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Abstract, Differential cryptanalysis was introduced as an approach to analyze the 
security of DES-like cryptosystems. The first example of a DES-like cryptosystem was 
Lucifer, the direct predecessor of DES, which is still believed by many people to be 
much more secure than DES, since it has t28 key bits, and since no attacks against (the 
full variant of) Lucifer were ever reported in the cryptographic literature. In this paper 
we introduce a new extension of differential cryptanalysis, devised to extend the class of 
vulnerable cryptosystems. This new extension suggests key-dependent characteristics, 
called conditional characteristics, selected to increase the characteristics' probabilities 
for keys in subsets of the key space. The application of conditional characteristics to 
Lucifer shows that more than half of the keys of Lucifer are insecure, and the attack 
requires about 236 complexity and chosen plaintexts to find these keys. The same exten- 
sion can also be used to attack a new variant of DES, called RDES, which was designed 
to be immune against differential cryptanalysis. These new attacks flash new light on 
the design of DES, and show that the transition of Lucifer to DES strengthened the later 
cryptosystem. 
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1. Introduction 

Different ia l  cryptanalysis  was introduced in [2] and [6] as an approach to analyze the 

security o f  DES- l ike  cryptosystems.  In a series of  papers [2]-[5] this approach was used 

to attack the blockciphers  D E S  [18], Feal  [22], [17], Khafre [15], R E D O C - I I  [24], L O K I  

[8], and one variant o f  Luci fer  [10], a long with the hash funct ions N-Hash  [16] and 

Snefru [14]. Lai  et al. [13] v iewed a variant o f  this approach as a Markov  chain and 

appl ied this approach to the PES [12] and the I D E A  [13] ciphers. Other  researchers 

s tudied how to make  cryptosystems immune  against  differential  cryptanalysis  (some of  

which are [1], [7], [9], and [19]-[21]).  

In this paper  we  extend differential cryptanalysis  in several directons: The  main exten- 

s ion o f  this paper  enables differential cryptanalysis  to analyze a wider  set of  cryptosys-  

tems. We define conditional characteristics as key-dependent  characterist ics selected to 
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maximize the characteristic's probability (the fraction of right pairs) for only a specific 
subset of the key space. The required coverage of (almost) all the key space is done via 
selection of several conditional characteristics designed for different fractions of the key 
space. 

In the attack on the full 16-round DES [5], structures which allow us to gain one 
additional round for free with no additional cost are used. We extend this idea and 
show an implementation in which we gain two additional rounds for free, using the 
observations that the blocksize of Lucifer is larger than the one of DES and that the 
avalanche is slower. We also show two additional tools: a tool that gains a free additional 
round in Lucifer (described in the attack on the eight-round variant), and a tool that 
can increase the fraction of keys covered by differential cryptanalytic attacks when 
conditional characteristics are used. We suggest using sets of characteristics whose ~ e  
are the same, but which differ in their f2r. Since the same plaintexts can be shared for 
all these characteristics, the efficiency of the attacks is increased. 

Many people still believe that Lucifer [23], the direct predecessor of DES, is stronger 
than DES, since it has 128 key bits rather than the 56 key bits of DES, and since they 
believe that the strength of DES was intentionally reduced by its designers. In this paper 
we study the strength of the variant of Lucifer described in [23] (the final variant of the 
Lucifer project, rather than the variant described in [ 10]). We apply our new techniques to 
this variant, and show an attack which can find the key with complexity about 236, if only 
the key resides within a particular subset of the key space containing about 55% of the 
keys. It is of interest to note that if the order of the two S-boxes of Lucifer was reversed, a 
similar attack could cover more than 90% of the keys, but their replacement by S-boxes 
satisfying the design rules of DES would invalidate the conditional characteristics used 
in this attack. 

