a query point p e R d, we can quickly, i.e., in
logarithmic time, locate the cell of the arrangement G(N) containing p. It turns
out to be convenient to solve a slightly more general problem, where we assume
that we are given in addition a fixed d-simplex F in R d, and the goal is to locate
the cell in the intersection F c~ G(N) containing the query point p. First we give
an algorithm which guarantees 0(log n) query time and O(n a- lpolylog(n)) ex-
pected (amortized) cost of update. We later remark how the expected cost of update
can be brought down to O(n d- 1).

As usual, we first specify our data structure in a static setting and turn to its
dynamization later. Hence, let N be a fixed set of n hyperplanes in R d. Let F as
before be a fixed d-simplex in R d. We describe the data structure in a top-down
recursive fashion.

At the root level of the data structure, we associate with F the entire restricted
arrangement G(N)n F. This takes O(INt a) time and space [13]. We also associate
with F a coin with bias (probability of success of obtaining a head) p = t/n 1-6
More precisely, we associate with F a bias index i (F)= [_log 2 n 1 -~_J. We then
independently toss, for each hyperplane in N, a fair coin i(F) times in a row. Let

Dynamic point Location in Arrangements of Hyperplanes 349

R be the set of hyperplanes for which all i(F) tosses were heads. The size of R,
denoted by r, is roughly n ~, By the Chernoff bound it is easy to see that
r = O(n a log n). Let H(R) denote the top-bottom triangulation, as defined in Section
4, of the restricted arrangement G(R) n F. We construct H(R) and also a static
point-location structure for H(R). This, by a conservative estimate, takes O(r °~1~)
time and space. If ~ is small enough, this bound is O(nd). For each d-simplex
A e H(R), let N(A) denote the set of hyperplanes in N intersecting (conflicting with)
A. If I N(A)f < a log n, for a suitable terminating constant a to be chosen later, we
build a simple point-location structure, guaranteeing O(IN(A)I + 1) = O(a log n)
query time, for the top-bottom triangulation H(N(A)) of G(N(A)) n A. This is done
by using the following lemma.

Lemma 6. There exists a trivial static point-location structure for G(N(A)) of size
proportional to the size of H(N(A)) with O([N(A)[+ 1) query time.

Proof. The idea is to answer the point-location query in the following fashion
(this point-location idea has also been used in [1] and [9]). Let p ~ A be a query
point. We find out in O(tN(A)I + 1) time the first hyperplane Q in N(A) that is hit
by the vertical ray emanating from p; the case when this ray hits the boundary of A
before any hyperplane in N(A) is handled with slight modifications. After this we
recursively proceed in the lower-dimensional arrangement Q n (N(A)), until we
eventually locate a vertex of the d-cell R in A n G(N(A)) containing p. Our next
goal is to locate the d-simplex in the xd-triangulation (top-bottom triangulation)
of R containing p. Let v be the bottom of R, i.e., the vertex with the smallest
xd-coordinate (which could possibly lie at infinity). Consider the ray emanating
from v and passing through p. We can determine the facet of R hit by this ray in
O(IN(A)[+ 1) time, since R has only O(N(A) + 1) facets. Let p' be the point of
intersection of the ray and the facet. Recursively we determine the (d - 1)-simplex
in the top-bottom triangulation of this facet containing p'. The d-simplex contain-
ing p is the cone over this (d - 1)-simplex with apex at v.

It is clear that the cost of this whole procedure is O(IN(A)t + 1). []

If IN(A)[> a logn, we recur within A with respect to the set of hyperplanes
N(A). We also associate with every d-cell of the restricted arrangement G(N(A)) n
A, stored at A, a parent pointer to the d-cell of G(N) n F stored at F. Point location
is carried out in the obvious manner. To locate a point p E F in G(N) n F, we first
locate the d-simplex of H(R) containing p in O(log r) time using the point-location
structure associated with H(R). Then we recursively locate the d-ceU of
G(N(A)) n A containing p. The parent pointer associated with this d-cell tells us
the d-cell of G(N) n F containing p. It is easy to see that the cost of point location
is 0(log n). (The cost of point location satisfies the following recursive equation:
Q(r) = r, for r < a log n, and Q(n) = log n + Q(r), where r = O(n 1 -~) log n.) More-
over, the number of distinct search paths in our data structure is easily seen to
be polynomial in n with high probability. Hence, it follows that the cost of locating
any point (not just a fixed one) is 0(log n).

