
Discrete Comput Geom 8:51-71 (1992)

c o m e ry

Applications of Random Sampling to On-Line Algorithms in
Computational Geometry*

Jean-Daniel Boissonnat, 1 Olivier Devillers, 1 Ren6 Schott, 2
Monique Teillaud, 1 and Mariette Yvinec 3

INRIA, 2004 Route des Lucioles, B.P. i09,
06561 Valbonne Crdex, France
boissonn@atcor.inria.fr

2 CRIN, B.P. 239, 54506 Vandoeuvre, France

3 LIENS, CNRS URA 1327, 45 rue d'Ulm,
75230 Paris C6dex 05, France

Abstract. This paper presents a general framework for the design and randomized
analysis of geometric algorithms. These algorithms are on-line and the framework
provides general bounds for their expected space and time complexities when
averaging over all permutations of the input data. The method is general and can
be applied to various geometric problems. The power of the technique is illustrated
by new efficient on-line algorithms for constructing convex hulls and Voronoi
diagrams in any dimension, Voronoi diagrams of line segments in the plane,
arrangements of curves in the plane, and others.

1. Introduction

Randomized incremental construction is a new paradigm in computational geo-
metry that has been successfully applied to a variety of problems [7], [12], [11].
These algorithms are rather simple, easy to code, and efficient in practice.
Moreover, they do not require that the input data satisfy some probabilistic
distribution but only that they are inserted in random order.

Clarkson and Shor I'7] have given a general framework for the design and
analysis of such randomized incremental constructions. In this framework, geomet-
rical problems are stated in terms of objects, regions, and conflicts between objects

* This work has been supported in part by the ESPRIT Basic Research Action Nr. 3075 (ALCOM).

52 J.-D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec

and regions. The input data form a set of objects, the regions are defined by small
subsets of objects, and each region is in conflict with a (possibly empty) subset of
the input objects. Precise definitions of objects, regions, and conflicts, of course,
depend of the particular problem at hand. The output of the problem is assumed
to be closely related to the set of regions defined by the input objects which are
not in conflict with those objects. The algorithm incrementally constructs the set
of regions defined by a current subset of the input objects which are not in conflict
with that subset, and maintains in an additional data structure, called the conflict
graph, the conflicts between the regions of the current construction, and the objects
not yet introduced. When a new object is to be inserted, the regions in conflict
with that object are replaced by new regions and the conflict graph is updated.
This general framework has been shown to yield efficient algorithms to such
problems as computing the convex hull or the Voronoi diagram of a set of points
or computing the intersections of a set of line segments.

Because of the conflict graph, these algorithms are static in nature. A few
attempts have been proposed to avoid the conflict graph and thus to obtain on-line
algorithms in some specific applications [2], [3], [10]. The present paper extends
these results and provides a general framework for on-line algorithms with good
expected behavior when the objects are assumed to be introduced in random order.
The basic idea, first introduced in [3], is the following. Instead of replacing old
regions by new ones, we store, into a data structure called the Influence DAG, all
the regions that appear at some stage of the construction as defined by the current
subset of objects and without conflict with that subset. This structure is constructed
on-line and designed to retrieve efficiently the conflicts between any new object
to be inserted and the current set of regions.

Our main result bounds the cost of inserting a new object into a set of already
inserted objects. Our results hold when averaging over all possible permutations
of the set of inserted objects.

In the second part of the paper, we show that the major applications that can
be solved using the Clarkson and Shor approach can also be solved using our
framework. For all these applications, we obtain simple on-line algorithms with
the same complexity as their static counterparts.

More specifically, the convex hull of a set of n points can be computed with
logarithmic cost per added point in dimensions 2 and 3 and with cost 0(t"1Ld/2j- t)
per point in dimension d > 3. By the well-known correspondence between Delau-
nay triangulations (and Voronoi diagrams) in dimension d and convex hulls in
dimension d + 1, we immediately deduce algorithms for constructing those struc-
tures. A more direct construction can also be derived and further extended to
compute the Voronoi diagram of a set of line segments in the plane at the same
cost. All these complexities are worst-case optimal for randomized algorithms.

Another application consists in computing an arrangement of planar curves
(of bounded degree) in time O(log n + a/n) per insertion using O(n + a) space,
where a is the size of the output. This algorithm can also be used to locate a point
in a planar subdivision in O(log n) query time after a preprocessing that requires
O(n log n) time and O(n) space.

This list is not exhaustive and several other applications will be mentioned.

Randomized On-Line Algorithms in Computational Geometry 53

2. The General Framework

2.1. Definitions and Notations

Following Clarkson and Shor [7], we formulate the geometric problems con-
sidered in this paper in terms of objects and regions.

The objects are members of a universe (9 and are the input data of the problem.
Typically, objects are points, segments, lines, planes, or hyperplanes in a usual
d-dimensional Euclidean space E a.

The reoions are defined by subsets of the universe (9 of cardinality less than a
constant b. This assumes that there is a relation between the subsets of (9 of
cardinality less than b and the regions; a region F is then said to be defined by a
subset ~r of objects if Y" is in relation with F. Moreover, as in [7], we define
conflicts between objects and regions. The subset of objects of (9 which are in
conflict with a region is called the influence ranoe of the region. Conflicts are
defined in such a way that a region F defined by the subset ~r is not in conflict
with the objects of X.

