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Abstract. Let B be a compact convex body symmetric around 0 in R 2 which has 
nonempty interior, i.e., the unit ball of a two-dimensional Minkowski space. The 
self-packing radius p(m, B) is the smallest t such that tB can be packed with m 
translates of the interior of B. For m < 6 we show that the self-packing radius 
p(m, B) = 1 + 2#t(m, B) where ~t(m, B) is the Minkowski length of the side of the largest 
equilateral m-gon inscribed in B (measured in the Minkowski metric determined by 
B). We show p(6, B) = p(7, B) = 3 for all B, and determine most of the largest and 
smallest values of p(m, B) for m < 7. For all m we have 

6(B)/ - 2 < p(m, B) < \ ~ j /  + 1, 

where 3(B) is the packing density of B in •2 

1. Introduction 

A compact  convex body  B symmetric about  0 in R 2 which is the closure of its 
interior is the unit ball of  a two-dimensional Banach space, and conversely. A 
finite-dimensional Banach space is also called a Minkowski  space, which is the 
terminology we shall use here, and we call any such B a Minkowski disk. This 
paper studies the packing of translates o f  a Minkowski disk B into a homothetic  
copy tB of  such a disk, where t > 1. By a packing we mean that the interiors 
of the translated bodies are mutually disjoint; their boundaries are permitted to 
overlap. The self-packino radius p(m, B) is the minimal radius t such that m 
translates of  B can be packed in tB. We study the problem of determining p(m, B), 
and call this the self-packir~g problem. 

The self-packing problem is actually a problem in two-dimensional affine 
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geometry, since the notions of translation, homothety, and packing are all affine 
invariants. It turns out, however, that the Minkowski metric da(', ") having B as 
its unit ball plays a useful role in studying this problem. 

Our main results are as follows. For small values of m we show that the 
self-packing radius is related to equilateral Minkowski m-gons inscribed in the 
Minkowski disk B. Such equilateral polygons exist having a vertex at an arbitrary 
boundary point of B, and we define the quantity ~(m, 13) to the maximum 
Minkowski side-length of an equilateral Minkowski m-gon inscribed in B. In 
Section 3 we show that, for m < 6, 

2 
p(m, B) = 1 + ~t(rn, B) 

That is, there always exists an extremal configuration with the centers of the packed 
disks located at the vertices of an equilateral Minkowski m-gon. We deduce among 
other results that p(6, 13) = p(7, B) = 3 for all Minkowski disks B. For large values 
of m the self-packing radius is obviously related to the packing density 6(B) of R 2 
by copies of B. In Section 4 we prove that in fact 

_ _  (_~my/2 (--~m Y/2 3 < p(m, B) < + I. 
\~(n),/ 2 - - \~(n): 

Our study of these questions was motivated by a conjecture of D u e t  al. I-3] 
that for an arbitrary Minkowski metric in R 2 there is a finite point set such that 
the Steiner ratio ST/MST < x/~/2, where MST is the length of the minimal 
spanning tree and ST is the length of the Steiner minimal tree for that metric. This 
conjecture cannot be strengthened, since Du and Hwang 1-4] recently proved that 
for the Euclidean metric all finite point sets have ST/MST > x/~/2. Theorem 3.4 
below gives a relation between the Steiner ratio and the self-packing problem. 

2. Equilateral Minkowski Polygons 

Let B denote a Minkowski disk and let d(x, y) (sometimes ds(x, y) if B varies) 
denote its associated distance function, which satisfies the triangle inequality 

d(x, y) < d(x~ z) + d(z, y). 

We derive some properties of such distance functions, and use them to prove the 
existence of equilateral Minkowski polygons inscribed in B having a vertex at an 
arbitrary boundary point. 

Lemma 2.0. For any trian#le xyz in R 2 and any point w on the seoment yz, 

d(x, w) < max(d(x, y), d(x, z)). (2.1) 
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Proof. Translate the triangle so that x is the center of the Minkowski unit ball. 
Then y and z are contained in the Minkowski ball 2B where 2 = max(d(x, y), 
d(x, z)). By convexity w is contained in 2B so (2.1) follows. [ ]  

Remark. This result also follows from the fact, true in any normed space, that 
the distance function d(x, y) is a convex function of y: 

d(0,(1 - t)y o + tyl) = II(1 - t)yo + tylll 

_< I1 - tl Ilyo[) + Itl lly,)) 

= td(O, Yo) + (1 - t)d(O, Yl), 

as long as 0 _< t < 1. 