350 K. Mulmuley and S. Sen

Let us denote our point-location structure above by Sample(N, F). We also let
N(F) = N by convention.

Lemma 7. The depth of Sample(N, F) is 0(log log n) (assuming that the termina-
tion constant a can be chosen large enough).

Proof The depth satisfies the following recursive equation: d(m)= 1, for
m < a log n, and d(m) = 1 + d(r), where r = O(m 1 -~ log n). []

Lemma 8. Sample(N, F) can be built in O(napolylog(n)) expected time and space.

This follows from Lemma 7 and the following slightly more general lemma.
For a fixed integer s > 0, let T~(IN(F)I) denote the clipped cost of building
Sample(N, F), ignoring the cost incurred at a depth higher than s, i.e., to say we
only take into account the cost incurred up to depth s in the recursive definition
of Sample(N, F). Then

Lemma 9. E[T~(N(F))], the expected value o f T~(N(F)), is < ndb~ for some constant
b > 0 that depends only on the dimension d.

Proof. We use induction on s. The total clipped cost T~(IN(F)[) satisfies the
following probabitistic recurrence equation:

T~(N(F)) = O(IN(F)I a + Y, T~_I(N(A))) and T(N(A)) = O(IN(A)I a)
AcH(R)

for IN(A)I < a log n.

The second equality follows from the fact that, for IN(A)[< a log n, the storage is
proportional to the size of H(N(A)) (Lemma 6). By induction hypothesis it follows
that

By [8]

e Y~ = [a~u(.IN(A)Idl O(IN(F)I~)"

If we choose b large enough, we are done. []

Now let us turn to the dynamization of our technique. Our procedures for
updates are such that, at any time, our data structure is as if it were constructed
by applying the above static procedure to the currently active set N of hyperplanes,
but with one crucial difference. In the static definition of Sample(N, I-'), the bias

Dynamic Point Location in Arrangements of Hyperplanes 351

integer i(A) associated with a node, labeled with a d-simplex A in the data structure,
was chosen to be equal to [_log2 n(A)l-~/, where n(A) = IN(A)[. In a dynamic
setting we work with a relaxed invariant. We only ensure that

I i(A) - Llog2 n(A) 1 -~][< c,

where c > 1 is some predetermined constant; c = 1 will do.
Now let us see how to add a new hyperplane h to Sample(N, F). We give the

algorithm in a recursive form. It is initially called with A = F, where F denotes
the d-simplex associated with the root of our data structure; generally F = R d.

Procedure Add (Sample(N(A), A), h):

1. Add h to N(A) and also to the arrangement G(N(A))c~ A stored at A--by
[13], this takes O(IN(A)I a-l) time.

2. If N(A)< a log n, where n = N(F), also update the trivial point-location
structure associated with G(N(A))c~ A that allows O(IN(A)[) query time.
Return.

3. If Ii(A) - log2(lN(A) l j - °)l > c, where N(A) denotes the new set of hyperplanes
associated with A, we construct new Sample(N(A), A) from scratch, applying
the static procedure in Lemma 8. 3 Return.

4. Toss a fair coin i(A) times in a row.
5. If not all tosses are heads, for all A'eH(R(A)) intersecting h, call

Add (Sample(N(A'), A'), h). Update the parent pointers. Return.
6. Otherwise, add h to R(A). Update H(R(A)) and rebuild from scratch a static

point-location structure for the new triangulation H(R(A))--if the parameter
6 is chosen small enough, the expected cos t of this rebuilding, using a
conservative estimate, is O(I R(A)I °(1)) = O(I N(A)jd ~ 1).

7. Construct conflict lists of the newly created simplices in H(R(A)) from the
conflict lists of the destroyed d-simplices--this can be easily done in time
that is linear in the total structural and conflict change in H(R(A)).

8. For each newly created d-simplex A' in H(R(A)), build Sample(N(A'), A') from
scratch, using the static procedure in Lemma 8. Also associate a parent
pointer with each d-cell of A' c~ G(N(A')).

The deletion operation is very much the reverse of the above addition operation,
and hence is not discussed any further.

Theorem 5. The expected amortized cost of addition or deletion is

O(n d- lpolylog(n)).

Proof. If Sample(N(A), A) is built from scratch in step 3, we amortize the
expected cost of this rebuilding equally among the updates to N(A) since the last

3 The integer n that occurs in the threshold bound a log n on the number of hyperplanes stored at
!he leaves of this static data structure is to be taken as [N(F)[, not IN(A)[. It is easily seen that the bounds
m Lemmas 8 and 9 still apply. We also build Sample(N(A), A) from scratch, if the new size of N(A)
exceeds the threshold a log n.