Of course, the notion of conflict or, equivalently, the influence range of a region
F has to be made precise for each specific problem. Still following Clarkson, we
assume that, within this framework, the required geometric construction can be
formulated as the following problem: given a finite subset 60 of the object universe
(9, find all the regions that are defined by objects in 60 and that have no object
of 60 in their influence range.

For a finite set of objects 60 we denote by ~(60) the set of regions defined by
the objects in 60. We call the number of objects of 60 that belong to the influence
range of F width of a region F with respect to 6 °. Let ~(60) be the subset of ~(60)
consisting of the regions that have width j with respect to 60.

2.2. The I-DAG (Influence Directed Aeyclic Graph)

The different algorithms presented in this paper are incremental and introduce
objects one by one. Let 60 be the set of objects which have already been introduced.
At a given stage, the incremental algorithm inserts a new object in 60 and updates
the set °Jo(60) of regions of zero width defined by 60. This is performed through
the maintenance of a dynamic structure called the Influence DAG (I-DAG for
short) described below.

The I-DAG is a rooted directed acyclic graph whose nodes are associated with
regions that, at some stage of the algorithm, have appeared as regions of zero
width defined by the set of objects that have been introduced at that stage.
Although the I-DAG is not, strictly speaking, a tree, we speak of leaves, fathers,
sons, etc., in the obvious way. The nodes of the I-DAG associated with regions
of current zero width with respect to 50 are marked. When a new object O is
added to 60, one new node is created for each region in ~0(60 u {O}) that is not
a region of ~-o(60).

The already-existing nodes are never deleted from the I-DAG but possibly

54 J.-D. Boissonnat, O, Devillers, R. Schott, M. Teillaud, and M. Yvinec

unmarked. The new nodes are linked by edges to other nodes of the I-DAG. These
edges are constructed in such a way that a new object O can be efficiently located
in the structure; locating O means here to find all the nodes whose associated
regions are in conflict with O. When a new node corresponding to a region F of
~-o(Se u {O}) is added to the I-DAG, we put edges between already-existing nodes
and the new nodes, so that the influence range of F is included in the union of
the ranges of its parents.

The I-DAG structure is characterized by the two following fundamental
properties:

Property 1. At each stage of the incremental process, the regions of zero width
(~o(6~)) are leaves of the I-DAG.

Property 2. The influence range of the region associated with a node is included
in the union of the ranges of its parents.

The construction of the I-DAG can be sketched as follows:

• We initialize 6 e with the b first objects. A node of the I-DAG is created for
each region of ~o(Sf) and made son of the root of the I-DAG. The influence
range associated with the root is the whole objects universe t~.

• At each subsequent step, a new object O is added to :T and the I-DAG is
updated. The two following substeps are performed:
Location Substep. This substep finds all the nodes of the I-DAG whose

regions have zero width and are in conflict with O. This is done by
traversing every path from the root of the I-DAG down to the first node
which is not in conflict with object O.

Creation Substep. From the information collected during the location
substep, the creation substep creates a new node for each region in
~-0(6 e u {O})/~o(b °) and links the new nodes to already-existing nodes in
the structure, so that Properties 1 and 2 still hold. The details of this
substep depend on each particular application.

2.3. Randomized Analysis of the I-DAG

This subsection aims to provide a randomized analysis of the space and time
required to build the I-DAG structure. Randomization here concerns only the
order in which the inserted objects are introduced in the structure. Thus, if the
current set of objects is a set S of cardinality n, our results are expected values
that correspond to averaging over the n? possible permutations of the inserted
objects, each equally likely to occur.

We first prove some probabilistic results that are purely combinatorial. These
results allow us to prove the main results of this paper, stated as Theorems 2.4
and 2.9 below, that give quite general upper bounds on the size and the update
time of the I-DAG as functions of the expected size of the output for a sample of
the input.

Randomized On-Line Algorithms in Computational Geometry 55

For the sake of clarity, we will make some hypotheses that simplify the analysis
somewhat. These conditions are fulfilled by a large class of geometric problems
and allow us to express the results in a simple way. However, these hypotheses
are not really necessary and will be removed in Section 2.4.

Probabilistic Lemma. We first introduce some additional notation and defini-
tions. In some geometric situations (e.g., when computing an arrangement of line
segments), the regions are not all defined by the same number of objects. We adapt
our notation accordingly: ~ (6 a) will denote the subset of regions of ~-(6e) defined
by i objects of 6 a (i < b) and having width j, and ~,~(:~(6~) will denote the subset
of regions defined by i objects and having width at most j.

An r-random sample of a finite set of objects 6 ~, of cardinality n, is a subset of
/ / X

objects chosen at random, i.e., with probability 1 / (:) . b~of r

Let fo(r, 5") be the expected size E(l~o(~)l) of ~o(~) for random samples :~ of
cardinality r.

The first lemma, due to Clarkson and Shor [7], bounds the number I~-~t~e)l
of regions with width at most j defined by S~. We recall it for completeness.

Lemma 2.1.

I ~) 1 = O(j%(LnLiJ, 5e)).

Proof. The proof uses the technique of random sampling. Let ~ be an r-random
sample of 5:. A region F of ~,~(5~) has width zero with respect to ~ , if and only
if the i objects defining F belong to ~ while the j objects in conflict with F do
not. So the probability Prob(F e ~-o(~))) that F belongs to ~o(~) is

Prob(F ~ ~-o(~)) -

n - i - j~
r - - i /

(:)
(n - i - j) ! r ! (n - r) !

