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Abstract. We present algorithms for maintaining data structures supporting fast 
(polylogarithmic) point-location and ray-shooting queries in arrangements of hyper- 
planes. This data structure allows for deletion and insertion of hyperplanes. Our 
algorithms use random bits in the construction of the data structure but do not make 
any assumptions about the update sequence or the hyperplanes in the input. The 
query bound for our data structure is O(polylog(n)), where n is the number of 
hyperplanes at any given time, and the 0 notation indicates that the bound holds 
with high probability, where the probability is solely with respect to randomization 
in the data structure. By high probability we mean that the probability of error is 
inversely proportional to a large degree polynomial in n. The space requirement is 
0(nd). The cost of update is O(n d- t log n). The expected cost of update is O(n d- l); 
the expectation is again solely with respect to randomization in the data structure. 
Our algorithm is extremely simple. 

We also give a related algorithm with optimal 0(log n) query time, expected O(n d) 
space requirement, and amortized O(n d- 1) expected cost of update. Moreover, our 
approach has a versatile quality which is likely to have further applications to other 
dynamic algorithms. 

For d = 2, 3 we also show how to obtain polylogarithmic update time in the 
CRCW PRAM model so that the processor-time product matches (within a poly- 
logarithmic factor) the sequential update time. 

I. Introduction 

Maintaining da ta  s tructures that  allow per iodic  updates  has received much 
attention in the pas t  and in recent years. Typical  opera t ions  include insert ion and 
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deletion of elements from a given universe like points, segments, etc., and at any 
given stage we may have to answer queries about the present set of elements. One 
of the challenging goals in designing data structure for such dynamic environments 
is to be able to match the query time with that of the static case (one in which 
the set of elements remains fixed but each instance of query could be different). At 
the same time it is also critical that we do not expend too much space for the data 
structure and also keep the update time minimal. Balanced binary trees supporting 
dictionary operations is perhaps the most commonly used dynamic data structure 
and it also matches the asymptotic performance of searching in an ordered set. 
In order to compete with the static case, the dynamic data structures typically 
need to be more sophisticated and sometimes turn out to be prohibitively difficult 
to implement. Examples of some sophisticated dynamic data structures include 
data structures for planar point location [5], [14], [t8], [19]. 

A more recent line of attack for designing dynamic data structures has been 
the use of randomization. The term randomized algorithms in this paper refers to 
algorithms that do not assume any distribution of the input but use random bits 
to make choices at different stages of the algorithm for any input. Skip Lists [20] 
and Randomized Search Trees [2] are examples of dynamic data structures 
recently proposed and use randomization. Their performance bounds compare 
very favorably with their deterministic counterparts (that is the balanced binary 
trees) and are much simpler to implement. The obvious tradeoff is that the 
performance bounds are guaranteed with certain probabilities which in spite of 
being less than 1 are usually acceptable for most applications. In particular, if we 
can guarantee performance bounds with probability 1 - 1In ~ for a large enough 
~t > 1, where n is the input size, then even for moderate values of n this is very 
close to 1. Bounds of this form are often referred to in the literature as high- 
probability bounds. These are stronger than bounds on the mean behavior, 
which cannot predict the probability of deviation from the expected behavior. The 
following notation is used in this paper. We say that a function f (n )= 0(g(n)) 
if, for every ct > t, there is a constant c > 0 such that f(n) <_ c" g(n) with probability 
at least 1 - 1/n ~. 

In this paper we investigate further the use of randomization for searching in 
arrangements of hyperplanes in a dynamic environment. The static point-location 
problem for arrangements of hyperplanes has been satisfactorily solved [7] by 
making use of randomization and then subsequently derandomizing it efficiently 
[31 [4]. Our results are as follows. We give a very simple dynamic point-location 
algorithm with O(polylog(n)) query time and O(n d) space requirement and 
O(n d- 1 log n) update time, for arbitrary d. The expected update time is O(n d- 1) 
and the expected space requirement is O(nd). In dimension two we obtain the 
optimal O(log n) query time; the other bounds are the same as before. We can 
reduce the query time to 0(log n), with O(n d) expected space and O(n d- i) expected, 
amortized update time, for arbitrary d. However, the bounds on space and update 
time for this algorithm are only expected and do not hold with high probability. 

For d = 2, 3 we also show how to obtain polylogarithmic update time in the 
CRCW PRAM modal so that the processor-time product matches (within a 
polylogarithmic factor) the sequential update time. 
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Our data structures can also be used for dynamic ray shooting with the same 
query time. See the note at the end of this paper. 

Random sampling results in [7], [15], and [22] have contributed significantly 
toward our arrangement searching algorithms. 

Notation. In this paper we use I I to denote the size operation. Thus if N is a 
set, INI denotes its size, if f is a convex polytope, I f l  is the number of all its 
subfaces, and so on. 

2. The Basic Algorithm 

In this section we present a high-level, dimension-independent description of our 
basic approach. Some steps of our algorithm are dependent on the dimension. We 
present the implementation of these steps in later sections where we instantiate 
our basic algorithm in various dimensions. 

We begin by describing a procedure for building a point-location data-structure 
in the static case and subsequently argue that its extension to the dynamic situation 
is straightforward. The static algorithm is reminiscent of an algorithm due to 
Clarkson [7] turned upside-down. Given a set N of hyperplanes in R a, we denote 
the induced arrangement by G(N). The d-cells of G(N) can have an unbounded 
number of facets and this turns out to be problematic. Hence, we work with a 
certain triangulation H(N) of G(N) that is obtained by decomposing each d-cell 
of G(N) into simplices or, in general, cells with a bounded number of facets. We 
leave the exact nature of H(N) completely abstract at this point, except that it is 
assumed to satisfy the following condition: each d-cell f of G(N) is decomposed 
into O(I f l )  simplices, or in general cells, each of which is "defined" by a bounded 
number of hyperplanes. As an abuse of notation, we refer to the d-cells of H(N) 
as d-simplices, even though, strictly speaking, they need not be simplices. 

The following basic algorithm builds a point-location structure/~(N) that can 
be used to locate the d-simplex of H(N) containing any query point p ~ R a. 

Let N = N 1./q(N) =/7/(N1) is defined recursively as follows: 

1. Build the triangulation H(N1). 
2. For each hyperplane in N1, toss an unbiased coin. Let N 2 be the set of 

hyperplanes in N1 for which the toss turned out to be a head. Build/7(N2) 
recursively. 

3. Associate with each d-simplex A of H(Nz) a list L(A) of hyperplanes in 
Nx\N 2 that intersect A and conversely with each hyperplane in NI\N 2, 
we associate a list of d-simplices in H(N2) that it intersects. We also say that 
the hyperplanes in L(A) conflict with A and L(A) is called its conflict list. 

4. Build a data structure Descent(2, 1) that provides a "descending link" 
between the second level and the first level. This structure is used in 
point-location queries, in a manner to be described soon. At this stage we 
leave the nature of this descent structure completely abstract. 

An important fact regarding our point-location structure is that, for every I > 1, 
Nt is a random sample of N,_ ~ of roughly half the size. Hence, the random 
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sampling results in [7] and [15] imply that, with very high probability, for every 
d-simplex A of H(Nt) and every I > 1, [L(A)[ = 0(log nJ. In what follows we denote 
the size of N~ by n~. 

Now let us see how to answer point-location queries. Let p e R d be any fixed 
query point. Our goal is to locate p in G(N) = G(N1), the arrangement associated 
with the first level. Toward this end we recursively "locate" p in the second level. 
We assume that we are given a descent oracle so that, given how p is located in 
the second level, p can be located in the first level quickly, i.e., in polylogarithmic 
time, assuming that the oracle has the descent structure Descent(2, 1) as well as 
the conflict information at its disposal. As the number of levels in H(N) is easily 
seen to be 0(log n), this implies O(polytog(n)) bound on the query time. Of 
course, we have proven this bound for a fixed query point, but as we shall see 
later, this easily translates into a polylogarithmic bound for any query point, 
because there will be only polynomially many distinct search paths in our data 
structure. To get a tighter bound on the query time, such as O(log n) bound in 
dimension two, we need to use refined random sampling results that are proven 
later in this paper. 

