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Abstract. Let the lattice A have covering radius R, so that closed balls of radius R 
around the lattice points just cover the space. The covering multiplicity CM(A) is 
the maximal number of times the interiors of these balls overlap. We show that the 
least possible covering multiplicity for an n-dimensional lattice is n if n < 8, and 
conjecture that it exceeds n in all other cases. We determine the covering multiplicity 
of the Leech lattice and of the lattices I, ,  A,, Dn, E~ and their duals for small values 
of n. Although it appears that C M ( I , ) = 2  "-1 if n < 3 3 ,  as n ~ 0 o  we have 
CM(I,,) ~ 2.089...". The results have application to numerical integration. 

1. Introduction 

A problem of recent interest (cf. Sullivan [18]) is to find the smallest possible 
covering multiplicity (defined in the Abstract) of  any n-dimensional lattice, and to 
calculate the coveting multiplicities of  various well-known lattices. Figure 1 shows 
an example. The coveting multiplicity so defined is of  use in estimating various 
integrals, since if I is the integral of  some function over  the whole space and IB 
its integral over one of the coveting balls, then 

I Z tB <_ CU(A)I. 
B 

In this paper  we determine the covering multiplicities of  certain members  of  
the families In (n > 1), An (n > 1), Dn (n > I), E ,  (n = 6, 7, 8) and their duals A*, 
D*, E* for small values of  n (the results are given in Table  1) and of  the Leech 
lattice A24 (for which the covet ing multiplicity is 25). 
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Fig. 1. The covering multiplicity of the square lattice /2 (small circles) is 2, since all points in the 
open lunes (shaded) are covered twice. An umbral circle is shown doubly shaded. 

In particular we will show that  CM(A*)= n for n _  8, and also that 
CM(D4) = 4 and CM(E'~) = 6. Since the covering multiplicity of  an n-dimensional 
lattice is at least n (see Theorem 2), this will establish our  main result. 

T h e o r e m  1. The minimal covering multiplicity of an n-dimensional lattice is n if 
n < 8 .  

We have also made experimental investigations of  these lattices in higher 
dimensions, obtaining lower bounds on their covering multiplicities, some of  which 
are shown in Table 1. (We conjecture that the lower bounds shown in the table 
are in fact the true values.) 

The results in Table 1 (and more  extensive experiments not reported here) lead 
us to conjecture that  the minimal covering multiplicity exceeds n in all dimensions 
above eight. 

Since there are usually many  ways to perturb a lattice without changing its 
covering multiplicity, the lattices in Table 1 are of  course not  the only ones with 
these values of  the covering multiplicity. 

Table 1. Covering multiplicities of root lattices and duals. 

n I, A,  A* O. D* E, E* 

1 1 1 1 1 1 
2 2 2 2 2 2 
3 4 4 3 4 3 
4 8 7 4 4 4 
5 16 15 5 11 6 
6 >32 _>21 6 >16 8 
7 >64 >56 7 >32 ~12 
8 >128 >84 8 >64 ~16 
9 >256 >210 > t l  >163 ~24 

17 6 
28 9 
9 9 
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It is worth pointing out that there is a simple way to compare lattices that 
have the same covering multiplicity. This is by finding the largest sphere whose 
interior is wholly contained in the set of points covered CM(A) times: we call this 
the umbral sphere of the lattice. It is illustrated in Fig. 1 for the square lattice 12. 
Let Ru be the radius of the umbral sphere when the lattice is scaled so as to have 
determinant 1. We can then ask: among all lattices with the minimal covering 
multiplicity, which has the smallest value of Ru? We show how to compute Ru in 
Section 2--see (4). For  example, although both A* and D4 have covering multi- 
plicity 4, the value of R~ for A* is 

~/~ - x / ~  _ 0.019582 . . . .  (~_)if8 
while for D 4 it is 

1 - x//3/2 _ 0.112658 . . . .  
4118 

Similarly, the values of Ru for A* and E* (which both have covering multiplicity 
6) are 

2/x/~ - x / ~  _ 0.007973... (¢.)~/,2 

and 

x/~ - ~ _ 0.038093 . . . .  (~),.2 

respectively. 
The n-dimensional cubic lattice I ,  is of particular interest. Our investigations 

strongly suggest that the sequence of values of CM(I.) has a rather unusual 
behavior: CM(1.) = 2"- t  for all n < 33, while CM(1.) > 2"-1 for all n > 33. Our 
best lower bounds on CM(I,) are shown in Table 2. It follows from the work of 
Mazo and Odlyzko [12] that 

CM(I.) .'. 2.089097..." + o(./,) (1) 

as n --, 0o, We discuss I,  in Section 3. The lattices A., A*, D, . . . .  are dealt with in 
turn in Sections 4, 5 . . . . .  ending with the Leech lattice A24 in Section 9. 

We remark that, once the covering radius R of a lattice A has been found, it 
is trivial to obtain the average covering multiplicity. This is the average number 
of times a point is in the interior of the covering .balls, which is equal to the 
covering density (or thickness) of A, given by 

V.R" 
(2) 
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Table 2. Lower bounds to covering multiplicities of cubic 
lattices I~ (r is defined in Section 3). 

n CM(I~) >__ r 

1-33 2 n-I n - 1 
34 233 + 10850970 1 
35 234 + 341772656 2 
36 235 + 1329309096 3 
37 235+7307575295 0 
38 237 + 17587471742 t 
39 23s + 41179889288 2 
40 239 + 94490796376 3 

where V n is the volume of an n-dimensional sphere of radius 1 [3, p. 31]. Finding 
CM(A) appears to be a much more difficult problem. 