352 K. Mulmuley and S. Sen

such rebuilding took place; it is easy to see that the number of such updates is
~(IN(A)I). In what follows we forget about this amortization altogether and
pretend the violation of the invariant in step 3 never takes place. (Amortization
can be taken care of in a routine fashion.)

We only estimate the expected cost addition, deletion being analogous. Let
T(IN(A) I, h) denote the expected cost of adding h to Sample(N(A), A).

Estimating T(IN(A)I, h) directly is difficult. Hence, we use a clipping trick, as in
the proof of Lemma 8. For every fixed integer let T~(IN(A)I, h) denote the cost of
addition ignoring the cost incurred at depth higher than s. This also means that
if some subtree of our data structure at depth, say, s' is built from scratch, we take
into account the cost of this static construction up to depth s - s'.

We show by induction on s that the expected value of T~(IN(A)t,h)<
c~tN(A)I a- ~ for some fixed constant c that only depends on the dimension d. We
distinguish between two cases.

Case 1: All i(A) tosses of the coin are heads. In this case, examining steps 1, 6, 7,
and 8 in the algorithm carefully, we see that

T~(IN(A)I, h)-- O(IN(A)I a-~) + ~ T,_ ~(IN(A')I),
A'

where A' ranges over all newly created d-simplices in the new triangulation
H(R(A)) and T~_I(IN(A')I) denotes the clipped cost of building Sample(N(A'), A')
from scratch. By Lemma 9, T~_x(tN(A')I) -- IN(A')ldb s-1 for some fixed b > 0. As
R(A) is a random sample of N(A), it can be shown, using the results in [8] and the
Zone Theorem, that the expected value of ~a, I N(A')I a is

\ \ IR(A)IJ \ IR(A)r/

Hence, it follows that the expected value of T~([N(A)[, h), conditional on all i(A)
tosses being heads, is O(b~-IIN(A)]d/IR(A)t).

Case 2: Otherwise. If we examine steps 1 and 5 in the algorithm we see that, in
this case,

T~(IN(A)h h) = O(IN(A)I a-l) + ~. T~_ I(IN(A')I, h),
A'

where A' ranges over all d-simplices in H(R(A)) intersecting h. By induction
hypothesis, T~_ I(IN(A')I, h) _< c~-11N(A')I ~- 1. Again using the results in [8] it can
be shown that the expected value of T,(tN(A), h) in this case is O(c ~- I IN(A)I a- 1).

Combining two cases, and noting that the probability of obtaining i(A) heads
in a row is (roughly) IR(A) I/I N(A) I, it follows that the expected value of T~(I N(A) I, h)
is O(c ~-I + b~-I)IN(A)I~-L If we choose c > b large enough, it follows that
T,(IN(A)I, h) < c~IN(A)t ~- 1, thereby completing our induction.

By Lemma 7 the depth of our data structure is O(log log n) with high probability
(by choosing the terminating constant a large enough). It follows that, with high

Dynamic Point Location in Arrangements of Hyperplanes 353

probability, T(INI, h) = T(IN(F) I, h) = T~(IN(F) I, h), where s = O(log log n). Hence
T(JNI, h) is O(n d- i polylog(n)). []

The point-location algorithm given above can locate only the d-cell of the
arrangement G(N) containing the query point p. It is also possible to modify the
algorithm so that it can also locate, in addition, the hyperplanes above and below
the query point. For this we let H(N) be a vertical decomposition [4] of G(N)
instead of the xa-triangulation, as used earlier. The vertical decomposition of G(N)
is obtained by passing a vertical wall through every pairwise intersection of the
hyperplanes in N. Let l be any fixed pairwise intersection. For any fixed point
pc l, consider a vertical segment (parallel to the xa-axis) that extends upward
(and downward) until it hits the first hyperplane in N, and if no such hyperplane
exists, it extends to infinity. The union of such vertical segments through all points
on l defines a vertical wall through l. When such a wall is raised through all
pairwise intersections, we get a decomposition of G(N) into vertical cylinders,
whose tops and bottoms are of the same shape (they can possibly touch each
other). However, these cylinders can have arbitrarily large number of facets. To
get around this phenomenon, we triangulate the top (equivalently bottom) of each
cylinder, using the top-bottom triangulation scheme described earlier, and then
extend this triangulation vertically to the whole of each cylinder. The resulting
decomposition H(N) of G(N) is called its vertical decomposition. Its size is O(n a) [4].

