
J. Cryptology (I 996) 9:35-67 Journal of

CRYPTOLOGY
© 1996 International Association for
Cryptologic Research

On-Line/Off-Line Digital Signatures*

S h i m o n E v e n

Computer Science Department, Technion--Israel Iflstitute of Technology,
Haifa 32000, Israel

even @cs.technion.ac.il

O d e d G o l d r e i c h

Department of Applied Mathematics and Computer Science,
Weizmann Institute of Science, Rehovot, Israel

oded @ wisdom.weizmann.ac.il

S i l v i o M i c a l i

Laboratory for Computer Science, Massachusetts Institute of Technology,
545 Technology Square, Cambridge, MA 02139, U.S.A.

silvio @ theory.lcs.mit.edu

Communicated by Gilles Brassard

Received 19 August 1992 and revised 21 December 1994

Abstract. A new type of signature scheme is proposed. It consists of two phases.
The first phase is performed off-line, before the message to be signed is even known.
The second phase is performed on-line, once the message to be signed is known, and
is supposed to be very fast. A method for constructing such on-line/off-line signature
schemes is presented. The method uses one-time signature schemes, which axe very
fast, for the on-line signing. An ordinary signature scheme is used for the off-line stage.

In a practical implementation of our scheme, we use a variant of Rabin's signature
scheme (based on factoring) and DES. In the on-line phase all we use is a moderate
amount of DES computation and a single modular multiplication. We stress that the
costly modular exponentiation operation is performed off-line. This implementation is
ideally suited for electronic wallets or smart cards.

Key words. Digital signatures, Integer factorization, RSA, DES, One-time signature
schemes, Error-correcting codes, Chosen message attack.

1. Introduction

I n f o r m a l l y , in a d ig i ta l s i g n a t u r e s c h e m e , e a c h u s e r U p u b l i s h e s a public key w h i l e

k e e p i n g s e c r e t a secret key. U's s i g n a t u r e o f a m e s s a g e m is a va lue a , d e p e n d i n g o n

* A preliminary version appeared in the Proceedings of Crypto 89. Shimon Even was supported by the fund
for the Promotion of Research at the Technion.

35

36 s. Even, O. Goldreich, and S. Micali

m and his secret key, such that U (using his secret key) can quickly generate cr and
anyone can quickly verify the validity of a , using U's public key. However, it is hard
to forge U's signatures without knowledge of his secret key. We stress that signing is a
noninteractive process involving only the signer, and that arbitrarily many messages can
be signed, with one pair of keys.

Many signature schemes are known. Based on various intractability assumptions, sev-
eral schemes have been proven secure even against chosen message attack [8], [7], [1],
[14], [21]. Unfortunately, in these schemes, the signing process is not sufficiently fast for
some practical purposes. Furthermore, even more efficient schemes like RSA [20] and
Rabin's scheme of [17] (which achieve a "lower level" of security) are considered too
slow for many practical applications (e.g., electronic wallets [5], [4]). In particular, these
signature schemes require performing modular exponentiation with a large modulus as
part of the signing process, and this in turn require s many modular multiplications. Fur-
thermore, these costly operations can start only once the message to be signed becomes
known. Consequently, these signature schemes will become much more attractive if only
a few (say, two or three) modular multiplications need to be performed once the message
becomes known, while the more costly operations can be preprocessed. This leads to the
notion of an on-line/off-line signature scheme.

A New Notion

To summarize, in many applications signatures have to be produced very fast once the
message is presented. However, slower precomputations can be tolerated, provided that
they do not have to be performed on-line (i.e., once the message to be signed is handed to
the signer and while the verifier is waiting for the signature). This suggests the notion of
an on-line/off-line signature scheme, in which the signing process can be broken into two
phases. The first phase, performed off-line, is independent of the particular message to be
signed; while the second phase is performed on-line, once the message is presented. We
are interested in on-line/off-line signature schemes in which the off-line stage is feasible
(though relatively slow) and both on-line signing and verification are fast.

A General Construction

We present a general construction transforming an ordinary digital signature scheme to
an on-line/off-line one. This is done by properly combining three main ingredients:

1. An (ordinary) signature scheme.
2. A fast one-time signature scheme (i.e., a signature scheme known to be unforgeable,

provided it is used to sign a single message).
3. A fast collision-free hashing scheme (i.e., a hashing scheme for which it is infeasible

to find two strings which hash to the same value).

The essence of the construction is to use the ordinary signature scheme to sign (off-line) a
randomly constructed instance of the information which enables one-time signature, and
later to sign (on-line) the message using the one-time signature scheme (which is typically
very fast). The hashing scheme is most likely to be used in practice for compressing long
messages into shorter tags, but it is not essential for the basic construction.

On-Line/Off-Line Digital Signatures 37

We present several practical implementations of the general scheme. In these imple-
mentations we use a modification of Rabin's signature scheme [17] in the role of the
ordinary signature scheme, and DES [15] as a basis for a one-time signature scheme.
The security of these implementations is based on the intractability of factoring large
integers and the assumption that DES behaves like a random cipher. The only compu-
tations (possibly)required in the on-line phase of the signing process are applications
of DES. Verification requires some DES computations (but not too many) and a sin-
gle modular multiplication. The costly modular computation, of extracting square roots
modulo a large (e.g., 512-bit) composite integer with known factorization, is performed
off-line. A reasonable choice of parameters enables the signing of 100-bit tags 1 using
only 200 on-line DES computations (which can be performed, much faster than expo-
nentiation).

One-Time Signature Schemes

One-time signature schemes play a central role in our construction of on-line/off-line
signature schemes. This is due to the fact that they seem to offer a much faster sign-
ing process than ordinary signature schemes. The disadvantage of one-time signature
scheme, namely, the fact that the signing key can only be used once, turns out to be
irrelevant for our purposes.

A general method for constructing one-time signatures was p¢oposed in the late 1970s
by Rabin [16] and several variants of it have appeared since (see [12]). The basic idea
is to use a one-way function to map blocks of the (uniformly chosen) private key into
corresponding blocks of the public key and sign a message (from a prefix-free code) by
revealing the corresponding blocks of the private key. A rigorous analysis of the security
of the basic scheme is implicit in [1], [14], and [2 I]. In this paper we present a compre-
hensive analysis of the security of several variants of the basic scheme. Furthermore, we
present new variants which improve over the known constructions in several respects. In
particular, we observe that signing error-corrected encodings of messages requires the
forger to come-up with signatures of strings which are very different from the strings for
which it has obtained signatures via a chosen message attack. 2 This observation can be
used to enhance the security of any signature scheme, but its effect is most noticeable in
the context of the one-time signature schemes mentioned above.

Security

To discuss, even informally, the issue of security, we need some terminology. A chosen
message attack is an attempt by an adversary to forge a user's signature of some mes-
sage, after obtaining from the user signatures of messages of the adversary's choosing;
in this scenario the user behaves like an oracle which answers the adversary's queries.
The adversary's choice Of (message) queries may depend on the user's public key and
the previous signatures the adversary has received. A random message attack is an

I Such a tag is the result of compressing the document to signed, using a collision-free hashing scheme. See
above.

2 We remark that error-correcting codes have been used in a somewhat related setting by Naor [13].

38 s. Even, O. Goldreich, and S. Micati

attempt of an adversary to forge a signature of a user after getting from him signatures to
messages which are randomly selected in the message space. 3 (These messages are se-
lected independently of the adversary's actions.) In both cases (chosen and random mes-
sage attacks), security means the infeasibility of forging a signature to any message for
which the user has not supplied the signature (i.e., existential forgery in the terminology
of [8]).

A sufficient condition for an on-line/off-line signature scheme, as described above, to
withstand chosen message attack is that both signature schemes used in the construction
(i.e., ingredients 1 and 2 above) withstand such attacks. However, in particular imple-
mentations it suffices to require that these underlying schemes only withstand random
message attack. This is demonstrated in the following theoretical result, where we use
a signature scheme secure against random message attack, both in the role of the ordi-
nary signature scheme and in order to implement a one-time signature scheme. One-way
hashing is not used at all. The resulting scheme is secure against chosen message attack.
Hence we get:

Theorem. Digital signature schemes that are secure against chosen message attack
exist if and only if signature schemes secure against random message attack exist.

We remark that the above theorem can be derived from Rompel's work by observing
that the existence of a signature scheme secure against known message attack implies
the existence of one-way functions, while the latter implies the existence of signature
schemes which are secure against a chosen message attack [21]. However, this alternative
proof is much more complex and is obtained via a far more impractical construction.
We remark that the preliminary version of our work [6] (which includes a proof of the
above theorem), predates Rompel's work [21].

Organization

Basic definitions concerning signature schemes are presented in Section 2. In Section 3
the general construction of an on-line/off-line signature scheme is presented. The con-
struction of a one-time signature scheme is addressed in Section 4. Concrete implemen-
tations of the general scheme, which utilize different constructions of one-time signature
schemes, are presented in Section 5. We conclude with a proof of the theorem stated
above (Section 6).

2. Some Basic Definitions

Following the informal presentation in the Introduction, we recall the following defini-
tions due to Goldwasser et al. [8].

3 Random message attack is a special case of the so-called known message attack in which the adversary is
given signatures to messages chosen arbitrarily by the user.

On-Line/Off-Line Digital Signatures 39

Signature Schemes

Definition 1 (Signature Schemes). A signature scheme is a triplet, (G, S, V), of prob-
abilistic polynomial-time algorithms satisfying the following conventions:

• Algorithm G is called the key generator. There is a polynomial, k(.), called the key
length, so that on input 1 n, algorithm G outputs a pair (sk, vk) so that sk, vk
{0, 1} k~n). The first element, sk, is called the signing key and the second element is
the (corresponding) verification key.

• Algorithm S is called the signing algorithm. There is a polynomial, m(-), called
the message length, so that on input a pair (sk, M), where sk ~ {0, 1 }k~,) and
M 6 {0, ~ 1} m~), algorithm S outputs a string called a signature (of message M with
signing key sk). The random variable S(sk, M) is sometimes written as Ssk(M).

• Algorithm V is called the verification algorithm. For every n, every (sk, vk) in the
range of G(I") , every M 6 {0, 1} m~n~, and every a in the range of Ssk(M), it holds
that

V(M, vk, or) = 1.

(It may also be required that V(M, vk, a) = 1 implies that a is in the range of
Ss~(M) for a signing key sk corresponding to the verification key vk. However,
this intuitively appealing requirement is irrelevant to the real issues--in view of the
security definitions which follow.)

Note that n is a parameter which determines the lengths of the keys and the messages
as well as the security of the scheme as defined below. We emphasize that the above
definition does not say anything about the security of the signature scheme, which is the
focus of the subsequent definitions. We remark that signature schemes are defined to
deal with messages of fixed and predetermined length (i.e., m (n)). Messages of different
lengths are dealt with by one of the standard conventions. For example, shorter messages
can always be padded to the desired length, and longer messages can be broken into many
pieces each bearing an ID relating the piece to the original message (e.g., the ith piece
will contain a header reading that it is the ith piece out of t pieces of a message with a
specific (randomly chosen) ID number). Alternatively, longer messages can be "hashed
down" to the desired length using a collision-free hashing function. For more details see
Section 3.3.