For  example, the average covering multiplicities of the lattices In, Dn, and A* 
are, respectively, 

( N / ~ ) n  ÷ °'~' = 2.066365...n +o~n), 

( N / ~ )  n+°tn) = 2.066365...n+otn~, (3) 

e)  n+°tn~ = 1.193016...~+o~n). 

We call a point of R n which is in the interior of CM(A) balls a t h i c k e s t  p o i n t  

for A. 
Note that since only open balls are used in determining CM(A), points of R n 

that are maximally distant from A (the "deep holes" in A) are usually not thickest 
points. However, we will see several examples later where thickest points are deep 
holes in sublattices. 

This work has involved considerable use of computers. 

(1) We searched for thickest points in a lattice by choosing points at random 
from a fundamental parallelepiped, and computing the number of open balls 
of radius R that contain them. However, it appears that for many lattices 
the probability that a random point is a thickest point is very small, so this 
approach is only successful in low dimensions. 

(2) For  some lattices we used MACSYMA [11] to determine how many open 
balls contain a point P, by computing the theta series with respect to p--see 
Sections 3 and 6. 

(3) It is often necessary to determine if the open balls of  radius R about lattice 
points P1 . . . . .  P u ~ A  have a common point. This can be answered by 
computing the radius r of the smallest sphere that contains P1,-- . ,  P~" 
f fhere  is a common point if and only if r < R.) 
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Al though this smallest containing sphere problem has been studied by 
several authors [6]-[-8], [13], [,16, p. 248], [17], there does not seem to be 
a s tandard name for the containing sphere. We call it the perisphere, ~ and 
similarly refer to the pericenter and periradius of P1 . . . . .  Pu. The square of  
the periradius is the perinorm of Pa . . . . .  Pu. 

Smallest containing sphere problems can be solved very efficiently using 
the A M P L  [9] and M I N O S  [15] programs. / 

(4) We also frequently use A M P L  and M I N O S  to compute  the distance from 
a given point  P to a convex polytope H (usually a fundamental  simplex for 
the lattice in question--see,  for example, the p roof  of Theorem 6). 3 

Since we make heavy use of the results from A M P L  and M I N O S  in proving 
some of our  theorems, it is appropriate  to discuss the accuracy and rigor of these 
procedures. 

(a) A M P L  [9] is simply a flexible front-end, which transforms the problem into 
the appropriate  format  for M I N O S  or other optimization programs. 

(b) M I N O S  [15] was developed to handle much larger problems than ours, 
which typically involve minimizing a function of  eight variables subject to 
eight constraints. Running times on our  problems were a round  0.20 seconds, 
and the results were correct to at least seven significant figures. 

(c) Our  problems--see  footnotes 2 and 3-- involve  minimizing a quadratic 
function, usually of  the form x 2 + .. .  + x 2, subject to linear constraints. 
M I N O S  solves such problems using a reduced-gradient algorithm, follow- 
ing Mur tagh  and Saunders [14]. Since our  problems are so small, any 
particular solution found by M I N O S  could be verified by hand. The total 
number  of  calls to M I N O S  used in all our  proofs was less than 10,000. So 
al though some of  these proofs depend on computers,  the same results could 
in principal be obtained without  their help. 

We assume the reader is familiar with the lattices ment ioned (any other  course 
would have doubled the length of the paper) a l though we do give definitions for 
the principal lattices. For  further information see [1], [2],  [5], [10],  and especially 
[3]. 

The subscript on the name of a lattice gives its dimension, and an asterisk 
indicates the dual lattice. We note that I* = I , ,  E~ = E 8, and A*4 = A24. Also 
A 1 ='~ A *  ='~ D 1 =_"~ D* "~= I a, A* ='~ A 2 , D 2 ___~' 12 , D 3 ='~ A3 , and D$ ~ D 4, where =~ 
indicates geometrically similar lattices. 

The cell structures (i.e., the Voronoi  and Delaunay polytopes) of  the root  lattices 

L 

The prefix "peri" means "around." 
2 An appropriate formulation of such a problem for AMPL and MINOS is the following. Let C 

be the pericenter and let s be the pcrinorm. Then set t = s - C.C.and call AMPL and MINOS to 
minimize t + C. C subject to t > P~.P~- 2C.P, i = 1, ..., M. We thank Steve Fortune for this 
observation. 

3 Let H be defined by the inequalities ~. z ~ as, i = 1,..., M. Let z be the closest point of II to P, 
and set y = p _ z. Then we call AMPL and MINOS to minimize y.y subject to ~t~.y < ~i.P - as, 
i -  1 . . . .  , M .  
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In, An, Dn, En and their duals are described in [3], [5], [19], and [20]. The reader 
is particularly referred to [4], where all these cell structures are obtained in a 
systematic and uniform manner. 

The norm or squared length x- x of  a vector x is denoted throughout by N(x). 

2. General Results 

We first prove that the covering multiplicity of an n-dimensional lattice is at least 
n. This is a consequence of the following more general result. 

Theorem 2. Let ~, be a set of  points in Rn for which there are positive numbers a, 
R such that dist(s, t) > a for all s, t ~ E, s ~ t, and such that the closed balls o f  radius 
R about the points of  ~, cover R ~. Then there is a point w ~ R n in the interior of at 
least n of  these balls. 