Several researchers studied how to make cryptosystems immune against differential 
cryptanalysis, but, till now, this effort was not very successful. Many of them [ 1 ], [9], 
[19] suggested the use of S-boxes whose difference distribution tables are uniform, 
and in particular they suggested the use of bent functions. However, the application of 
this suggestion to DES was studied in [6] and [7], and it was shown that the resultant 
cryptosystems become much weaker than DES. 

Recently, Koyama and Terada [ 11 ] suggested replacing the deterministic swapping of 
the halves of the data between rounds in DES by a conditional swapping, which swap 
the halves only if a particular key bit (different for each round) has the value one. They 
claim that the resultant cryptosystem, called RDES, is about 215 times stronger than 
DES, although a small fraction of the keys, which do not swap the data even once, are 
bad. Our new extension developed in this paper can be applied to RDES, and shows that 
RDES is weaker than DES for almost all keys in the key space, leaving only a relatively 
small number of "good" keys, whose trial complexity is much smaller than exhaustive 
search of the whole key space. 

2. Description of Lucifer 

Lucifer [23] is the cryptosystem from which DES [18] was developed by IBM in the 
1970s. Like DES, Lucifer has 16 rounds, but it has no initial and final permutations, and 
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the sizes of its blocks and keys are 128 bits. The F function of Lucifer operates on the 
64-bit right half of the data, 64-bit subkey, and 8 interchange control bits (ICBs). The 
F function uses only two 4-bit to 4-bit S-boxes, called So and Sl, applied in parallel to 
each byte of the input of the F function. The F function swaps the two nibbles (4 bits) 
of each input byte whose corresponding ICB is zero. Then the S-box So operates on the 
most significant (left-hand) nibble, and $1 on the least significant (right-hand) nibble of 
every byte. The output of the S-boxes is concatenated and the result is XORed with the 
subkey, in an operation called key interruption. The last stage of the F function permutes 
the output bits. Sorkin [23] describes the final bit permutation in two steps: each byte 
undergoes a fixed permutation (denoted P in [23]), and then the bits are mixed between 
the bytes---every bit enters a different byte in the same position in which it was in the 
original byte. This later step is called diffusion. We denote the product of these two 
permutations by P. 

Figure 1 describes the F function of Lucifer. The pairs of adjacent S-boxes are viewed 
as single combined boxes, which we call T-boxes (Transposition boxes). The T-boxes 
are functions from nine bits to eight bits, whose one input bit is an ICB, and the eight 
others are data. The T-boxes are defined by 

To[XY] = So[X]SI[Y], 

TI[XY] = So[Y]SI[X]. 

They are described in Fig. 2. 
The key-scheduling algorithm of Lucifer is much simpler than the one of DES. The 

key is assigned into a 128-bit shift register. Every round the subkey is chosen as the 
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Fig. 1. The F function of Lucifer. 
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Fig. 2. Lucifer T-box structure. 

leflmost 64 bits of the register, the interchange control bits are chosen as the leftmost 8 
bits of the register, and after each round the shift register is rotated 56 bits to the left. 

For the analysis it is convenient to use the following equivalent description: The key 
interruption is moved from after the S-boxes to become the first operation in the F 
function (where a t is marked in Fig. 1), and an initial XOR of the plaintext with a 
128-bit subkey is added before the first round. The subkeys of this form are called actual 
subkeys, and are denoted by AKi. The actual subkey of the last round (AKI6) is zero. 
AK15 is just the permuted value of the subkey of the last round (AK15 = P(KI6)). 
The other actual subkeys AKI . . . . .  AKI4 are AKi = AKi+2 ~ P ( Ki+I), and the initial 
subkey is (AK2 ~ P(KI ), AKI).  In this description the last round becomes very simple, 
with a zero actual subkey. During encryption the actual subkey of the first round is 
canceled by the initial subkey. Thus effectively both the first and the last rounds have no 
key interruption. 

We also denote the ciphertext by T, and its left and right halves by TL and TR, 
respectively. 