L e m m a  2.1. I f  x, y are two points in B with d(x, y) > 1 and x', y' are the radial 
projections of x, y onto the boundary of B, then 

d(x', y') > d(x, y). (2.2) 

Proof. Since d(x, y) > 1 neither point can be the center 0 so the radial projections 
are well defined. If 0 is on the line determined by xy, then 0 must lie between x' 
and y so x'y' is a diameter and (2.2) holds. If 0 is not on xy, then by moving the 
line determined by xy parallel to itself away from 0 until it hits an endpoint  x' or 
y' (say x'), we obtain a new segment x'y" parallel to xy (see Fig. 2.1) and by similar 
triangles 

Now by (2.1) 

With (2.3) this yields 

d(x', y") _> d(x, y) > 1. 

d(x', y") _< max(d(0, x'), d(x', y')) 

= max(l ,  d(x', y')). 

d(x', y") < d(x', y') 

and (2.2) follows from (2.3) and (2.4). 

Fig. 2.1. Radially projecting x, y to obtain x', y'. 

(2.3) 

(2 .4)  

[] 
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Remarks .  (1) The  hypothes is  d(x, y ) >  1 is necessary to conc lude  (2.2), for 
otherwise we can  take  x, y on a radial  segment  so tha t  x '  = y'. 

(2) The  a r g u m e n t  for (2.1) shows that  if B is strictly convex an d  w is strictly 
inter ior  to the segment  xy, then 

d(x, w) < max(d(x, y), d(y, z)). (2.5) 

(3) L e m m a  2.1 comes  d o w n  to the  fact tha t  if itxll = Ilyll = 1 and  0 < t < t, 
then IIx - yl[ > IIx - tylt whenever  IIx - tylJ >__ 1. To  see this, note  that  

fix - ty[I = ]j(1 - t)x + t(x - Y)It 

_< (1 - t)tlxl[ + tltx - YlJ 

= 1 + t ( l l x  - Ytl - 1). 

In order  to have JJx - tyll ~ 1 the slope Jlx - YlJ - 1 in this l inear est imate mus t  
be nonnegat ive .  Then  

Itx - tyl] < 1 + t(llx - Yll --  1) 

< 1 + I I x -  ytT - 1 = I [ x -  yll. 

L e m m a  2.2. Let w, x, y, z be four clockwise ordered points on the boundary of the 
Minkowski unit ball B such that the line determined by wz separates x and y from 
the origin O. Here w = x and y = z are allowed. Then 

d(w, z) > d(x, y). 

I f  B is strictly convex and (w, z) does not coincide with (x, y), then 

d(w, z) > d(x, y). 

Proof. The conf igura t ion  is p ic tured in Fig. 2.2. M o v e  the line de termined  by  xy 
parallel  to itself t oward  0 until  it hits the segment  wz. W i t h o u t  loss of  general i ty 

Y Z 

X 

W' • 

w 

Fig. 2.2. Comparing chords wz and xy. 
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V "  

Fig. 2.3. Case 1 of Lemma 2.2. 

it hits z and we obtain a segment w'z with w' separated from 0 by the line wz. Also 

d(w', z) >_ d(x, y) (2.6) 

by the convexity of B, and the fact that the line wz separates x and y from 0. For 
the first part  it suffices to show 

d(w, z) > d(w', z). (2.7) 

Let 0v' be a radius of B parallel to the (oriented) line zw' and let 0v be 
parallel to the oriented line wz. 

Case 1: v' lies between w and v on the boundary o f B  (Fi#. 2.3). If so, the chord 
wv intersects the radius 0v, and call the intersection point u. Next let u' be the 
intersection of the line determined by zw' with the line determined by wv. This 
point exists since wv is not parallel to 0v', and by convexity of B the point w' 
separates u' and z, and u' lies outside (or on the boundary) of B. Now 

d(z,w) ~/(z, w) ar(O,v) d(O,v) 
d(z, w') -> d(z, u') - d(O, u) ~ d(O, v') - 1, (2.8) 

where the inner equality uses similarity of triangles zu'w and 0uv. This proves (2.7) 
in this case. 