For  the proof  we need a lemma. 

Lemma 3. Suppose vl . . . . . .  vM (M >_ n) are vectors in R n such that any nonzero 
vector has positive inner product with at least one v~. Then there is a vector w e R n 
with positive inner product with at least n of  the v~. 

Proof The proof is by induction on n. Choose one of the vi's, v say, and let H 
be the (n - 1)-dimensional subspace orthogonal to v. Each vector in FI has positive 
inner product with at least one of the other v[s, and so by the inductive hypothesis 
there is a vector x e H with positive inner product with at least n - 1 of them, say 
x ' v  i = b~ > 0, 1 < i < n - 1. Choose ~ to satisfy 0 < e < bi/lv'v~l • O. Then 
w = x + ev is a vector with the desired properties. [] 

Proof  o f  Theorem 2. Let R' <_ R be the smallest number such that closed balls 
of radius R' around the points of E cover R n, and let P be a critical point for the 
covering, i.e., a point which would not be covered if the balls were shrunk further. 
We take P as the origin, and let vl . . . . .  vM be the points in E at distance R' from 
P. The vi satisfy the hypothesis of Lemma 3, and the point ew, for sufficiently small 
e > 0, is in the interior of at least n of the balls. []  

We now show that the behavior illustrated in Fig. 1 is typical of all lattices, in 
the sense that  the regions inside sets of CM(A) intersecting balls are always disjoint 
from each other (just as the open lunes in Fig. 1 are disjoint). 

Theorem 4. For each set 5~ of CM(A) lattice points for which the corresponding 
balls have a common intersection, let U(~)  denote their open intersection. Then 
the regions U(~)  are disjoint. 

Proof A point P of  the boundary of U(~)  is not in the interior of any ball with 
center x ~ S/', or else some point near  P would be contained in more than CM(A) 
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balls. On the other hand, P is not in the interior of at least one of the origi- 
nal balls. Therefore points on the boundary of U(6 a) are not covered CM(A) 
times. []  

Theorem 4 implies that we can compute the umbral spheres for A (defined in 
Section 1) as follows. Let p be the smallest periradius of any such set ~ .  Then the 
umbral spheres have radius R -- p, where R is the covering radius of the lattice, 
and so 

R - p  
R, - (det A) l/t2n)" (4) 

For many of the lattices we consider (although not for E7 or A24), all sets ~ have 
the same periradius. 

3. The n-Dimensional Cubic Lattice In 

I ,  consists of the vectors x~ x2 - . . x ,  with all x ~  Z, and has covering radius 

R = v/n/2 (see Section 5 of Chapter 4 in I-3]). Clearly, CM(I 0 = 1, so we may 
assume n > 2. The point 0 ½ ½... ½ is in the interior of the balls of radius R centered 
at all lattice points 0 * * --" *, where • indicates a coordinate that is 0 or 1, and so 

CM(I,) > 2 m- 1. (5) 

The numerical evidence in Table 2 suggests that equality may hold in (5) if and 
only ifn < 33. However, we can establish the equality only for smaller values ofn. 

Theorem 5. 

CM(I,) = 2"-1 for n < 5. (6) 

Proof. We give the proof  when n = 5, the other cases being similar and easier. 
We may assume that a thickest point has the form P = v w x y z, where 
0 < v < w < x < y < z < ½. It is easy to check by hand that only 37 lattice points 
are within norm R 2 = ] of such a point, namely the 32 points • • • • • (where 
• = 0 or 1) and the five points ( -  1 0 0 0 0), where the parentheses indicate that 
all cyclic shifts of the parenthesized coordinates are to be included. We must show 
that no subset 6~ of 17 of these 37 points has perinorm < ~. 

A basic principle which we use repeatedly is that a set of balls of radius R with 
a common interior point cannot include two balls with centers A and B satisfying 

N ( A  - B) > 4R 2. (7) 

(For the interiors of two such balls are disjoint.) 
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Case 1: 6 a contains - 1 0 0 0 0 and 0 - 1 0 0 0. By the above principle the other 
points in ~e can only include the ten points 1 0 0 0 0, 0 1 0 0 0 and 0 0 • • . ,  
and so 16el < 12. 

Case 2: A a contains no vector with negative components. In this case there are 32 
candidates for S, °, the points • • • • *. We form what we call the exclusion graph 
for these points: there'is a node for each point, and two nodes are joined by an 
edge if and only if the corresponding points A and B satisfy (7). Then 13] clearly 
cannot exceed the independence number of this graph (the maximal size of an 
independent set of nodes). 

In the present example the graph consists of 16 disjoint edges, and so ]~[  _< 16. 

Case 3: 5P contains a single vector with a negative coordinate, say - 1 0  0 00 .  
The only other vectors that can occur in ~ are the 17 vectors 1 0  0 0 0 and 
0 * * * *, and we cannot have both 1 0 0 0 0 a n d 0 *  * * * . I f 1 0 0 0 0 d o e s  
not occur we are back to Case 2. Otherwise ~ consists of the 17 vectors 
- 1 0  0 0 and 0 * * * *, whose perinorm (found by AMPL and MINOS,  see 
footnote 2) is z# > ¼. Thus no 17-subset 6 e exists, and so CM(Is)  = 16. [] 

To obtain better lower bounds than (6) for larger values of n we make use of 
theta series. Points of the form P = 0 n-" ½" for 0 < r < n - 1 appear to be good 
candidates for thickest points in In. The theta series of  In with respect to P is [3, 
p. 106] 

qmX-e) = 02(q)rOa(q)n-, 
x~ln 

= ~ A,q '  (say), (8) 

where 

u w  

02(q ) = qCm+ 1/2) 2, 03(q ) = ~. q'2 

and A t denotes the number of lattice points at squared distance t from P. 
We use MACSYMA [11] to calculate ~,<R A, (the number of balls containing 

P) and to maximize this over r. The results for n < 40, together with a best choice 
for r, are shown in Table 2. 