(n - r - j) ! (r - i)! n !

r " ' (r - i + 1) (n - r).. '(n - r - j + l)

n . - . (n - i + 1) (n - O ' " (n - i - j + 1)

n.. .(n Z i + 1) i ~ k +

r . " (r - - i + l) (~)k
>n.-S.-(n ~ i + l) 1-- i f r=Ln /kJ , f o r l < k

1 r . . . (r - i + l)
> - for k > 2.
- 4 n. . .(n - i + 1)

56 J.-D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec

Then we compute the expected size of ~ (~)

n - i

E (I ~ (~) I) = ~ ~ Prob(F m ~'~(~))
j=o p~:~:(,~)

k

1=o ~e:I(.9'3

~=o) 1 r ' " (r - - i + l)

By introducing fo, we get

n...(n -- i + 1)
l~k(~)l -< 4 r . . . (r ~ i + l) E(I~(~)I)

N O(k~o([n/kJ, 50). []

The Update Conditions. We first assume that three update conditions are satis-
fied. As already mentioned, these hypotheses are mainly for clarity and will be
removed later.

1. The number of sons of a node of the I-DAG is bounded.
2. Given a region F and an object O, the test to decide whether or not 0 is in

conflict with F can be performed in constant time.
3. If the new object O added to the current set 5" is found to be in conflict

with k regions of ~o(6e), then the creation substep requires O(k) time.

Expected Storaoe

Lemma 2.2. If 5 ~ has cardinality n, the expected size of the I-DAG of 5¢ is

Proof. The expected number of nodes t/(6 a) in the I-DAG of 5" can be obtained
by summing, for all the regions F of ~'(6a), the probability that F occurs- as a
node in the I-DAG, which is i!j!/(i + j)! (the i objects defining F must be inserted

Randomized On-Line Algorithms in Computational Geometry 57

before the j objects in F). By Lemma 2.1

b ~-i i!j!

i=~ j=o (i +j)!

,,-i i!j!

i=1 j = l

= Z I ~ A ~) I i
i=1 \ j = 0

According to update condition
I-DAG

i!j!

(i + j + 1)!

i! (n - i)!'X
+ I~t"- ' l(Se)l -n-~ J

1, this bound applies also to the size of the
[]

Expected Time

Lemma 2.3. Under the update conditions, if ~ a has cardinality n, the expected time
for inserting the last object in the I -DAG is

Proof. Under update condition 2, the computing time spent to locate the last
inserted object 0 is proportional to the total number of nodes of the I-DAG visited
when locating O. Due to update condition 1, the number of nodes visited when
locating O is at most proportional to the number of nodes of the I-DAG associated
with regions in conflict with O. Thus the expected time for locating the last inserted
object O is at most proportional to the expected number, 0(6e), of nodes of the
I-DAG associated with regions in conflict with O.

Let F be a region of ~'~(6e). F is a region in conflict with O associated with a
node of the I-DAG if O is one of the j objects in conflict with F and if the i objects
defining F have been inserted before the j objects in conflict with F. This occurs
with the probability j /n × i! (j - 1)!/(i + j - 1)L The expected number 0(5 a) of
nodes visited during the last insertion is then obtained by summing, for all the
F of ~(6e), the above probability. Using Lemma 2.1, this yields

b n - i i ! j !

i=1 1=i n(i + j - - 1)!

from a calculation similar to the proof of Lemma 2.2. []

Due to update condition 3, the computing time of the last creation substep is
also dominated by a term proportional to the number of nodes of the I-DAG

58 J.-D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec

associated with a region in conflict with O and admits the same expected upper
bound as 0(60.

Main Theorem. Lemmas 2.2 and 2.3 prove our main result:

Theorem 2.4. I f the set of already-inserted objects S/" has cardinality n, and if the
update conditions are fulfilled, the I-DAG of ~ requires 0(~_~=1 fo(Ln/j], ~)/J~
expected memory space. The insertion of a new object can be done in
O(1/n ~,~= 1 fo(Ln/j], 6e)) expected update time.

Corollary 2.5. Under the update conditions, the total expected time to build an
I-DAG for a set 6" of n objects is O(~7= 1 fo(Ln/j], Sa)).

Proof. Notice that in that corollary, 6 a is no longer the current subset of inserted
objects, but the final set of objects. From Theorem 2.4, we know that, if a subset

of 6p with cardinality r has been inserted at a given time, the expected time to
insert the last object of ~ is

this expected time accounts for averaging over the r! permutations of the objects
of ~ . Now the expected time to insert the rth object of 6e results from further
averaging over the r-random samples of S~ which yields

The proof of Corollary 2.5 results from summing over r from 1 to n. []

Two immediate consequences of Theorem 2.4 are the following:

• If fo(X, ,9') = O(x), the space complexity is O(n) and the time to insert a new
object is O(log n).

• If fo(x, S a) = O(x =) (with ct >_ 1), the space complexity is O(n") and the time
to insert a new object is O(n ~- 1)).

2.4. Removinff the Update Conditions

In some cases the three update conditions can be removed. We will show in
Section 3 that removing the update conditions (especially condition 1) will
lead, in some cases, to simpler algorithms.