So far we have deliberately not stated in precise terms what is meant by locating 
p in the ith level. There seem to be several ways of defining what this means. The 
first possibility is to define locating p in the ith level as simply determining the 
d-cell in the arrangement G(Ni) containing p, but then it is easy to see that 
descending from the ith level to the (i - 1)st level is going to be difficult in general, 
because the d-cells of G(N~) can have an arbitrarily large number of facets. The 
second possibility is to define locating p in the ith level as locating the d-simplex 
of the triangulation H(Ni) containing p. This notion is stronger than the first 
notion, because given the d-simplex of H(N~) containing p, we can immediately 
determine the d-cell of G(Ni) containing p. The third notion is to define locating 
p in the ith level as determining the hyperplanes in N~ above and below p with 
respect to, say, the xd-coordinate. At this point, let us keep the notion of locating 
p in the ith level completely abstract. 

To make our data structure dynamic, we adopt the following scheme. Our 
procedures for addition and deletion of a hyperplane are such that, at any given 
time, the state of our data structure is independent of the actual sequence of 
updates that built it. Thus if N were to denote the set of currently existing 
hyperplanes that have been added but not deleted so far, then ~(N) will be as 
if it were built by the above static procedure applied to N. This ensures that the 
random sampling results that are crucial to analyze our static data structure carry 
over, more or less unaffected, to the dynamic setting. 

Let us now see how to add a new hyperplane h to /-7(N). We first toss an 
unbiased coin successively until we get a tail. Le t j  be the number of heads obtained 
before getting a tail. We simply "add"  h to levels 1 through j + 1. For  1 ___ 1 < 
j + 1, let Ns denote N, u {h}. Addition of h to the / th  level is carried out in three 

steps. 

1. Update H(NI) to H(NI). 
2. Construct conflict lists of the new d-simplices in H(Nz). 
3. Update Descent(l + 1, l). 
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The third step is dependent on the exact nature of the descent structures. Hence, 
we only elaborate the first two steps. 

The zone of a hyperplane (in d dimension) is defined as follows. Let ho be a 
hyperplane in an arrangement G(H). A k-face f for 0 _< K < d - 1 is said to be 
visible from h o if there is a line segment s that connects f and h 0 such that the 
interior of s is contained in ho or in a cell of s~'(H). The zone of h o is the set of 
k-faces that are visible from ho. Define Zone(N, h), the Zone of h in the arrange- 
ment G(Nt). The Zone Theorem in [13] states that 

Theorem 1 (Zone Theorem). The maximum cardinality of  Zone(Nt, h) is O(n~- i), 
where nl is the size of  Nt, and, moreover, Zone(Nz, h) can also be determined in 
O(n~- 1) time. 

Let f be any d-cell in Zone(N, h). We remove all d-simplices in the old 
triangulation o f f .  Next we split f along h into two d-cells f l  and f2 and triangulate 
f l  and f2 all over. All triangulation schemes to be considered in this paper are 
simple enough so that triangulation of f l  and f2 can be carried out in 
O(Ifll + If21) = O(Ifl) time. 

We also need to construct conflict lists of all d-simplices in the triangulation 
of f l  and f2. Let h' be a hyperplane in Nt - Nz- t that intersects f .  From the old 
conflict information, we can figure out all 1-faces (edges) of f intersecting h'. Hence, 
by a straightforward search in the new triangulations of f l  and f2, we can 
determine all d-simplices within f l  and f2 that intersect h' in time proportional 
to their number. Because the size of every conflict list, new or old, is 0(log n), with 
high probability, it follows that the total cost of updating the conflict lists 
is 0(~.I Ifl log n) = O(n~-1 log n), where f ranges over all d-cells of G(N,) inter- 
secting h. 

To summarize: 

Lemma 1. The cost of inserting a new hyperplane in f7i(N) is O(n d- 1 log n), ignoring 
the cost of updating the descent structures. 

Deletion is the exact reversal of addition, that is, the cost of deletion is no more 
than inserting the hyperplane immediately afterward. Hence, we merely state: 

Lemma 2. The cost of deleting any hyperplane from n(N) is O(n a-1 log n), 
ignoring the cost of  updating the descent structures. 

Our broad objective in dimension d is to obtain a potylogarithmic search time 
and O(n d- 1. polytog(n)) update time, where n denotes the number of hyperplanes 
currently in the data structure. In the next section we consider the simplest case, 
d = 2, to bring out the basic ideas in a simplest setting. We show how to achieve 
t~(log n) query time and O(n log n) update time for d = 2. In Section 4 we 
consider the general dimension. The case d = 2 is a little bit different from the 
general dimension in that we can make use of the low dimensionality of the 
problem to achieve optimal 0(tog n) time in a very simple way. 
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3. Two-Dimens ional  Arrangements  

Let N be a set of n lines in R z and let G(N) denote the induced arrangement. The 
convex regions of G(N) need not have a bounded number of sides. Hence, using 
a well-known scheme, we decompose each convex region of G(N) into vertical 
trapezoids. From each vertex of the convex region (polygon) extend a vertical ray 
directed toward the interior until it meets an edge of the polygon (see Fig. l(a) 
and (b)). This partitions the convex polygon into trapezoids. (If required these 

(a) 

(b) 

(c) 

(d) 

Fig. 1. (a) N,, (b) H(NI), (c) H(N,+ 1), and (d) Descent(l + 1, l). 
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trapezoids can be triangulated by drawing a diagonal, but this is not necessary, 
since each trapezoid is obviously "defined" by a bounded number of lines.) When 
the above procedure is repeated for all convex regions of G(N) we get the 
triangulation H(N) that we use in our basic algorithm. 

The only thing that remains to be specified in the definition of our search 
structure H(N) is the nature of the descent structures. The descent structure 
Descent(I + 1,/) between two successive levels l + 1 and l is defined as simply 
the superposition of the triangulations H(NI) and H(Nt+t); see Fig. 1. We also 
denote this superposition by H(N~)@H(Nz+I). We also associate with each 
trapezoid in Descent(t + 1,/) a pointer to the trapezoid in H(Nt) containing it. 

Let us turn to point location. Let q e R 2 be a fixed query point. Let r be the 
last level in our data structure, which means that N, is empty. Thus locating q in 
H(N,) is trivial. Inductively assume that we have located q in H(Nt+ 1), 1 < l < r. 
Making use of the descent structure defined above, it is really easy to descend 
from level l + 1 to level I. Let A = Al ÷ 1 be the trapezoid in H(N I ÷ 1) containing 
the query point q. We determine the first line Q in N~ that intersects the vertical 
ray from q directed upward; see Fig. l(c). Obviously Q is either the line bounding 
the upper side of A or it belongs to L(A). Let q' be the point of intersection of the 
vertical ray with Q. Let v be the intersection of Q with either a line in L(A) or the 
boundary of A, which is nearest to q' on its left side. It is easy to determine v in 
O(IL(A)I + 1) time. Next we walk within Descent(I + 1,/) from v to q'; see Fig. 
l(d). The cost of this walk is again O(IL(A)I + 1). At the end of this walk, we have 
determined the trapezoid A' ~Descent(1 + 1,/) containing q; see Fig. l(d). The 
required trapezoid A " =  A~eH(N~) containing q is the one containing A', see 
Fig. l(b). 

Thus we can descend from level 1 + 1 to level l in O(tL(At+ 1)1 + 1) time. With 
high probability, IL(A~)I = O(log n) for all l, and the number of levels is O(log n). 
It follows that the time required to locate a fixed point q is 0(log z n). The following 
theorem shows that the query time is, in fact, 0(log n). 

Theorem 2. For a fixed query point q, ~i>_1 [L(Ai)I is 0(log n), where Ai is the 
trapezoid containing q in H(Ni). 

Proof Let NB(s) denote the random variable that is equal to the number of tails 
obtained before obtaining the sth head in a sequence of binomial trials with a fair 
coin. NB(s) is the familiar negative binomial distribution. When s = 1, it is the 
geometric distribution. We show that, for all i, IL(A,)I = O(NB(a)) for some 
fixed constant a. Because the coin tosses at each level, used in the definition of 
data structure, are independent from the coin tosses used in the preceding 
levels, it then follows that, for any fixed constant c, ~/,~c~og. lL(Al)l = 
O(NB(ca log n))= 0(log n), using Chernoff bound [6] for negative binomial 
distributions. As the number of levels is di(log n), this proves the theorem. [] 

So fix a level i. Also fix the set N i of lines occurring in the ith level of the data 
structure. The set Ni+ 1 is determined by flipping a fair coin for each line in Ni 
and retaining those lines for which the toss was head. We prove that: 
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Fig. 2. 
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. . . . . .  , lines in U and D; . . . . .  , lines in R~ (numbers indicate ordering on R~). 

