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Abstract. Suppose that the output of a running key generator employed in a 
stream cipher is correlated to a linear feedback shift register sequence (LFSR 
sequence) a with correlation probability p > 0.5. Then two new correlation attacks 
(Algorithms A and B) are presented to determine the initial digits of a, provided 
that the number t of feedback taps is small (t < 10 ifp < 0.75). The computational 
complexity of Algorithm A is of order O(2"~), where k denotes the length of the 
LFSR and c < 1 depends on the input parameters of the attack, and Algorithm B 
is polynomial (in fact, even linear) in the length k of the LFSR. These algorithms 
are much faster than an exhaustive search over all phases of the LFSR, and are 
demonstrated to be successful against shift registers of considerable length k 
(typically, k = 1000). On the other hand, for correlation probabilities p _< 0.75 the 
attacks are proven to be infeasible against long LFSRs if they have a greater 
number of taps (roughly k _> 100 and t > 10). 

Key words. Cryptanalysis, Stream cipher, Correlation, Linear feedback shift 
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1. Introduction 

A c o m m o n  type of  runn ing  key gene ra to r  employed  in s t ream-c ipher  systems 
consists  o f  n (most ly  maximum-leng th )  b ina ry  l inear  feedback shift registers  
(LFSRs)  whose  ou tpu t  sequences are  c o m b i n e d  by  a non l inea r  Boolean  funct ion  f .  
S iegenthaler  [ 5 ] - - w h o s e  work  is based  on  ini t ial  ideas  of  Btaser and  H e i n z m a n n  
[ 1 ] - - h a s  shown tha t  if the key s t ream is co r re l a t ed  to (at  least) one of  the  L F S R  
sequences,  a cor re la t ion  a t tack  agains t  this  ind iv idua l  LFSR. sequence  can  signifi- 
cant ly  reduce a brute-force  a t tack.  In  fact, the  o u t p u t  of  several  combin ing  funct ions 
previously  p r o p o s e d  in the l i te ra ture  is k n o w n  to be cor re la ted  to some  input  
var iables  wi th  probabi l i t i es  p up  to 0.75 (this holds,  e.g., for the genera tors  of  Geffe, 
Pless, or  Bruer). These genera tors  have been  b r o k e n  in [5]  for L F S R  lengths  k < 50 
(roughly),  accord ing  to the c o m p u t a t i o n a l  complex i ty  of  the a t t ack  (based on  an 

1 Date received: January 25, 1988. Date revised: March 6, 1989. This work was supported in part by 
GRETAG Ltd., Regensdorf, Switzerland. 
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exhaustive search over all phases of the LFSR). But other generators, e.g., certain 
types of multiplexed sequence generators, are also known to be correlated to LFSR 
components. 

In this paper we derive two types of correlation attacks which are much faster 
than the above attack and work for k >> 50 if the LFSRs in question have only a 
few feedback taps (which is sometimes preferred in practice for ease of hardware.) 
Under suitable conditions, correlation attacks against LFSRs of length k = t000 
or even greater are feasible. 

In order to set out our results in more detail, assume that N digits of the output 
sequence z are given, and correlated with probability p > 0.5 to an LFSR sequence 
a, produced by an LFSR with t taps. We assume that the feedback connection is 
known. Observe that this is no essential restriction as there are only a very limited 
number of maximum-length feedback connections with few taps. Hence an exhaus- 
tive search over all primitive feedback connections is possible. Our analysis applies 
to an arbitrary number t of taps but we often restrict analysis to even values of t 
since irreducible feedback connections (of length greater than 1) necessarily have 
an even number of taps. 

The sequence z may be viewed as a perturbation of the LFSR sequence a by a 
binary asymmetric memoryless noise source (with Prob(0) = p). For  the purpose 
of reconstructing the LFSR sequence a from z the following principle is essential to 
the algorithms (Algorithms A and B): every digit an of a satisfies several linear 
relations derived from the basic feedback relation, all of them involving t other digits 
of a. By substituting the corresponding digits of z in these relations, we obtain 
equations for each digit zn, which either may or may not hold. To test whether 
zn = an, we count the number of all equations which hold for zn. Then the greater 
the number of these equations which hold, the higher is the probability that zn will 
agree with an. This is justified by a statistical model introduced in Section 2. 

On the basis of this idea, we roughly outline Algorithm A (developed in Section 
3): we use the test to search for correct digits (i.e., digits zn with z, = an). This is done 
by selecting those digits which satisfy the most equations. In this way we obtain an 
estimate of the sequence a at the corresponding positions. Under favorable condi- 
tions these digits have a high probability of being correct, which means that only 
a slight modification of our estimate is necesssary. This results in a considerably 
reduced exhaustive search to sort out sufficiently many correct digits, in order to 
determine the LFSR sequence a by solving linear equations. 