Constant Test Time and Linear Update Time. Update conditions 2 and 3
can be relaxed. If the time required to check if a region and an object are

Randomized On-Line Algonmms in Computational Geometry 59

in conflict surpasses O(1), the overcost will simply appear as a multiplicative
factor in the overall complexity. If the time required by the creation substep
surpasses a linear function of the number of conflicts, it is, in general, not
difficult to charge the overcost to the overall complexity. This analysis has
been done, for example, for the incremental construction of higher order Voronoi
diagrams [2].

Bounded Number o f Sons. It is more interesting to attempt to remove update
condition 1. The preceding analysis works because each node in the I-DAG
is associated to a region, and all the relevant quantities can be expressed as
functions of the number of nodes. If the condition is not fulfilled, we must
count the number of edges of the I-DAG and, to that purpose, we introduce
the notion of bicycles. A bicycle is a pair of regions of ~-(6e) occurring as a
father and one of its sons in the I-DAG associated with at least one permutation
of the object set 6 e.

Notice that the maximum number of objects defining a bicycle is at most
2b and thus is still bounded. An object is in conflict with a bicycle if it does
not belong to the set of objects that define the bicycle, and if it is in conflict
with at least one of the two regions forming the bicycle. Thus the influence
range of a bicycle is the union of the influence range of the two regions
forming the bicycle, excepting the objects defining these regions.

In analogy with the notation used for regions, the additional notations
fqj(Se), ~ j (Aa) . . . are naturally derived. We define #o(r, ~) to be the expected
size E(If¢o(~)l) of ~o(~) for r-random samples of 6 a.

With these definitions, the following lemma can be proved, using the random
sampling technique, in a way similar to Lemma 2.1.

Lemma 2.6.

I~.,'(~)1 = O(f go(Ln/jJ, ~)) .

We can now compute the expected storage required by the I-DAG.

Lemma 2.7. I f Sl ~ has cardinality n, the expected size of the 1-DAG of 5¢ is

Proof The size of the I-DAG is linearly related to the number of its edges.
A necessary condition for a given bicycle G to occur as an edge in the I-DAG,
is that the i objects defining G are inserted before the j objects in conflict
with G (i.e., in conflict with one of the two regions associated with G). So the
probability that G ~ ~(5~) arises in the I-DAG is less than i! j!/(i + j) l. Calculations
analogous to those appearing in the proof of Lemma 2.2 yield the result. []

60 J.-D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec

[emma 2.8. The expected time for inserting the nth object in the I-DAG is

Proof. Let 0 be the nth object to be inserted. The number of times a node
is visited is equal to the number of its parents which are in conflict with O.
Thus the number of performed tests is no more than the number of bicycles
in conflict with O occurring in the I-DAG.

Let G be a bicycle of ~(S~). G is in conflict with O and occurs as an edge
in the I-DAG if the following two necessary conditions are satisfied: (1) the
i objects defining G are inserted before the j objects in conflict with G; and
(2) one of the j objects is O. The probability that G is in conflict with O is
thus no more than j/n x i! (j -- 1)!/(i + j - 1)!. The result is then achieved as
in Lemma 2.3. []

Lemmas 2.7 and 2.8 prove the main result of this section:

Theorem 2.9. I f the set of already-inserted objects 6 a has cardinality n and
if update conditions 2 and 3 are fulfilled (but not update condition 1), the I-DAG of
oce requires 0(,~= 1 go(In/j], Aa)/j) expected memory space. The insertion of a new
object can be done in O(1/n ~_~=1 go(l_n/j], 6a)) expected update time.

Corollary 2.10. Under update conditions 2 and 3, the total expected time to
build an I-DAG for a set S, a of n object is O(~=1 go(Ln/j], ~)).

2.5. Faster Object Location

If the following additional property is verified, it is possible to get a better
complexity result for the search of a single region in conflict with a new object.

Property 3. The influence range of the region associated to a node is included
in the union of the ranges of its children.

If Property 3 holds, then a conflict with a given new object is found by
a simple path from the root of the I-DAG to a leaf.

Theorem 2.11. I f Property 3 holds then a conflict with any new object can
be found in O(log n) time provided that the n objects that were inserted in the
I-DAG have been inserted in random order.

Proof. Let o be the new object and F be a region on the path from the root
to a leaf of the I-DAG in conflict with o. Suppose that F has zero width after
the insertion of the kth object. If F is defined by i objects, the conditional
probability that F has been created during the insertion of the kth object is
ilk < b/k. Indeed, for F to be created at step k, the kth inserted object must

Randomized On-Line Algorithms in Computational Geometry 61

be one of the i objects defining F. (It is important to notice that the above
probability is conditioned by the fact that the k first objects are given.)

/ N

(n) possible subsets of k objects Averaging this probability over the k introduced

first in the I-DAG yields a probability less than b/k, that the node on the path
would change after the insertion of the kth object. Thus the number of visited
nodes is less than ~ b/k = O(log n). []

Let us make some remarks about Theorem 2.1t. First, it is important to
notice that the cost studied here is expected over all possible orders to insert
the objects in the I-DAG, but there is no hypothesis on the new object, by
opposition to Lemma 2.3 where all objects, including the last one, are supposed
to satisfy the randomization hypothesis. Second, in many applications, it is possible
to find all conflicts with a new object from a single one in time proportional to
the actual number of conflicts (e.g., by the use of some neighborhood notions).
The faster location may be used as a first step of the insertion of a new object in
the I-DAG. A last remark concerns the worst case; though this article takes interest
in randomized complexities, the faster location has a worst-case running time O(n)
which is better than the general location step.