Lemma 3. There is an imaginary, on-line ordering h l, h 2 . . . .  o f  all lines in Ni  such 
that the set o f  lines "'defining" or intersecting the trapezoid A~+ 1 always occurs as 
an initial subsequence o f  hi ,  h2, . . .  . By on-line ordering we mean that hk+ 1 can be 
chosen on the basis o f  the known coin toss results fo r  h 1 . . . . .  hk. Note  that Ai÷ 1 is 
not known to us a priori, because it depends on the results o f  coin tosses for  the 
lines in N i. 

As the number of lines defining any trapezoid is at most four, it follows from the 
lemma that IL(A~+x)I is O(NB(4)). 

Proo f  o f  the lemma. Consider the ordered set V~ of lines (in the increasing Y 
direction) in N i intersecting the vertical line extending upward from query point 
q. See Fig. 2. 

Initially we toss coins for these lines in V~, in the increasing Y direction away 
from q, until we obtain a head, and then (temporarily) stop. Let lu be the line for 
which we obtained a head. Let U ___ V~ denote the set of lines before lu for which 
we obtained tails. Clearly, I, e Ni÷ 1, whereas no line in U belongs to Ni+l. Thus 
I, is obviously going to be bounding the top of the trapezoid A~+ 1, which we do 
not know completely as yet. Moreover, all lines in U obviously conflict with A~ + 1. 

Now we resume our coin tossing, in a symmetric manner, for the lines in Ni 
intersecting the vertical line extending downward from q, until we obtain a head, 
and then we again stop temporarily. Let D be the set lines for which we obtained 
tails and let l a be the line for which we obtained a head. Obviously, la is going to 
be bounding the bottom of the trapezoid Ai÷ i, which we know partially by now. 

Now discard (hypothetically) the lines in U and D and consider the intersections 
of the remaining lines with I, and ld. Let R~ be the set of remaining lines that 
intersect either I, or ld to the right of the vertical line through q. We order R~ as 
follows. Given two lines !1 and 12 in R~, we say that ll '~ [2, if the y-coordinate 
of either ll c~ I, or I 1 n ld is less than the y-coordinates of both 12 c~ lu and 12 c~ l~. 
Figure 2 shows ordering of R~. Now we resume tossing coins for the lines in R~ 
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in the increasing order, until we obtain a head. Let lr be the line for which we 
obtained a head. It is then clear that l, defines the fight-hand side of At + i in the 
sense that the fight-hand side of A~+ 1 extends from the intersection of either lu or 
la with l,. Moreover, all lines for which we obtained tails conflict with At+ i. 

Now discard (hypothetically) the lines in Rq too. Let Lq be the set of remaining 
lines intersecting either I u or I a to the left of the vertical line through q. We order 
Lq in a symmetric fashion, and resume tossing coins for the lines in Lq in the 
increasing order (away from q) until we get a head and then temporarily stop. Let 
I t be the line for which we obtained a head. It is clear that it "defines" the left-hand 
side of the trapezoid A~+~, and all lines for which we obtained tails conflict with 

Ai+I- 
At this point the trapezoid A~+~ containing q in the ( i+l)s t  level has been 

completely determined. Indeed l,, I d, It, It are the lines defining Ai+I and the lines 
for which we obtained tails so far are precisely the lines in conflict with A~+ 1. (We 
did not take into account the exceptional cases such as when At + ~ is unbounded 
or when it is, in fact, a triangle. However, a slight modification to the argument 
will cover these cases too.) 

We can now toss coins for the remaining lines in any order whatsoever. It 
follows that the above on-line sequence of tosses has the desired property. [ ]  

In the above theorem we showed that the query time is 0(log n) for a fixed 
query point. We further note that there are only polynomially many distinct 
combinatorial search paths for a given data structure. By combinatorially distinct, 
we imply a different sequence of triangles in the search path. More precisely, 
let G(N) be the refinement of G(N) obtained by passing infinite vertical lines 
through all intersections among the lines in N. Then, for a fixed region R in G(N), 
it is easy to see that the search path in :I(N) remains the same if the query point 
lies anywhere in R. This implies that the cost of locating any point is di(log n). 

To bound the space requirement of our search structure, first note that, for any 
l >  1, the size of the descent structure H(NI+I)~ H(Nl) is O(n2+O. This follows 
because, by the Zone Theorem, each line in Nz intersects O(n~+l) trapezoids in 
H(N~+ 1). Thus the total space requirement of our data structure is easily seen to 
be O ( ~  n~) = O(n2). Actually it is easy to ensure that the space requirement is 
O(n 2) (worst case) without affecting the query time. For this we ensure that r, the 
number of levels in the data structure, is such that ~ = 1 n 2 < b. n 2 for some large 
enough constant b; the levels (if any) higher than the maximum permissible value 
of r are not maintained. During point location we locate the query point in H(N,) 
trivially (in O(IN, I) time) and then descend through the data structure as before. 
If b is chosen large enough, with high probability this "d ipped"  data structure 
coincides with the nonclipped data structure, as defined before, and hence, with 
high probability, the query time also remains unaffected. 

Now let us estimate the cost of adding or deleting a line. We only consider 
addition, because deletion is the reversal of addition. By Lemma 1, we only need 
to worry about the cost of updating the descent structures Descent(l + 1, l), 
1 < l < j + 1, where j is the number of successive heads obtained. Consider first 
the simpler case when l = j + I. In this case the line h is to be added to Nz but 
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Fig. 3, Addition of a new line h. 

not to Nz+ 1. Let A eH(Nt+I)  be any trapezoid intersecting h. For  every such 
trapezoid A, we need to update the restriction ~ of Descent(t + 1,/) to A. This is 
done as follows (see Fig. 3). First we add h to the trapezoidal decomposition ~. 
This means all vertical attachments in ~, such as the one through the intersection 
x in Fig. 3(a), are split and vertical attachments through new intersections on h, 
such u and w in Fig. 3(b), are added. The cost of adding h to ~ is O(IL(A)I + 1). 
This easily follows by applying the Zone Theorem to the restricted arrangement 
G(Nt) c~ A. 

Consider now the case when l < j + 1. In this case, h is to be added to N t as 
well as Nt+ 1. To take this into account, we only need to extend the above 
procedure of adding h to 2~ as follows. First, if h intersects the lower (or upper) 
border of A, then the vertical attachment through this point of intersection w must 
extend to the opposite border of A (Fig. 3(c)). This is because w belongs to the 
new trapezoidal decomposition associated with the (l + 1)st level and hence the 
vertical attachment through w cuts through the lines in L(A) which do not belong 
to this level. The cost of adding such an extended vertical attachment through w 
is clearly dominated by the size of its zone in the restricted arrangement G(N~) c~ A 
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(shown shaded in Fig. 3(c)), where N~ = N I w {h}. By the Zone Theorem this cost 
is O(IL(A)I + 1). Finally, if h intersects the left (or the right) border of A, then that 
border has to split appropriately as shown in Fig. 3(d). The reason is this border 
corresponds to a vertical attachment through some intersection v in the old 
decomposition H(NI÷I), and hence occurs in the new decomposition associated 
with the (l + l)st level in a split form. 

It follows that the cost of updating the restriction of Descent(l + 1,/) to any 
trapezoid A E H(NI+ 1) is O(IL(A) + 1) = 0(log n). By the Zone Theorem the num- 
ber of trapezoids in H(NI+I) intersecting h is O(nt+ O. Hence, the total cost of 
updating Descent(l + 1,/) is 0(nt+ j log n). Summing over all levels, it follows that 
the total cost of updating the descent structures is 0(log n ~t  nt)= O(n log n). 
Using the results in [8], we can show that, for all i, the average conflict size of the 
trapezoids in H(N~) intersecting h is O(1) (the average is taken over all trapezoids 
in H(NI) intersecting h). This immediately implies that the expected cost of update 
is O(n). 

There is another method for bounding the cost of updating Descent(l + 1, t), 
which is interesting in its own right. It is based on the observation that the cost 
of updating Descent(l + 1,/) is obviously bounded, up to a constant factor, by the 
total number of vertices in G(Nz) which lie in the trapezoids of H(Nz+ 1) intersected 
by h. It follows from the following lemma that this number is O(n~ log n). This 
lemma turns out to be useful later in Section 6. 

Lemma 4. The total number of vertices in G(Nz), which lie in the trapezoids of  
H(Nj÷ 1) intersected by h, is O(nl log n). 