We give precise conditions under which this procedure is successful, and deter- 
mine its computational complexity, which in general is of order O(2Ck), where c < 1 
is a function of t, p, and N/k. To illustrate this estimate we mention that for t = 2 
taps, N/k = 106, and p > 0.6, the number c is smaller than 0.25, and for p > 0.67, c 
is below 0.001 (see Table 2). This is a considerable improvement compared with 
exhaustive search, where c = 1. On the other hand, for large t (t > 10) our estimate 
shows that c comes very close to H(p), where H(p) denotes the binary entropy 
function. This proves that Algorithm A for large t gives no advantage over (a 
modified) exhaustive search (see Section 3). 

In Algorithm B (developed in Section 4) we do not search for the most reliable 
digits. Instead we take into account all digits of z, together with their probabilities 
of being correct. A priori, with probability p a digit of z agrees with the correspond- 
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ing digit of a. Now we assign to each digit zn of z a new probability p*, which is the 
probability for zn = an, conditioned by the number of equations satisfied. This 
procedure can be iterated with the varied new probabilities p* as input to every 
round. After a few rounds, all those digits of z whose probability p* is lower than 
a certain threshold are complemented. Under suitable conditions we can expect that 
the number of incorrect digits decreases. In this case we restart the whole process 
several times, with the new sequence in place of z, until we end up with the original 
LFSR sequence a (see Table 4). 

To obtain conditions under which Algorithm B succeeds, a function F(p, t, N /k )  
is introduced to measure the correction effect. Thus if F(p, t, N /k )  < 0 there is no 
correction effect and Algorithm B will not be able to reproduce the LFSR sequence 
a. Therefore we get a definite limit to this attack (which is attained for t > 10 if 
p < 0.75). In the other direction, investigations of F(p, t, N /k )  show that for t = 2 
or t = 4 taps Algorithm B still remains effective for small correlations, and, in fact, 
for t = 2, even for correlation probabilities quite close to 0.5 (see Tables 3 and 5). 
This means in particular that correlation to LFSRs with only two feedback taps 
can be very dangerous. The striking efficiency of Algorithm B, as observed in 
numerous experiments, is explained by the fact that its computational complexity 
is of order O(k) (i.e., linear in length k of the LFSR, for fixed t, p, and N/k).  

Algorithms A and B enable attacks against LFSRs of considerable length (e.g., 
k = I000 or greater) with software implementation. However, a comparison shows 
that Algorithm A is preferable if c << 1 and p is near 0.75, whereas Algorithm B 
becomes more efficient for probabilities p near 0.5. (Simulations of Algorithm B 
have been shown t<~ be successful in attacks with p = 0.55 even on a personal 
computer.) 

The methods developed for Algorithms A and B allow several generalizations 
and conclusions (see Section 5). To prevent attacks based on these methods, suitable 
precautions are necessary. This leads to new design criteria for stream ciphers: 

1. Any correlation to an LFSR with less than 10 taps should be avoided. 
2. There should be no correlation to a general LFSR of length shorter than 100 

(especially when the feedback connection is assumed to be known). 

In [3] and [4] methods have been proposed to face correlation. In applications of 
these methods the above criteria have to be taken into consideration. 

2. Algebraic and Statistical Foundations 

2.1. Preliminaries 

Assume that the output sequence z of a binary key stream generator is correlated 
to an LFSR-sequence a, and let p denote the correlation probability between a and 
z, i.e., 

p = Prob(z~ = an) > 0.5. 

Recall that the LFSR-sequence a is given by a linear relation of the form 

an = c i a . - i  + c2a~-2 + "'" + Ckan-k • (2.1) 
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Moreover, c(X)  = Co + c l X  + c 2 X  2 + "'" + CkX k (with Co = 1) is called the feed- 
back polynomial of the relation. The number  t of feedback taps is equal to the 
number of nonzero terms in {cl, c2 . . . .  , Ck}. Moreover,  (2.1) may be written as an 
equation with (t + 1) terms 

Z a,_, = 0. (2.1') 
{i:O<i~k,c~¢.O} 

By shifting the sequence a we observe that  a fixed digit a ,  appears in every t + 1 
positions of (2.1'), i.e,, it simultaneously satisfies t + 1 equations of the form (2.1') 
or (2.1), respectively. 

Every polynomial multiple of c(X)  defines a linear relation for a. This applies in 
particular for powers c(X) J for exponents j = 2 i, where we have e(X)  i = c(Xi).  In 
this way we obtain a variety of linear relations beyond those obtained by shifting, 
all having the same number t of feedback taps. (The latter property is crucial, as the 
feasibility of our correlation attacks developed in Sections 3 and 4 depends on the 
number of taps.) In fact, our attack will test all these linear relations for the given 
sequence z to decide whether z, agrees with a,  for a given n. 