If we substitute this new "triangulation" H(N) in place of the top-bottom
triangulation in the previous point-location structure, we get a new point-location
structure. The advantage is that we can also determine in addition the hyperplane
in G(N) above (or below) the query point p. This is done as follows. Assume now
that F associated with the root is a cylinder, e.g., it can be a cube approaching
the whole of R a. Let Q(F) denote the hyperplane bounding the top of F. Let
R = R(F), as before, be the sample of the set N = N(F) associated with the root
of our data structure. Assume that recursively we have determined the hyperplane
Q'~N(A) u {Q(A)} above the query point, where A~H(R(F)) is the 3-cell (3-
cylinder) containing p, and Q(A) is the hyperplane bounding the top of A. By
the very nature of a vertical decomposition, Q' is also the hyperplane in
N(F) w {Q(F)} above p.

In a similar fashion we can also determine the hyperplane in N below the query
point p. If we associate, with each hyperplane Q e N, a recursively defined
point-location structure for the lower-dimensional arrangement G(N) c~ Q, we can
thus determine the whole antenna of p in G(N) in O(log n) time.

To summarize:

Theorem 6. Let G(N) be an arrangement of n hyperplanes in R a. There exists a
dynamic point-location structure of O(na polylog(n)) size with 0(log n) query time.
In the same time we can also determine the antenna of the query point in G(N). The
expected amortized cost of insertion~deletion of a hyperplane is O(n a- 1 polytog(n)).

Remark. There remains one theoretical issue as to whether the polylog factor in
the update and the space requirement can be removed. We only indicate how this

354 K. Mulmuley and S. Sen

is done in a static setting, because the dynamization technique in this section then
becomes applicable with minor modifications. The idea is to bootstrap [4] the
solution in Theorem 6 (twice), in conjunction with Lemma 5. 4 The translation of
the bootstrapping argument of [41 to the present scenario is straightforward.
Hence, we do not reproduce it here.

6. Parallel Algorithms for Updates

Since the cost of any update operation (insert or delete) for maintaining an
arrangement is quite high, there is sufficient motivation to obtain faster algorithms
by using parallelism. We first give a detailed description of a parallel algorithm
for update in two dimensions and subsequently sketch its extension to three
dimensions. The primary objective is to obtain O(log c n) time (for some fixed c)
complexity such that the processor-time product matches (within polylogarithmic
factors) the sequential update time.

We describe our algorithm in the CRCW PRAM model. In this model we
assume that processors can read simultaneously from a memory location and write
conflicts are resolved arbitrarily. While describing our algorithm, we often make
references to various standard parallel techniques like general and integer sorting,
parallel-prefix, and list ranking. Below we state the results that we refer to
frequently in our description.

Lemma 10 (General Sort). N keys can be sorted in O(log N) time usin9 N CRCW
processors.

Lemma 11 (Integer Sort). N keys in the range [0, N log N] can be sorted in
19(log N) time usin9 N/log N C R C W processors.

Lemma 12 (Parallel Prefix). Let ai, 1 < i < N, be N elements f rom a domain D and
let o be an associative binary operation defined for elements in the domain. Then
the N partial sums al, al o a2 al o a2 o. . . o aN can be computed in O(log N) time
using N/log N C R C W processors.

Lemma 13 (List Ranking). Given a linked list o f N elements, the distance of each
element from the head o f the list can be computed in O(log N) time usin9 N/log N)
CR C W processors.

6.1. Two-Dimensional Updates

Recall from Section 3 that our point-location structure consists of a hierarchy of
levels. With each level we associate the arrangement formed by the lines stored in
that level. We also have a descent structure between each pair of successive levels.

4 Due to Lemma 5, the use of Aronov, Matousek, and Sharir's result in [4] becomes unnecessary.

Dynamic Point Location in Arrangements of Hyperplanes 355

For this section we adopt the following data-structure for storing an arrange-
ment. For each line hi, we maintain a sorted sequence of its intersections v~),
1 _< j _< n - 1, with all the other lines. In the sorted sequence we also store the
(two) faces adjacent to v~(j), vi(j + 1) with element viq). We store this sequence in
a balanced tree (like the BB(~) tree) to facilitate fast searching and updates. We
refer to the tree for line hi as S(h~). We store each face of the arrangement in a
concatenable queue data-structure (which is implemented as a balanced binary
tree) that supports fast union and split operations. For face f , the tree B(f) stores
the label of the face in the root. All lines (from the previous level) intersecting
(conflicting with) a trapezoid A are simply maintained in a list L(A). From our
previous random sampling lemmas, IL(A) I = O(log n). Note that for the same face a
line can appear in more than one L(A) (i.e., it can intersect more than one
trapezoid). It turns out that it is convenient to maintain an additional list Q(f) of
lines that intersect a given face f ; here there are no multiple occurrences of the
same line. This list is also convenient for processor allocation when we describe
the details of the update procedure.