3. Conditional Characteristics 

Differential cryptanalysis requires the knowledge of good characteristics, i.e., to find 
pairs of messages, such that the difference of the output of the nth round during encryption 
of these messages is predictable with a relatively high probability. The key-dependent 
swaps make it quite difficult to find such characteristics, especially since characteristics 
which can predict the output for all the keys have a very low probability--thus making an 
attack infeasible. In order to solve this difficulty we define key-dependent characteristics 
which depend on the value of some ICBs. In [2] and [6] the characteristic's probability 
is defined as the probability that a random pair (whose plaintext difference is f2p) is a 
right pair with respect to a random key, and it is shown that the probability that a random 
pair is a right pair with respect to a fixed key may depend on the choice of the key. In this 
paper we are interested in characteristics for which the probability that a random pair 
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is a right pair varies between different keys. We call these characteristics conditional 
characteristics. 

Definition 1. The probability of a characteristic f2 with respect to a fixed key K is the 
probability that a random pair (whose plaintext difference is g2e) is a fight pair with 
respect to the fixed key K. 

Definition 2. The probability of a characteristic f2 with respect to a set of  keys U is 
the minimal probability of the characteristic f2 with respect to a key K in U. 

Definition 3. A conditional characteristic is a tuple (f2, U, p~) where fl is the char- 
acteristic, U is a subset of the key space, and p~ is the probability of the characteristic 
f2 with respect to the subset U. 

Definition 4. The key fraction of a conditional characteristic (~2, U, p~) is the ratio 
I UI/IKI between the size of the subset U and the size of the key space. 

These definitions suggest a tradeoff between the probability o.f a conditional charac- 
teristic and its key fraction. By reducing the size of U we can increase the probability of 
the conditional characteristic, but the key fraction is reduced. By increasing the size of 
U we increase the key fraction, but the probability may be reduced. 

Whenever a conditional characteristic (f2, U, p~) improves the probability over the 
best probability of a nonconditional characteristic by a factor higher than the inverse of 
the key fraction (IKI/IU[), the usage of the conditional characteristic is advisable. There 
are several additional cases in which the usage of conditional characteristics is advisable 
as well, especially if several such characteristics can share the same structure of chosen 
plaintexts efficiently. 

We found four six-round iterative conditional characteristics of Lucifer. One of them 
is (only three rounds are described; the other three rounds are symmetric): 

Q tip = (0. {7}) ) 

~ . ,4 = 139} [ - - - ~ .  , = {7} 

C = 0  [ - 7 - ] , ,  c = O  

1 
( ~,: ~o,{39}) ) 

p = 1/8, icb= 1. 
key fraction l /2  

p = 1/8. icb= 1. 
key fraction I/2 

p = l  
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where {n} denotes a 64-bit value whose nth bit (n 6 {0 . . . . .  63}) is one and all the 
others are zero. The other three iterative conditional characteristics are similar with the 
replacement of  the constants {7} and {39} by the constants 

(1) {15} and {47}, 
(2) {23} and {55}, and 
(3) {31} and {63}. 

Each of  these characteristics has six incarnations, starting from the six possible rounds. 

4. The  Attack on Lucifer 

The differential cryptanalysis of  Lucifer is slightly different than the cryptanalysis of  
DES. We describe the differential cryptanalysis of Lucifer in the following subsections. 
In the first subsection we describe the required structures and chosen plaintexts, then we 
describe the cryptanalysis, and finally we study modified variants and strength factors. 

4.1. The Data 

In order to pack all the required pairs into as few chosen plaintexts as possible, we use 
structures similar to the ones used in [5]. In [5] an additional "free" first round is gained 
and the characteristic starts only at the second round. Due to the larger blocksize o f  
Lucifer, and to the slower avalanche, we can use two such "free" rounds in our attack on 
Lucifer. We use 3R-attacks, and, thus, 11-round characteristics are required. The above 
conditional characteristics, iterated to 11 rounds, have probability 2 -21 and a key fraction 
2 -7 in 16 of  the incarnations, and probability 2 -24 and a key fraction 2 -8 in 8 of  the 
incarnations. In the rest of  this section we ignore the details of  the required data and the 
analysis of  the 8 incarnations, since (paradoxically) they require fewer chosen plaintexts 
and simpler structures than the other 16 incarnations. 