Types of Attacks

Goldwasser et al. discuss several types of attacks ranging in severity from a totally
nonadaptive one (in which the attacker only has access to the verification key) up to the
so-called chosen message attack (in which the attacker gets the verification key and may
get signatures to many messages of its choice). We remark that a chosen message attack
is generally considered to be a satisfactory model of the most serious plausible attacks
to which a properly used real-life signature scheme may be subjected. In this paper we
discuss the chosen message attack as well as a special (and hence weak) form of known
message attack (which we call random message attack).

40 s. Even, O. Goldreich, and S. Micali

Definition 2 (Types of Attacks).

• A chosen message attack on a signature scheme (G, S, V) is a probabilistic oracle
machine that on input (a parameter) 1" and (a verification key) vk also gets oracle
access to Ssk (.), where (sk, vk) is in the range of G(ln). The (randomized) oracle
Ssk answers a query q ~ {0, 1} m~n~ with the random variable Ssk(q) = S(sk, q).
(For simplicity we assume that the same query is not asked twice.)

• A random message attack on a signature scheme (G, S, V) is a probabilistic oracle
machine that on input 1 n and ok also gets independently selected samples from the
distribution (R~, Ssk(R,)), where R~ is a random variable uniformly distributed in
{0, 1} ' ~ and (sk, ok) is in the range of G(ln).

The above definition does not refer to the complexity of the attacking machines. In
our results we explicitly specify the running times of the attackers as well as the number
of queries that they make (resp. number of signatures that they receive).

Success of Attacks

Goldwasser et al. also discuss several levels of success of the (various) attacks, ranging
from total forgery/breaking (i.e., ability to forge a signature for every message) up to
existential forgery/breaking (i.e., ability to forge a signature for some message).

Definition 3 (Success of Attacks). Consider an attack on input parameter 1 n and a ver-
ification key vk.

• We say that an attack has resulted in total forgery if it outputs a program zr for a
time-bounded 4 universal machine, U, so that V(M, ok, U(rr, M)) = 1 holds, for
every M E {0, 1} re(n).

• We say that an attack has resulted in existential forgery if it outputs a pair (M, or), so
that m ~ {0, 1} m~n~ and V(M, vk, a) = 1, and M is different from all messages for
which a signature has been handed over (by the signing oracle) during the attack.

The above definition does not refer to the success probability of the attacking ma-
chines. In our results we explicitly specify the success probability of the attackers. The
probability is taken over all possible (sk, vk) pairs according to the distribution defined
by G(ln), and over all internal coin flips of the attacking machines and the answering
oracles.

Security Definitions

Security definitions for signatures schemes are derived from the above by combining
a type of an attack with a type of forgery and requiring that such attacks, restricted to
specified time bounds, fail to produce the specified forgery, except for with a specified
probability. For example, consider the following standard definition.

4 The time bound can be fixed to a specific polynomial. Using padding arguments, it can be shown that the
choice of the polynomial, as long as it is greater than, say, n 2, is immaterial (see [10]).

On-Line/Off-Line Digital Signatures 41

Definition 4 (Standard Definition of Secure Signature Schemes). A signature scheme is
said to be secure if every probabilistic polynomial-time chosen message attack succeeds
in existential forgery with negligible probability.

(A function f : N w+ N is called negligible if, for every polynomial p(.) and all
sufficiently large n's, it holds that f (n) < 1/p(n).)

Notice that there is nothing sacred in the choice of polynomials as specification for the
time bound or success probability. This choice is justified and convenient for a theoretical
treatment of the various notions. Yet, for deriving results concerning real-life/practical
schemes the more cumbersome alternative of specifying feasible time bounds and no-
ticeable success probabilities should be preferred. Furthermore, to be meaningful for
real-life/practical systems, security assertions should be made with respect to a fixed
machine model which does not allow speeding-up the computation on fix input lengths
by making the program more complex. Thus, whenever we refer to running time, it is
with respect to the following model.

Definition 5 (Machine Model). All algorithms are considered as programs for a fixed
universal RAM. The running time of an algorithm (on a particular input) is the sum of
the actual running time and the length of the program. The running-time complexity of
a computational task (on inputs of length n) is the running time of the best algorithm
achieving the task for inputs of length n.

An alternative complexity bound that may be used is the size of boolean circuits. 5
In contrast to any realistic model of computation, we ignore the small overhead created
when a program passes control to a subroutine and things of that sort.

Conditional Security

Since establishing the security of a signature scheme (as defined above) amounts to
proving lower bounds on some computational tasks, one can momentarily only hope
for conditional security assertions. Typically, such assertions relate the security of the
constructed scheme to the security of the underlying scheme or primitive. Such a relation
can be expressed (as done in the Introduction) by saying that if the underlying scheme
is secure in some sense, then the constructed scheme is secure in some other sense.
An alternative formulation, adopted in most of this paper, is the contrapositive. That
is, /f the construction can be broken within certain parameters (i.e., time bound and
success probability), then the underlying scheme can be broken within certain (related)
parameters. Actually, our results are stronger (which is indeed desirable): the latter
breaking algorithm (i.e., for the underlying scheme) consists of a fixed algorithm that
uses the former breaking algorithm as a subroutine. We stress that such assertions are to
be understood as relating to the machine model of Definition 5.

5 We prefer the above model since it is more appealing from a practical point of view. We stress that our
proofs do not take advantage of the nonuniformity of the model.

42 S. Even, O. Goldreich, and S. Micali

3. The General Construction

We first define digital signature schemes with less-stringent security properties. Namely,

Definition 6. A one-time signature scheme is a digital signature scheme which can
be used to sign a single message legitimately. A one-time signature scheme is secure
against known (resp. chosen) message attack (of certain time complexity and success
probability) if it is secure against such attacks which are restricted to a single query.

Notice the analogy with a one-time pad, which allows private messages to be sent
securely as long as the secret pad is not used twice. An early version of a one-time
signature was suggested by Rabin [16]. It required an exchange of messages between the
signer and signee. Schemes which avoid such an exchange were suggested by Lamport,
Diffie, Winternitz, and Merkle; see [12]. In particular, a one-time signature scheme can
be easily constructed using any one-way function. For further details see Section 4.

We belive that the importance of one-time signature schemes stem from their simplicity
and the fact that they can be implemented very efficiently. Our construction demonstrates
that one-time signatures can play an important role in the design of very powerful and
useful signature schemes.

As our construction uses both a one-time signature scheme and an ordinary signature
scheme, we always attach the term "one-time" to terms such as "signing key" and
"verification key" associated with the one-time signature scheme. Hopefully, this will
help to avoid confusion.

3.1. The Basic Scheme

Let (G, S, V) denote an ordinary signature scheme and let (g, s, v) denote a one-time
signature scheme. Below we describe our general on-line/off-line signature scheme. In
our description we assume that the security parameter is n.

Key Generation

The key generation for our on-line/off-line scheme coincides with the one of the ordinary
scheme. Namely, the signer runs G on input I n to generate a pair of matching verification
and signing keys (VK, SK). He announces his verification key, VK, while keeping in secret
the corresponding signing key, sK.

Off-Line Computation

The off-line phase consists of generating a pair of one-time signing/verifying keys, and
producing an ordinary signature of the one-time verification key. Both one-time keys
and the signature are stored for future use in the on-line phase. We stress that the off-line
phase is performed independently of the message (to be later signed). Furthermore, the
message may not even be determined at this stage. Following is a detailed description of
the off-line phase. The signer runs algorithm g on input 1" to select randomly a one-time
verification key vk and its associated one-time signing key sk. (This pair of one-time keys
is unlikely to be used again.) He then computes the signature of ok, using the ordinary

On-Line/Off-Line Digital Signatures 43

signing algorithm S with the key sK. Namely,

E ~f SsK(vk).

The signer stores the pair of one-time keys, (vk, sk), as well as the "precomputed sig-
nature," E.

On-Line Signing

The on-line phase is performed once a message to be signed is presented. It consists of re-
trieving a precomputed unused pair of one-time keys, and using the one-time signing key
to sign the message. The corresponding one-time verification key and the precomputed
signature to the one-time verification key are attached to produce the final signature.
Namely, to sign message M, the signer retreives from memory the precomputed signa-
ture E, and the pair (ok, sk). He then computes a one-time signature

a ~fssk(M).

The signature of M consists of the triplet (vk, Z, a) .

Verification

To verify that the triple (vk, ~, a) is indeed a signature of M with respect to the verifi-
cation key V'K, the verifier acts as follows. First, he uses algorithm V to check that Z is
indeed a signature of (the one-time verification key) vk with respect to the verification-
key vK. Next, he checks, by running v, that a is indeed a signature of M with respect to the
one-time verification key vk. Namely, the verification procedure amounts to evaluating
the following predicate:

Vw(vk, E) A vvk(M, rr).

Key, Message, and Signature Lengths

We denote by k(-) and m(.) the key and message length functions for the ordinary
signature scheme. Let l: N w-~ N be a function bounding the length of the signature in
the ordinary signature scheme, as a function of the parameter n (rather than as a function
of the message length, m(n)). Similarly, we denote the corresponding functions for the
one-time signature scheme by kl (-), ml (.), and ll (.), and the functions for the resulting
on-line/off-line scheme by k*(.), m*(-), and l*(.). Then the following equalities hold:

k*(n) = k(n),

m*(n) = ml(n),

m(n) = kl(n).

In other words, the key length of the on-line/off-line scheme equals the one of the ordinary
scheme, whereas the message length for the on-line/off-line scheme equals the one of the
one-time scheme. In addition, the ordinary scheme must allow signatures to messages
of length equal to the key length of the one-time scheme. Efficiency improvements can

44 s. Even, O. Goldreich, and S. Micali

be obtained by using collision-free hashing functions. This allows us to set m*(n) = n
and to deal with longer messages by hashing, as well as allowing us to set m(n) << kL (n)
and to permit the one-time verification key to be hashed before it is signed. For details
see Section 3.3.

Finally, we remark that the length of the signatures produced by the resulting scheme
grows linearly with the key length of the one-time scheme, even in the case where hashing
is used! Namely,

l*(n) = kl(n) + l(n) + ll(n).