Case 2: w lies between v' and v on the boundary of  B (Fig. 2.4). If so the chord 
v'v intersects the chord wz in a point u, and the extended line v'v intersects the 
line zw' in a point u', with w separating u' from z. Now 

d(z, w) d(z, w) d(z, u) d(O, v') 
> ~ > - -  - 1, (2.9) 

d(z, w') - d(z, u)  - d(z, u3 d(O, v) 

where similarity of triangles zn'u and 0v'v was used. This proves (2.7) in this case. 
These cases are exhaustive, so (2.7) follows. 
It remains to prove strict inequality when B is strictly convex. Now if z is the 
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Vt~ 

W 

Fig. 2.4. 

W* ~ Z  

Case 2 of Lemma 2.2. 

endpoint of wz first hit on moving the line determined by xy parallel to itself, and 
if y # z, then d(w', z) > d(x, y) in (2.6) and so d(w, z) > d(x, y). Now suppose y = z, 
while x = w' # w. Then in Case 1 we have d(z, u') > d(z, w') by (2.5), and so strict 
inequality holds in (2.8). Similarly in Case 2 d(z', u') > d(z, w') and strict inequality 
holds in (2.9). Thus strict inequality holds in (2.7) and the second part of Lemma 
2.2 follows. [] 

Lemma 2.2 has as an immediate consequence: 

Lemma 2.3. For a f ixed point x on the boundary of  B, the quantity d(x, y) is 
nondecreasing as y moves clockwise (resp. counterclockwise) on the boundary of  B 
starting at x until it reaches the point x' antipodal to x. It  is strictly increasing if 
B is strictly convex. 

Proof. If y and y' are two such points with clockwise ordering x, y, y', x', then 
the line determined by xy' separates y from 0. Lemma 2.2 then yields 

d(x, y) >_ d(x, y'), 

as well as strict inequality in the case of  strict convexity of B. [] 

Lemma 2.4. For any m >_ 3 and any point x on the boundary of  a Minkowski disk 
B there exists a convex m-gon inscribed in B having x as a vertex which is equilateral 
in the Minkowski metric da. I f  B is strictly convex, this m-gon is unique. For all B the 
Minkowski edge length of  all convex equilateral m-gons through x is unique. 

We remark that most bodies B possess two convex equilateral Minkowski 
m-gons having perimeters of different Minkowski lengths. 

Proof. Let 3B denote the boundary of B. For each ct with 0 _< ~ _< 2 define the 
function T~: 0B -~ ~B which assigns to each point x e ~B the first point y e ~B with 
d(x, y ) =  0c which is encountered moving counterclockwise around ~B from x. 
(Note that To is the identity map.) The continuity of d(x, .) and Lemma 2.3 
guarantee that for • < 2 the set of points on ~B with d(x, y) = ct form two disjoint 
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closed arcs on 0B separated by x and - x ,  while for d(x, y) = 2 the set is a single 
closed arc containing - x .  Fur thermore ,  if B is strictly convex these closed arcs 
are necessarily points. These facts guarantee that  T, is defined. We also associate 
to T~(x) a rotation measure 0(x, c() satisfying 0 < 0(x, ~) < rc which is defined by 
0(X,~) ~ ( P l -  (~2 (mod n) where x = rl el'p1 and T , (x)=  r2 ei*2 are viewed as 
complex numbers.  

Now define T: [0, 2] x OB ~ OB by T(~, x ) :=  T~(x). We claim that  i fB is strictly 
convex, then T is cont inuous in both  variables. This follows from the continuity 
of d(x, .) and L e m m a  2.3. If  B is not  strictly convex, then T may  fail to be 
continuous in either variable separately. 

Suppose now that  B is strictly convex. The claim above implies that  the rotat ion 
measure 0: [0, 2] x 0B--,  [0, ~r] is cont inuous in both  variables, and by Lemma  
2.3 it is a strictly increasing function of ~ for each fixed ~ e t3B. Define a rotation 
measure for  the iterated map T~ ") by 

m-1 
0(~)( x, ~) := ~ 0(T(°(x), ~). (2.10) 

i=0 

We seek the minimal  ct > 0 yielding a fixed point T~m)(x) = x. This corresponds 
to m iterations of T~ rotat ing a round the boundary  exactly once, i.e., to a solution to 

o(ra)(X, ~) = 2re. (2.11) 

Lemmas 2.2 and 2.3 together guarantee that  0tin): [0, 2] x ~B ~ [0, mn] is contin- 
uous in both  variables, and strictly increasing in 0t for fixed x. Also the strict 
convexity of B forces 0(x, 2) = rr hence 0t~(x, 2) = ran. Thus there is a unique value 
of ~ solving (2.11), and associated to it is a unique equilateral Minkowski  m-gon 
having x as a vertex. 