Proof Define the vertical distance of any vertex v e G(NI) from h as the number 
of lines in N t that intersect the open vertical segment joining v and h. It is clear 
that the vertical distance of any vertex of G(N~), lying in a trapezoid of H(Nt+ 1) 
intersected by h, is bounded by the conflict size of that trapezoid, which is 
0(log n). Hence, it suffices to bound ~k= 1 s j, where k = O(log n) and s~ denotes the 
number of vertices in G(N~) at a vertical distance j from h. By the Zone Theorem, 
So = O(n~). This, in conjunction with the results in [8] on abstract k-sets, implies 
that ~k= 1 Sj = O(kn~). [] 

We summarize our main result as follows: 

Theorem 3. Let G(N) be an arrangement of  n lines in a plane. There exists a 
dynamic point-location data structure of  O(n 2) size allowing 0(log n) query time 
which also allows insertion~deletion of  lines in O(n log n) time. The expected cost 
of update is O(n). 

Remark. Using the best-known deterministic schemes for dynamic point location 
l-5], [19], we can achieve O(log 2 n) and O(n log n) bounds for search and update 
times, respectively. These are considerably more involved procedures. 
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4. Extension to Higher Dimensions 

In this section we extend the algorithm in Section 3 to arbitrary dimension. Our 
algorithm works by induction on the dimension d. For  the basis case d = 2, we 
use the algorithm in Section 3. 

In general dimension the algorithm follows the same basic scheme as in Section 
2. However, the triangulation scheme that is used is somewhat different in nature. 
Let N be a set of hyperplanes in R d, and let G(N), as before, denote the induced 
arrangement. The triangulation H(N) of G(N) that we use is the so-called bottom- 
vertex triangulation that is defined as follows. We triangulate the j-faces of G(N), 
j < d, by induction on j. If  j = 1 this is trivial. Otherwise, let f be any j-face of 
G(N), j > 2. Let v denote the vertex of f with the smallest Xd coordinate; it is 
possible that v lies at "infinity." 1 By our inductive hypothesis, all facets of f have 
been triangulated. So we simply extend the "simplices" on the boundary of f to 
cones with apex at v. This gives us a simple triangulation of f .  When all j-faces 
of G(N) are triangulated in this fashion, we get the triangulation H(N) that we 
sought. H(N) is called an Xd triangulation or bottom-vertex triangulation of G(N). 
The reader might wonder why we did not use this triangulation scheme in Section 
3. The reason is that, for some subtle reasons, the superposition scheme used there 
for defining the descent structures fails. It is possible to define alternative descent 
structures in this case, but then the cost of point location goes up to 0(log 2 n). 

Let us now define the point-location structure/7(N) to be associated with the 
arrangement G(N). We use induction on d. When d = 2 we use the point-location 
structure in Section 3. For  d > 3 we apply the scheme in Section 2, with the 
triangulation H(N) as defined above. We only need to describe the descent 
structures. Descent(i, i -  1) contains a dynamic point-location structure for the 
(d - 1)-dimensional arrangement G(N i_ 1) c~ Q for each hyperplane Q ~ N i_ 1. We 
denote this structure by ~q(Ni-1, Q). When d = 3 the planar point-location 
structure l-7(Ni_ 1, Q) is defined as in Section 3, with some minor modifications 
described below. For  d > 3 it is the (d - 1)-dimensional point-location structure 
that has already been defined, because of our inductive hypothesis. Maintenance 
of H(N~_I, Q) is done by recursively applying our lower-dimensional point- 
location algorithm. 

I t  immediately follows from Lemma 1, Lemma 2, and simple recurrence 
equations that the cost of adding or deleting a hyperplane is O(n d- 1 log n). O(n n- t) 
bound on the expected cost of update easily follows if we were to use, as in Section 
3, the results in [8] on average conflict size. Arguing as in dimension two, it is easily 
seen that the size of our data structure is O(nd). In fact, we can also ensure that 
the worst-case space requirement is O(na), by applying the clipping procedure 
described in Section 3. 

It  remains to see how to answer point-location queries. Let p e R n be a fixed 
query point. We cannot use our point-location structure to locate the d-simplex 
of H(N) containing p. However, remember that our main goal is to locate only 

1 We can assume that N contains symbolically defined 2d hypcrplanes bounding a cube (not paraUd 
to the xd axis) approaching infinity, and then confine our attention within this cube. 



Dynamic Point Location in Arrangements of Hyperplanes 347 

the d-celt of the arrangement G(N) containing p. This can be done as follows. We 
determine not just the d-cell of G(N) containing p but the full "antenna" [4-1 of p 
in G(N). Antenna of the query point p in G(N) is defined as follows. Let p~ (resp. 
P2) be the point of intersection of the vertical line through p and the hyperplane 
in N immediately above (resp. below) p. Then antenna (p) is defined to be the union 
of the segment [_Pi, P2] together with the recursively defined antenna(pO and 
antenna(p~). Note that the algorithm for d = 2 in Section 3, with minor modifica- 
tions, also tells us the antenna of the query point in G(N). Indeed, once we know 
the trapezoid in the trapezoidal decomposition of G(N) containing p, we also know 
the lines in N above and below p. If we additionally maintain, for each line Q ~ N, 
the ordered list of all intersections on it in the form of a balanced binary tree, we 
can easily determine the full antenna of p in G(N). 

Let us get back to the general dimension. Our goal is to determine the antenna 
of the query point p in G(N) = G(N1). Inductively, assume that we have determined 
the antenna of the query point p in H(Ni). The descent from level i to level i - 1 
is carried out as follows. Let Q1 (resp. Q2) be the hyperplane in N i immediately 
above (resp. below) p. Let Pl (resp. P2) be the point of intersection of the vertical 
line through p with QI (resp. Q2). Then antenna(p) in G(NI) is the union of the 
segment [pl, P2] together with the recursively defined antenna(pO and antenna(p2). 
Let v~, v2 . . . . .  v2~ be the terminal points of this antenna. We assume here that 
the antenna is bounded. This can be ensured by adding to all levels of our data 
structure 2d hyperplanes bounding a large cube approaching infinity, and restrict- 
ing everything within this cube. z 

Lemma 5. The hyperplane in N i_ 1 that is immediately above (below) p is either 
Ql (Q2), or it must intersect some d-simplex in H(N~) adjacent to some vl, 1 < i < 2 d. 

Proof We proceed by induction on d. For the sake of induction we prove a 
somewhat stronger statement. We prove that any hyperplane Q eNi_x\NI that 
intersects antenna(p) must intersect a d-simplex in H(Ni) adjacent to some v~, 
t<_ i<2  d. 

If Q intersects either antenna(p 0 or antenna(p2), then by the inductive assump- 
tion it must intersect some (d - D-simplex A in the restriction of H(Ni) to Q1 or 
Qz, and hence it intersects the two d-simplices in H(Ni) adjacent to A. Otherwise, 
Q intersects [p~, p2], but neither antenna(pO nor antenna(p2). This means anten- 
na(pO (resp. antenna(pz)) lies completely above Q (resp. below Q). Let f be the 
d-cell in G(N~) containing p and let v be the x :minimum on f .  Assume, without 
loss of generality, that v lies below Q, the other case being symmetric. Then, because 
antenna(p 0 lies completely above Q, it is clear that Q must intersect all d-simplices 
m H(Ni) adjacent to the terminals of antenna(pO. [] 

By Lemma 5, if we simply check through the conflict lists of all O(1) d-simplices 
adjacent to the terminals of antenna(p), we can easily determine the hyperplanes Q~ 
and Q~ in N i_ x that are immediately above or below p. As conflict lists have 
- - - - . - - - - _ . _ . _ _ _  

2 The hyperplanes bounding this cube are to be defined symbolically. 
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O(log n) size, this takes 0(log n) time. If we appropriately use the recursively defined 
dynamic point-location structures//(Nt- 1, Q~) and/-I(N i_ 1, Q~), we can determine 
the whole antenna ofp in H(Ni- 1) in polylogarithmic time, with high probability. 

From the fact that our data structure has 0(log n) levels, it easily follows by 
induction on d, that the query time for a fixed query point is 0(log d- 1 n). As the 
number of distinct search paths in the data structure is easily seen to be polynomial 
in n, it follows that this bound holds for any query point. To summarize: 

Theorem 4. Let G(N) be an arrangement o f  n hyperplanes in R d. There exists a 
dynamic point-location structure o f  O(n a) size allowing t~(log d-I n) query time 
which also allows insertion~deletion of  hyperplanes in O(n ~-1 log n) time. The 
expected cost o f  update is O(n d- 1). 