3.2. Security

The basic on-line/off-line signature scheme can be proven secure against adaptive cho-
sen message attacks provided that both the original schemes (i.e., the ordinary scheme
(G, S, V) and the one-time scheme (g, s, v)) are secure against chosen message attack.
As usual in complexity-based cryptography, the above statement is not only valid in
asymptotic terms but also has a concrete interpretation which is applicable to specific
key lengths. Due to the practical nature of the current work, we take the uncommon
approach of making this concrete interpretation explicit. 6

Lemma 1. Suppose that Q, T: N ~ N and e: N w-~]~ are functions so that the
resulting on-line/off-line signature scheme can be existentially broken, via a chosen
Q(.)-message attack, in time T(.) with probability e(.). Then,for every n ~ N, at least
one of the following holds:

• The underlying one-time signature scheme can be existentially broken, via a chosen
(single) message attack, with probability at least e(n) /2Q(n) and within time

T(n) + to(n) + (tg(n) + ts(n) + ts(n)) . Q(n),

where t A (n) is a bound on the time complexity of algorithm A.
• The underlying ordinary signature scheme can be existentially broken, via a chosen

Q(n)-message attack, with probability at least e(n)/2 and within time

T(n) + (tg(n) + ts(n)) . Q(n).

The lemma is to be understood in the contrapositive. That is, if both the underlying
(ordinary and one-time) signature schemes cannot be broken within the parameters
specified in the conclusion of the lemma, then the on-line/off-line scheme cannot be
broken within the parameters specified in the hypothesis.

Proof. We denote the resulting on-line/off-line signature scheme by (G*, S*, V*).
Suppose that F* is a probabilistic algorithm which in time T(.) forges signatures of
(G*, S*, V*), with success probability e(n), via a chosen Q(n)-message attack. In the
rest of the discussion we fix n and consider the forged signature output by F* (at the end

6 This clearly results in a more cumbersome statement, but we believe that in the context of the current
paper the price is worth paying.

On-Line/Off-Line Digital Signatures 45

of its attack). This forged signature either uses a one-time verification key, vk, which
has appeared in a previous signature (supplied by the signer under the chosen message
attack), or uses a one-time verification key vk which has not appeared previously. Thus,
one of the following two cases occurs.

Case 1: With probability at least e(n)/2, algorithm F' forms a new signature using a
one-time verification key used in a previous signature. In this case we use algorithm F*
to construct an algorithm, F~, forging signatures under the one-time signature scheme
(g, s, v). Loosely speaking, algorithm Fl operates as follows. It creates an instance of
the ordinary signature scheme and many additional instances of the one-time signature
scheme. For all these instances, algorithm Fl will be able to produce signatures. Algo-
rithm Fl will use the attacked instance of the one-time signature scheme in one of its
responses to F*. In case F* halts with a forged signature in which the attacked instance
of the one-time scheme appears, then algorithm Fl has succeeded in its attack. Details
follow.

On input vk and access to a chosen (single) message attack on the corresponding
signing operator ssk, algorithm Fl proceeds as follows. Algorithm Fl runs G to obtain
a pair of corresponding keys (SK, VK) for the ordinary signature scheme. Without loss
of generality, assume that F* always asks Q(n) queries (i.e., messages to be signed).
Algorithm F1 uniformly selects an integer i 6 [1, 2 Q(n)}, and invokes algorithm
F* on input V'K. (Motivating remark: algorithm F~ will use the very instance it attacks
in the ith message to be signed for F*.)

Next, F1 supplies F* with signatures to messages of F*'s choice. The signature to
the j th message, denoted Mj, is produced as follows. If j -~ i, algorithm FI runs
g to generate a pair of one-time keys, 7 denoted (ski, vkj), and answers with the triplet
(vkj, SsK(vkj), sskj, (M])). Note that Fl has no difficulty doing so since, having produced
SK and ski, it knows the required signing keys. In the case of j = i, algorithm Fl uses its
the single message attack, which it is allowed, to obtain a signature cr to the message Mi
(relative to the verification key vk). Using ~r and the ordinary signing key SK, algorithm
F1 supplies the required signature (vk, Ssr(vk), ~).

Eventually, with probability at least e(n)/2, algorithm F* halts yielding a signature
to a new message; denoted M, in which the one-time verification key is identical to one
of the one-time verification keys which has appeared before. With probability 1/Q(n),
conditioned on the event that such a forged signature is output by F*, the forged signature
ouput by F* uses the same one-time verification key used in the ith signature, namely,
the one-time verification key vk. Since M :~ Mi, algorithm Fl obtains (and indeed
outputs) a signature to a new message relative to the one-time verification key vk.
Hence, the attack on the one-time signature scheme succeeds with probability at least
e(n)/2Q(n). We observe that the time complexity of algorithm Fi can be bounded by
to(n) + T(n) + Q(n) . (tg(n) + ts(n) + ts(n)).

Case 2: With probability at least e(n)/2, algorithm F* forms a new signature using a
one-time verification key not used in previous signatures. In this case we use algorithm

7 We remark that it is very unlikely that vkj equals vk. Yet, if this happens, then algorithm Fi can use skj
(which it knows) in order to forge signatures, relative to vk (= vkj), to any message.

46 S. Even, O. Goldreich, and S. Micali

F* to construct an algorithm, F2, forging signatures under the ordinary signature scheme
(G, S, V). Loosely speaking, algorithm F2 operates as follows. It creates many instances
of the one-time signature scheme. For each of these instances, algorithm F2 will be able
to produce signatures. Algorithm Fz will use the chosen message attack on the ordinary
signature scheme to obtain signatures to these one-time verification keys and, using the
corresponding one-time signing keys, F2 will be able to supply F* with signatures to
messages of its choice. If F* halts with a forge signature in which a new instance of the
one-time scheme appears, then algorithm F2 has succeeded in its attack. Details follow.

On input VK (and access to chosen message attack on the corresponding signing
operator SsK), algorithm F 2 invokes F* on input VK and supplies F* with signatures to
messages of F*'s choice as follows. To supply a signature to the j th message, denoted
Mj, algorithm F2 starts by running g to generate a pair of one-time keys, denoted
(ski, vkj). Algorithm F2 then uses the chosen message attack to obtain an ordinary
signature, denoted E j, to vkj (relative to the ordinary verification key VK) and replies
with the triplet (vkj,]gj, ss,j (Mj)). (Note that F2 has no difficulty producing sskj (Mj)
since it knows the required signing key.)

Eventually, with probability at least e(n)/2, algorithm F* yields a signature to a new
message which contains an SsK-signature of a one-time verification key which has not
appeared so far. In this case, algorithm F2 obtains (and indeed outputs) a signature to
a new message relative to the ordinary verification key VK. Hence, the attack on the
ordinary signature scheme succeeds with probability at least e(n)/2. We observe that
the time complexity of algorithm F2 can be bounded by T(n) + Q(n) • (tg(n) + &(n))
and that it asks Q(n) queries. The lemma follows. []

Remark. The chosen message attacks (on the underlying schemes) described in the
above proof, are in fact oblivious of the corresponding verification key of the attacked
scheme. In Case 1 the chosen message attack (on the one-time scheme ssk) requires
obtaining a signature under ssk to a message, Mi, that is chosen by the adversary which
does not see vk before. In Case 2 the chosen message attack (on the ordinary scheme
Ss~) requires obtaining signatures under SsK to a sequence of randomly and indepen-
dently generated one-time verification keys. Thus, the resulting on-line/off-line signature
scheme resists general chosen message attacks (which may depend on the corresponding
verification key), even if the underlying ordinary and one-time signature schemes only
resist chosen message attacks which are oblivious of the corresponding verification key.

Recalling the standard definition of security (i.e., Definition 4), we get:

Theorem 1. The resulting on-line~off-line signature scheme is secure (in the standard
sense) provided that the underlying ordinary and one-time signature schemes are secure.

3.3. Efficiency Considerations

The off-line computation, in our scheme, reduces to generating an instance of the one-
time signature scheme and computing the signature of a single string (specifically, the
one-time verification key) under the ordinary signature scheme. The on-line phase of the
signing process merely requires applying the signing process of the one-time signature

On-Line/Off-Line Digital Signatures 47

scheme. Hence, our on-line/off-line scheme is advantageous for the signer only if the
signing algorithms of one-time signature schemes are much faster than signing algorithms
of ordinary schemes. Indeed, this seems to be the case if the one-time signature schemes
based on one-way functions, described in Section 4, are used and especially if DES is
used as a one-way function.

In addition, if the verification procedure in the ordinary signature scheme (and in the
one-time signature scheme) is much faster than signing in the ordinary scheme, then the
entire on-line (signing and verification) process is accelerated. This condition (i.e., much
faster verification) is satisfied in Rabin's scheme as well as in RSA when used with a
small verification exponent (e.g., 3). Hence, attractive implementations of the general
scheme can be presented--see Section 5.

A major factor affecting the efficiency of the above scheme is the length of the strings to
which the ordinary and one-time signing algorithms are applied. A standard practice used
to reduce the time required for signing (as well as verification) is to use very fast hashing
functions which map long strings into much shorter ones. These hashing functions have
to be secure in the sense that it is hard to form collisions; namely, find two strings which
are mapped by the function to the same image. 8 Assuming the intractability of factoring
(alternatively of extracting discrete logarithms), such functions can be constructed [3],
[8]. Yet, in practical implementations, much faster hashing schemes may be used. A
typical example is the MD5 recently suggested by Rivest [18], [19].

The security of a scheme which uses hashing can be proven in a way analogous to the
proof of Lemma t. That is, two cases are considered: the case that a forged signature
is formed using a hashed value which has appeared in previous signatures, and the case
that such a hashed value does not appear in the forged signature. In the first case we
derive an algorithm which contradicts the collison-free property of the hashing function,
whereas in the second case we proceed as in the proof of Lemma 1.

3.4. A Remark

Most ordinary signing algorithms are based on the computational difficulty of integer
factorization. Should some moderately faster factoring algorithm come about, then longer
ordinary verification and secret keys will be necessary. This will cause a significant
slowdown in the off-line stage, but not in the on-line stage, provided one-time signature
schemes are based on other computational assumptions (as suggested above). Thus, our
construction may become even more useful if ordinary signature schemes will become
slower due to increasing security requirements.

4. One-Time Signature Schemes Based on One-Way Functions

One-time signatures schemes play a central role in our construction of on-line/off-line
signature schemes. A general method for constructing one-time signatures has been

8 Actually, a lower level of security suffices for our purposes. Specifically, it suffices that the function is
one-way hashing; namely, given a preimage to the function it is infeasible to find a different preimage which is
mapped, under the hashing function, to the same image [14]. It is known that one-way hashing functions can
be constructed using any one-way function [14], [21], but this construction is very far from being practical.

48 S. Even, O. Goldreich, and S. Micali

known for a relatively long time; see [16] and [12]. Here we present a comprehensive
analysis of the security of several variants of the basic method as well as new variants
which improve over the known constructions in several respects.