We treat  the case of  arbi t rary convex B by a limiting process. Inscribe inside 
B a circular disk D~ of radius R, say, and form the sequence of bodies B, = 
tB + (1 - t)DR for 0 _< t _< 1. Then B t is strictly convex for 0 < t < 1, and it has 
a unique inscribed equilateral Minkowski  m-gon of Minkowski  length ~(t) having 
x( t ) :=( t  + ( 1 -  t)R/ltxll)x as a vertex. Since B is compac t  we can extract a 
convergent subsequence of m-gons converging to a limit m-gon inscribed in 0B. 
By continuity of the Minkowski  metric dB as B is continuously deformed, this 
limit polygon is equilateral in the Minkowski  metric of B. This proves existence. 

In the case of nonstrictly convex B an equilateral m-gon through a point  x 
need not he unique. (The square S has infinitely many  equilateral Minkowski  
triangles of side length 2 having two vertices at corners of S.) However,  its length 
is unique. This may  be seen as follows. The functions T, 0, 0 (") are still well defined, 
and Lemmas  2.2 and 2.3 guarantee tha t  0(m)(x, ~t) is a strictly increasing function 
of ~t for fixed x (but not necessarily continuous.) Hence, there is a unique value 
% such that  

lim 0(m)(x, ~t) < 2rr < lim 0(m)(x, ct), (2.12) 
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for m > 2, where the upper limit inequality is omitted if ~o = 2. We claim that all 
equilateral m-gons have edge length ~o. Indeed, the strict increasing property 
of 0tm}(x, ~) in ~ guarantees that any set of steps of edge length > ~o must over- 
shoot rotation by 2n, while any step of edge length < ~o must undershoot rotation 
by 2re. [] 

Lemma 2.4 allows us to assign unambiguously, for each point x e OB, the edge 
length arm(x; B) of an equilateral Minkowski m-gon having x as a vertex. The proof 
above shows that 0t2(x, B) = 2 in all cases. Lemma 2.3 yields 

2 = at2(x, 13) > ~q(x, B) > ~4(x, 13) > ' " .  (2.13) 

Now define 

~m, B) = sup{~tm(x, B): x e 0B}, (2.14) 

which measures the edge length of the longest convex equilateral m-gon inscribable 
in 0B. The quantity ~(m, B) is an affine invariant. Next define the extremal 
constants 

• +(m) = sup{otto(B): B a Minkowski disk}, 

0t-(m) = inf{0~,(B): B a Minkowski disk}. 

It is well known that every Minkowski disk B has an affinely equivalent 
representative B' = L(B) such that 

D ~_ B' ~_ x/~D, 

where D = {(x 1, x2): x21 + x2 2 < 1} is the Euclidean disk. Using this fact a standard 
compactness argument allows us to show that there exist (not necessarily unique) 
extremal disks B~ and B,~ attaining 0t+(m) and ct-(m), respectively, for each m > 3. 
Thus we obtain: 

Minkowski Equilateral m-gon Problems. Determine the extremal constants ~ + (m), 
~=(m) and corresponding extremal bodies B +, B~ for each m >_ 2. 

The case m = 6 is settled by the following well-known result proved, for 
example, in [10]. 

Prolmsition 2.1. Let B be a Minkowski disk. Given any point x on the boundary 
of  B there is an inscribed equilateral Minkowski hexagon of  side length 1 havin# x 
as a vertex. 

In combination with Lemma 2.4 this proposition gives ~t6(x, 13)= 1 for all x 
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and 13, hence the extremat  constants f o r  m = 6 are 

~+(6) = ct-(6) = 1. (2.15) 

All Minkowski  disks are extremal for m = 6. Some other  extremal constants  are 
determined in Section 3. 