It follows from the work of Mazo and Odlyzko [12] that, as n ~ ~ ,  

CM(I , )  ,,~ 2.089097..." + o~,/n). (9) 

This is the case ~ = ¼ in [12]; the particular constant needed for (9) is not given 
in Table 1 of [12] but was kindly supplied by Andrew Odlyzko. In [12] it is also 
shown that any point of  the form 0"-" ½" for fixed r is in c ~+°t"~ balls as n ~ oo, 
where c is strictly less than the constant in (9). 
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4. The Lattice A, 

A~ consists of those points Xo x~.. .  x, e In+ 1 satisfying Y' xi = 0, and has squared 
covering radius R 2 = a(n + 1 - a)/(n + 1), where a = [(n + 1)/2] (see Section 6.1 
of Chapter 4 in [3]). It is trivial to see that CM(At )  = 1, CM(A2) = 2; and the 
face-centered cubic lattice A 3 ~ D 3 is discussed in Section 6. 

For A2t the point 

( t + 2 ~ ' - 1  ( - t + l ~  t+2 

,,2- 

is certainly contained in the balls centered at points of the form 

x t -.. x t _ l ; - - x  I . . . .  xt_ 1 0 "" O, 

xi = 0 or 1 (and in other balls when n is large), so that 

,- ,  = : , . ,  
CM(A2, ) >__ ~ (10) 

i=o i i \ t - l f  

Similarly the point 

shows that 

CM(A2t+ 1) >- = • 
i=o i t 

(11) 

Equations (10) and (11) justify the lower bounds in Table 1 for n > 5. When 
n = 4, (10) can be strengthened, since the point (,~)2 (_~)3 is contained in seven 
spheres. 

T h e o r e m  6. The covering multiplicities o f  A1 . . . . .  A~ are respectively 1, 2, 4, 7, 15. 

Proof. We begin with the proof for A4; this is the prototype of many later proofs. 
A fundamental simplex for the (infinite) affine Weyl group of type An is defined 

by the inequalities 

X o < X l ,  x l < x  2 . . . . .  x , _ l < _ x n ,  x n < x o + l  (12) 

(see [i],  [5], and especially Chapter 21, Fig. 21.1, of [3]). We consider a thickest 
point P for A4 contained in the fundamental simplex. In particular, P is in the ball 
centered at the origin. The center of any other ball containing P is at squared 



118 

~ " ' 0 

O 

Fig. 2. Exclusion graph for A4. 
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distance < 4R 2 = ~ = 4.8 from the origin. Since the theta series of A4 (with respect 
to the origin) is 

1 + 20q 2 + 30q 4 + - - - ,  

there are 51 possible balls to consider. 
We now use AMPL and MINOS (see footnote 3) to compute the squared 

distance from each of these points to the fundamental simplex. For only 12 of the 
51 points is this less than'R 2 = ]. The exclusion graph of these 12 points (defined 
in the previous section) is shown in Fig. 2. It is easily seen (by eye) that the 
independence number of this graph is 8, and that there are exactly two independent 
sets of size 8. However (from AMPL and MINOS), the perinorm of each such set 
is exactly ]. Thus only seven open balls can intersect, and CM(A4) = 7. 

The argument for A5 is similar. Now R 2 = I, 4R2 = 6, and the theta series is 
1 + 30q 2 + 90q 4 + 140q ~ + " " ,  so there are 261 vectors to be considered. Only 
27 of them are at distance < R from the fundamental simplex, and we form the 
27-node exclusion graph, in which we must show that there is no maximal 
independent set of size ~ 16. There are five nodes with too high a degree to 
be part of such a set, and (after their removal) six isolated nodes which must be 

part of such a set. However, the remaining 16-node graph contains eight disjoint 
edges. [] 

5. The Lattice A* 

The dual lattice A* is the union of n + 1 cosets [i] + A n of An, where 

f YfJLA'  (13) 
[i] = \ n  + 1] ~,n + 1,1' 

and i + j = n + 1, 0 < i ~ n. The Delaunay cells are copies of the fundamental 
simplex for A,, for instance that with vertices [i], 0 < i < n. (This simplex is the 
same as that defined in (12).) The covering radius R of A* is given by 

R2 = n(n + 2) 
12(n + 1)" 

(For further information about this lattice see [3, Chapter 4, Section 6.6] and [4].) 
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T h e o r e m  7 .  

C M ( A * )  = n f o r  n < 8. 