4.1. The Basic Construction

We start with the basic construction (of one-time signature schemes based on one-way
functions). Let f be a one-way function; namely, we assume that f is polynomial-time
computable but it is infeasible to invert f with noticeable success probability (taken over
the distribution resulting from applying f to a uniformly chosen preimage). The signing
key consists of a sequence of m pairs of n-bit-long strings, (x °, x]), o 1 (x m , x,,), and
the verification key consists of the result of applying the one-way function f to each of
these 2m strings. That is, the verification key consists of the sequence

(f (x°), f (x~)), . . . , (f (xOm), f (xim)),

where f is the one-way function. To sign the message crl . . . t r , n, the signer reveals
x~' x7 m, and the signee applies f to the revealed strings and checks whether they
match the corresponding strings in the verification key. Loosely speaking, this scheme
is secure since otherwise we get a way to invert the one-way function f . Further details
will become obvious later.

4.2. Shortening the Lengths of Keys and Signatures

A somewhat unappealing property of the basic construction is that it uses very long keys
and signatures. Additional ideas can be used to reduce these lengths. We start with an
idea which is attributed in [12] to Winternitz. The idea is to use only m + 1 strings, each
of length n, instead of the 2m strings used above. The signing key consists of a sequence
of m + 1 (n-bit-long) strings, x0, xl Xm, and the verification key consists of the
sequence fm(xo), f (x l) f(x,~), where ft(x) denotes the string resulting from x
by applying f successively t times. To sign the message al • • • ~r,,, the signer reveals

def
the xi's for which t7 i = 1 as well as y = f~°'(xo). Verification is done in the obvious
manner (i.e., applying f to the supplied xi's and applying fm-~; ~, to y). Intuitively,
the zero-component serves as an "accumulator" for the rest. To prove that the signature
scheme is secure we need to assume that f is one-way in a strong sense defined below.

Another idea is to break the message to be signed into blocks and to use each block as an
indicator determining how many times f has to be applied to each of the individual strings
in the signing key so as to form the signature. Note that in the previous construction,
depending on the bits of the message to be signed, the function f is applied between
m and zero times to x0, and either once or not at all to each xi, for i 7~ 0. A precise
description, which combines both ideas, follows.

Const ruct ion 1 (Based on Accumulator and Block Partition). Let t, m: 1~ ~ 1~ be two
polynomial-time computable integer functions so that 1 _< t (n) ---- 0 (log n), 1 < m (n) ----
poly(n), and t (n) divides m (n), for all n c i~. Let f : {0, 1 }* ~ {0, 1 }* be a polynomial-

On-Line/Off-Line Digital Signatures 49

time computable function. We consider the following one-time signature scheme with
message length function m (.):

• Key generation: On input 1 n, the key generator uniformly selects xo, Xl Xm/t E
def def

{0, 1} n, where m = m(n) and t = t(n). The signing key consists of these xi's,
whereas the verification key is

de_~f f(2t_l).(m/t)(XO), f2t-1 (XI) f 2 ' - I (Xm/t)"

• Signing: To sign a message M 6 {0, 1 }n, its t-bit-long blocks, e l fin/t, are
interpreted as integers 9 and the signature is

~m/, f 2 t - 1 -crl f z,,=,,~, (x0), (Xl) f2'-l-a~/'(Xn/t) .

• Verification: The components of the signature vector are subjected to the corre-
sponding number of applications of f and the result is compared with the ver-
ification key. Namely, to verify that (z0, zl Zn/t) constitutes a signature to
M = (el f i n ~ t) relative to the verification key ~ = (Y0, Yl Yn/t), one
computes

f (2t-1)'(m/t)-~/itri (Z0) , f m (Z l) fam/t (Zm/t)

and compares the resulting vector to the vector ~.

In what follows we refer to the keys and signatures as having 1 + (m / t) components
numbered by integers from 0 to m / t .

In case the function f is one-to-one, the security of Construction 1 can be proven
assuming that f is one-way. Otherwise, a seemingly stronger assumption is required.
This assumption refers to the infeasibility of performing a task which we call quasi-
inverting.

Definition 7 (Quasi-Inverting). Let f : {0, 1}* ~ {0, 1}* be a polynomial- t ime com-
putable function. Given an image, y, the task of quasi-inverting f on y is to find an
x and an i = poly(lYl) so that f i + l (x) = f i (y) . (For i = 0, the standard notion of
inverting is regained.)

We stress that in case f is one-to-one, quasi-inverting f is equivalent to the traditional
notion of inverting f . Otherwise, f - i f does not necessarily equal the identity function,
and consequently f i+l (x) = f i (y) does necessarily mean that x is an inverse of y under
f (i.e., f (x) = y). Yet, we believe that quasi-inverting is infeasible for many natural
one-way functions. 1° Here and below, we refer to the complexity of quasi-inverting f on

9 That is, the string 0 t is interpreted as 0, the string 0 t-~ 1 as I, etc.
Io We remark that, using the ideas of Levin [10], it follows that the existence of pseudorandom generators

imply the existence of polynomial-time computable functions for which quasi-inverting is infeasible. Using
the result of Hastad et al. [9]. it follows that one-way functions exist if and only if polynomial-time computable
functions for which quasi-inverting is infeasible exist. However, the latter result is obtained via an impractical
construction and thus the equivalence just stated is of little relevance to this paper.

50 S. Even, O. Goldreich, and S. Micali

input taken from one of the distributions fm (Un), where m = poly(n) and Un denotes a
random variable uniformly distributed over {0, 1 }n.

L e m m a 2 . SupposethatT: N w-~ Nande: N w-~ ~are func t ionsso tha t theaboveone-
time signature scheme can be existentially broken, via a chosen (single) message attack, in
time T (.) withprobability e (.). Then,forevery n E 1~ andsome i < m (n) / t (n). (2 t(n) - 1),
the function f can be quasi-inverted on distribution f i (Un) in time T(n) with success
probability

e(n)

(m (n) / t (n)) . 2 '(")+l '

where U~ denotes a random variable uniformly distributed over {0, 1 }".

In the statement of Lemma 2, as well as in all other lemmata in this section, we ignore
the time required to compute the function f (in the forward direction !). Namely, the quasi-
inverting algorithm (of the conclusion) actually runs in time T(n) + 2 t • (re~t) • t f (n)
(rather than T(n)) , where tf denotes the complexity of computing f . This omission
is justified since the additive term is negligible in all reasonable applications of such
lemmata.

The statement of Lemma 2, as well as its successors (i.e., Lemmata 5 and 7), contains
some element of nonuniformity; specifically, the value of i. Indeed, our proof incorpo-
rates this value i in the quasi-inverting algorithm thus introducing an element of non-
uniformity. This can be eliminated, using standard techniques (i.e., select i uniformly
in the relevant range), at the cost of decreasing the success probability by another factor
of (m (n) / t (n)) • 2 t(n).

Proof. Let F be a probabilistic algorithm that existentially breaks the one-time scheme,
via a chosen (single) message attack, in time T(.) with probability e(.). Hence, for every

def
n 6 N, with probability E = e(n), algorithm F first asks for a signature of some
M 6 {0, 1 }m and then produces a signature to some M' 5~ M. Let M = bl -- • bm/t and

dee clef t (n). Then one of the following two cases M t = C 1 • "" C m / t , where m = m(n) and t
occurs.

Case 1 : a j exists so that bj < cj. Intuitively, in this case we can use the j th component
of the signature forged by F to quasi-invert f (on the (2 t - 1 - b/)th iterate of f) .

v ~ m / t v ~ m / t Case 2: z__,y=l bj > z_,j=t cj. Intuitively, in this case we can use the zero-component
of the signature forged by F to quasi-invert f (on the (Y~ bj)th iterate of f) .

We start by presenting a parametrized family of quasi-inverting algorithms, denoted
{Aj.k}, which uses the forging algorithm F as a subroutine. The first parameter, j (0 <
j <_ (m/ t)) , represents the signature-component that the algorithm tries to use in order to
quasi-invert the function f . The second parameter, k, represents the distribution f k (Un)

On-Line/Off-Line Digital Signatures 51

on which the algorithm tries to quasi-invert f . We denote To ~f (m / t) • (2 t - l) and

T/ ~f 2 t - 1 for all other i 's (i.e., i = 1 (m/ t)) . (Ti corresponds to the number
of times that f is iterated to form the ith component of the verification key, where the
components are indexed by 0, 1 (m/ t) .) On input y, supposedly taken from the
distribution fk (On), algorithm Aj,k proceeds as follows. It forms a verification key as in
the key generation, except that the j th component is f ~ - k (y). That is, the verification
key is set to Yo, Yl Ym/t, where yj = f ~-k (y) and Yi = f T~ (Xi) with Xi uniformly
distributed (in {0, 1}n), for all i ~ j . Next, Aj.k invokes F with this verification key,
obtaining a signature request M = bl • • • bm/ t . The rest of the description is presented
in two cases, depending on the value of the parameter j .

For j ~ O. If Tj - bj > k, then the algorithm Aj,k supplies the required signature as
follows (otherwise Aj,k halts). The j th component of the required signature is obtained
by iterating f on y for (Tj - bj) - k times, whereas the other components are obtained by
iterating f on each of the corresponding xi's for the appropriate number of times. (Note
that f~Tj-b~)-k (y) is indeed in f-b~ (yj) = f -b j (f r j - k (y)) as expected.) Having received
the desired signature, algorithm F may form a signature to a new message. Suppose that
this signature is to a message in which the j th component, denoted c, is greater than

b ~f Tj - k. Then this yields an element, denoted z, of f - ~ (f b (y)) . Algorithm Aj.k
outputs f e - b - l (Z), which is in f - b - l f b (y) and thus a quasi-inverse of y. (In case f is
one-to-one, z = f - ~ (f b (y)) = fb-C(y) and f c - b - l (z) = f - J (y).)

:.e X-'~m/l /_ For j = 0. Similar ly, , Z..i=l ui > k, then the zero-component of the signature desired

for (~ i= l bi) - k times. (Here, f~r',~ib~)-~(y) is indeed by F is formed by iterating f on y m/t . "

in f-(r°-~:?--/i b') (Y0) = f-(r°-Z~i~ib~)(fr°-k(Y)) as expected.) Again, having received the
desired signature, algorithm F may form a signature to a new message. Suppose that this
signature is to a message in which the sum of the components, denoted c, is less than k.
Then this yields an element, denoted z, of f - (ro-c) (f ro-~(y)) . Algorithm Aj,k outputs
f k - c - l (z) , which is in f - (ro - k) - l f ro - k (y) and thus a quasi-inverse o fy . (In case f is
one-to-one, z = f - (ro-o) (f ro-k (y)) = F - k (y) and fk-~- I (z) = f - I (y).)