Remark.  There is an n-dimensional analogue of L e m m a  2.3: When the unit 
ball B of an n-dimensional Minkowski  space is smooth  and strictly convex, the 
subset S of t3B consisting of points at a constant  distance t (0 < t < 2) from some 
fixed po in t  of t3B is topologically an (n -2 ) - sphe re .  This is true because S = 
dB c~ (t OB + Xo), and it is a general fact that  the boundaries  of two homothet ic  
copies of a smooth  strictly convex body can only intersect in one of the four ways 
illustrated in Fig. 2.5, see 1-12]. To see that  these are the only possibilities, note 
that as long as you are not in case (i), (ii), or (iii) then t~A and t~B must intersect 
transversally, because the tangent spaces at two different boundary  points of a 
smooth  strictly convex body can coincide only for ant ipodal  points. Thus the 
intersection S is some smooth  manifold. That  it is an (n - 2)-sphere is clear if B 
is much smaller than A and if the center of B is located on t3A, since in this case 
the intersection will approximate  the intersection of 8B with a hyperplane. 
However,  we can always smoothly  homotope  the picture to this situation by 
varying t and x o without  ever encountering case (i), (ii), or (iii). The intersection 
remains transversal throughout  this homotopy ,  so no surgeries are taking place, 
and the intersection must  remain topologically the same throughout  the homo-  
topy, i.e., it must  be an ( n -  2)-sphere. In the case relevant to Lemma  2.3, the 
intersection is a 0 - sphere - - tha t  is, two po in t s - - and  it evolves as pictured in 
Fig. 2.6. 

Fig. 2.5. 

aA ~ a B = ~  aA ~ a B =  (x}, 

(i) (i,) 

A = B, aA and aB are transversal 
and aA ,'~ ¢IB=S n-1 and aA ~ a B = S  n-2 

(iii) (iv) 

Boundaries of two homothetic copies of a smooth, strictly convex body in R". 
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Fig. 2.6. (t dB + Xo) c~ c3B for 0 _< t ~ 2. 

3. Self-Packing Constants and Equilateral Polygons 

Self-packing constants p(m,~ B) and equilateral m-gon lengths g(m, B) are related 
for small values of m, because there exist extremal packing configurations having 
polygonal shape. 

Theorem 3.1. For all Minkowski disks B and all m < 6, 

2 
p(m, B) = 1 + ) B  "-'----~'c~(m, (3.1) 

Proof. We have, for all m > 2, 

2 
p(m, B) _< 1 + )B------': " 0 t ( m ,  (3.2) 

Indeed, by the definition of ~(m, B) we can find m points {xi} on c~B forming a 
convex polygon of Minkowski side-length ~t(m, B), and using Lemma 2.3 the 
Minkowski distance between each pair of points is at least ~(m, B). Hence, we can 
place open Minkowski disks of radius ½g(m, B) at these points without overlap. 
Each of these disks x~ + ½~t(m, B)B is contained in the Minkowski disk of radius 
1 + ½~(m, B) centered at 0, since 

d(y, 0) < d(0, x/) + d(x~, y) < 1 + ½g(m, B). 

Now homothetically enlarge this configuration by a factor of (½g(m, B))- 1 and (3.2) 
follows. 

It remains to show for m < 6 the lower bound 

2 
p(m, B) ~ 1 + ) " ~ ( m ,  (3.3) 

We know from Section 2 that, for m < 6, 

ct(m, B) ~ ct(6, B) = 1, 
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hence, the upper  bound (3.2) yields p(m, B) < 3. If p(m, B) = 3, then necessarily 
ct(m, 13) = 1, and (3.2) and (3.3) hold with equality. 

It  remains to establish (3.3) in the case that  p(m, 13) < 3. We first prove this 
for strictly convex bodies B and then settle the general case by a continuity 
argument.  Suppose that  we are given an extremal configuration of m bodies 
{wl + B: 1 < i _< m} packed inside pB where p = p(m, B) < 3. Our  approach  is to 
show that  we can move  the centers w~ to form an equilateral Minkowski  m-gon 
inscribed in (p - 1)B that  still packs inside pB. It  proves convenient to scale the 
configuration homotheticaUy by a factor fl = l a p -  1) so that we have m 
Minkowski  disks of radius fl > ½ packed in a disk of radius p/(p - 1) = 1 + ft. 
The resulting centers {x~: 1 < i < rn} of the m scaled disks now have 

d(x~, x j) > 2fl > 1. (3.4) 

Next we claim that  all x~ lie in B, i.e., 

d(xi, O) ~ 1. (3.5) 

For  if not, extending a ray in the direction x~ inside x~ + fiB for Minkowski  length 
fl we obtain a point (1 + u)x/ in  this disk with 

d(0, (1 +/z)x~) = d(x~, 0) + fl > 1 + fl, 

contradict ing the hypothesis that  all points lie in (1 + fl)B. Observe also that no 
x~ = 0. Fo r  if some x~ = 0, then (3.4) would contradict  (3.5). 

Now create a new configuration {Yi: 1 < i < n} by radially scaling the xl to lie 
on OB, i.e., 

Yi = d ( x i ,  0)- lxi. 