5. Top-Down Dynamic Sampling 

It is also of theoretical interest if the query time can be brought down to O(log n) 
in arbitrary dimension. In this section we give an alternate dynamic point-location 
algorithm with 0(log n) query time in arbitrary dimension. The expected space 
requirement of our algorithm is O(nd), and the expected amortized cost of update 
is O(n d- 1). We do lose something as far as the cost of update is concerned, because 
our bound holds only in the expected sense (where expectation is solely with 
respect to randomization in the data structure), whereas for the algorithm given 
in the last section we could prove a high probability bound for the cost of update. 

The organization of this new algorithm is quite different. Roughly speaking, 
the data structure in Section 4 is defined in a bottom-up fashion, whereas the data 
structure in the present section is defined in a top-down fashion, very much like 
the previous static data structures based on random sampling [7], [15]. 

Given any set N of hyperplanes, our goal is to maintain a dynamic point- 
location structure so that, given a query point p e R d, we can quickly, i.e., in 
logarithmic time, locate the cell of the arrangement G(N) containing p. It turns 
out to be convenient to solve a slightly more general problem, where we assume 
that we are given in addition a fixed d-simplex F in R d, and the goal is to locate 
the cell in the intersection F c~ G(N) containing the query point p. First we give 
an algorithm which guarantees 0(log n) query time and O(n a- lpolylog(n)) ex- 
pected (amortized) cost of update. We later remark how the expected cost of update 
can be brought down to O(n d- 1). 

As usual, we first specify our data structure in a static setting and turn to its 
dynamization later. Hence, let N be a fixed set of n hyperplanes in R d. Let F as 
before be a fixed d-simplex in R d. We describe the data structure in a top-down 
recursive fashion. 

At the root level of the data structure, we associate with F the entire restricted 
arrangement G(N)n F. This takes O(INt a) time and space [13]. We also associate 
with F a coin with bias (probability of success of obtaining a head) p = t/n 1-6 
More precisely, we associate with F a bias index i (F)= [_log 2 n 1 -~_J. We then 
independently toss, for each hyperplane in N, a fair coin i(F) times in a row. Let 
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R be the set of hyperplanes for which all i(F) tosses were heads. The size of R, 
denoted by r, is roughly n ~, By the Chernoff bound it is easy to see that 
r = O(n a log n). Let H(R) denote the top-bottom triangulation, as defined in Section 
4, of the restricted arrangement G(R) n F. We construct H(R) and also a static 
point-location structure for H(R). This, by a conservative estimate, takes O(r °~1~) 
time and space. If ~ is small enough, this bound is O(nd). For each d-simplex 
A e H(R), let N(A) denote the set of hyperplanes in N intersecting (conflicting with) 
A. If I N(A)f < a log n, for a suitable terminating constant a to be chosen later, we 
build a simple point-location structure, guaranteeing O(IN(A)I + 1) = O(a log n) 
query time, for the top-bottom triangulation H(N(A)) of G(N(A)) n A. This is done 
by using the following lemma. 

Lemma 6. There exists a trivial static point-location structure for G(N(A)) of size 
proportional to the size of  H(N(A)) with O([N(A)[ + 1) query time. 

Proof. The idea is to answer the point-location query in the following fashion 
(this point-location idea has also been used in [1] and [9]). Let p ~ A be a query 
point. We find out in O(tN(A)I + 1) time the first hyperplane Q in N(A) that is hit 
by the vertical ray emanating from p; the case when this ray hits the boundary of A 
before any hyperplane in N(A) is handled with slight modifications. After this we 
recursively proceed in the lower-dimensional arrangement Q n (N(A)), until we 
eventually locate a vertex of the d-cell R in A n G(N(A)) containing p. Our next 
goal is to locate the d-simplex in the xd-triangulation (top-bottom triangulation) 
of R containing p. Let v be the bottom of R, i.e., the vertex with the smallest 
xd-coordinate (which could possibly lie at infinity). Consider the ray emanating 
from v and passing through p. We can determine the facet of R hit by this ray in 
O(IN(A)[ + 1) time, since R has only O(N(A) + 1) facets. Let p' be the point of 
intersection of the ray and the facet. Recursively we determine the (d - 1)-simplex 
in the top-bottom triangulation of this facet containing p'. The d-simplex contain- 
ing p is the cone over this (d - 1)-simplex with apex at v. 

It is clear that the cost of this whole procedure is O(IN(A)t + 1). [] 

If IN(A)[ > a logn, we recur within A with respect to the set of hyperplanes 
N(A). We also associate with every d-cell of the restricted arrangement G(N(A)) n 
A, stored at A, a parent pointer to the d-cell of G(N) n F stored at F. Point location 
is carried out in the obvious manner. To locate a point p E F in G(N) n F, we first 
locate the d-simplex of H(R) containing p in O(log r) time using the point-location 
structure associated with H(R). Then we recursively locate the d-ceU of 
G(N(A)) n A containing p. The parent pointer associated with this d-cell tells us 
the d-cell of G(N) n F containing p. It is easy to see that the cost of point location 
is 0(log n). (The cost of point location satisfies the following recursive equation: 
Q(r) = r, for r < a log n, and Q(n) = log n + Q(r), where r = O(n 1 -~) log n.) More- 
over, the number of distinct search paths in our data structure is easily seen to 
be polynomial in n with high probability. Hence, it follows that the cost of locating 
any point (not just a fixed one) is 0(log n). 
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Let us denote our point-location structure above by Sample(N, F). We also let 
N(F) = N by convention. 

Lemma 7. The depth of  Sample(N, F) is 0(log log n) (assuming that the termina- 
tion constant a can be chosen large enough). 

Proof  The depth satisfies the following recursive equation: d(m)= 1, for 
m < a log n, and d(m) = 1 + d(r), where r = O(m 1 -~ log n). [] 

Lemma 8. Sample(N, F) can be built in O(napolylog(n)) expected time and space. 

This follows from Lemma 7 and the following slightly more general lemma. 
For  a fixed integer s > 0, let T~(IN(F)I) denote the clipped cost of building 
Sample(N, F), ignoring the cost incurred at a depth higher than s, i.e., to say we 
only take into account the cost incurred up to depth s in the recursive definition 
of Sample(N, F). Then 

Lemma 9. E[T~(N(F))], the expected value o f  T~(N(F)), is < ndb~ for some constant 
b > 0 that depends only on the dimension d. 

Proof. We use induction on s. The total clipped cost T~(IN(F)[) satisfies the 
following probabitistic recurrence equation: 

T~(N(F)) = O(IN(F)I a + Y, T~_I(N(A))) and T(N(A)) = O(IN(A)I a) 
AcH(R) 

for IN(A)I < a log n. 

The second equality follows from the fact that, for IN(A)[ < a log n, the storage is 
proportional to the size of H(N(A)) (Lemma 6). By induction hypothesis it follows 
that 

By [8] 

e Y~ = [a~u(.IN(A)Idl O(IN(F)I~)" 

If we choose b large enough, we are done. [] 

Now let us turn to the dynamization of our technique. Our procedures for 
updates are such that, at any time, our data structure is as if it were constructed 
by applying the above static procedure to the currently active set N of hyperplanes, 
but with one crucial difference. In the static definition of Sample(N, I-'), the bias 
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integer i(A) associated with a node, labeled with a d-simplex A in the data structure, 
was chosen to be equal to [_log2 n(A)l-~/, where n(A) = IN(A)[. In a dynamic 
setting we work with a relaxed invariant. We only ensure that 

I i(A) - Llog2 n(A) 1 -~][ < c, 

where c > 1 is some predetermined constant; c = 1 will do. 
Now let us see how to add a new hyperplane h to Sample(N, F). We give the 

algorithm in a recursive form. It is initially called with A = F, where F denotes 
the d-simplex associated with the root of our data structure; generally F = R d. 

Procedure Add (Sample(N(A), A), h): 

1. Add h to N(A) and also to the arrangement G(N(A))c~ A stored at A--by 
[13], this takes O(IN(A)I a-l)  time. 

2. If N(A)< a log n, where n = N(F), also update the trivial point-location 
structure associated with G(N(A))c~ A that allows O(IN(A)[ ) query time. 
Return. 