For our sequential algorithm it sufficed to bound the total number of update
operations; the changes could be made incrementally by following and modifying
pointers. However, for our parallel algorithm we need fast access and update
abilities which are supported by these data-structures. We confine our discussion
to inserting a new line; deletion can be treated in an identical fashion.

Lemma 14. The operations search, insert, delete, union, and split can be performed
in O(log n) time usino the BB(~) tree.

The main steps in the update procedure at any fixed level 1 (in the O(log n) level
hierarchy of random samples) are:

(1) Find out the set of faces ¢J (zone-faces) that are split by the new line h.
Note that, for each f e .~-, this creates two faces f l and f2. As a consequence
new trapezoids are created and some existing ones destroyed.

(2) Reallocate the lines that intersect the affected faces to appropriate new faces.

Step 1 can be implemented in our data-structure by inserting two new vertices
(the intersections of the new line h with the face) followed by the split and join
operations. From Lemma 14 it can be implemented in O(log n) time. To find the
set of faces ~ that are split by the new line we first determine all n intersections
and insert them in the corresponding S(hi) for each line h v We also create an S(h)
for the new line h. Let us denote the ordered (oh line h) set of intersections with
line h as xi where i _< n. Two consecutive intersections xi and xi+l span a face
f e ~ that has been split. The identity of this face can be determined from the
labels stored in S(hi,) and S(hi2) such that xi is hi, c~ h and xt+l is his n h. From
Lemma 14, face splitting can be done by a single processor in O(log n) time.

Next we reallocate the lines intersecting the split faces. For each of the new
faces created (i.e., f l and f2), we also keep track of the leftmost and the rightmost
vertices. Note that the leftmost (rightmost) vertex of the new face is either the
leftmost (rightmost) vertex of its parent face or one of the new intersections. Also,

356 K. Mulmuley and S. Sen

we can sort the vertices of each face using tfll processors in O(log n) time. (We
use f to refer to both f l and f2.) This allows us to keep track of the sorted
sequence of vertices (and hence the trapezoids formed by the consecutive vertical
attachments). For each line that intersects a face, we can determine the trapezoids
the line intersects once we know where the extreme points (the intersection of the
line with this face) lies. If A k and AI are the two bounding trapezoids, then it
intersects all the trapezoids in between. Assume that we have determined the new
trapezoids a line intersects; we return to this issue after Lemma 15.

If we also know the rank (in the x direction) of the vertical attachments in a
face, this immediately gives us the number of trapezoids it intersects. Let 6, denote
the number of trapezoids line h i intersects. Then we know that ~..i 6i = 0 (I f l log n).
We would like to duster together all the lines that belong to a trapezoid in a list.
We also know that the size of each such list is O(log n). Assume that there are Il l
processors available for face f (can be done by simple prefix sum since we know
the size of each face). So there are Ifl log n elements, each of which belongs to a
specific trapezoid, and I l l processors that have to allocate these elements to the
appropriate list.

This is closely related to the following assignment problem.
Let U be a set {1, 2 , . . . , n} of n indices where each index belongs to exactly

one of m groups G 1, G 2 G,,. Let 9i denote the number of indices belonging
to group Gi, i = 1 rn. Given a sequence N(t),N(2) N(m) where
~7'= 1 N(i) = O(n) and N(i) is an upper bound for 9i, i = t, 2 , . . . , m. The problem
is to find a permutation of (1, 2 , . . . , n) in which all the indices belonging to G1
appear first, all the indices belonging to G2 appear next, and so on. (Assume that
given an index i, the group G i, that i belongs to can be found in O(1) time.)

Therefore we can use the following result [21]. For our case N(i) is O(log n)
and I U I = I f l log n.

Lemma 15 (Assignment Lemma). The above assignment problem can be solved
in 0(log n) parallel time usin9 n/log n P R A M processors.