This can always be done since all x~ # 0. Now the hypotheses of L e m m a  2.3 are 
satisfied, and in consequence we have 

d(y i, y/) > d(x i, x~) > 2fll > 1. 

Next we claim that  there exists a configuration {z~} in t3B such that:  

(1) {zi} form a convex equilateral Minkowski  m-gon. 
(2) mini , j[d(zt ,  zj)] > mini~[d(yi ,  yj)]. 

To see this, relabel the y~ counterclockwise a round the boundary  ~B as Yl, 
Y2 . . . . .  Ym" Now set 7 = mini~i[d(y~, Yi)] > 1 and compare  the angular  locations 
measured from Ym of Tt~k)(ym) with Yk for 1 < k < m. If-tp k denotes the change in 
argument  of  Yk measured counterclockwise starting from Ym, then by L e m m a  2.3 
we show inductively that  

~9 k >_ O(kJ(ym, )~), 1 < k _< m, 
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because the map T r takes a step of length ~ and the step from Yk- 1 to Yk is always 
of length > "/, so that T~k)(y,,) always lags behind Yk and can never pass it. 
Consequently, 

O(m)(ym, ~) <__ 2n. 

Now we take 71 with 0(")(ym, "~'1) = 2n and set 

(k) Z k = T~, (Ym), 1 _< k _< m, 

which forms an equilateral Minkowski m-gon on OB of side length 71 > Y, proving 
the claim. 

The claim shows that 

a(m, B) _> 71 > 7 -> 2fl - 
p - l '  

(3.6) 

and this inequality is equivalent to (3.3). 
For the case of general B, it suffices to observe that ~(m, B) and p(m, B) will 

both be continuous functions in any sensible metric on the set of affine equivalence 
classes of symmetric convex bodies, see p. 235 of 19]. [] 

Remark. John H. Conway claims that if you can pack six pennies in a disk, then 
you can slide them around inside without picking them up or letting them overlap 
during the sliding so that when you are all done each penny touches the boundary 
of the disk. As applied to pennies the result above is weaker: it merely shows that 
the disk is big enough so that you can pick the pennies up and then pack them 
back in so that each penny touches the boundary of the disk. 

The proof above actually determines all the extremal packings for strictly 
convex B. Examination of the conditions for equality in (3.6) shows that: For a 
strictly convex Minkowski disk B and all m <_ 6, all extremal configurations 
{Yi + B: 1 < i <  m} must have Yi forming a maximal perimeter equilateral 
Minkowski m-oon inscribed in (p - 1)B. 

We immediately deduce from this result the self-packing radius for six or seven 
bodies. 

T h e o r e m  3.2. For all Minkowski disks B we have 

p(6, B)=p(7 ,  B ) = 3 .  

Proof. Theorem 3.1 and the result ~(6, B) = I of Proposition 2.1 yield p(6, B) = 3. 
However, there is always a packing of seven bodies inside 3B, because- when 

six bodies are put at the vertices of an equilateral hexagon of Minkowski side 
length 2 on the boundary of 2B, then a seventh copy of B fits in when centered 
at 0. Thus p(6,13) _< p(7, B) < 3, so we are done. [] 
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Fig. 3.1. Self-packing for fractal tile F. 
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It  is immediate  that  for all B we have 

p(2, B) = 2. 

It appears  that  m = 2, 6, and 7 are the only values of  m for which p(m, B) is 
independent of  the shape of B. We easily show that  p(m, B) depends on B for 
m = 3, 4, and 5 using Theorem 3.1, and this also holds for all m > 3600 using 
Theorem 4.1 below; we have not ruled out  the remaining m though this does not 
seem hard. 

The convexity and centra l -symmetry of K play an essential role in Theorem 
3.2, for there exists a nonconvex body  F which is the closure of its interior 

and has the proper ty  that  seven translates of F perfectly pack x/~F,  so that  

p(7, F) = x/~. The body  F is pictured in Fig. 3.1. It  has a fractal boundary  of 

Hausdorff  dimension (log 3)/(log x/~) = 1.12915 . . . .  The body  F appears  on p. 46 
of [14"i, where its construct ion is credited to W. Gosper ,  see also [22,1. 

Now define the extremal  constants 

p+(m) = sup{p(m, B): B a Minkowski  disk}, 

p-(m) = inf{p(m, B): B a Minkowski  disk}. 