Proof. By Theorem 2, CM(A*) > n. We may assume that a thickest point  P is 
in the fundamental  simplex with vertices [/], 0 < i < n. Let 6 e be the set of centers 
of a collection of CM(A*)  open balls conta ining P. For  n _< 5 we have 4R 2 < 2, 
and so 6 ¢ cannot  conta in  two points  from the same coset [/] + A,, implying 
I~el _< n + 1. (This is because if u, v~[ i ]  + A, ,  u ~ v, then u -  v ~ A ,  and so 
N(u - v) > 2.) Fur thermore  (still for n < 5) we cannot  have 13"1 = n + 1, for the 
n + 1 closed balls centered at the vertices I-i], 0 < i < n, meet at the center of the 
simplex but  do not  have a common interior point. Thus 

CM(A*)<_n for n < 5 .  

We now discuss the case n = 8, omitt ing n = 6 and  7 which are similar and  
easier. 

Since R 2 = ~ ,  4R z = ~ ,  and the theta series of A* begins 

1 + 18q s/9 + 72q 14/9 + 240q 2 + 252q 20/9 --t- 504q 26/9 q- "--, 

we must  consider a popula t ion  f~ of 1 + 18 + ... + 504 = 1087 lattice vectors. 
These are distributed among  the n ine  cosets as shown in Table  3. 

We must  show that no  9-subset 6 e of f~ corresponds to a set of intersecting 
spheres. There cannot  be just  one vector from each coset, by the argument  at the 
end of the proof for n = 5, so there must  be > 2  vectors from some coset. We may 
also assume if we wish that 0 ~ 6e. We proceed to establish several properties of 6p. 

(i) 6 e does not contain four vectors u, v, u, x from the same coset. 

Proof. We may take u = 0. Then v, w, x and  their differences must  have norm 
2, s a y v = l  - 1 0 7  , w = 1 0 - 1 0 6  , x = 1 0 2 - 1 0 5  . But the per inorm of this set 
is¼ > ~ .  

Table 3. Vectors of norm < ~ in A*. 

Coset Norm Number Norm Number 

0 0 1 2 72 
1 ~ 9 ~-~ 252 
2 14 36 - -  - -  
3 2 84 - -  - -  
4 20 126 - -  "9- 
5 -9- 20 126 - -  

6 2 84 - -  - -  
7 14 36 - -  - -  -9- 
8 ~ 9 "9-- 26 252 
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(ii) I f  O ~ 6¢, then 6° does not contain a vector o f  norm 26 -9-. 

Proof. We take the par t icular  no rm ~ vector  

u = 

and examine every triple 0, u, v, where v e D,, v # 0, v # u. There  are only six choices 
for v for which the per inorm of the triple is < ~ .  So if u e 6e, I~1 < 8. 

(iii) I f  6P contains two vectors f rom coset [i] + As, there is at most one vector 
f rom [i + 1] + A 8 and at most one f rom [i - 11 + A8. 

Proof. Suppose u = 09, v = 1 07 - 1 ~ ~ .  Then the only compat ib le  vector  from 
[1] + As is ~ (_~)s .  

(iv) 6 a does not contain vectors u, v, w with u - - v ~ A  8, v - - w ~ A  s, and 
N(u - v) = N(v -- w) = N(w -- u) = 2. 

Proof. We may  take u = 09, v = 1 - 1 07, w = 1 0 - 1 06. There are ten possible 
vectors x ~ f~ such that  the per inorm of u, v, w, x is < ~ .  By use of (i) and (ii) these 
ten are reduced to five, and so I~I -< 8. 

(v) S~ does not contain three vectors f rom the same coset. 

This follows from (ii) and (iv). 

(vi) I f  6~ contains two vectors f rom coset [i1 + As, then it contains no vectors 

f rom [ J l  + A s / f l i  - J l  = 4 (mod 9). 

Proof. We m a y  assume 5 e contains 

u = 0 9  , v = 1 0 7  - 1 ,  w = ( { ) * ( - ~ ) s e [ 4 1 + A 8 .  

There  are 12 vectors x that  can be adjoined, but  none belong to cosets [41, [5], 
or  [6]. Therefore 6P must  contain two vectors x, x'  f rom one of cosets [21, [3], 
or  [7]. However ,  none of the resulting sets u, v, w, x, x'  can be extended by 
a sixth vector  x". 

It  is now easy to see that  there is no way to distribute nine points a m o n g  the 
nine cosets while satisfying (iii), (v), and (vi). [ ]  

The  per inorm of the points [ 1 ] , . . . ,  [n] is 

i f 2  = ( n  - -  1Xn 2 + 4n + 6) 
12(n + 1) 2 

This determines the radius of  the umbra l  sphere for A*, n _< 8 (see Section 1 and 
(4)). 

For  larger values of  n we have CM(A*)  _> 11 (by considering the point  i~o 5 
__~5), C M ( A * o ) >  12 (from 0 5 ~ - ~ 5 ) ,  C M ( A * ) > 2 n + 3  for n > l l  (from 
0"+1), and C M ( A • , ) >  34 (from i~ 5 0 _ ~ 9 ) .  We do  not  know the asymptot ic  
behavior  of  CM(A*),  al though (3) gives a lower bound.  



On the Covering Multiplicity of Lattices 121 

6. The Lattice Dn 
D. consists of those points x I --. x,  e I .  for which xl + "'" + x. is even. Since 

01 ~ 11, D2 =~ Iz we assume n _> 3. The covering radius R is 1 (if n < 4) or v ~ / 2  
(if n > 4). (For further information about D. see Section 7.1 of Chapter 4 in [3].) 