2.6. Queries

In some applications, queries consist of finding the regions having zero width
which are in conflict with a given element of the object universe: this is just a
special instance of a location substep. In such cases, the I-DAG can be used and
the randomized analysis of Theorem 2.4 holds, provided that the query object q
together with the set of objects 6 a introduced in the I-DAG satisfy the randomiza-
tion hypothesis, i.e., the (n + 1)! permutations of {q} w ~ are likely to occur.

In other applications, regions and queries are such that the answer to a query
consists of exactly one region of ~o(6 e) for any set 6 e. Such a query will be answered
by a location substep that will traverse only one path from the root to a leaf. This
yields the following strong variant of Lemma 2.3.

Theorem 2.12. Assume that regions and queries are such that the answer to a query
consists of exactly one region of ~,~o(6 e) for any set ~9 ~. Then any query can be
answered in O(log n) time provided that the n objects that were inserted in the I-DAG
have been inserted in random order.

Proof. The proof is similar to the proof of Theorem 2.11. []

3. Applications

3.1. Convex Hulls

We consider the geometric problem of computing the convex hull of a set of points.
In the plane, optimal deterministic on-line algorithms are known with time

62 J.-D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec

complexity O(log n) per update (see, for instance, [1]). In d-dimensional space, the
worst-case complexity of the convex hull of n points is f~(nkd/2J). The best-known
deterministic algorithm, due to Seidel [14], [9], requires O(n log n + n L(d+I)/2j) time
and O(nLdn~ space. The algorithm is incremental but its complexity is amortized
over the n insertions. This result is optimal in the worst-case for d larger than 2
and even. An output sensitive algorithm with time complexity O(n2+ f l o g n)
where f is the number of faces of the convex hull is reported in [13].

Randomized algorithms have also been recently proposed by Clarkson and
Shor [7] and by Mulmuley [12]. These algorithms are incremental and optimal
but static. A more on-line algorithm for d < 3 can be found in [10]; however, the
analysis is only amortized over the n insertions.

We present, in this section, two (randomized) algorithms that are both on-line
and optimal in any dimension. For brevity, we expose here only the two-
dimensional case. The extension to higher-dimensional spaces is quite straightfor-
ward.

First Algorithm. Objects are points of the plane. Regions are defined by three
points. The region PQR associated with P, Q, and R consists of the union of two
half-planes: one bounded by line (PQ) and not containing R and the other bounded
by line (QR) and not containing P (see Fig. 1). An object is in conflict with a region
if and only if it lies in the region.

Now let P, Q, and R be three points in 6e, the set of points already inserted.
The region associated with these points has zero width if and only if P, Q, and R
are three consecutive vertices of the convex hull. So computing the convex hull of
6P is equivalent to computing the zero width regions.

Let us now describe the algorithm. Suppose that the I-DAG has been con-
structed for the points in 6 e and that we want to insert a new point M. The
location substep gives the regions of ~-0(Sf) containing M. If M belongs to the
interior of the convex hull, there is no such region, ~-o(S e w {M}) = ~-o(~), and
the I-DAG is not modified. Otherwise, let PI and Pk be the two vertices adjacent
to M in the new convex hull and let P2 P~- 1 be the chain of vertices which

region asociated
to PQR

Fig. I. Definition of regions for the convex hull problem.

Randomized On-Line Algorithms in Computational Geometry

i

, M i I
x I iII

Ip~ P~+~

Po
Fig. 2. Inserting a new point in the convex hull.

63

are no longer vertices of the convex hull after the insertion of M (see Fig. 2). The
regions of ~o(b °) containing M are Pz_IP~Pt+I for 1 < I < k. By a simple test on
these regions, we can determine PoPIP2 and Pk-1PkPk+ 1 (M belongs to only one
of the two half-planes defining the region). The I -DAG is then modified in the
following manner: the width of the selected regions is incremented and three new
regions are created, namely,

• Po, Pt. M as a son of Po, P1, P2;
• M, Pk, Pk + 1 as a son of Pk-1, Pk, Pk + 1;
• P1, M, Pk as a son of both Po, Pt , P2 and Pk-1, Pk, Pk+l"

It is clear that the properties of the I -DAG are preserved and that the update
conditions are satisfied. Here fo(r, 5") is the expected size of the convex hull of r
points of 5" which is clearly O(r), so applying Theorem 2.4 we deduce:

Proposition 3.1. The convex hull of n points in the plane can be computed on-line
with O(n) expected space and O(log n) expected update time.

These results can be generalized to any dimension. The regions are defined by
d + 1 points and are unions of two half-spaces. The zero width regions correspond
to (d - 2)-faces of the convex hull of r points is O(~a/2J).

Proposition 3.2. The convex hull of n points in d-space can be computed on-line
with O(nLd/2J) expected space and O(log n) expected update time if d <_ 3, and
O(nLd/eJ-1) expected update time if d > 3.

64 J.-D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec

These results are optimal.
As far as queries are concerned, the above results show that we can decide if

a point lies inside or outside the convex hull of n points in O(log n) expected time
in the plane and O(n Ld/2j- 1) expected time in d-space.