Theorem 3.1 implies for m < 6 that  

2 
p + (m) = 1 + )tot-'m----:' (3.7a) 

2 
p-(m) = 1 + )~+'m----- ~ . (3.7b) 

The square S is an extremal  body for many  values of m. We clearly have 

p ( m , S ) = k + l  for k 2 < m _ < ( k + l )  2 . (3.8) 
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It provides several small extremal constants: 

p-(3) = 2, ct+(3) = 2, 

p -  (4) = 2, oc + (4) = 2, 

p+(5) = 3, e-(5) = 1, 

which follow on observing that, for 3 _< m _< 5, 3 = p+(6) _> p+(m) >_ p-(m) >_ 
p-(2) = 2. 

We determine one other extremal constant. 

Theorem 3.3. The circular disk is the hardest body to self-pack with four copies of 
itself. We have 

p + (4) = 1 + x/~, ~t- (4) = w/2. 

Proof. By Theorem 3~1 it suffices to show that any Minkowski disk B contains 

an equilateral 4-gon of side length at least x/~. Now an equilateral Minkowski 
4-gon is a parallelogram. Take an extremal 4-gon for B and without loss of 
generality we may suppose, by making a suitable affine transformation, that it is 
a square S with sides parallel to the axes, of Euclidean length 1. This can be done 
since ~(m, B) is unchanged by affine transformations, see Fig. 3.2. Now the 
Minkowski length of a vertical side of S is 2/r 1 where rl is the Euclidean length 
of the vertical diameter of B passing through 0, and that of a horizontal side is 
2I t  2 where r 2 is the length of the horizontal diameter in B passing through 0. Since 
this square is Minkowski equilateral, rl = r2 = r. Now consider the square of side 

r/x/~ passing through the four endpoints of these two segments, which has sides 
at angles +_ ~/4 to the axes. It is inscribed in 8B, and the Minkowski length of 
each side of this square is exactly r, because the four corners of the original square 

are on 0B at Euclidean distance 1/x/2 from the origin and the segments connecting 
them to 0 are parallel to the sides of the new square. Hence we have two equilateral 
Minkowski 4-gons inscribed in 0B with Minkowski side lengths r and 2/r, 
respectively. Consequently 

~(4, B) > max(r,  ! )  >- x/2- 

Fig. 3.2. Equilateral 4-gons in a Minkowski disk. 
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However, the Euclidean disk D has ~(4, D ) =  x/2, hence ~-(4)= 2 and the 
theorem follows. [] 

We have thus determined all the extremal self-packing constants p+-(m) for 
m < 7 except for p ÷ (3) and p-(5). The regular octagon P8 gives the largest value 
of p(3, B) that we have found. It has the property that all inscribed equilateral 

triangles have the same side length 1 + l/x//2, hence p(3, Ps) = 5 - 2v/2 - 2.172, 
using Theorem 3.1. 

The quantity p+(3) gives some information about the extremal ratio of Steiner 
minimal trees to minimal spanning trees for Minkowski spaces. 

Theorem 3.4. For any Minkowski space in R 2 there exists a configuration of  three 
points such that 

ST  3 
< - ~(p+(3) - 1), (3.9) 

M S T  - 2a-(3) 

where ST  is the Steiner minimal tree and M S T  is the minimal spanning tree for this 
configuration. 

Proof. Given a Minkowski disk, take three points determining the inscribed 
equilateral triangle of largest edge length, which is at least ct-(3). The bound follows 
on choosing to add the origin as a Steiner point. [] 

This bound gives something away because the origin need not give a minimal 
Steiner tree. Duet  al. [3] conjecture that x/~/2 - 0.8660 is the best possible bound. 
The regular octagon example shows that the right-hand side of (3.9) must be at 
least as large as 3/(2 + x/~) - 0.8787. 

4. Self-Packing Radii for Arbitrary m 

The asymptotic behavior of self-packing radii p(m, B) as m ~ oo obviously depends 
on the packing density attainable by the body. The packing density 6(B) is that 
percentage of R 2 that can be covered by a densest packing of translates of B, 
defined as a limit of packing density of a packing in a square of side t ~ ~ ,  see 
[20] for a precise definition. Fejes-T6th [6] and Rogers [19] proved for centrally 
symmetric B that 

Vol(a) 
6(B) - Vo l ( l t ) '  (4.1) 

where H is the minimum volume hexagon containing B, and this hexagon H can 
always be chosen to be centrally symmetric and convex. 

The following result gives a bound for the self-packing radius that is valid for 
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all m >_ 2. It uses an inequality of Oler [16] for a slackness function which was 
introduced by Zassenhaus as an aid in studying the tightness of finite packings, 
see [24]. 