Points of the form P = 0" - ' a  r, where a = ½ - e, e > 0 is small, and 0 < r < n, 
appear to be the best candidates for thickest points. When r = 1 this yields 

CM(D,) > 2 "-2 (n > 3), (14) 

although if n = 1 (mod 4) we get a slightly better result by taking r = 0, namely 

(4t + 1 ) ( 4 t  + 1) (4t + 1) 
CM(D4,+O > 1 + 2 + 4 + " "  + \ 2t " (15) 

When n is large these lower bounds fail to count all the balls containing P, and 
Oust as for I,) we get better bounds by using the theta series of the lattice with 
respect to P (compare (8)). For D, this can be shown to be equal to 

½(~k3(q)tO3(q) ~-"  + ~4(q)'O,(q)~-'}, (16) 

where 

i//3(q ) = ~ q,,-a)2 ~b,(q) = ~ (--1)mq (m-a)z, 

04(q)= ~ ( - 1 ) q  m2. 

Again we use MACSYMA to determine the number of balls containing P and to 
optimize over r. We have computed this bound for n < 40 and show the values 
for n < 20 in Table 4. (The pattern in the third column breaks down for n > 25.) 

We suspect that many of the lower bounds in Table 4 are exact, although we 
can only prove this for n _< 5. 

Theorem 8. The covering multiplicities of  D3, D 4, and D 5 are respectively 4, 4, 
and 11. 

Proof. The face-centered cubic lattice D a has two kinds of Delaunay polyhedra, 
tetrahedra and octahedra, and R = 1. We can now check that the ball centered 
at any vertex of a tetrahedral or octahedral Delaunay polyhedron intersects only 
those faces of the polyhedron that involve that vertex--we omit the details. It 
follows that points in the Delaunay octahedra are covered at most three times 
and points in the Delaunay tetrahedra at most four times, so that CM(D3) = 4. 
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Table 4. Lower bounds to covering 
multiplicities of the lattices D~, 

n CM(O~) ~ r 

3 2 + 2  3 
4 22 3 
5 23 + 3 5 
6 24 5 
7 2 s 6 
8 26 7 
9 27+35 9 

10 28 9 
11 29 10 
12 21° 11 
13 211 + 462 13 
14 212 13 
15 213 14 
16 214 15 
17 215 +6435 17 
18 2 t6 17 
19 21~ 18 
20 2 is 19 

For D4 and D 5 we assume that a thickest point belongs to the fundamental 
simplex defined by 

0 < x l + x 2 ,  x1-<x2, x 2 < x 3  . . . . .  x._~_<x~, x . _ ~ + x ~ < l  (17) 

[3, Chapter 21, Fig. 21.2]. The proofs now follow those for A 4 and As. 
In the case of D4 the exclusion graph consists of a triangle and three isolated 

vertices, and so CM(D4) < 4. Each Delaunay and polytope for D4 is an 8-vertex 
orthoplex (also called a cross-polytope or generalized octahedron, see [4] and 
[5]). There is a unique way for four balls to intersect: they must be centered at 
the vertices of a tetrahedral face of an orthoplex cell (for example, the four vertices 
(1, 0, 0, 0), with pericenter ¼ ¼ ¼ ¼ and perinorm I). 

In the case of D 5 the exclusion graph has 20 nodes and contains precisely two 
maximal independent sets of size 12, both of which have perinorm ~. [] 

Asymptotically it seems very plausible (although we have not tried to carry this 
out) that the arguments of [12] can be modified to show that (9) also holds for Dn. 

7. The Lattice D* 

For the dual lattice D* see [3, Chapter 4, Section 7.4] and 14]. Since D~ --- A~ 
and D* ~ D4 we assume n _> 5. Consideration of the points 

(½ _ ~) ,-  1 ¼2 0 ~- 1, 
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(½ -- e)' (¼ + e)' 0', 

( ¼ -  o .-1 

shows that 
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CM(D'~,) > 2t, (18) 

CM(D'~,÷ 1) >- ~ + (t odd), (19) 
i=0 

CM(D*u+ I) >_ 3.22u-1, 

respectively, and yields the lower bounds in Table 1. 

CM(D*) = 6, CM(D'~) = 8. 

Theorem 9. 

(20) 

Proof. The method used to prove CM(A4)= 7 works very easily here. The 
exclusion graphs for D~ and D* contain respectively 8 and 12 nodes. In both cases 
these nodes are subsets of the vertices of the Delaunay polytope (see 1,4]). In the 
case of D*, for example, the Delaunay polytope is the 16-vertex cross-join of two 
three-dimensional cubes in orthogonal spaces. There is a unique arrangement of 
eight intersecting balls, whose centers are obtained by taking four nonopposite 
vertices out of the eight vertices of each of the two cubes. [] 

8. The Lattices En and E* (n = 6, 7, 8) 

E s is the union of D a and the translate t 1 J 1 1 ~ : ~ : ½ ½ ½ + D 8. The covering radius 
R is 1, and there are two kinds of Delaunay polytopes, orthoplexes centered at 
deep holes such as 1 07 and simplexes centered at shallow holes such as 17 --½ 
(see 1,3, Chapter 4, Section 8.1], 141 and 1,5]). 

Theorem 10. 

CM(Es) = 9. 