3. If Ii(A) - log2(lN(A) l j - °)l > c, where N(A) denotes the new set of hyperplanes 
associated with A, we construct new Sample(N(A), A) from scratch, applying 
the static procedure in Lemma 8. 3 Return. 

4. Toss a fair coin i(A) times in a row. 
5. If not all tosses are heads, for all A'eH(R(A)) intersecting h, call 

Add (Sample(N(A'), A'), h). Update the parent pointers. Return. 
6. Otherwise, add h to R(A). Update H(R(A)) and rebuild from scratch a static 

point-location structure for the new triangulation H(R(A))--if the parameter 
6 is chosen small enough, the expected cos t  of this rebuilding, using a 
conservative estimate, is O(I R(A)I °(1)) = O(I N(A)jd ~ 1). 

7. Construct conflict lists of the newly created simplices in H(R(A)) from the 
conflict lists of the destroyed d-simplices--this can be easily done in time 
that is linear in the total structural and conflict change in H(R(A)). 

8. For each newly created d-simplex A' in H(R(A)), build Sample(N(A'), A') from 
scratch, using the static procedure in Lemma 8. Also associate a parent 
pointer with each d-cell of A' c~ G(N(A')). 

The deletion operation is very much the reverse of the above addition operation, 
and hence is not discussed any further. 

Theorem 5. The expected amortized cost of  addition or deletion is 

O(n d- lpolylog(n)). 

Proof. If Sample(N(A), A) is built from scratch in step 3, we amortize the 
expected cost of this rebuilding equally among the updates to N(A) since the last 

3 The integer n that occurs in the threshold bound a log n on the number of hyperplanes stored at 
!he leaves of this static data structure is to be taken as [N(F)[, not IN(A)[. It is easily seen that the bounds 
m Lemmas 8 and 9 still apply. We also build Sample(N(A), A) from scratch, if the new size of N(A) 
exceeds the threshold a log n. 
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such rebuilding took place; it is easy to see that the number of such updates is 
~(IN(A)I). In what follows we forget about this amortization altogether and 
pretend the violation of the invariant in step 3 never takes place. (Amortization 
can be taken care of in a routine fashion.) 

We only estimate the expected cost addition, deletion being analogous. Let 
T(IN(A) I, h) denote the expected cost of adding h to Sample(N(A), A). 

Estimating T(IN(A)I, h) directly is difficult. Hence, we use a clipping trick, as in 
the proof of Lemma 8. For every fixed integer let T~(IN(A)I, h) denote the cost of 
addition ignoring the cost incurred at depth higher than s. This also means that 
if some subtree of our data structure at depth, say, s' is built from scratch, we take 
into account the cost of this static construction up to depth s - s'. 

We show by induction on s that the expected value of T~(IN(A)t,h)< 
c~tN(A)I a- ~ for some fixed constant c that only depends on the dimension d. We 
distinguish between two cases. 

Case 1: All i(A) tosses of the coin are heads. In this case, examining steps 1, 6, 7, 
and 8 in the algorithm carefully, we see that 

T~(IN(A)I, h)-- O(IN(A)I a-~) + ~ T,_ ~(IN(A')I), 
A' 

where A' ranges over all newly created d-simplices in the new triangulation 
H(R(A)) and T~_I(IN(A')I ) denotes the clipped cost of building Sample(N(A'), A') 
from scratch. By Lemma 9, T~_x(tN(A')I) -- IN(A')ldb s-1 for some fixed b > 0. As 
R(A) is a random sample of N(A), it can be shown, using the results in [8] and the 
Zone Theorem, that the expected value of ~a, I N(A')I a is 

\ \ IR(A)IJ \ IR(A)r/ 

Hence, it follows that the expected value of T~([N(A)[, h), conditional on all i(A) 
tosses being heads, is O(b~-IIN(A)]d/IR(A)t). 

Case 2: Otherwise. If we examine steps 1 and 5 in the algorithm we see that, in 
this case, 

T~(IN(A)h h) = O(IN(A)I a-l) + ~. T~_ I(IN(A')I, h), 
A' 

where A' ranges over all d-simplices in H(R(A)) intersecting h. By induction 
hypothesis, T~_ I(IN(A')I, h) _< c~-11N(A')I ~- 1. Again using the results in [8] it can 
be shown that the expected value of T,(tN(A), h) in this case is O(c ~- I IN(A)I a- 1). 

Combining two cases, and noting that the probability of obtaining i(A) heads 
in a row is (roughly) IR(A) I/I N(A) I, it follows that the expected value of T~(I N(A) I, h) 
is O(c ~-I + b~-I)IN(A)I~-L If we choose c > b large enough, it follows that 
T,(IN(A)I, h) < c~IN(A)t ~- 1, thereby completing our induction. 

By Lemma 7 the depth of our data structure is O(log log n) with high probability 
(by choosing the terminating constant a large enough). It follows that, with high 



Dynamic Point Location in Arrangements of Hyperplanes 353 

probability, T(INI, h) = T(IN(F) I, h) = T~(IN(F) I, h), where s = O(log log n). Hence 
T(JNI, h) is O(n d- i polylog(n)). [] 

The point-location algorithm given above can locate only the d-cell of the 
arrangement G(N) containing the query point p. It is also possible to modify the 
algorithm so that it can also locate, in addition, the hyperplanes above and below 
the query point. For this we let H(N) be a vertical decomposition [4] of G(N) 
instead of the xa-triangulation, as used earlier. The vertical decomposition of G(N) 
is obtained by passing a vertical wall through every pairwise intersection of the 
hyperplanes in N. Let l be any fixed pairwise intersection. For any fixed point 
pc l, consider a vertical segment (parallel to the xa-axis ) that extends upward 
(and downward) until it hits the first hyperplane in N, and if no such hyperplane 
exists, it extends to infinity. The union of such vertical segments through all points 
on l defines a vertical wall through l. When such a wall is raised through all 
pairwise intersections, we get a decomposition of G(N) into vertical cylinders, 
whose tops and bottoms are of the same shape (they can possibly touch each 
other). However, these cylinders can have arbitrarily large number of facets. To 
get around this phenomenon, we triangulate the top (equivalently bottom) of each 
cylinder, using the top-bottom triangulation scheme described earlier, and then 
extend this triangulation vertically to the whole of each cylinder. The resulting 
decomposition H(N) of G(N) is called its vertical decomposition. Its size is O(n a) [4]. 

If we substitute this new "triangulation" H(N) in place of the top-bottom 
triangulation in the previous point-location structure, we get a new point-location 
structure. The advantage is that we can also determine in addition the hyperplane 
in G(N) above (or below) the query point p. This is done as follows. Assume now 
that F associated with the root is a cylinder, e.g., it can be a cube approaching 
the whole of R a. Let Q(F) denote the hyperplane bounding the top of F. Let 
R = R(F), as before, be the sample of the set N = N(F) associated with the root 
of our data structure. Assume that recursively we have determined the hyperplane 
Q'~N(A) u {Q(A)} above the query point, where A~H(R(F)) is the 3-cell (3- 
cylinder) containing p, and Q(A) is the hyperplane bounding the top of A. By 
the very nature of a vertical decomposition, Q' is also the hyperplane in 
N(F) w {Q(F)} above p. 

In a similar fashion we can also determine the hyperplane in N below the query 
point p. If we associate, with each hyperplane Q e N, a recursively defined 
point-location structure for the lower-dimensional arrangement G(N) c~ Q, we can 
thus determine the whole antenna of p in G(N) in O(log n) time. 

To summarize: 

Theorem 6. Let G(N) be an arrangement of n hyperplanes in R a. There exists a 
dynamic point-location structure of  O(na polylog(n)) size with 0(log n) query time. 
In the same time we can also determine the antenna of  the query point in G(N). The 
expected amortized cost of insertion~deletion of  a hyperplane is O(n a- 1 polytog(n)). 

Remark. There remains one theoretical issue as to whether the polylog factor in 
the update and the space requirement can be removed. We only indicate how this 
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is done in a static setting, because the dynamization technique in this section then 
becomes applicable with minor modifications. The idea is to bootstrap [4] the 
solution in Theorem 6 (twice), in conjunction with Lemma 5. 4 The translation of 
the bootstrapping argument of [41 to the present scenario is straightforward. 
Hence, we do not reproduce it here. 