Second Aloorithm. It might look more natural to take half-spaces as regions. In
that case, as will become clear below, the number of sons is not bounded and
update condition 1 is not satisfied. However, the result of Section 2.4 proves that
the resulting algorithm has the same complexity as the one above.

We describe the algorithm for the two-dimensional case. It can be generalized
to any dimension with no difficulty. 0 still denotes the set of points of the plane.
Regions are now defined by only two points. The regions PQ and QP are the two
half-planes limited by the line (PQ). A point is in conflict with the region PQ if it
lies inside the corresponding half-plane. If a region PQ has zero width, then [PQ]
is an edge of the convex hull.

In addition to the standard information stored in each node of the I-DAG, we
also maintain at each leaf, which is associated with an edge E of the convex hull,
two pointers towards the two leaves associated with the two edges of the convex
hull adjacent to E. When a new point M is inserted, the location substep provides
all the half-planes with current width 0 in conflict with M. These half-planes
correspond to a chain of edges of the convex hull PiP2 Pk- IPk (see Fig. 2).
The two extremal edges PxP 2 and Pk-1Pk are identified by testing if their two
neighbors are not both in conflict with M. Two new regions P1M and MP k are
created. In order to satisfy Property 2, PoPt and P1P2 are made parents of P~M;
similarly, Pk-~Pk and PkPk+a are made parents of MP k. The neighborhood
relationships are updated: Po Pl and PaM become adjacent and, similarly, Pk Pk +1
and MPk, and PxM and MPk.

Notice that the width of PoP~ is still zero and that this region may have other
sons in the future: update condition 1 is not satisfied.

As described in Section 2.4, we introduce the notion of a bicycle. Here a bicycle
is defined by two regions PQ and QR sharing a point of definition (a bicycle here
is a region of the previous section; see Fig. 1). The zero width bicycles are of two
kinds. The first ones are associated with two regions with zero width: PoPa and
P1M in Fig. 2. They correspond to two consecutive edges of the convex hull. The
second ones are associateA with a region of zero width and a region in conflict
with the additional point of definition of the other: P I P2 and P1M in Fig. 2. They
correspond to an edge E of the convex hull and to an edge E', incident to one of
the end-points of E and whose supporting line separates a 1-set of 5 a. Using the
results on the number of k-sets (see, for instance, [9]) we conclude that Oo(r) is
O(rLa/2J). Thus Theorem 2.9 implies that this simpler algorithm has the same
complexity as the algorithm of the previous section.

3.2. Voronoi Diaorams

Using the well-known correspondence between Voronoi diagrams in d-dimensions
and convex hulls in d + 1-dimensions we immediately deduce, from the previous

Randomized On-Line Algorithms in Computational Geometry 65

t
\

Fig. 3. Example of Voronoi diagram of line segments.

section, two optimal on-line algorithms to construct the Voronoi diagrams of
points in any dimension. A direct presentation that does not use this corre-
spondence has already been described in detail in [4].

Let us consider now the case of Voronoi diagrams of line segments in two
dimensions (Fig. 3). Here (9 is the set of all line segments of the Euclidean plane.
Let P, Q, R, and S be four segments and let F be the portion of the bisector of P
and Q extending between the two points equidistant from P, Q, R and P, Q, S,
respectively (see Fig. 4). The region associated with P, Q, R, and S is the union of
the disks tangent to P and Q whose centers lie on F. A line segment and a region
are in conflict if and only if they intersect. A region has zero width if and only if
F is an edge of the Voronoi diagram.

The update algorithm is as follows. We find that in the I-DAG all regions in
conflict with the new segment M: these regions correspond to the edges which
disappear in the new diagram. Let E be such an edge. If one of the two end-points
of E is still a valid vertex of the Voronoi diagram (i.e., jf the segment M does not
intersect the corresponding disk) we compute in constant time the portion of E
that remains in the new diagram. The new region associated with that new edge
becomes a son of the region associated with E. We then connect the new vertices

66

Fig. 4.

J.-D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec

R

Definition of regions for Voronoi diagrams of segments. F is in dotted lines

of the Voronoi diagram (which are new end-points lying on old edges) by edges
supported by new bisectors (see Fig. 5). The region corresponding to a new edge
e' is made son of the regions associated with the unique path of disappearing edges
that joins the two end points of e' (the set of disappearing edges form a tree, as
can easily be shown).

The update conditions are satisfied and, by the Euler relation, f0 is linearly
related to the number of segments.

Line segments

Disappearing edges

Remaining portions

New edges

e,eo 'S°

Fig. 5. Insertion of a new segment in a Voronoi diagram.

Randomized On-Line Algorithms in Computational Geometry 67

Proposition 3.3. The Voronoi diagram of n line segments in the plane can be
computed with O(n) expected space and O(log n) expected update time.

3.3. Arranoements of Planar Curves

Let us consider first the case of line segments. The best-known deterministic
solution to this problem is due to Chazelle and Edelsbrunner [5]. It requires
O(n log n + a) time and O(n + a) space in the worst-case, if a is the number of
intersecting pairs. Incremental randomized algorithms have recently been pro-
posed by Clarkson and Shor [7] and by Mulmuley [12]. They both use a conflict
graph (and thus are static) and have the same running time as the Chazelle and
Edelsbrunner algorithm.