We now address the problem of how to determine the trapezoids a line intersects
in O(log n) time using n processors. For this purpose we work with the list Q(f)
(recall that it is a list of lines intersecting a face f). Note that each line h,- that has
to be reallocated is either split by h or they lie completely "above" or "below" h
within the face. In the latter case we already know the intersection points and we
can compute their position in the sorted sequence of trapezoids very easily from
the updated B(f). In case the line hi is split, i.e., its intersection with h lies within
the face, we have to determine its position in the sorted sequence of vertical
attachments. Since there are at most n intersection points we can do a binary
search. Although this is true globally, we may not have enough processors to do
it for a given face. We have I f l processors and if we are unlucky we may have to
do more than I f l binary searches for face f . So for this step we have to reallocate
processors globally which can be done with the help of Q(f). We can use a marker
bit to indicate whether line h~ intersects h in f . The sum total of marks over all Q(f),
f e ~ is n. We accordingly allocate processors and do the binary searches in the

Dynamic Point Location in Arrangements of Hyperplanes 357

appropriate lists (sorted sequence of the vertices of the face the intersection lies
in). Actually we have to do two binary searches---one for each of the split faces f l
and fz. The Q (f 0 and Q(fz) can be constructed easily using the prefix sum.

We next turn to the update of descent structures, which allow us to descend
from one level to the next during point location. Recall that the descent structure
between level l and l - 1 is defined as the superposition of the arrangement at
level l - 1 with the trapezoids at level l (Section 3). This amounts to maintaining
additional information for the intersections of a vertical attachment (of a trapezoid)
with the conflicting lines from the previous level. We maintain for each such
intersection point in level 1 its left and right neighboring vertex in Gt-1 along the
line.

To update this information efficiently we further maintain a sorted list of a
line's intersection with the vertical attachments within each face (that the line
intersects with). In case the face is split, we have to update this sorted list. We
denote this list for a line hi (for some fixed face) by Di and the new lists as /5~.
The line hl can intersect several zone-faces (of h) and hence we use Di(9) to refer
to Di corresponding to face g (a zone-face of hi). We use/5 i to refer to bo th /) (f l)
and /5(f2). To update the list, we allocate t_lDib/logn] processors. Note that
~ ~__l~.~ Oi(f) = O(n log n), because the first sum is also bounded by the sum of the
conflict sizes of all O(n) trapezoids in the zone of h~ (interchange the summation
signs). Each processor is given log n consecutive elements of this list. If IDi[< log n,
then we bunch them in groups such that each group has O(log n) elements and
assign one processor to each group.

Each element is the intersection of a vertical attachment with line h i. If the line
h~ lies between the vertex (from which the vertical attachment originates) and h,
then that element is marked with 1, else it is marked with 0. Now a prefix sum
computation can be used to discard all the elements marked 0 and compress the
list D~ into/5 i. For the groups that were bunched together because they had less
than log n elements, the processor assigned simply executes the above algorithm
sequentially.

This gives the sorted list for the upper face of the (two) faces created by h. A
similar computation yields the sorted list for the lower face. There is one more
detail that has to be taken care of. The line h inserts two new vertical attachments
in a face (that is split). While constructing/Sg for a face, the intersections (if there
is one) of line h i with the vertical attachments have to be inserted; let us denote
these points by l and r (if they exist). Moreover, their positions have to be
determined in G(N~_ 1).

We sketch the method leaving out the exact implementation details. We do this
step globally for all the lists /5 i. For t/)~l > logn, this can be done by a binary
search by allocating a processor. However, the total number of such lists is not
known to be bounded by n; so for the shorter lists we have to adopt a different
approach. We denote the neighboring vertical attachments of I (r can be treated
similarly) by v 1 and v 2. One of these vertices belong to a zone-trapezoid of the
newly inserted line, say v~. If we count the number of intersections on line hi that
lie in the interval [vx,/] (call this number P(/) of G(Nt_ ~) and sum over all such
l~, then the total can be bound by the number of intersections of G(Nt_ 1) lying in

358 K. Mulmuley and S. Sen

the trapezoids of H(Nt) intersected by h. From Lemma 4 this is 0(n log n). We
then allocate processors to groups of l such that the sum of P(1) for that group
does not exceed K log n for some fixed K. We use integer sorting on the labels of
the (3(n log n) b~ elements to do the processor allocation. There are n labels for
lines and so we can use the result of Lemma 11. We allocate one processor to
each group and let it sequentially locate the position of l walking along line h~ in
G(N~_I) from vl to I. This way we effectively step through all the intersection
points and hence the position of all rs in G(N t_ 1) can be determined at the
conclusion of this procedure, which takes (3(log n) time.