The characteristics we use cause (in the 16 incarnations) a single bit difference in the 
input to the second round (the one preceding the characteristic). This bit enters a T-box 
and affects one of  its S-boxes whose choice depends on an ICB. For each key it may 
affect up to four output bits, either the output bits of So or the output bits of  S~. Given a 
fixed value of  the input XOR of  the third rounds (defined by the characteristic) we result 
with up to four affected bits in the input of  the first round, which affect up to four S-boxes 
in the first round, and up to 16 bits of  its output (whose choice depends on up to four 
ICBs). The additional bit corresponding to the differing bit in the input of  the second 
round and the (possible) bit which differs in the input of the third round are already 
counted in the 4 + 16 -- 20 bits. Thus we use structures of 220 chosen plaintexts with 
all the possible values of  the 20 bits, and whose other 44 bits are fixed to some value. 
Each such structure is built to conform to some value of  five ICBs of  rounds 1 and 2. 
Thus, we have to create 32 such structures for all the 32 possible values of  these ICBs. l 
Each structure contains 219 pairs with the required difference before the third round. 
Since the characteristics' probability is about 2 -21, about four structures are required in 

J If the number of chosen plaintexts required was much larger, we could build huge more efficient structures 
for which such duplication is not required. 
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average to have a right pair, if the ICBs of  that characteristic have the required values. 
Therefore, a total of 22o. 4 . 3 2  = 227 chosen plaintexts are required for each incarnation 
of a characteristic to have one right pair. 

The key fraction of  the 16 incarnations is 2 -7 and the key fraction of  the other 8 
incarnations is 2 -8. The 24 incamations cover a total fraction of  about 15% of  the key 
space. However, when we use some duplication techniques, which duplicate either the 
required data or the analysis for the two possible values of  the extreme ICBs of  the 
characteristics, we can enrich the set of  covered keys and cover a fraction o f  about 25% 
of the key space. For this fraction, about 2 27  • 24 • 16 • 2 ~ 236 chosen plaintexts are 
required (24 incarnations, 16 right pairs, 2 is the maximal duplication of  the data). 

We can increase the fraction of  covered keys further using the observation that there 
are several conditional characteristics with the same ~p  as the characteristics we use, 
but with different g2r's and different key subsets U. Each f2p we use has about 9 -  
10 such characteristics whose total key fraction is about three times the original key 
fraction, and their probabilities are about the same as of the original characteristics. In 
the Appendix we show such additional characteristics (which we actually use in our 
attack). Due to the almost perfect identification of  wrong pairs this attack has, we can 
analyze these characteristics with a negligible additional cost with the same data. Thus, 
this attack covers a fraction of  about 55% of the keyspace. 2 We can still increase this 
fraction slightly using characteristics whose key fraction is slightly smaller than the ones 
described, but whose ~2e'S have many additional characteristics with different ~ r ' s -  

4.2. The Analysis 

For the analysis we use the notation h to be the input of the F function of  the last round 
in the equivalent description of  Lucifer, g and f are the inputs to the two preceding 
rounds, and H, G, and F are the outputs of the F function in these rounds. 

The first step of the analysis discards as many wrong pairs as possible. The value of 
f '  contains at most one nonzero bit, thus, most bits of  F '  are zero, and at most four bits 
of  F '  are nonzero; the particular choice of  the four bits is ICB dependent. The value of  
g '  may contain at most five nonzero bits (these four bits plus one bit from e'), which 
may affect the output of  at most five S-boxes in G', and, thus, h '  = T~ may have at 
most 5 - 4 -t- 1 = 21 nonzero bits in positions depending on at most five ICBs. Thus the 
probability that a random T~ is zero at all the 43 bits suggested by one of  the 25 choices 
of the five ICBs is about 2 -43. 25 = 2 -38. Therefore, the identification of  wrong pairs in a 
structure can be done efficiently by sorting (or hashing) by these bits, and choosing only 
pairs with common values. Each structure contains up to (220)2/2 = 239 potential pairs, 
and thus the average number of the remaining (wrong) pairs per structure is expected to 
be less than two for each characteristic. 