The general framework of Section 2 can be applied to solve this problem. Our
algorithm builds the trapezoidal diagram of 6 ~ [7], obtained by drawing a vertical
line through each vertex of the arrangement of the segments and by keeping only
the portions of the lines extending above and below the corresponding vertex and
not intersected by any segment of 5 a, see Fig. 6. Objects are here line segments
and regions are trapezoids (i.e., a cell of the trapezoidal diagram). A trapezoid is
defined by at most four segments. A line segment and a region are in conflict if
and only if they intesect. For each leaf of the I-DAG we also store some neighbors
of the corresponding zero width trapezoid, more precisely, we store the adjacency
relationships through the vertical edges of the trapezoidal diagram. In general
position, a leaf of the I-DAG has at most four such neighbors.

When a new segment S is inserted, we traverse the I-DAG to collect the set
5°(S) of all the zero width regions in conflict with S. Each such region is subdivided
into at most four subregions, and these subregions are eventually merged to form
new trapezoids (vertical segments intersecting S have to be shortened), which is
easily done using the adjacency relationships stored in the nodes of the I-DAG.

Fig. 6. Trapezoidal diagram.

68 J.-D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M, Yvinec

The resulting trapezoids are the new nodes we attach to the I-DAG. The parents
of a new node are the trapezoids of L,a(S) which intersect that node.

A node has at most four sons so that the update conditions are fulfilled (but
the number of parents for a trapezoid is unbounded). An easy lemma, proved in
[7], shows that fo(r, 5 e) = O(r + ar2/n2).

This result can be readily extended to planar arrangements of curves of bounded
degree.

Proposition 3.4. An arrangement of n planar curves (of bounded degree) can be
computed on-line with O(n + a) expected space and O(log n + a/n) expected update
time, where a is the complexity of the arrangement.

The trapezoids with zero width partition the plane, so that Theorem 2.12
applies:

Proposition 3.5. A point can be located in an arrangement of n planar curves (of
bounded degree) in O(log n) time using O(n + a) expected space and O(n log n + a)
expected preprocessing time, where a is the complexity of the arrangement.

3.4. Other Applications

The I-DAG can be used to solve several other problems and provide simple on-line
algorithms with the same worst-case complexities as the best (in general, static)
deterministic algorithms. We simply mention some of them.

• Computing abstract Voronoi diagrams (see [11]).
• Computing arrangements of triangles or surface patches in space (see [6]).
• Computing the intersection ofn half-spaces: this problem is dual to construct-

ing convex hulls.
• Computing the union of n balls in d-space: consider the d-dimensional space

as an hyperplane of a d + 1-space and use an inversion with a point outside
the hyperplane as its pole: the problem reduces to that of computing the
intersection of n half-spaces.

• Computing the visibility graph of a set of line segments in the plane (see
[t5]): take as regions the triangles containing two edges of the visibility graph
incident to a common vertex and consecutive when sorted by polar angle
around this vertex. A line segment is in conflict with a region if it intersects
the region.

4. About Our Complexity Results

4.1. Randomization

Our analysis of the space and time required to build the I-DAG structure is
randomized. As previously noted, randomization concerns here only the order in

Randomized On-Line Algorithms in Computational Geometry 69

which the inserted objects are introduced in the structure. No assumption is made
as to the distribution of the input. Our results are expected values that correspond
to averaging over the n! possible permutations of the n inserted objects, each
supposed to be equally likely to occur.

4.2. Amortization

We have been able to bound the cost of inserting the kth object in the I-DAG.
This cost is not amortized, as opposed to the results in [2] and [I0], but the
kth object may be any one of the inserted objects with the same probability.

It must be noticed, however, that the bound given in Theorem 2.4 cannot
be a bound for the cost of inserting a given object. Indeed, let us consider
the construction of the Delaunay triangulation (the dual of the Voronoi diagram)
of a set of n points in the plane. We take n - 1 points close to two line segments
and one point, say M, between the two segments (see Fig. 7). For appropriate
positions of the points, the insertion of M will modify most of the triangles; thus,
the expected cost of inserting M in the I-DAG at step k is ta(k): whatever k is.

This is not in contradiction with our result. Indeed, the cost of inserting
a given object appears weighted by the probability factor 1/n in the expected
cost of step k. Our bound on the cost of the kth insertion proves that objects
requiring expensive updates are rare whatever the set 6 p of input data may be.

I
I

I

/ / /
~ ~\ NN N ~ \\ %'N

/ i I

Fig. 7. Cost of inserting point O. The triangulation before (resp. after) the insertion of O is in plain
lines (resp. in dotted lines).

70 J.-D. Boissonnat, O. DeviUers, R. Schott, M. Teillaud, and M. Yvinec

4.3. Output Sensitivity

An algorithm is said to be output sensitive if, for a given set of i~nput data,
its complexity depends on the actual size of the output. It is clearly impossible,
in general, to have incremental algorithms that are sensitive to the final output,
because at some stage of the incremental construction the intermediate results
may be greater than the final one. We may illustrate this with the example of the
Voronoi diagram in three dimensions. Let 6 D be a set of n points lying on two
non-coplanar line segments. The Voronoi diagram of 6 ° is quadratic but, if a point
O between the two segments is added to 6 e, the diagram of ~ w {0} becomes
linear.

In view of this fact, it is interesting to define on-line output sensitive algorithms
as algorithms whose update complexities depend on the actual size of the current
output.