We have described the algorithm at a fixed level for update. All the levels can
be updated simultaneously once we know the result of the coin tosses. If there are
t consecutive heads, then the line gets inserted up to level 1 + 1. To make the
data structure updates at any level j < l, only information for levels j and j - 1
is needed. In particular, to update Descent(l, l - 1) only information of G(N l) and
G(Nt_ 1) is required. Since the sizes of the levels decrease geometrically, the total
number of processors required is O(n) and hence we can state the result as follows:

Theorem 7. The dynamic point-location data structure for an arrangement of lines
can be updated in 0(log n) time on a C R C W P R A M model using n processors. The
query time is O(log n) and the space complexity is O(n2).

6.2. Extension to Hioher Dimensions

It is not clear whether the update procedure for dimensions higher than two can be
parallelized easily using the previous approach. However, in dimension three we
can obtain a fairly efficient algorithm by basically extending the algorithm for two
dimensions. For each plane h~ we maintain the data structure for storing the
projected arrangement G(N, h~). Moreover, for each pair of planes hi and h~ that
intersect in a line L~j, we maintain a sorted sequence S~j of its intersections with
the remaining planes. In the update procedure we update these data structures
corresponding to each G(N, h~) and L w These procedures are similar to the ones
described in the previous section. The cells (convex polyhedra in this case) can be
stored in any of the standard data structures, for example, as incidence graphs.
For each face of G(N, h~), we store the labels of the cells that it bounds. For each
edge, we store the labels of the four cells that are incident on it.

If a cell is split by a newly inserted plane, it can be quickly identified by the
position of the intersection of this plane and L~j in S~j. With the number of
processors proportional to the size of the cell, the data structures corresponding
to the new cells can be formed. In addition we have to update the conflict lists
for each 3-simplex [17] lying in the zone of the new (or deleted) plane. We use
the triangulation scheme of Dobkin and Kirkpatrick [12]. The triangulation
procedure can be parallelized using the algorithms of [10] or [23]. For each plane
(lying in the zone) we have to determine the triangles (more precisely, 3-simplices)
it intersects. The search procedure uses the hierarchical representation of convex
polyhedra which is obtained from [12]. The search begins from the bottommost
level where there is a constant number of triangles. The number of levels k, is

Dynamic Point Location in Arrangements of Hyperplanes 359

roughly O(loglCI), where C is the triangulated convex potytope the plane
intersects. For each plane-triangle intersection we allocate a processor. In the next
level of the hierarchy, each triangle of level k has only a constant number of
neighboring triangles from level k - I (see [10]). So in constant time, a processor
can check the set of triangles in level k - 1 the plane intersects. The total number of
processors required is proportional to the number of plane-triangle interactions
which is O(n~ log n), where n~ is the number of planes in level l (from the random
sampling property). In order to reallocate processors evenly, we spend an extra
O(log n) to do dynamic load balancing by a simple prefix sum computation. Hence
we can apply Brent's slow-down lemma to reduce the number of processors by a
multiplicative factor of O(log n) for the intersection detection part without affecting
the asymptotic time complexity. The remaining implementation details can be
worked out easily to arrive at the following result.

Theorem 8. The dynamic point-location data structure for an arrangement o f n
planes can be updated in (~(log 2 n) time on a C R C W P R A M model using n 2
processors. The query time is O(log 2 n) and the space complexity is O(n3).

Note that this is O(log n) factor away from an optimal speed-up algorithm. We
suspect that a more careful reallocation procedure could lead to an optimal
speed-up algorithm.

7. Conclusion

In this paper we have presented a very simple scheme for maintaining a dynamic
point-location structure for arrangements of hyperplanes that guarantees poly-
logarithmic query time. One of the main contributions of this paper has been
adaptation of the skip-list methodology [20] for dynamic algorithms. We believe
that this is a versatile and powerful tool which is likely to have further applications
[16].

References

1. P. Agarwal et at., Euclidean minimum spanning trees and bichromatic closest pairs, Discrete
Comput. Geom., 6 (1991), 407~22.

2. C. Aragon and R. Seidel, Randomized search trees, Proceedings of the 30th Annual Symposium on
Foundations of Computer Science, 1989, pp. 540-545.

3. B. Chazelle and J. Friedman, A deterministic view of random sampling and its use in geometry,
Combinatorica, 10 (1990), 229-249.