To analyze the performance of these algorithms, we use the following notations which
refer to the behavior of the forging algorithm F. For j = 1 (m/ t) , we denote by
pj(b) the probability that algorithm F, after asking for a signature to a message in
which the j th component equals b, forges a signature to a message in which the j th
component is greater than b. (The events considered here correspond to Case 1 discussed
above.) Similarly, we denote by po(b) the probability that algorithm F, after asking for a
signature to a message in which the sum of the components equals b, forges a signature
to a message in which the sum of the components is less than b. (The event considered
here corresponds to Case 2.) Clearly,

m/t

j = 0 k=0

52 S. Even, O. Goldreich, and S. Micali

We conclude that either

o r

m / t Tj-I E

S_, S_, >-
j= l k=0

(1)

To

k=l

Now, we consider the effect of the pj (b)'s on the algorithms Aj,k. We first observe that
each Aj,k invokes F on the "correct" distribution (i.e., on the distribution fro (uOn)

fr,,/, (Urn~t), where the U / represent independent random variables uniformly distributed
over {0, 1}n). For every j 5~ 0 and k < Tj, we define random variables bl "" bm/t (resp.
Cl .. • Cm/t) representing the message for which F has required a signature (resp. for which
F has forged a signature). The probability that Aj,k quasi-inverts on input distribution

fk(Un) equals

Prob[(bj < Tj - k) m (cj > Tj - k)] > Prob[(bj = Tj - k) m (cj > Tj - k)]

= p j (T j -

Similarly, the probability that A0,k quasi-inverts on input distribution f k (U .) equals

Prob Limb/ Alia=if i < k > Pr°b|{Zbi A L \ , = , \,=, c, <k

= p 0 (k) .

~--,m/t
Thus, if (1) holds then, for some i < TI, we have z_..,j=l pj(i) > e/ (2 • (2 t - 1)). It
follows that an algorithm, which selects j uniformly in { 1 (m/t)} and invokes Aj,i,
quasi-inverts f o n f i (Un) with probability at least

m/t 1 e ,K..--. x

"j~l - ~ " pj(i) > (re~t). 2 t+l"

On the other hand, if (2) holds then, for some i < To, algorithm Ao,i quasi-inverts f on
f i (Un) with probability at least

6
po(i) >_

2. ((m/ t) . 2 t -- 1)

The lemma follows. []

Remark . For t ---- 1, the statement of Lemma 2 is tight in the following sense. Any
algorithm inverting f (in time T(n)) with probability e(n) yields an (m • T(n)-time)
chosen message attack on the one-time signature scheme which existentially forges a
signature with probability 1 - (1 - e(n)) m ~ m • e(n) (for e(n) << 1/m). Hence, in
the case when t = 1, the security loss of a factor m is inevitable. Similarly, for general
t > 1, we get an inevitable loss of security by an m / t factor. However, we do not know
if the security loss of a 2 t factor is essential in this case.

On-Line/Off-Line Digital Signatures 53

4.3. Enhancing Security by Use of Error-Correcting Codes

As just remarked, the security loss of a factor of m/t in the above construction is
inevitable. To avoid this loss, we need a new idea. Loosely speaking, the idea is to
encode messages via a good error-correcting code and sign the encoded message rather
than the original one. This idea stands in contrast to the common practice of trying to
shorten the message to be signed. Yet, the moderate increase in the length of the message
to be signed will provide a substantial benefit. The reason being that in order to forge a
signature the adversary needs to invert the one-way function on many points rather than
on a single one. For the sake of simplicity, we apply the idea first to the basic construction
(of Section 4.1). However, before doing so, we recall some basic definitions and facts
from the theory of error-correcting codes.

Background on Error-Correcting Codes

D e f i n i t i o n 8 (Error-Correcting Code [l iD. Let m, m', d: N ~ 1~I. An (m(.), m'(.),
d(-))-code is an (efficiently computable) mapping, #, of m(.)-bit-long strings to m'(.)-
bit-long strings so that, for every twox 5~ y 6 {0, 1} re(n),

dis t(#(x) , /z(y)) > d(n),

where dist(t~,/3) denotes the Hamming distance (i.e., number of mismatches) between
c~ and/3.

For our purposes, we do not need the code to have an efficient decoding algorithm.
Hence, for our purposes, we can use random linear codes (i.e., a mapping defined by
multiplication by a random m × m' Boolean matrix). By the Gilbert-Varshamov bound
[11], [22] a uniformly chosen m x m' matrix defines an (m, m', d)-code with probability
I - p provided that

a-)_~l(m ') i < P " 2m' -m+l"

i=1

For example, we can set m' = 2m, p = 2 -m/2, and d = p .m ' , where H2 (p) < 1 (p = 1
m i will do).I1 Alternatively, m' = 3m, p = 2 -m/2, and d = p . m', where/-/2 (p) < ½ (p --

will do). For small values of m' and m, larger values of p are attainable by specially
designed codes. For example, for m = 79 and m' = 128, a code with distance d = 15
(p > 0.117)exists, whereas for m = 80 and m' = 160, d = 23 (p > 0.143) [11,
Appendix A.1] is obtained. For m = 128, we use a code with distance d = 13 and
codewords of length m' = 185, yielding p > 0.07.

Basic Scheme with Error-Correcting Codes

Loosely speaking, to sign a message M one first computes the codeword C def/z(M) and
then signs C. In addition to verifying, as usual, that C is properly signed, the verification

II As usual, H2(x) ~f -(x log 2 x + (1 - x) log2(l - x)) denotes the Binary Entropy Function.

54 s. Even, O. Goldreich, and S. Micali

procedure checks that C indeed equals # (M) . Hence, a chosen message attack needs to
produce a signature to a string C' that is not only different from C, but is also at distance
at least d from C.

Cons t ruc t ion 2 (Using Error-Correcting Codes). Let m, m' , d: N w-> N be polynomial-
time computable integer functions, let /z: {0, 1}* w-> {0, 1}* be an (m(.), m'(-), d(-))-
code, and let f : {0, 1}* w-> {0, 1}* be a polynomial-time computable function. We
consider the following one-time signature scheme for message length function m (.):

• Key Generation: On input 1", the key generator uniformly selects x °, x~, .. 0 • , X m "

1 m ' x m, ~ {0, I }", where ~f m'(n). The signing key consists of these x{'s , whereas
the verification key is f (x°t) , f (x ~) f (x ° ,) , f (x~ ,) .

• Signing: To sign a message M ~ {0, 1} m, al "" .crm, ~f # (M) is computed and

x~' ,,m, • . • , X m P

is revealed as the signature to M.
• Verification: To verify a signature to a message M E {0, 1 }/n, we first compute the

codeword C = # (M) . Next, we subject the components of the signature vector to
the corresponding number of applications of f and finally compare the result against
the verification key. Namely, to verify that (z~ z/n,) constitutes a signature to
M = (o 1 O'm) relative to the verification key ~ = (y0, y~ yO,, yj,,), the

O" i codeword ch .- .or m, +- /.t(M) is computed and f (z i) is compared with Yi , for
each i.

As a special case (i.e., by let t ing/z be the identity function), we derive the basic
construction (mentioned in Section 4.1 above):

Definition 9 (Basic Construction). The basic construction is derived from Construc-
tion 2 by setting # to be the identity transformation.

L e m m a 3 . Suppose thatT: N~-> N a n d e : Nw-> ~are func t ionsso tha t theone - t ime
signature scheme of Construction 2 can be existentially broken, via a chosen (single)
message attack, in time T (.) with probability e(.). Then, for every n ~ N, the function

f can be inverted in time T (n) with success probability (p (n)/2) • e (n), where p (n) def
d (n) /m ' (n) .

As a special case we derive a bound for the security of the basic construction. Namely,

Corollary 4. Suppose that T: N w-~ N and e: N w-> R are functions so that the basic
construction can be existentially broken, via a chosen (single) message attack, in time
T(.) with probability e(.). Then,for every n ~ N, the fimction f can be inverted in time
T (n) with success p robability (1/2m (n)) • e (n).

On-Line/Off-Line Digital Signatures 55

Proof of L e m m a 3. Let F be a probabilistic algorithm that existentially breaks the
one-time scheme, via a chosen (single) message attack, in time T(-) with probability
e(.). Hence, for every n 6 N, with probability e(n), algorithm F first asks for a signature
of M 6 {0, I }m and then produces a signature to M ' :~ M. Le t / z (M) = bl . . - b,,, and
/z(M') = Cl . . . c,,,. By definition of the code, bi ~ ci for at least a p fraction of the i ' s
in {1 m'}.

The inverting algorithm, A, operates as follows. On input y, algorithm A uniformly
selects i E {1 m'} and j 6 {0, 1}. Next, A forms a verification key as in the key
generation, except that the (2i + j - 1)st component is y, and invokes F with this
verification key. With probability ½, algorithm F asks for the signature, to a message
denoted M, that A can supply (i.e., the ith bit o f / z (M) equals j) . In this case, with
probability e(n), algorithm F returns a signature of a message M' and with probability
at least p the ith bit o f /x(M') is different from the ith bit of p.(M). This yields an inverse
of y under f , and the lemma follows. []

Scheme with Block Coding

We now combine the shortening ideas of Section 4.2 with the coding idea just presented.
In fact, we only use one of the shortening ideas; specifically, the partition of the binary
string into t-bit-long blocks. Each block is assigned a pair of strings in the signing key
(resp. verification key). The partition into blocks fits very nicely with error-correcting
codes, provided m'/ t < 2 t. Namely, we partition the m-bit-long message into m/t
blocks (each of length t) and encode these m/ t blocks using m'/t blocks (each of
length t). Our encoding scheme views the m/t blocks as elements in GF(2 t) specifying
a polynomial of degree (m/t) - 1 over this field, and the codeword is the sequence
of values this polynomial yields on (m'/t) different elements of the field (hence the
requirement m'/ t < 2/). This encoding, known as block-coding and specifically as BCH
code, has the property that different messages (viewed as polynomials) are mapped to
codewords that agree on at most (re~t) - 1 values. Hence, the "block distance" between
codewords corresponds to (m' - m)/t .

Const ruc t ion 3 (Based on Block Partition and Coding). Let t, m, m': N w-~ N be poly-
nomial-time computable integer functions so that 1 _< t(n) = O(logn) , 1 _< re(n) <_
m'(n) = poly(n),, m'(n)/t(n) <_ 2 t(n), and t(n) divides both re(n) and m'(n), for all
n ~ N. Let f : {0, 1}* ~-~ {0, 1 }* be a polynomial-time computable function. We consider
the following one-time signature scheme for message length function m (-):

• Key generation: On input 1 n, the key generator uniformly selects x °, x~, . . . , xm,/t,o

xlm,/t E {0, 1}', where m' ~f m'(n) and t de=f t(n). The signing key consists of these
j , x i s, whereas the verification key is

f2 '- l , 0, ¢2'-ltxl '~ f 2 ' - I 0 f 2 ' - I 1 ~.Xl) , J \ 11 (X m ' / t) , (X m ' / t) "

• Signing: To sign a message M E {0, 1 }m, its t-bit-long blocks, crl am~t, are
interpreted as elements in GF(2 t) specifying a polynomial of degree t - 1 over
the field (i.e., tri is interpreted as the (i - 1)st coefficient of the polynomial). The
values of the polynomial at some m'/t field elements are now interpreted as integers,

56 S. Even, O. Goldreich, and S. Micali

denoted rl rm,/t ~ {0, 1 2 t - 1 }, and the signature

cr~txO ~ f2 ' - I -r~(x~) ' frm,/,(xO/,),~2'-l-r,/,,y ~ ~Xm/,)I ,
d '~ 1 I , " ' ' "

is computed.
• Verification: The polynomial and its values at the m ' / t points is constructed as

above, the components of the signature vector are subjected to the corresponding
number of applications of f and the result is compared with the verification key.