Proof. The point ½7 - I  is contained in the balls centered at the nine vertices 08, 
,8 (½6 _½ ~,  -½) of the Delaunay simplex, so CM(ET)> 9. To obtain an upper 
bound we observe, as in the corresponding proof for D 3 (Theorem 8), that 
the covering ball centered at any lattice point is contained in the union of the 
Delaunay polytopes of which that point is a vertex. Points in a Delaunay orthoplex 
are therefore covered at most eight times, and points in a Delaunay simplex at 
most nine times. 
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E7 may be defined to consist of those vectors Xo xl "'" xTe E8 for which 
xi = 0, and has R z = ~. The dual lattice E* is generated by E 7 and the vector 

(~)z (_¼)6, 

and has R 2 =  ~ (see [3, Chapter 4, Section 8.2], [4], [5], and [20]). The theta 
series of E 7 and E* are 

1 + 126q 2 + 756q 4 + 2072q 6 + .--, (21) 

1 + 56q 3/2 + 126q 2 + 576q 7/2 + . - ' ,  (22) 

respectively. 

T h e o r e m  11. 

CM(ET) = 28, CM(E*) = 9. 

Proof. (i) The Delaunay polytopes for E7 are simplexes and Hesse polytopes 321 
(see [3]-[5]). To understand the Hesse polytope it is helpful to think of an 
icosahedron, whose 12 vertices lie in four layers of sizes 1 + 5 + 5 + 1. The 56 
vertices of the Hesse polytope similarly fall into four layers of sizes 1 + 27 + 
27 + 1, as shown in Table 5 (see Table VIII of [4]). The Schl/ifli polytope 22~ is 
described below when we discuss E 6. 

The vectors in Table 5 are in fact the minimal vectors of E~. The pericenter of 
the first 28 vectors in the table is 

1 1 6 1  
;g --T'2 2g 

and their perinorm is ], showing that CM(E7) >_ 28. However, there are several 
inequivalent ways to choose a set of 28 overlapping balls. We conjecture that the 
above set has the smallest perinorm. 

Table 5. Sections of the Hesse polytope 321. 

Coordinates Number Shape 

3 _¼6 ] 1 Zenith 

¼ (I _¼5) _¼ 6 27 vertices, 
¼ (_¼2 ¼,) ¼ 15 forming a 
-¼ (I _¼s) 3 6 Schl/ifli polytope 
¼ (-3 ¼5) __~ 6 27 vertices, 
_¼ (~2 _¼,) _¼ 15 forming a 
-3  (-3 ¼5) ¼ 6 Schl/ifli polytope 

3 16 3 1 Nadir 
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To prove CM(E7) <_ 28 we follow our  usual method. F rom the theta series (21) 
there are 2955 vectors of norm < 4R 2 = 6 to be considered. The fundamental  
simplex is defined by 

X 0 ~--- X 1, X 1 _~ X 2 ,  . . . ~  X 6 _~ X 7 ,  

x 4 + - - "  + x 7 - x 0 . . . . .  x a < 1. (23) 

The exclusion graph has 42 nodes, and we must  consider all maximal independent 
sets ~ of size _>29. There is a set (~1 say) of  12 isolated nodes. It is easy to find 
by hand a set of 13 disjoint edges, and in four distinct ways. Hence there are at 
most 42 - 13 = 29 nodes in ~.~. Furthermore,  an independent set of size 29 must 
contain every node not involved in these 13 edges. In this way we find a set (~2) 
of six further nodes that must belong to ~". Furthermore,  the six nodes (S,°3)joined 
to ~ 2  are not  in :7. This reduces the graph to 42 - 12 - 6 - 6 = 18 nodes in 
which we must  find all independent sets of size 29 - 12 - 6 = 11. In the reduced 
graph there is a node x of degree 8 which therefore cannot  belong to ~ ,  and a 
node y of degree 6. If  y e ~ there is a unique choice for .qa, which has perinorm 

> {; and if y 6  6e, then I~el _< 28. 
(ii) The proof  for E* is much easier. F rom (22) there are 759 vectors to be 

considered. The exclusion graph has 15 nodes and is shown in Fig. 3. 
There is a unique maximal independent set, of size 9, consisting of the points 

(1) - ~  ¼7, 

(2) -¼" 
(3) - 1  04 (1 02), 

(4) - ~  ( - ~  ¼s) ¼3 

0 

f 

Fig. 3. Exclusion graph for E*. 
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(a) (b) 

(c) (d) 

~ o ~ 

Fig. 4. (a) The E7* lattice and (b) the polytope formed by the centers of nine intersecting balls. (c) The 
E* lattice and (d) the analogous 6-vertex polytope. 

with pericenter 

- I  0 4 ~3 

and periradius ~ < ] : T h u s  CM(E*) = 9. [] 

The proof also shows that the configuration of nine overlapping balls in E* is 
unique. 

The points of E* fall into two orbits under the corresponding affine Weyl group, 
as indicated by the stars in Fig. 4(a), using the notation of [4]. The above nine 
points form two regular simplexes of dimensions 2 and 5, as shown in Fig. 4(b), 
so their convex hull is the cross-join of these two simplexes. 

E 6 may be defined to consist of those vectors Xo xl "'" xTe E s for which 
Xo + x7 = xl + " -  + x 6 = 0, and has R 2 = ~. The dual lattice E~ is generated by 
E 6 and the vector 

o p 0, 

and has. R 2 = ~ (see [3, Chapter 4, Section 8.3], [4], [5], and [19]). The theta 
series of E 6 and E* are 

1 + 72q 2 + 270q 4 + ' " ,  (24) 

I + 54q 4t3 + 72q 2 + - - ' ,  (25) 

respectively. 

Theorem 12. 