4. B. Chazelte and J. Friedman, Point location among hyperplanes, Manuscript.
5. S. Cheng and R. Janardan, New results on dynamic planar point location, Proceedings of the IEEE

Symposium on Foundations of Computer Science, 1990, pp. 96-105.
6. H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of

observations, Ann. of Math. Statist., 23 (1952), 493-507.
7. K. L. Clarkson, New applications of random sampling in computational geometry, Discrete

Comput. Geom., 2 (1987), 195-222.
8. K. L. Clarkson and P. Shor, Applications of random sampling in computational geometry, 1I,

Discrete Comput. Geom., 4 (1989), 387-421.

360 K. Mulmuley and S. Sen

9. M. Dyer and A. Frieze, A randomized algorithm for fixed-dimension linear programming, Math.
Programming, 44 (1989), 203-213.

10. N. Dadoun and D. Kirkpatrick, Parallel construction of subdivision hierarchies,./. Comput. System
Sci., 39 (1989), t53-165.

1 t. D. Dobkin and D. Kirkpatrick, A linear time algorithm for determining the separation of convex
polyhedra, J. Algorithms, 6 (1985), 381-392.

t2. D. Dobkin and D. Kirkpatrick, Determining the separation of preprocessed potyhedra--a unified
approach, Proceedings of the 17th International Colloquium on Automated Language Programming,
1990, pp. 400-413.

13. H. Edelsbrunner, R. Seidel, and M. Sharir, On the zone theorem for hyperplane arrangements,
Rept. UIUCDCS-R-91-1655, Department of Computer Science, University of Illinois, Urbana, IL,
1991.

14. O. Fries, K. Mehlhorn, and S. Naeher, Dynamization of geometric data structures, Proceedings of
the First ACM Symposium on Computational Geometry, 1985, pp. 168-176.

15. D. Haussler and E. Welzl, e-nets and simplex range queries, Discrete Comput. Geom., 2 (1987),
127-152.

16. K. Mulmuley, Randomized multidimensional search trees: dynamic sampling, Proceedings of the
Annual ACM Symposium on Computational Geometry, June 1991, pp. 121-131.

17. K. Mulmuley and S. Sen, Dynamic point location in arrangements of hyperplanes, Proceedings of
the Annual ACM Symposium on Computational Geometry, June 1991, pp. 132-141.

18. M. Overmars, The Design of Dynamic Dala Structures, Lecture Notes in Computer Science,
Vol. 156, Springer-Verlag, Berlin, 1983.

19. F. Preparata and R. Tamassia, Fully dynamic point location in a monotone subdivision, SlAM
J. Comput., 18 (1989), 811-830.

20. W. Pugh, Skip lists: a probabilistic alternative to balanced trees, Comm. A CM, 33, (1990), 668-676.
21. S. Rajasekaran and J. H. Reif, Optimal and sub-logarithmic time randomized parallel sorting

algorithms, SIAM J. Comput., lg (1989), 594-607.
22. J. H. Reif and S. Sen, Optimal randomized parallel algorithms for computational geometry,

Proceedings of the 16th International Conference on Parallel Processing, 1987. Revised version in
Algorithmica, 7 (1992), 91--117.

23. J. Reif and S. Sen, Polling: a new random sampling technique for computational geometry,
Proceedings of the A CM Symposium on the Theory of Computing, 1989, pp, 394-404.

Received August 25, 1991.

Note added in prooJ; The da t a s t ructure in Section 4 can also be used for ray
shoo t ing as follows. Let N be the set of hyperp lanes as in that section. Given a
query po in t p ~ R d, and a ray or ig ina t ing from p, the goal in this p rob lem is to
de te rmine quickly the first hyperp lane in N tha t is hi t by this ray, if any. Choose
a z -coord ina te such that the given ray becomes paral le l to the z-axis. This
coo rd ina t e depends on the query. I t is comple te ly independen t of the xd-coordinate
tha t was used in the bo t tom-ver t ex t r iangula t ion . Define antenna(p) with respect
to the z -coord ina te jus t as in Section 4: N o w " a b o v e " means in the positive
z-di rect ion and " b e l o w " means in the negat ive z-direction. The query procedure
in Section 4 correct ly de termines antenna(p) for any choice of the z-coordinate.
This is because L e m m a 5 holds for any z-coordinate .

Once we know antenna(p) with respect to the z-di rect ion we automat ica l ly
k n o w the first hyperp lane hit by the query ray. (If there is no such hyperplane, the

co r r e spond ing te rminals of the an t enna lie at infinity.)
Thus we get a dynamic r ay - shoo t ing a lgo r i thm with the same performance as

in T h e o r e m 4.