L e m m a 5. Let m'(n) = (1 + or) • m(n), f o r some constant a > O. Suppose that
T: I~I ~-~ N and e: N ~ • are functions so that the above one-time signature scheme can
be existentially broken, via a chosen (single) message attack, in time T (.) with probability
e (.). Then,for every n E N and some i <_ (2 t('0 - l), the function f can be quasi-inverted
on distribution f i (Un) in time T (n) with success probability (or/(1 +or)2 t(n)) -e(n), where
Un denotes a random variable uniformly distributed over {0, 1 }n.

Proof. Using the same ideas as in the proofs of the last two lemmata. []

Remark . We can set 2 t = m ' / t and c~ = 1. Then, for t > 4, we get security at least
as in the basic construction while using keys and signatures which are only four times
as large as those used in Construction 1. In general, when setting 2 t = m ' / t , the bound
on success probability of attacks in the new construction is related to the bound in the
basic construction by a factor of (1 + ot)z/ott, which is typically smaller than 1.

4.4. Further Enhancing Security

The reader may note that the enhanced security asserted in the previous subsection
stems from the fact that when using a forging algorithm we have a better chance that
it inverts the function on the desired component (provided that we choose the desired
component at random). We did not take advantage of the fact that this forging algorithm
inverts the function on many components. To do so we have to consider the problem
of simultaneously inverting a one-way function on many images, and to show how this
problem reduces to forging signatures in Constructions 2 and 3. Once this is done, the
security of the signature scheme is based on the difficulty of inverting the function on
many images, a task that may be more difficult than inverting the function on a single
image. 12 For example, the run-time versus success-probability tradeoffs, in exhaustive

12 We stress that hardness here is expressed by two parameters: specifically, the running time and success
probability of the inverting algorithm. In this setting it is not known whether inverting a function on many
unrelated images is harder than inverting it on a single image. Specifically, it is not known whether, when
fixing the running time, the success probability of inverting the function on several images decreases with the
number of images. The well-known amplification of one-way functions (attributed to Yao and implicit in [24])
guarantees that the success probability of inverting the function on several images decreases with the number
of images, provided that the time bound of the inverting algorithm is decreased as well. Specifically, the ratio
of the running time over the success probability, which represents the hardness of inverting the function on
several images, does not grow with the number of images. This makes the above-mentioned amplification
method less attractive for our purposes.

On-Line/Off-Line Digital Signatures 57

search for inverting a function, are less favorable when it is necessary to invert the
function on several instances (see Assumption 3 in the subsequent section).

L e m m a 6. SupposethatT: N ~-+ Nande: N ~-r XarefunctionssothatConstruction2
can be existentially broken, via a chosen (single) message attack, in time T(.) with
probability e(.). Let k: N w-~ N so that k(n) < d(n). Then,for every n ~ N, the function
f can be simultaneously inverted on k (n) images, in time T (n) with success probability

2k~") \ j=o m'(n) - j J ~ , ' f~ ' -~ t • e(n),

where the approximation holds provided k(n) << d(n).

Proof. Similar to the proof of Lemma 3. Fixing any n E N, the inverting algorithm,
A, operates as follows. On input yl yk, algorithm A uniformly selects k different
elements, denoted il, i2 ik, in {1 m'} and jl Jk ~ {0, 1}. Next, A forms a
verification key as in the key generation, except that for every I < k the (2il + jl - 1)st
component is Yt, and invokes the forging algorithm, F, with this verification key. With
probability 1/2 k, algorithm F asks for the signature, to a message denoted M, that A
can supply (i.e., for every l, the ilth bit o f / z (M) equals jl). In this case, with probability
e(n), algorithm F returns a signature of a message M'. With probability at least (d im') .
((d - 1) / (m ' - 1)) . . . ((d - k + l) / (m ' - k + 1)), the bit locations it through ik of
/z(M') and # (M) are all in disagreement. This yields inverses of Yl through yk under f ,
and the lemma follows. []

Using similar ideas, we get:

L e m m a 7. Let m'(n) = (1 + or) • m(n) , for some constant ot > O. Suppose that
T: N ~ N and e: N ~-~ ~ are functions so that Construction 3 can be existentially
broken, via a chosen (single) message attack, in time T(.) with probability e(.). Let
k: N ~ N so that k(n) < otto(n) and Un denote a random variable uniformly distributed
over {0, 1} n. Then, for every n ~ N and some il ik(n) < (2 t(n) - 1), the function
f can be simultaneously quasi-inverted on k(n) images, taken from the distributions
fi, (Un) through fi,(,~ (Un), in time T(n) with success probability

1 C (~ l ° t - (j i m (n)) (c¢) k(n)
2t(n)'k(n) \ j=O 1 T~---- (j ~)) .e (n) .~ (1 + ~--). 2'(") • e(n),

where the approximation holds provided k(n) << ot • re(n).

5. Concre te Implementations

We now suggest concrete implementations of our general on-line/off-line signature
scheme offering fast on-line computations (both for signer and verifier). The imple-
mentations differ by the construction they use for a one-time signature scheme. This

58 s. Even, O. Goldreich, and S. Micali

section is not intended to provide a comparative analysis of these alternatives; such an
analysis is provided in the previous section. The purpose of this section is to demonstrate
the viability of our general construction by presenting several realistic implementations
based on off-the-shelf products.

5.1. The Ingredients

All the concrete implementations use Rabin's scheme [17] in the role of the ordinary
signature scheme and the DES [15] as a basis for a one-way function, which is in turn
used to construct a one-time signature scheme. The constructions of one-time signature
schemes used are those presented in the previous section, and the implementations differ
only by the specific construction (of a one-time signature scheme) which they use.

Some of our implementations have marginal security which results from the fact
that using the DES as a basis for a one-way function starts to become problematic (in
many applications). Indeed, an alternative commercial product providing a more secure
one-way function is long due. Needless to say that analogous implementations of our
scheme, using such a hypothetical realistic one-way function, will then follow and enjoy
analogously improved security.

The Ordinary Signature Scheme

In the role of the ordinary signature scheme we use a modification of Rabin's scheme
[17]. In this modification we use integers which are the product of two large (say 256
bits long) primes, one congruent to 3 modulo 8 and the other congruent to 7 modulo 8.
For such an integer N and for every integer v 6 Z~v (the multiplicative group modulo

N) exactly one of the elements in the set Sv ~e~ {v, - v , - 2 v , -2v} is a square modulo
N (see [23] and [8]). Moreover, each square modulo N has exactly four distinct square
roots rood N. We define the extended square root of v modulo N, denoted °~/-{ mod N,
to be a distinguished square root modulo N (say, the smallest one) of the appropriate
member of So. Computing %/-~ mod N is feasible if the factorization of N is known, and
is considered intractable otherwise.

The message space is associated with the elements of the above multiplicative group.
Larger messages are first hashed into such an element. It is assumed that the message
space satisfies the following condition: If v --fi u, then Sv A S, = 0. This can be enforced
by using only values of the second eighth of Z~v (i.e., {v E Z~v: N/8 < v < N/4}).

Consider a user A, whose public key is a modulus Na. User A alone knows the
factorization of N a. Signing message M, in the modified Rabin scheme, amounts to
extracting an extended square root of M, modulo NA. Anyone can verify that ot is a
legitimate signature of M by computing a2 mod NA and checking that it indeed belongs
to the set SM.

The scheme described so far is not secure against existential forgery. It is not clear
whether this problem is really important to our application; nevertheless padding by a
random suffix (see [17]) overcomes the obvious attack. 13

13 Actually, the random padding is not necessary in applications such as ours where the signature scheme
is applied to a randomly looking string (e.g., obtained by hashing the message).

On-Line/Off-Line Digital Signatures 59

We assume that it is infeasible to break the modified Rabin scheme, even after a chosen
message attack, when the integers which are used are the product of two large (say 256
bits long) primes.

The One-Time Signature Scheme

For the one-time signature scheme, we use any of the constructions presented in Section 4.
These constructions exhibit a tradeoff between key and signature size, on one hand, and
computation time and security on the other hand. In particular, we propose using the

def
DES algorithm as a one-way function f (x) = DESxo(M); that ts, the value obtained by
encrypting a standard message, denoted M, using DES with key x0, where x 6 {0, 1 }55.
We stress that our "effective" key length is merely 55 bits, and the zero-padding yields a
standard DES key of 56 bits. This convention is adopted in order to "destroy" the known
relation between (standard) DES keys, given by the equality DESr (M) = DES-~(M),
where ~ denotes the string derived from u by flipping all bits. In what follows whenever
we refer to the DES we mean the "one-way function" f defined above.

The Collision-Free Hashing Scheme

In the role of the collision-free hashing function we use any standard way of using DES
in a hashing mode. (See, for example, [16].) Alternatively, the recently suggested MD4
or MD5 may be used (see [18] and [19]). We recommend that H map arbitrarily long
strings to 128-bit-strings (i.e., m = 128). For some applications, one may be content
with m = 64.

5.2. Four Implementations

We now describe four versions of the concrete implementation. We start with a straight-
forward implementation of the general scheme with the modified Rabin scheme playing
the role of the ordinary signature scheme and the DES one-way function being used to
construct a one-time signature scheme following the basic construction of Section 4.
The other three implementations differ from the first one only in the way in which the
one-way function is used to construct a one-time signature scheme.

Implementat ion 1. The modified Rabin scheme, with primes of length 256, is used
as the ordinary signature scheme. As a one-time signature scheme, for message length
m = 128, we use the basic construction (see Definition 9) with DES in the role of the one-
way function. Finally, fast collision-free hashing functions are used to hash arbitrarily
long strings to m-bit strings.

The key length for the one-time signature scheme is 2m .n, where, in the case of a DES-
based one-way function, n = 55. The total length of the signature in the resulting on-
line/off-line scheme is 3m. n + 512, which for our choice of parameters (i.e., m = 128 and
n = 55) yields 21,632. The most time-consuming operation in the off-line signing phase
is the computation of an ordinary signature in the modified Rabin scheme, which amounts
to extracting square roots modulo 256-bit primes. On-line signing only involves retrieving
relevant information from memory. Verification amounts to m DES computations, which

60 s. Even, O. Goldreich, and S. Micali

may be performed in parallel, and a single multiplication modulo a 512-bit integer (i.e.,
verification in the modified Rabin scheme). The signatures and keys can be shortened
by a factor of ~ t if we are willing to increase the number of DES computations by a
factor of 2 t - 1. For t = 4 this tradeoff seems worthwhile. Namely,

Implementa t ion 2. The ordinary signature scheme and the collision-free hashing func-
tion are as in the previous implementation. As a one-time signature scheme, for message
length m = 128, we use Construction 1, with t = 4. Again, DES is used in the role of
the one-way function.