Since effectively there is no key interruption in the last round, and since h = TR, we 
can calculate for any ciphe;text the 256 possible outputs H of  the F function of  the last 
round using the 256 possible choices of  the interchange control bits, and get 256 possible 
values for H '  for any pair. Independently, we can calculate 56 bits of H '  for any pair, 

2 It can be verified easily (but inaccurately) by 1 - (1 - 0 . 2 5 )  3 = 0.58. The exact calculation results in a 
value slightly higher than 0.55. 
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using the facts that H '  = T~ ~ F '  ~ e' and that 56 particular bits of F '  are zero. This value 
should match one of the 256 possible values calculated directly. If it does not match, the 
pair is clearly a wrong pair, and should be discarded. The probability of a random pair 
to pass this test is about 28 • 2 -56 = 2 -48. Thus, the average number of wrong pairs in 
a structure which pass both the previous test and this test is 2 • 2 - 4 8  = 2 - 4 7  for each 
characteristic. In practice, only right pairs are expected to pass both tests. From these 
right pairs we can easily derive the values of seven ICBs of the last round, the seven (or 
eight) ICBs controlling the conditional characteristic, 3 the five ICBs affecting rounds 14 
and 15 during the analysis, and the five ICBs affecting the choice of the chosen plaintexts 
in the first two rounds. All these ICBs are different (since each key bit is used only once 
as an ICB) and thus we get a total of 7 + 7 + 5 + 5 = 24 bits of the key. 

Now we can calculate the output of the F function of the last round for any given 
ciphertext, and find the value of g, effectively reducing the cryptosystem to 15 rounds. The 
value of G' can be calculated from the characteristic and the ciphertexts by G' = Tl{ ~3 f ' ,  
where f '  is the value suggested from the characteristic. Thus, we can mount a simple 
counting scheme to find many additional bits of the actual subkey AKIs, and then use 
other standard differential cryptanalytic techniques to complete the rest of the key. 

4.3. Modified Variants and Weaknesses 

As in DES, the order of the S-boxes is important. If  we only replace the S-boxes So and 
SI by each other, the number of (iterative) conditional characteristics grows to 20 (rather 
than four) and the fraction of the keys vulnerable to these attacks grows to more than 60% 
using about 238 chosen plaintexts (rather than 25%). When using several characteristics 
with the same ~e 'S,  the fraction of keys vulnerable to the attack grows to more than 
90%. 

On the other hand, replacement of the S-boxes by single lines of the S-boxes of 
DES (or by S-boxes satisfying the design rules of DES) would invalidate the kind of 
characteristics used in the above attacks, in which a difference of one input bit of an 
S-box may cause a difference of only one output bit. However, in order to strengthen the 
cryptosystem, we should make sure that no other kinds of high probability characteristics 
exist. 

In order to disable conditional characteristics, we may choose the interchange control 
bits as combinations of key bits and data bits, rather than of key bits alone. It was actually 
done in DES. 

The key interruption in the F function is done in Lucifer after the S-boxes. This order 
effectively eliminates the key interruption in the first round and in the last round and 
allows the analyst to analyze an equivalent description with one or two fewer rounds. 
The replacement of the order of the key interruption and the S-boxes, as was done in 
DES, solves this weakness (but enables complementation properties). 