Our algorithms are not on-line output sensitive because the expected complex-
ity of each step depends on fo(r, 6 a) (or go(r, 6°) for some r < n. Let us consider
again the case of the Voronoi diagram of the set of points above. Inserting a
n + 2th point to 6 e u {O} will take O(n 2) expected time using the I-DAG, although
the current output is O(n).

However, in many situations, the expected value fo(r, 6P) is a well-behaved
function of the size r of the random sample which is sensitive to the actual
size of the output for ~ . In such a case, the expected complexity of the I-DAG
is on-line output sensitive.

A first illustration is the case of an arrangement of planar curves which
has been described in Section 3.3. As a second illustration, let us consider
the case of the Voronoi diagram in higher dimensions. For some distributions
of the input data, the diagrams built on the entire set of points, as well as
on most of the samples, have a linear size. For example, the expected size of
the Voronoi diagram, of a set 6P of n points evenly distributed in the unit
d-ball, is O(n) and the expected size of the Voronoi diagram for an r-random
sample fo(r, 6 D) is O(r) [8]. This result readily implies that the Voronoi diagram
of n points evenly distributed in the unit d-ball can be computed on-line with O(n)
space and O(log n) update time in any dimension.

5. Conclusion

We have presented a general framework for the design and analysis of efficient
on-line algorithms. The algorithms are randomized, simple, and, in some cases,
output sensitive. They have been coded easily and preliminary experiments have
provided strong evidence that they are very efficient in practice. Experimental
results are reported in I-4] and [2].

This framework has been applied successfully to various problems: convex
hulls and Voronoi diagrams in any dimension, Voronoi diagrams of segments
in the plane, arrangements of curves in the plane, arrangements of surfaces
in space, visibility graphs, unions of disks, and others.

Our technique assumes that the geometric structure to be computed is closely

Randomized On-Line Algorithms in Computational Geometry 71

related to the regions of zero width. We may be interested in computing, instead,
regions of width _< k to construct, e.g., k-sets or Voronoi diagrams of order k. It
is possible to generalize the I -DAG, and to obta in results similar to the ones
described here. The complexity results will depend on the expected size, fk, of the
regions of width < k of r andom samples. Details can be found in the companion
paper [2].

Finally, we leave as an open question whether it is possible to allow deletions
as well as insertions in the I -DAG.

Acknowledgments

The authors would like to thank Serge Vaudenay who implements efficiently
the Voronoi diagram of line segments and points out Theorem 2.11.

References

1. D. Avis, H. ElGindy, and R. Seidel, Simple on-line algorithms for convex polygons, Computa-
tional Geometry (G. T. Toussaint, ed.), North-Holland, Amsterdam, 1985, pp. 23-42.

2. J.-D. Boissonnat, O. Devillers, and M. Teillaud, A semi-dynamic construction of higher-order
Voronoi diagrams and its randomized analysis, Aloorithmica (to appear).
Full paper available as Technical Report INRIA 1207. Abstract published in Second Canadian
Conference on Computational Geometry, Ottawa 1990.

3 J.-D. Boissonnat and M. Teillaud, A hierarchical representation of objects: the Delaunay tree,
Second ACM Symposium on Computational Geometry, Yorktown Heights, June 1986.

4. J.-D. Boissonnat and M. Teillaud, On the randomized construction of the Delaunay tree,
Theoretical Computer Science (to appear).
Full paper available as Technical Report 1NRIA 1140.

5. B. Chazelle and H. Edelsbrunner, An optimal algorithm for intersecting line segments in the plane,
IEEE Symposium on Foundations of Computer Science, 1988, pp. 590-600.

6. K. L. Clarkson, H. Edetsbrunner, L. Guibas, M. Sharir, and E. Welzl, Combinatorial complexity
bounds for arrangements of curves and surfaces, Discrete and Computational Geometry, 5 (1990),
99-160.

7. K. L Clarkson and P. W. Shor, Applications of random sampling in computational geometry, II,
Discrete and Computational Geometry, 4 (5) (1989).

8. R. A, Dwyer, Higher-dimensional Voronoi diagrams in linear expected time, 5th ACM Symposium
on Computational Geometry, Saarbriicken, June 1989.

9. H. Edelsbrunner, Algorithms on Combinatorial Geometry, Springer-Verlag," New York, 1987.
t0. L. J. Guibas, D. E. Knuth, and M. Sharir, Randomized incremental construction of Delaunay and

Voronoi diagrams, 1CALP 90, Springer-Verlag, New York, 1990, pp. 414-431.
11. K. Mehlhorn, S. Meiser, and C. O'Dfmlaing, On the construction of abstract Voronoi diagrams,

STACS 90 (C. Choffrut and T. Lengauer, eds.), Springer-Verlag, New York, 1990, pp. 227-239.
12. K. Mulmuley, On obstruction in relation to a fixed viewpoint, IEEE Symposium on Foundations

of Computer Science, 1989, pp. 592-597.
13. R. Seidel, Constructing higher-dimensional convex hulls at logarithmic cost per face, ACM

Symposium on Theory of Computing, 1986, pp. 404-413.
t4. R. Seidel, A Convex Hull Algorithm Optimal for Point Sites in Even Dimensions, Technical Report

14, Department of Computer Science, University British Coluinbia, Vancouver, BC, 1981.
15. E. Welzl, Constructing the visibility graph for n line segments in o(n 2) time, Information Processing

Letters, 20 (1985), 167-171.

Received July 1, 1990, and in revised form May 23, 1991.