Now, the key length for the one-time signature scheme is (1 + m / t) • n , and the total
length of the signature in the resulting on-line/off-line scheme is thus 2(1 + m / t) -n-t-5 ! 2.
For our choice of parameters (i.e., m = 128, t --- 4, and n = 55) we get a signature length
of 4142. The number of DES operations increases by a factor of 2 t - 1 = 15. However,
the security of the current implementation is decreased by a factor of (2 t - 1)/ t = 3.75.
Improved security can be obtained by using Construction 3 as a basis for the one-time
signature scheme. Namely,

Implementa t ion 3. The ordinary signature scheme and the collision-free hashing func-
tion are as in the previous implementations. As a one-time signature scheme, for message
length m = 120, we use Construction 3, with ra' = 160 and t = 5. Again, DES is used
in the role of the one-way function.

Now, the key length for the one-time signature scheme is 2 • (m ' / t) • n , and the total
length of the signature in the resulting on-line/off-line scheme is 4 - (m ' / t) • n + 512.
For our choice of parameters (i.e., m = 120, m' = 160, t = 5, and n = 55) we get a
signature length of 7552. The number of DES operations is about three times as high as
in the previous implementation. However, the security of the current implementation is
even better than in Implementation 1. To get even better security we use Construction 2:

Implementa t ion 4. The ordinary signature scheme and the collision-flee hashing func-
tion are as in the previous implementations. As a one-time signature scheme, for message
length m = 120, we use Construction 2, with m' = 185 and d = 13. Again, DES is used
in the role of the one-way function.

Now, the key length for the one-time signature scheme is 2 • m' • n, and total length
of the signature in the resulting on-line/off-line scheme is thus 3 • m' • n + 512. For our
choice of parameters (i.e., m = 128, m' = 185, and n = 55) we get a signature length
of 31,037. The number of DES operations is 185 (instead of 128 in Implementation 1).

The complexity bounds for the four implementations are tabulated in Table 1 (for the
choice of parameters specified above). For the reader's convenience we also present the
relative security of these implementations. The security figures are upper bounds on the
success probability of some reasonably restricted attacks fully described and analyzed
below. (Hence, the lower the security figures are, the better.)

On-Line/Off-Line Digital Signatures

Table I

Implementation

1 2 3 4

Message length 128 128 120 128
Key length 14,080 1,815 3,520 20,350
Signature length 21,632 4,142 7,552 31,037
DES operations 128 1,920 4,800 185

1 1 1 1
Security

1,400 370 2, 600 12, 000

61

Security

Our analysis is based on two assumptions. The first is that it is practically infeasible to
existentially forge signatures to the modified Rabin scheme, even after a chosen message
attack. In other words, we assume that the probability that such a practical attack succeeds
is negligible and hence we ignore it altogether. Our second assumption is that the DES-
based one-way function cannot be inverted better than by exhaustive search (in the
{0, 1 }55 "effective" key space). A more accurate statement follows. We stress that this
assumption does not contradict current knowledge concerning the cryptanalysis of DES
(and in particular differential cryptanalysis method of Bilham and Shamir [2]).

By the proof of Lemma 1, a breach of security in the on-line/off-line scheme yields
either a breach of security in the modified Rabin scheme or a breach of security in the
one-time scheme. We stress that this lemma asserts that if the on-line/off-line scheme
is broken with probability e(n), then either Rabin's scheme is broken with probability
e(n)/2 (within the same time and query complexities) or, with probability e(n)/2, one
of the instances of the one-time scheme is broken. Assuming that a breach of security
in the modified Rabin scheme is infeasible, we ignore the first possibility and are left
with the second. Before continuing, we now explicitly state our assumption concerning
the security of the DES-based one-way function. Intuitively, the assumption states that
the best tradeoff between the running time of an inverting algorithm and its success
probability is obtained by the "exhaustive search" algorithm (i.e., an algorithm which
uses its time to select random preimages and check if they are mapped to the given
image).

A s s u m p t i o n 1. Let D ~f 255 ~ 3.6 x 1016 denote the number of elements in the
domain of the DES-based one-way function. Then a randomized algorithm running in
time that allows only T DES evaluations, succeeds in inverting the DES-based function
on a given image, with probability at most T /D.

We start by evaluating the security of the first implementation presented above (i.e.,
Implementation 1). Combining Assumption 1, Lemma 1, and Corollary 4, we conclude
that a chosen Q-message attack taking time T succeeds in existential forgery with
probability at most (T - (2m • Q)) /D (where m ---- 128 denotes the message length in

62

T a b l e 2

Q T e

1 lo 4 io 6
14, 000

1
104 107

1,400
1

104 108
140

S. Even, O. Goldreich, and S. Micali

Implementation I). Thus, the success probability of an attack which asks for Q messages
to be signed and runs in time allowing T DES computations is bounded by

256. T - a

D

We stress that Q is upper-bounded by the number of messages signed by a single instance
of our on-line/off-line signature scheme, throughout the "life time" of this instance. It
(i.e., Q) is not the total number of messages which can be signed by all instances of
our system. Recall that an instance of the signature scheme is obtained by running the
key generator. Typically, each user generates a new instance of the signature scheme
which it uses for a bounded time period. Thus, we believe that it is safe to assume that
in a real-life application, the number of messages being signed by a single instance of
the system is at most 10,000. Note that T, the time spent by the attacker, is typically
much larger than Q. Several estimates for the success probability of forging signatures
by attacking the DES-based one-way function are given in Table 2. As above, T denotes
the time spent (i.e., number of function evaluations) in the attack, Q denotes the number
of message signed, and E denotes an upper bound on the success probability

We conclude by evaluating the security of the other three implementations. This is
done using the corresponding lemmata of Section 4. First, using Lemma 3, it follows
that the probability of breaking Implementation 4 is smaller by a factor 9 than the
bound presented for the probability of breaking Implementation 1. In the analysis of
Implementations 2 and 3 we use a seemingly stronger assumption concerning the DES.
Intuitively, this assumption asserts that also quasi-inverting the DES (see Definition 7)
cannot be done better than by exhaustive search:

Assumption 2. For every i > 1, let Xi be the distribution obtained by uniformly
selecting a preimage for the DES-based function and iterating the function i times on
this preimage. Then, for every i < 32, a randomized algorithm running in time that
allows only T DES evaluations, succeeds in quasi-inverting the DES-based function on
Xi, with probability at most T / D.

The constant 32 in the above assumption is the smallest value which suffices for our
4 analysis. Now, using Lemma 5, we observe that Implementation 3 (with m' = 5" m = 2 t t

and t > (1 + et)2/2~ = 8) maintains the security of Implementation 1. (Here, as before,
security means a bound on the success probability of forging algorithms running within

On-Line/Off-Line Digital Signatures

T a b l e 3

Q T e 2 E3 ~4

1 1 1
10 4 10 6

3,700 26, 000 120, 000
1 1 1

104 107
370 2,600 12,000

1 1 I
104 108

37 260 1,200

63

some time bounds.) Actually, security is increased by a factor of 3t/8 (which for t = 5
yields -~ 2). Similarly, inspecting Lemma 2, it follows that the probability of breaking
Implementation 2 is at m o s t (2 t - 1)/t times bigger than the bound peresented for
Implementation 1 (which for t = 4 means a factor of 3.75).

The bounds for the success probability of forging signatures in the last three imple-
mentations are given in Table 3. The bounds on the success probabilities of Implemen-
tations 2-4 are denoted e2, e3, and E4, respectively, and Q and T are as above.

Some of the above figures provide marginal security. This is due to the fact that DES
has a key-space of marginal size. Indeed, it would have been desirable to have a practical
one-way funtion for which inverting requires an exhaustive search over a domain with
270 elements (rather than 255) or even better 21 l0 elements. Corresponding probability
bounds for the above implementation and the last attack (i.e., Q = 104 and T = 108) are
given in Table 4. In addition, we tabulate the probability bounds also for a much stronger
attack in which Q • T = 102°. The parameters e2, s3, e4, Q, and T are as above. In
addition, we consider a parameter D (-- 270 or 2110) representing the size of the domain.

The bounds on the success probabilities of Implementations 3 and 4, can be improved
using the following reasonable assumption. For the anslysis of Implementation 4, we
only need the first part of the assumption.

Assumption 3. A randomized algorithm running in time that allows only T DES eval-
uations, succeeds in simultaneously inverting the DES-based function on k given images,
with probability at most (T / D) k. Furthermore, the same holds with respect to simulta-
neously quasi-inverting the DES-based funtion on k given images, each distributed as
in Assumption 2.

Table 4

D Q T e2 e3 C4

1 1 1
270 104 108

12,000 85,000 390, 000
1 I 1

2110 104 108
1.3.1016 9.1016 40.1016

1 1 1
21 l0 104 1016

1.3.108 9 .108 40.108

64

Table 5

Q T e3 ea

1 1
104 106

41,000 108
1 1

104 107
2,600 600,000

1 1 104 108
260 6,000

S. Even, O. Goldreich, and S. Micali

In particular, using Lemma 6 with k = 2, 3 (k < d = 13), it follows that the
probability of breaking Implementation 4 is at most max{p, (15.4 • p)2, (256 • p)3},
where p is the bound computed by using Lemma 3. Similarly, using Lemma 7 with
k = 2 (k < otto = 40), it follows that the probability of breaking Implementation 3 is
at most max{p, (128. p)2}, where p is the bound computed by using Lemma 5. Hence,
our security bounds (for DES; i.e., D = 255)) are improved as shown in Table 5.

6. A Re la t ed Theore t i ca l Resu l t

Using the underlying ideas of our general construction, we obtain the following equiva-
lence:

Theorem 2. Digital signature.schemes that are secure against a chosen message attack

exist if and only if signature schemes secure against random message attack exist.

Proof. The necessary condition is obvious. To prove the sufficient condition, we present
the following construction that uses much of the structure of our general construction.

Let (G, S, V) be a signatrue scheme secure against random message attack. By a
padding argument, we may assume that the message length for parameter n equals n
(i.e., m(n) ----- n). We consider two instances of this scheme, the first with parameter n and
the second with parameter 2n 2. We now construct the signature scheme (G*, S*, V*) as
follows.

The key-generation algorithm, G*, consists of using G twice to produce two pairs
of matching public and secret keys, (V-KI, SKI) and (VK2, SK2). The signing algorithm,
S*, operates as follows. First, obliviously of the message to be signed, algorithm S*
randomly selects 2n strings of length n each, denoted rl r2n. The concatenation of
these strings, denoted F, is called the reference sequence. Second, S* computes

X def SsK, (F).

The last step depends on the message to be signed. To sign a message M = bl .. • b, ,
def

where each bi 6 {0 , l } , algorithm S* computes, for each i, cr i = SsK2(r2i_b,). The
signature of message M consists of the reference sequence P, its authentication E, and

def
a "signature sequence" or, where cr = al . . .or,. The verification algorithm is obvious
from the above.