The F function of Lucifer has a rotational symmetry, in which rotations by multiples 
of eight bits of the input half, the subkey, and concurrent rotation by the same multiple 
of one bit of the interchange control bits cause rotation of the same multiple of eight bits 

3 Whenever there are two different characteristics with the same g2e and f2r, we get two possible sets of 
seven or eight ICBs. This fact affects the remainder of the analysis only slightly. 
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in the output. Therefore, characteristics can be rotated by multiples of eight bits as well, 
causing each characteristic to have seven rotated counterparts (when a characteristic is a 
rotation of itself we get fewer counterparts; the four characteristics used to attack Lucifer 
are such examples). In order to disable this property we have to use different S-boxes in 
different entries, as was done in DES. 

The eight-round reduced variant of Lucifer is very weak. The same conditional char- 
acteristics, with a new first-round technique, result in an attack requiring 256 chosen 
plaintexts, which covers about 90% of the keys. This attack places four-round charac- 
teristics built from the iterative characteristics described for the full variant, such that 
the 0 ----> 0 rounds are set in rounds 2 and 5, and such that rounds 3 and 4 have prob- 

1 and key fraction ½. There are eight such possible four-round characteristics, abilities 
which together cover 90% of the key space. In order to get the first round for free, we 
can simply choose the right half of the plaintexts in any way (with the required input 
difference) and calculate the output of the F function of the first round in the equivalent 
description (which can be done since AKI equals the right half of the initial subkey). 
Then we have only to choose the left halves in such a way that cancels the difference 
received from the output of the first round. Two structures of all the eight characteristics 
are used: one assumes that the affecting ICBs in the first round are zero, and the other 
assumes they are one. These structures contain 128 pairs for each characteristic. Since 
the characteristics' probability is ~4, we get in average two right pairs which can be used 
to find directly many key bits. Additional standard techniques using the same structures 
can complete the key. 

The fact that the fraction of right pairs may depend on the choice of the key was 
already noted in [2]. It was shown that the conditional characteristics of DES can enrich 
the fraction of right pairs by a medium factor, but the key fraction of these characteristics is 
too small to make an attack feasible. It was concluded that the use of these characteristics 
does not help to attack DES. 

5. RDES 

RDES [11] (Randomized DES) is an attempt to strengthen DES against differential 
cryptanalysis. In order to reduce the probability of characteristics, the designers suggested 
replacing the deterministic swaps of the halves of the data between rounds by key- 
dependent swaps. They claim that since the 15 key-dependent swaps occur with 215 
possible instances, the probability of the characteristics used against DES is reduced by 
a similar factor. As a result, they claim that RDES is much stronger than DES, and that 
the differential cryptanalytic technique of the full 16-round DES [5] is not applicable to 
RDES. 

The new conditional technique suggested in this paper cancels the cryptanalytic effect 
of the key-dependent swaps, and shows that RDES is weaker than DES. 

The simplest weakness of RDES (already noted by the designers) is that one of every 
215 keys does not swap the data even once. Thus, half of the ciphertext bits (corresponding 
to the right half of the data during the various rounds) are the same in both the plaintext 
and the ciphertext. If  this property is found under an attack, the attacker can immediately 
conclude the value of the 15 key bits affecting the swaps, and thus, an exhaustive search 
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for the remaining key bits would require only about 241 steps. Such a property should be 
avoided in cryptosystems, and thus keys leading to this property are weak, and should 
not be used. 

The next simplest weakness of  RDES is that one of  every 225 keys swaps the data only 
once, just before the last round. In this case the attacker can easily derive the output of  
the F function of  the last round, along with its input, and can find all the 48 bits of  the 
subkey K16, resulting with at most 256 possibilities for the key. 

These two examples show that many keys are quite weak, thus it is interesting to 
ask whether elimination of these weak keys would make RDES more secure. Using 
the conditional differential cryptanalytic technique we can show that almost any key of  
RDES is weaker than the corresponding key of  DES, and thus that RDES should not be 
used. 