CM(E6) = 17, CM(E'~) = 6. 

Proof. (i) The Delaunay polytopes for E6 are Schliifli polytopes in two orienta- 
tions [4]. The Schliifli polytope has 27 vertices, which may be taken to be the 



On the Covering Multiplicity of Lattices 127 

following: 

(6) ½ (] _~s) _½, 

(15) 0 (_]2  ½4) O, 

(6) -½ (_~s ~) _½. 

Each vertex has 16 neighbors, and the perinorm of such a set of 17 vectors is 
< ~, showing that CM(E6) > 17. We will see that this is the only way a point 

can be covered 17 times. 
To obtain an upper bound we consider the 343 vectors (from (24)) of norm 

< 4R 2 = ~ .  The fundamental simplex for E 6 may be defined by the inequalities 

X 1 < _ X  2,  X 2 " < X 3 ,  . . . ,  X 5 <_ X 6 ,  

Xo -- XT --< l, x o + ' ' ' + x  3 _ > x , + ' ' ' + x 7 .  (26) 

However, this simplex is cut into two equal parts by the wall of one of the Schliifli 
polytopes, and so we may assume that a thickest point P belongs to the 
semisimplex defined by (26) and the extra inequality 

2(xi + x6) > x2 + x3 + x,  + Xs. (27) 

We now use AMPL and MINOS (see footnote 3) to show that just 20 of the 343 
vectors are within R of the semisimplex. A second application of AMPL and 
MINOS (see footnote 2) shows that the perinorms of all 18-subsets of this set of 
20 are _>~. Hence CM(ET) < 17. Another calculation of the same type shows that 
there is a unique set of 17 out of the 20 with perinorm <~. 

(ii) There is only one type of Delaunay polytope for El ,  which is the convex 
hull of three equilateral triangles in three orthogonal planes--we call this the 
cross-join of three triangles. It has nine vertices, for example 

whose center is the hole 

(3) o ( - ] ] ] ) o o o o ,  
(3) 

L0 -}  } } } 0, 
(28) 

The best we can do with these centers is to pick two out of each triple, so 
CM(E*) >__ 6. For example, taking the first two of each triple in (28), we find that 
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the pericenter is 

ooo oo- o 

and the perinorm is ~ .  These six centers form what we call the separated join of 
three intervals, and Fig. 4(c) and (d) are analogous to Fig. 4(a) and (b). 

To obtain an upper bound we consider the 127 vectors (from (25)) of norm 
<4R 2 = ]. Of these just nine are within R of the fundamental simplex (26). After 
a suitable translation of coordinates those nine coincide with (28). [] 

9. The Leech Lattice Au 

For the definition and properties of this lattice see [3]. The covering radius 

R = v /2  and there are 307 distinct types of hole, namely 23 types of deep hole 
and284 types of shallow hole [2], [3, Chapters 23 and 25]. 

Theorem 13. 

CM(A24 ) = 25. 

We begin with a temma. 

Lemma 14. Let  h be a hole in A24, let 17 be the Delaunay polytope containing h, and 
let vl be a vertex o f  H. I f  the closed ball o f  radius R around h intersects the boundary 
of  1-I at some point o f  a face x, then v I is a vertex o f  7t. 

Proof. Let the vertices of I-I be v~ . . . . .  v M. As in Chapter 23, p. 481, of [3] we 
may choose a point c (outside the space if h is a shallow hole) so that N(vi - c) = 
2, (v i - c). (v~ - c) = 0, - 1 or - 2, for i, j = 1 , . . . ,  M, i ~ j. Any point P on a face 
not containing v~ can be written as 

M M 
P - - c =  ~ 2,(v,--c), 2 , > 0 ,  ~ 2 , = 1 .  

i=2 i=2 

Then N ( P  - vl) = N(P  - c) - 2(P - c)'(vl  - c) + N(v 1 -- c) > N(P  - c) + 2 > 2. 
[] 

Lemma 14 implies that the ball of radius R around vl is strictly inside the union 
of all Delaunay polytopes that have vl as a vertex. 

Proo f  o f  Theorem 13. (i) Suppose P is in a Delaunay polytope containing a 
shallow hole. All such polytopes are simplexes. By the lemma, P is contained in 
at most the 25 balls centered at the vertices of the simplex. The shallow hole itself 
is contained in these 25 balls. The perinorm of these 25 vertices ranges from 2 - 
to 2 -- 1/4900 [3, p. 521]. 
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(ii) Suppose P is in a Delaunay polytope containing a deep hole h. In this case 
the point c used in proving the lemma coincides with h. Let v~ . . . . .  vu ~ A24 be the 
vertices of a component of the hole diagram I-3, p. 481]. Then P is not in the 
interior of all /~ balls of radius R centered at v~ . . . . .  vu. For if it were, then we 
would have N(P - vi) < 2, i = 1 . . . . .  /~, hence 

N(P --  h) < 2(P - h)'(vi - h). (29) 

However [3, p. 483], there are positive integers m~ . . . . .  mu such that 

mi(v i --  h) = O. 
i=1 

Therefore, multiplying (29) by m i and summing, we have 

# 
miN(P -- h) < O, 

i=1 

which is impossible. It follows that the number of open balls containing P is at 
most the number of vertices of the Delaunay polytope, minus the number of 
components of the hole diagram. This quantity is equal to 24, independent of the 
type of deep hole [3, Table 23.1]. [] 
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