On-Line/Off-Line Digital Signatures 65

Parenthetical Remark. By a minor modification we can obtain an on-line/off-line sig-
nature scheme, in which no computation is necessary in the on-line signing phase. In the

def
modified scheme, sj = SsK~(rj) is precomputed for every j (1 < j < 2n), and in the
on-line phase it is merely necessary to retrieve the appropriate precomputed sj (i.e., those
j which equal 2i - bi for some i). Unfortunately, verification in the (G*, S*, V*) scheme
is substantially more expensive than in the original (G, S, V) scheme, specifically by a
factor of n + 1. Hence, the scheme presented in this section does not offer much hope
in terms of practical implementations (since n should be set large enough to resist a
birthday attack14).

We now prove that if (G*, S*, V*) is existentially forgeable via a chosen message
attack, then (G, S, V) is existentially forgeable via a random message attack. The proof
is very similar to the proof of Lemma 1.

Let F* be a probabilistic polynomial-time algorithm which forges signatures of
(G*, S*, V*), with success probability e(n) > 1/poly(n), via a chosen message at-
tack. Such a forged signature either uses a reference sequence which has appeared (as a
reference sequence) in a previous signature or uses a reference sequence which has not
appeared previously. Thus, one of the following two cases occurs.

Case 1: With probability at least e(n)/2, algorithm F* forms a new signature using
a reference sequence which has appeared in a previous signature. In this case we
construct an algorithm, Fl, forging signatures of (G, S, V) as follows. On input vK
(and access to random message attack on the corresponding Ss~), algorithm Fl runs
G to obtain a new pair of corresponding keys (SK', VK'). Then algorithm Fl initiates
algorithm F* on input V'K* = (VK', VK), and supplies it with signatures to messages of
F* 's choice.

To get a signature for the message M = bl . ' - bn, requested by F*, algorithm Fl asks
for n new random SsK-signatures (i.e., signatures to n uniformly selected n-bits-long
messages). (Here we employ a random message attack on SsK.) Suppose that F1 is given
the message-signature pairs (Pl, (71) (Pn, or,), where the pi's a r e uniformly and
independently distributed and the cri's were obtained by applying S~¢ to the corresponding

def
, O i ' S (i.e., cr; = SsK(pi)). Algorithm Fl sets r2i-b, = Pi and completes the reference
sequence P = (rl r2~) by selecting the remaining (n) ri's at random. Algorithm
Fl now uses its secret key sI<' to produce a signature 1~ to the reference sequence

(i.e., E ~f SsK,(rl.. .r2,,)). Finally, F1 provides F* with the triple (~, ~ , iT), where
def

tr = cr~ •. • cry, as a signature of M.
We stress that it is unlikely that the same n-bit-long string appears in two different

reference sequences given to F* (since the r i'S are uniformly chosen from a huge space,
i.e., of size 2n). Eventually, with probability at least e(n)/2, algorithm F* yields a
signature to a new message, denoted M = bl • • • b~, in which the reference sequence,

14 In practical implementations n will not be the actual length of the message, which is much too long, but
rather the length of the hashed value. In a birthday attack we u s e 2 n/2 "perturbations" of a desired message
to match its hashed value with one of 2 n/2 values signed by the signer in a random message attack: Hence, n
should be large enough so that it is infeasible to obtain 2 "/2 signatures.

66 S. Even, O. Goldreich, and S. Micali

denoted ?, is identical to a reference sequence used in a previous message. We denote
this previous message by M ' = cl . . . c , . Since M # M', a position i exists in which
the two messages differ (i.e., bi # ci) and it follows that the signature M contains a
signature SsK(rj), where rj is the j th block in ? and j = 2i - bi. (We stress that the
signature SsK(r]) was not part of the signature obtained for M', since ci # bi). With very
high probability, the n-bit-long string rj has not appeared in any position in any reference
sequence, except for its appearance in the j th position of ?. Hence, we obtained an SsK-
signature to the string for which a signature has not been seen so far. Outputting this
(rj , SsK (rj)) pair, algorithm Fl achieves existential forgery, via a random message attack.

Case 2: With probabi l i ty > e(n)/2, algori thm F ' f o r m s a new signature using a reference
sequence not used in prev ious signatures. In this case we construct an algorithm, F2,
forging signatures of (G, S, V) as follows. On input VK (and access to random message
attack on SsK), algorithm F2 runs G to obtain a new pair of corresponding keys (SK', VK').
Then algorithm F2 initiates algorithm F* on input VK* = (VK, VK'), and supplies it with
signatures to messages of F*'s choice.

To get a signature for the message M = bl • . . b , , requested by F*, algorithm F2 asks
for a new SsK-signature on a random message (of length 2n2). Suppose that F2 is given
the message-signature pair (?, ~), where ~ is uniformly chosen and Z was obtained by
applying SsK to ? (i.e., E = SsK(?)). Algorithm F2 partitions ~ into 2n strings, each of
length n; i.e., (rl r2,) = F. Using its secret key SK', algorithm F2 obtains signatures
via SsK, to each rj , for j = 2i - bi and I < i < n. We denote this sequence of signatures
by cr = (al a ,) , where (7 i is a signature via SsK, to r2i-b, (i.e., ai = SsK'(r2i--bi)).

Algorithm F2 gives F* the triple (?, I : , a) as a signature of M.
Eventually, with probability at least E(n)/2, algorithm F* yields a signature to a new

message which contains an Ss~-signature to a new reference sequence. If this happens,
then F2 outputs this SsK-signature, hence committing existential forgery (via a random
message attack).

Hence, in both cases a contradiction is derived and the theorem follows. []

Acknowledgments

We are most grateful to the anonymous referees for their many valuable comments. We
are particularly grateful to them for urging us to provide a rigorous treatment to the
security of the concrete implementations. This comment made us inspect carefully the
complexity of the reductions and propose ways of improving them. We wish to thank
Mihir Bellare for pointing out some errors in an earlier version of the paper and for
suggesting how to correct them. We also wish to thank Eli Biham, Ronny Roth, and Adi
Shamir for helpful discussions.

References

[1] Bellare, M., and Micali, S., How To Sign Given Any Trapdoor Function, Proc. STOC 88, pp. 32--42.
[2] B iham•E.•and Shamir• A.• Differentia• Cryptana•ysis •f DES-Like Crypt•systems•J•urnal •f Crypt•l•gy•

Vol. 4, No. 1, 1991, pp. 3-72.

On-Line/Off-Line Digital Signatures 67

[3] Damgard, I., Collision-Free Hash Functions and Public-Key Signature Schemes, EuroCrypt 87, LNCS,
Vol. 304, Springer-Verlag, Berlin, 1988, pp. 203-216.

[4] Even, S., Secure Off-Line Electronic Fund Transfer Between Nontrusting Parties, in Smart Card 2000:
The Future oflC Cards, D. Chaum and I. Schaumuller-Bichl (eds.), North-Holland, Amsterdam, 1989,
pp. 57-66.

[5] Even, S., Goldreich, O., and Yacobi, Y., Electronic Wallet, Advances in Cryptology: Proc. Crypto 83,
D. Chaum (ed.), Plenum, New York, 1984, pp. 383-386.

[6] Even, S., Goldreich, O., and Micali, S., On-Line/Off-Line Digital Signatures, Advances in Cryptology:
Proc. Crypto 89, G. Brassard (ed.), LNCS, Vol. 435, Springer-Verlag, Berlin, 1990, pp. 263-277.

[7] Goldreich, O., Two Remarks Concerning the Goldwasser-Micali-Rivest Signature Scheme, Advances in
Cryptology--Crypto 86, A. M. Odlyzko (ed.), LNCS, Vol. 263, Springer-Verlag, Berlin, 1987, pp. 104-
110.

[8] Goldwasser, S., Micali, S., and Rivest, R. L., A Digital Signature Scheme Secure Against Adaptive
Chosen-Message Attacks, SIAM Journal on Computing, Vol. 17, No. 2, April 1988, pp. 281-308.

[9] Hastad, J., Impagliazzo, R., Levin, L. A., and Luby, M., Construction of Pseudorandom Generator from
Any One-Way Function, Manuscript: 1993. See preliminary versions by Impagliazzo, Levin, and Luby
in Proc. 21st STOC and by Hastad in Proc. 22nd STOC.

[10] Levin, L. A., One-Way Functions and Pseudorandom Generators, Combinatorica, Vol. 7, No. 4, 1987,
pp. 357-363.

[11] MacWilliams, E J., and Sloane, N. J. A., The Theory of Error-Correcting Codes, North-Holland,
Amsterdam, 1977.

[12] Merkle, R. C., A Digital Signature Based on a Conventional Encryption Function, Advances in
Cryptology--Crypto 87, C. Pomerance (ed.), LNCS, Vol. 293, Springer-Verlag, Berlin, 1987, pp. 369-
378.

[13] Naor, M., Bit Commitment Using Pseudorandom Generators, Proc. Crypto 89, pp. 123-132.
[14] Naor, M., and Yung, M., Universal One-Way Hash Functions and Their Cryptographic Application, Proc.

21stSTOC, •989, pp. 33-43.
[15] National Bureau of Standards, Federal Information Processing Standards, Publ. 46 (DES 1977).
[16] Rabin, M. O., Digital Signatures, in Foundations of Secure Computation, R. A. DeMillo et al. (eds.),

Academic Press, New York, 1978, pp. 155-168.
[17] Rabin, M. O., Digitalized Signatures and Public-Key Functions as Intractable as Factorization, Report

TR-212, Lab. for Computer Science, MIT, January 1979.
[18] Rivest, R. L., The MD4 Message Digest Algorithm, Proc. Crypto 90, A. J. Menezes and S. A. Vanstone

(eds.), LNCS, Vol. 537, Springer-Verlag, Berlin, 1991, pp. 303-311.
[19] Rivest, R. L., The MD5 Message-Digest Algorithm, Internet Request for Comments, April 1992.
[20] Rivest, R. L., Shamir, A., and Adleman, L., A Method for Obtaining Digital Signatures and Public-Key

Cryptosystems, Communications oftheACM, Vol. 21, No. 2, 1978, pp. 120-126.
[21] Rompel, J., One-Way Functions Are Necessary and Sufficient for Secure Signatures, Proc. 22nd STOC,

t990, pp. 387-394.
[22] Roth, R., Topics in Coding Theory, Lecture Notes, Computer Science Dept., Technion, Haifa, 1993.
[23] Williams, H. C., A Modification of the RSA Public-Key Encryption Procedure, IEEE Transactions on

Information Theory, Vol. 26, No. 6, 1980, pp. 726-729.
[24] Yao, A. C., Theory and Applications of Trapdoor Functions, Proc. IEEE Syrup. on Foundations of

Computer Science, 1982, pp. 80-91.