Theorem 4.1. For all Minkowski  disks B in R 2 and all m >_ 2 we have 

(m~l/2 3 ( m ~ 1/2 
- - < p ( m ,  B) < + 1. 

\~(B)}  2 - - \ ~ (a ) }  
(4.2) 

Proof  We study the inverse function r/(t, B) which counts the maximal number 
of translates of B that are packable into tB. Let J denote the convex hull of the 
centers of such a packing of tB. We use the main inequality of Oler [16], a special 
case of which gives 

Area(J) 
5(B) - -  + ½P(J) + 1 _> r/(t, B), (4.3) 

Area(B) 

where P(J) is the Minkowski length of the perimeter of J. To simplify this 
inequality, we use the bound 

Area(J) _< Area((t - 1)B) = (t - 1)2Area(B), (4.4) 

which holds since all vertices of J are at Minkowski distance at least 1 inside tB. 
We also need the following fact: For convex bodies J l  ~ J 2  we have 

P(Jz) < P(Jz). To prove this we may use the observation due to Minkowski [15, 
p. 462] (see also p. 864 of [2]) that the Minkowski perimeter of a body K with 
respect to the metric of B is expressible as a mixed volume 

P(K) = 2V(K, B*), 

where B* is the polar reciprocal body of B rotated by Ir/4. Minkowski proved 
monotonicity of all mixed volumes under inclusion (see p. 41 of [1]), which as a 
special case for J ,  --- 32 gives V(J l, B*) ~_ V(J z, B*) and the fact follows. 

Now since J _~ tB the fact gives 

P(J) < P(tB) = tP(B) < 8t, (4.5) 

using the result that the self-perimeter P(B) _< 8 for all Minkowski disks (see p. 35 
of [21]). Substituting (4.4) and (4.5) in (4.3) yields 

(t - 1)2~(B) + 4t + 1 >_ ~(t, 13). (4.6) 

To obtain a lower bound for ~/(t, B), take a minimal volume circumscribing 
hexagon H that is convex and centrally symmetric. Then H tiles the plane with a 
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lattice tiling. Now take the configuration consisting of all centers of this lattice 
that lie in (t - 1)B, which produces an admissible packing in tB, consisting of N 
disks, say. Let K denote the set of hexagons H centered at these N points, and 
observe that (t - I)B _~ K, so that 

vo l ( ( t -  1)B) 
N > > (t - 1)26(B). 

vol(H) 

Since r/(t, B) > N we get the lower bound 

Now we have 

r/(t, 13) >_ (t - I)2~(B). (4.7) 

ct(m, B) = inf{t: t/(t, B) > m}. 

Then (4.7) immediately gives the upper bound 

~(m, B) < \6(B)/ + 1. 

For the lower bound, we observe that Mahler [13] and Fejes T6th [5-] showed that 

> ,/5 
-- 2 ' 

see also [11]. Hence 3(B) > ~ and (4.6) implies that 

(t + ~)26(B) _> r/(t, B), 

which immediately gives the lower bound 

(m'~I/2 3 
~t(m, B) _> \6(B)] - 2" [] 

The example (3.8) of the square S shows that the upper bound in (4.2) is 
asymptotically sharp. The constant in the lower bound can be improved for large 
enough m to - 1.24 using the bound fi(B) > 0.89265 of Tammela [23], but it seems 
a hard problem to determine the asymptotically best constant as m --, oo. The 
example of the square shows that the lower bound constant can at most be 
increased to 0, as m ~ oo. 

Further results about slackness function inequalities can be found in [17,] and 
[7-]. 

Concerning the packing constant 6(B), it is well known that 3(B) < 1 with 
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equality a t ta ined only for B being a paral lelogram or a centrally symmetric convex 
hexagon. The body B with the smallest known  packing constant  fi(B) ~_ 0.901 is 
a regular octagon with corners rounded off by hyperbolic arcs. It was discovered 
by Reinhardt  [18], who conjectured it is extremal. This has never been proved. 

Finally,  we remark that  the question of which convex bodies allow perfect 
self-packings was settled by Groemer  [8, Hilfssatz 2]. He showed that if K is a 
convex body in ~n, copies of which can perfectly pack some larger homothetic  

copy tK of itself, then K is a parallelepiped. The body pictured in Fig. 3.1 shows 
that the assumpt ion that K is convex is necessary in Groemer 's  result. 
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