In DES the following two-round iterative characteristic is used: 

f~t, = 19 60 O0 O0 O0 O0 O0 00, . J  

1 
( ~=oooooo.oi,~6ooooo~ ) 

along with a similar characteristic with ~ p  = 1B 60 00 00 00 00 00 00x. This character- 
istic can be iterated any number of times since there is a deterministic swap between any 
two consecutive rounds. In RDES many swaps are canceled due to the key-dependent 
swapping policy. Thus, this characteristic cannot be iterated, and cannot be used (as is) 
against RDES. 

However, when we look carefully, we see that whatever is the choice of  the swaps, 
these two one-round characteristics (the two rounds of  this two-round characteristic) 
can be combined to longer characteristics in two ways: In the first, choose the first one- 
round characteristic (0 --+ 0) to appear in the first round, and the second to appear in 
the round after the first swap. The rest of  the rounds can be completed uniquely using 
these two-round characteristics. In the second way we replace all the occurrences of  the 
one-round characteristics by each other. These two combined characteristics are duals: 
when one one-round characteristic occurs in a round of one combination, then the other 
one-round characteristic occurs in the same round of the other combination. As a result, 

( 1 ~ r - q  such two r-round combined characteristics have probabilities (2--~4) q and ,  2--~, , when 
q is the number of  occurrences of  19 60 00 00x ~ 0 (or of  1 B 60 00 003 ~ 0) in the first 
combined characteristic, and r - q is the number of occurrences of 19 60 00 00x ~ 0 in 
the second combined characteristic. Thus, for any choice of the key-dependent swapping, 
we can easily find at least two r-round characteristics with probability p > (2~4) Lr/2j. 
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Note that the right-hand side of the inequality is the probability of the r-round iterative 
characteristics of DES, and thus RDES always has characteristics with probabilities 
higher or equal to the ones of DES. 

It only remains to prepare characteristics for all the 215 possible swap choices and 
choose a sufficient number of plaintexts for all these choices. Fortunately, all these 
characteristics have only two possible values for f2p, and the same two possible values 
for f2r: 19 60 00 00, 00 00 00 00x and 00 00 00 00 19 60 00 00x. Therefore, the number of 
chosen plaintexts required for this attack is only up to twice the number required for the 
attack on DES, if characteristics with the same probability are used. However, for most 
keys these characteristics have probabilities much higher than ( ~ )  tr/2j. The swap choice 
of many keys has q much smaller than r/2. Even when q ~ r/2 and the characteristics 
have two (or more) consecutive rounds of 19 600000~ ~ 0, the probability is larger 

¢ i ~tr/2j since there is a probability of at least 2 -12 (rather than (z--~v4) 2 ,~ 2 -16, than ~ 2-'~ J 
2 -24, etc.) that the exclusive-or of two (or more) output XORs (in which only in three 
particular S-boxes can the output XOR be nonzero) is zero. We can conclude that the 
probability of one of the two dual characteristics must satisfy 

p > 2(-8(s+1)-4(r-s-l))/2 = 2 -2s-2r-2,  

1 where s is the number of swaps during the r rounds (we approximate ~ by 2-8). The 
application of this formula to the attack on the full 16-round DES, which requires a 13- 
round characteristic, shows that any choice of up to nine swaps during these 13 rounds 
would result with characteristic probabilities greater than 2 -2"9-2'13-2 = 2-46. Therefore 
the attacks on these cases are faster than the attacks on DES and require fewer chosen 
plaintexts. Note that these attacks usually find the subkey of the last round, but if there is 
no single swap in the final few rounds, they identify this fact (which identifies several key 
bits) along with the number s of swaps (estimated from the probability). Using auxiliary 
techniques the full key can later be completed in both cases. 

The fraction of keys which cause up to nine swaps during the 13 rounds is 

~ s = 0  S 
0.98, 212 

so, at most one of every 50 keys may be as strong as the corresponding key of DES 
against this attack. Even if only such "strong" keys are used, differential cryptanalysis 
requires about 247 chosen plaintexts, and an exhaustive search of all the possibilities of 
these keys takes only about 250 steps. Therefore, RDES is not more secure than DES, 
and for almost all keys it is even much weaker. 