6. Parallel Algorithms for Updates 

Since the cost of any update operation (insert or delete) for maintaining an 
arrangement is quite high, there is sufficient motivation to obtain faster algorithms 
by using parallelism. We first give a detailed description of a parallel algorithm 
for update in two dimensions and subsequently sketch its extension to three 
dimensions. The primary objective is to obtain O(log c n) time (for some fixed c) 
complexity such that the processor-time product matches (within polylogarithmic 
factors) the sequential update time. 

We describe our algorithm in the CRCW PRAM model. In this model we 
assume that processors can read simultaneously from a memory location and write 
conflicts are resolved arbitrarily. While describing our algorithm, we often make 
references to various standard parallel techniques like general and integer sorting, 
parallel-prefix, and list ranking. Below we state the results that we refer to 
frequently in our description. 

Lemma 10 (General Sort). N keys can be sorted in O(log N) time usin9 N CRCW 
processors. 

Lemma 11 (Integer Sort). N keys in the range [0, N log N] can be sorted in 
19(log N) time usin9 N/log N C R C W  processors. 

Lemma 12 (Parallel Prefix). Let ai, 1 < i < N, be N elements f rom a domain D and 
let o be an associative binary operation defined for  elements in the domain. Then 
the N partial sums al, al o a2 . . . . .  al o a2 o. . .  o aN can be computed in O(log N) time 
using N/log N C R C W  processors. 

Lemma 13 (List Ranking). Given a linked list o f  N elements, the distance of  each 
element from the head o f  the list can be computed in O(log N) time usin9 N/log N) 
CR C W processors. 

6.1. Two-Dimensional Updates 

Recall from Section 3 that our point-location structure consists of a hierarchy of 
levels. With each level we associate the arrangement formed by the lines stored in 
that level. We also have a descent structure between each pair of successive levels. 

4 Due to Lemma 5, the use of Aronov, Matousek, and Sharir's result in [4] becomes unnecessary. 
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For this section we adopt the following data-structure for storing an arrange- 
ment. For  each line hi, we maintain a sorted sequence of its intersections v~), 
1 _< j _< n - 1, with all the other lines. In the sorted sequence we also store the 
(two) faces adjacent to v~(j), vi( j + 1) with element viq). We store this sequence in 
a balanced tree (like the BB(~) tree) to facilitate fast searching and updates. We 
refer to the tree for line hi as S(h~). We store each face of the arrangement in a 
concatenable queue data-structure (which is implemented as a balanced binary 
tree) that supports fast union and split operations. For  face f ,  the tree B(f) stores 
the label of the face in the root. All lines (from the previous level) intersecting 
(conflicting with) a trapezoid A are simply maintained in a list L(A). From our 
previous random sampling lemmas, IL(A) I = O(log n). Note that for the same face a 
line can appear in more than one L(A) (i.e., it can intersect more than one 
trapezoid). It turns out that it is convenient to maintain an additional list Q(f) of 
lines that intersect a given face f ;  here there are no multiple occurrences of the 
same line. This list is also convenient for processor allocation when we describe 
the details of the update procedure. 

For our sequential algorithm it sufficed to bound the total number of update 
operations; the changes could be made incrementally by following and modifying 
pointers. However, for our parallel algorithm we need fast access and update 
abilities which are supported by these data-structures. We confine our discussion 
to inserting a new line; deletion can be treated in an identical fashion. 

Lemma 14. The operations search, insert, delete, union, and split can be performed 
in O(log n) time usino the BB(~) tree. 

The main steps in the update procedure at any fixed level 1 (in the O(log n) level 
hierarchy of random samples) are: 

(1) Find out the set of faces ¢J (zone-faces) that are split by the new line h. 
Note that, for each f e .~-, this creates two faces f l  and f2. As a consequence 
new trapezoids are created and some existing ones destroyed. 

(2) Reallocate the lines that intersect the affected faces to appropriate new faces. 

Step 1 can be implemented in our data-structure by inserting two new vertices 
(the intersections of the new line h with the face) followed by the split and join 
operations. From Lemma 14 it can be implemented in O(log n) time. To find the 
set of faces ~ that are split by the new line we first determine all n intersections 
and insert them in the corresponding S(hi) for each line h v We also create an S(h) 
for the new line h. Let us denote the ordered (oh line h) set of intersections with 
line h as xi where i _< n. Two consecutive intersections xi and xi+l span a face 
f e ~ that has been split. The identity of this face can be determined from the 
labels stored in S(hi,) and S(hi2) such that xi is hi, c~ h and xt+l is his n h. From 
Lemma 14, face splitting can be done by a single processor in O(log n) time. 

Next we reallocate the lines intersecting the split faces. For each of the new 
faces created (i.e., f l  and f2), we also keep track of the leftmost and the rightmost 
vertices. Note that the leftmost (rightmost) vertex of the new face is either the 
leftmost (rightmost) vertex of its parent face or one of the new intersections. Also, 
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we can sort the vertices of each face using tfll processors in O(log n) time. (We 
use f to refer to both f l  and f2.) This allows us to keep track of the sorted 
sequence of vertices (and hence the trapezoids formed by the consecutive vertical 
attachments). For  each line that intersects a face, we can determine the trapezoids 
the line intersects once we know where the extreme points (the intersection of the 
line with this face) lies. If A k and AI are the two bounding trapezoids, then it 
intersects all the trapezoids in between. Assume that we have determined the new 
trapezoids a line intersects; we return to this issue after Lemma 15. 

If we also know the rank (in the x direction) of the vertical attachments in a 
face, this immediately gives us the number of trapezoids it intersects. Let 6, denote 
the number of trapezoids line h i intersects. Then we know that ~..i 6i = 0 ( I f l  log n). 
We would like to duster  together all the lines that belong to a trapezoid in a list. 
We also know that the size of each such list is O(log n). Assume that there are Il l  
processors available for face f (can be done by simple prefix sum since we know 
the size of each face). So there are Ifl log n elements, each of which belongs to a 
specific trapezoid, and I l l  processors that have to allocate these elements to the 
appropriate list. 

This is closely related to the following assignment problem. 
Let U be a set {1, 2 , . . . ,  n} of n indices where each index belongs to exactly 

one of m groups G 1, G 2 . . . . .  G,,. Let 9i denote the number of indices belonging 
to group Gi, i =  1 . . . . .  rn. Given a sequence N(t),N(2) . . . . .  N(m) where 
~7'= 1 N(i) = O(n) and N(i) is an upper bound for 9i, i = t, 2 , . . . ,  m. The problem 
is to find a permutation of (1, 2 , . . . ,  n) in which all the indices belonging to G1 
appear first, all the indices belonging to G2 appear next, and so on. (Assume that 
given an index i, the group G i, that i belongs to can be found in O(1) time.) 

Therefore we can use the following result [21]. For our case N(i) is O(log n) 
and I U I = I f l  log n. 

Lemma 15 (Assignment Lemma). The above assignment problem can be solved 
in 0(log n) parallel time usin9 n/log n P R A M  processors. 

We now address the problem of how to determine the trapezoids a line intersects 
in O(log n) time using n processors. For  this purpose we work with the list Q(f) 
(recall that it is a list of lines intersecting a face f). Note that each line h,- that has 
to be reallocated is either split by h or they lie completely "above"  or "below" h 
within the face. In the latter case we already know the intersection points and we 
can compute their position in the sorted sequence of trapezoids very easily from 
the updated B(f). In case the line hi is split, i.e., its intersection with h lies within 
the face, we have to determine its position in the sorted sequence of vertical 
attachments. Since there are at most n intersection points we can do a binary 
search. Although this is true globally, we may not have enough processors to do 
it for a given face. We have I f l processors and  if we are unlucky we may have to 
do more than I f l binary searches for face f .  So for this step we have to reallocate 
processors globally which can be done with the help of Q(f). We can use a marker 
bit to indicate whether line h~ intersects h in f .  The sum total of marks over all Q(f), 
f e ~ is n. We accordingly allocate processors and do the binary searches in the 
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appropriate lists (sorted sequence of the vertices of the face the intersection lies 
in). Actually we have to do two binary searches---one for each of the split faces f l  
and fz.  The Q ( f 0  and Q(fz) can be constructed easily using the prefix sum. 

We next turn to the update of descent structures, which allow us to descend 
from one level to the next during point location. Recall that the descent structure 
between level l and l - 1 is defined as the superposition of the arrangement at 
level l - 1 with the trapezoids at level l (Section 3). This amounts to maintaining 
additional information for the intersections of a vertical attachment (of a trapezoid) 
with the conflicting lines from the previous level. We maintain for each such 
intersection point in level 1 its left and right neighboring vertex in Gt-1 along the 
line. 