Note that, unlike in Lucifer, even if we replace the swap control bits by combinations 
of key bits and data bits, the cryptosystem does not become more secure, since then, for 
any key, a fraction of 2 -15 of the plaintexts would be encrypted to ciphertexts whose 
right halves are just the same as those of the plaintexts (in RDES a fraction of 2 -15 of 
the keys are weak due to this property). 
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A p p e n d i x  

In this appendix we show condit ional  characteristics with the same ~ e  but  with different  
~ r ' S ,  which cover  different fractions of  the key space. Many  condit ional  characterist ics 
o f  Lucifer  have this property of  their f2p. These characteristics are actually used by our  

attacks. 
The fol lowing condit ional  characteristic is an iterated version of the characterist ic 

described in Section 3: 

Round Output difference Input difference p ICB Key fraction 

f2p = ({7}, 0) 
1 A = 0  a = 0  1 1 
2 B={39} b={7} p =  ~ 1 ½ 

3 C={7} c={39} p =  ~ 1 ½ 

4 0 0 1 I 

5 {7} {39} p = ~ 1 ½ 

6 {39} {7} p = ~ 1 ½ 

7 0 0 1 1 

8 {39} {7} p = ~ 1 ½ 

9 {7} {39} p = ~ 1 ½ 

10 0 0 1 1 

11 {7} {39} p = t 1 ½ 

~2T = ({7}, {39}) 

The fol lowing characteristics have the same fZe, but  different ~2r and cover different 
fractions of  the key space: 

Round Output difference Input difference p ICB Key fraction 

e e  = ({7}, o) 
1 A = 0  a = 0  1 1 

I 2 B={45} b={7} p =  ~ 0 

3 C={6} c={45} p =  ½ 1 ½ 

4 {45} {6, 7} p ---- ½ 0 ½ 

5 0 0 1 1 
! 6 {45} {6, 7} p = ~ 0 

7 {6} {45} p = / 1 ½ 

8 {45} {7} p = t 0 ½ 

9 0 0 1 1 

10 {45} {7} p = ~ 0 ½ 

11 {6} {45} p = ½ 1 ½ 

~r  = ({6, 7}, {45}) 

where {m, n} denotes a 64-bit  value whose mth and n th  bits have the value one and all 
the others have value zero. 
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Round Output difference Input difference p ICB Key fraction 

[2t, = ({7}, 0) 
1 A = 0  a = 0  1 1 
2 B = {39} b = {7} p = ~ 1 ½ 

3 C = { 7 }  c = { 3 9 }  p =  1 1 ½ 

4 0 0 1 1 

5 {13} {39} p = ~ 0 ½ 

6 {38} {13} p = 81- 1 ½ 

7 {13} {38,39} p =  ~ 0 ½ 

8 0 0 1 1 

9 {13} {38, 39} p = ~ 0 ½ 

10 {38} {13} p = ~ 1 ½ 

11 {13} {39} p = ~ 0 ½ 

g2r = (0, {39}) 

The following conditional characteristic even has the same g2r as the previous one: 

Round Output difference Input difference p ICB Key fraction 

~2p = ({7}, O) 

1 A = 0  a = 0  1 1 
2 B = { 4 5 }  b = { 7 }  p =  ~ 0 1 

3 C = { 6 }  c = { 4 5 }  p =  / 1 1 

4 {45} {6, 7} p = ~ 0 ½ 

5 0 0 1 1 

6 {45} {6, 7} p = ~ 0 ½ 

7 {6} {45} p = ~ 1 ½ 

8 {45} {7} p = / 0 ½ 

9 0 0 1 1 

10 {39} {7} p = ~ 1 ½ 

11 {7} {39} p = / 1 ½ 

f~r = (0, {39}) 

Together these two characteristics form the first nontrivial differential found in a DES- 
like cryptosystem. 
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