To update this information efficiently we further maintain a sorted list of a 
line's intersection with the vertical attachments within each face (that the line 
intersects with). In case the face is split, we have to update this sorted list. We 
denote this list for a line hi (for some fixed face) by Di and the new lists as /5~. 
The line hl can intersect several zone-faces (of h) and hence we use Di(9) to refer 
to Di corresponding to face g (a zone-face of hi). We use/5 i to refer to bo th / ) ( f l )  
and /5(f2). To update the list, we allocate t_lDib/logn] processors. Note that 
~ ~__l~.~ Oi(f) = O(n log n), because the first sum is also bounded by the sum of the 
conflict sizes of all O(n) trapezoids in the zone of h~ (interchange the summation 
signs). Each processor is given log n consecutive elements of this list. If IDi[ < log n, 
then we bunch them in groups such that each group has O(log n) elements and 
assign one processor to each group. 

Each element is the intersection of a vertical attachment with line h i. If the line 
h~ lies between the vertex (from which the vertical attachment originates) and h, 
then that element is marked with 1, else it is marked with 0. Now a prefix sum 
computation can be used to discard all the elements marked 0 and compress the 
list D~ into/5 i. For  the groups that were bunched together because they had less 
than log n elements, the processor assigned simply executes the above algorithm 
sequentially. 

This gives the sorted list for the upper face of the (two) faces created by h. A 
similar computation yields the sorted list for the lower face. There is one more 
detail that has to be taken care of. The line h inserts two new vertical attachments 
in a face (that is split). While constructing/Sg for a face, the intersections (if there 
is one) of line h i with the vertical attachments have to be inserted; let us denote 
these points by l and r (if they exist). Moreover, their positions have to be 
determined in G(N~_ 1). 

We sketch the method leaving out the exact implementation details. We do this 
step globally for all the lists /5 i. For t/)~l > logn, this can be done by a binary 
search by allocating a processor. However, the total number of such lists is not 
known to be bounded by n; so for the shorter lists we have to adopt a different 
approach. We denote the neighboring vertical attachments of I (r can be treated 
similarly) by v 1 and v 2. One of these vertices belong to a zone-trapezoid of the 
newly inserted line, say v~. If we count the number of intersections on line hi that 
lie in the interval [vx,/] (call this number P(/) of G(Nt_ ~) and sum over all such 
l~, then the total can be bound by the number of intersections of G(Nt_ 1) lying in 
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the trapezoids of H(Nt) intersected by h. From Lemma 4 this is 0(n log n). We 
then allocate processors to groups of l such that the sum of P(1) for that group 
does not exceed K log n for some fixed K. We use integer sorting on the labels of 
the (3(n log n) b~ elements to do the processor allocation. There are n labels for 
lines and so we can use the result of Lemma 11. We allocate one processor to 
each group and let it sequentially locate the position of l walking along line h~ in 
G(N~_I) from vl to I. This way we effectively step through all the intersection 
points and hence the position of all rs in G(N t_ 1) can be determined at the 
conclusion of this procedure, which takes (3(log n) time. 

We have described the algorithm at a fixed level for update. All the levels can 
be updated simultaneously once we know the result of the coin tosses. If there are 
t consecutive heads, then the line gets inserted up to level 1 + 1. To make the 
data structure updates at any level j < l, only information for levels j and j - 1 
is needed. In particular, to update Descent(l, l - 1) only information of G(N l) and 
G(Nt_ 1) is required. Since the sizes of the levels decrease geometrically, the total 
number of processors required is O(n) and hence we can state the result as follows: 

Theorem 7. The dynamic point-location data structure for an arrangement of  lines 
can be updated in 0(log n) time on a C R C W  P R A M  model using n processors. The 
query time is O(log n) and the space complexity is O(n2). 

6.2. Extension to Hioher Dimensions 

It is not clear whether the update procedure for dimensions higher than two can be 
parallelized easily using the previous approach. However, in dimension three we 
can obtain a fairly efficient algorithm by basically extending the algorithm for two 
dimensions. For each plane h~ we maintain the data structure for storing the 
projected arrangement G(N, h~). Moreover, for each pair of planes hi and h~ that 
intersect in a line L~j, we maintain a sorted sequence S~j of its intersections with 
the remaining planes. In the update procedure we update these data structures 
corresponding to each G(N, h~) and L w These procedures are similar to the ones 
described in the previous section. The cells (convex polyhedra in this case) can be 
stored in any of the standard data structures, for example, as incidence graphs. 
For each face of G(N, h~), we store the labels of the cells that it bounds. For each 
edge, we store the labels of the four cells that are incident on it. 

If a cell is split by a newly inserted plane, it can be quickly identified by the 
position of the intersection of this plane and L~j in S~j. With the number of 
processors proportional to the size of the cell, the data structures corresponding 
to the new cells can be formed. In addition we have to update the conflict lists 
for each 3-simplex [17] lying in the zone of the new (or deleted) plane. We use 
the triangulation scheme of Dobkin and Kirkpatrick [12]. The triangulation 
procedure can be parallelized using the algorithms of [10] or [23]. For each plane 
(lying in the zone) we have to determine the triangles (more precisely, 3-simplices) 
it intersects. The search procedure uses the hierarchical representation of convex 
polyhedra which is obtained from [12]. The search begins from the bottommost 
level where there is a constant number of triangles. The number of levels k, is 
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roughly O(loglCI), where C is the triangulated convex potytope the plane 
intersects. For  each plane-triangle intersection we allocate a processor. In the next 
level of the hierarchy, each triangle of level k has only a constant number of 
neighboring triangles from level k - I (see [10]). So in constant time, a processor 
can check the set of triangles in level k - 1 the plane intersects. The total number of 
processors required is proportional to the number of plane-triangle interactions 
which is O(n~ log n), where n~ is the number of planes in level l (from the random 
sampling property). In order to reallocate processors evenly, we spend an extra 
O(log n) to do dynamic load balancing by a simple prefix sum computation. Hence 
we can apply Brent's slow-down lemma to reduce the number of processors by a 
multiplicative factor of O(log n) for the intersection detection part  without affecting 
the asymptotic time complexity. The remaining implementation details can be 
worked out easily to arrive at the following result. 

Theorem 8. The dynamic point-location data structure for  an arrangement o f  n 
planes can be updated in (~(log 2 n) time on a C R C W  P R A M  model using n 2 
processors. The query time is O(log 2 n) and the space complexity is O(n3). 

Note that this is O(log n) factor away from an optimal speed-up algorithm. We 
suspect that a more careful reallocation procedure could lead to an optimal 
speed-up algorithm. 

7. Conclusion 

In this paper we have presented a very simple scheme for maintaining a dynamic 
point-location structure for arrangements of hyperplanes that guarantees poly- 
logarithmic query time. One of the main contributions of this paper has been 
adaptation of the skip-list methodology [20] for dynamic algorithms. We believe 
that this is a versatile and powerful tool which is likely to have further applications 
[16]. 
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Note  added in prooJ; The da t a  s t ructure  in Section 4 can also be used for ray 
shoo t ing  as follows. Let  N be the  set of  hyperp lanes  as in that  section. Given a 
query  po in t  p ~ R d, and  a ray  or ig ina t ing  from p, the goal  in this p rob lem is to 
de te rmine  quickly  the first hyperp lane  in N tha t  is hi t  by this ray, if any. Choose 
a z -coord ina te  such that  the  given ray  becomes  paral le l  to the z-axis. This 
coo rd ina t e  depends  on the query. I t  is comple te ly  independen t  of  the xd-coordinate 
tha t  was used in the bo t tom-ver t ex  t r iangula t ion .  Define antenna(p) with respect 
to  the z -coord ina te  jus t  as in Section 4: N o w  " a b o v e "  means  in the positive 
z-di rect ion and  " b e l o w "  means  in the negat ive z-direction.  The query procedure 
in Section 4 correct ly  de termines  antenna(p) for any  choice of the z-coordinate.  
This  is because L e m m a  5 holds  for any  z-coordinate .  

Once  we know antenna(p) with respect  to the z-di rect ion we automat ica l ly  
k n o w  the first hyperp lane  hit  by the query ray. (If there is no such hyperplane,  the 

co r r e spond ing  te rminals  of  the an t enna  lie at  infinity.) 
Thus  we get a dynamic  r ay - shoo t ing  a lgo r i thm with the same performance as 

in T h e o r e m  4. 