Suppose this a,  is fixed. Then the linear relations as obtained above can be written 
in the form 

L1 = a + b 1 = 0, 

Lz = a + bz = O, 
• ( 2 . 2 )  

L m = a + b = = O ,  

where a = a, and each bi, i = I, . . . ,  m, is a sum of exactly t different terms of the 
LFSR sequence a. The number m of these relations is determined in Section 3 (see 
formula (3.3)). 

Instead of the LFSR-sequence a we may  substitute the digits of the given sequence 
z (at the same index positions) in equations (2.2), thus giving rise to expressions 

Li = z + Yl, i = 1 . . . . .  m, (2.3) 

where L i is not necessarily 0. 

2.2. The Stat is t ical  Model  

Motivated by these facts, we introduce the following statistical model which is 
essential to our method. We begin by replacing the digits in equations (2.2) with 
a set of binary random variables A = {a, b11, b12, . . . ,  blt, b21, b2z, . . . ,  b2, . . . . .  
b,,~, b,,2 . . . . .  b,n}, satisfying the corresponding equations 

a + bl1 + b,2 + " "  + bit = O, 

a + b21 + b22 + " "  + b2, = O, 
• ( 2 . 4 )  

a +bin1 +b. ,2  + "'" + b,,, = 0. 

In a similar way we introduce a set of binary random variables Z = {z, Yl 1, Y,2 . . . .  , 
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Ylt ,  Y2x, Y22 . . . . .  Y2t . . . . .  Yral, Ym2 . . . . .  y,,~} representing the digits of  the sequence 
z in (2.3). 

The two sets A and Z of r andom variables are related by 

Prob(z  = a) = p and P r o b ( y  o = bij) = p. (2.5) 

Besides the relations derived from (2.4) and (2.5) these r a n d o m  variables are indepen- 
dent  and identically distributed with equal probabi l i ty  0.5 for being 0 or  1. For  
i = 1 . . . . .  m we derive the r andom variables 

b~ = b .  + bi2 + "'" + b~t 

and (2.6) 

as well as 

Y i = Y l l  + Yi2 + "'" + Y l t  

L i = z + Yi" 

Moreover ,  we denote by s the probabil i ty o f  bi and yi to be equal, 

s = Prob(yi  = hi), (2.7) 

which by (2.5) and (2.6) is independent of  the index i. This probabil i ty is a function 
of  p and t, s = s(p, t). It  can be computed  using the recursion 

s(p, t) = ps(p, t -- 1) + ( 1 -  p)(1 -- s(p, t -- 1)), 
(2.8) 

s(p,  1) = p. 

Next  we consider the random variables L1, Lz . . . . .  L,,. The probabili ty that  the 
ou tcome of these random variables vanishes for a given fixed set of exactly h indices 
is determined by expression (2.9). (Note that  L~ = 0 implies either z = a and Yi = b~ 
or  z ~ a and  Yi ~ bi-) 

psh(1 -- s) m-h + (1 - p)(1 -- S)hS "-h. (2.9) 

For  simplicity assume that Lt  = 0, L2 = 0 . . . . .  Lh = 0 and Lh+ 1 = 1, Lh+2 = 1, 
. . . .  Lm = 1. Then  the corresponding condit ional  probabilities P (for z = a and 
z ~ a) can be computed  as 

psh(1 - s)m-h 
P ( z = a l L x = ' " = L h = O ,  L h + l = ' " = L m = l )  p s h ( 1 - - s ) m - h + ( 1 - - p ) ( 1 - - s ) h s m - h '  

(2.10) 

(1 -- p)(1 -- s)hs m-h 
P ( z ~ a l L 1  = ' " = L h = 0 ,  Lh+l . . . . .  L m =  1) psh(l - - S ) m - h + ( 1 - - p ) ( 1  --S)hS m-h" 

(2.11) 

In  terms of  these r andom variables and the probabilities thereof, we are now able 
to set out  the basic idea of  the method. We consider a r a n d o m  experiment according 
to our  statistical model. Thereby we have access to the ou tcome of  z and  y~ (and 
hence to Li = z + y~), but  not  to the ou tcome of  a and b w (In our  application z and 
Y~i correspond to certain digits of  the given sequence, whereas a and bgj refer to the 
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unknown L F S R  sequence. In particular,  z corresponds to the fixed digit z,, and a 
to the fixed digit a, we wish to determine.) We start with the a priori probabi l i ty  
p > 0.5 that  z = a and count  the n u m b e r  h o f  indices i for which L, = O. Then  we 
alter the a priori probabil i ty p = Prob(z  = a) to a new probabil i ty p* accord ing  to 
formula (2.10). 

We intuitively expect that  this new probabi l i ty  p* increases ifz = a and  decreases 
ifz # a. To  justify this idea we compu te  the expected value of  p* for these two cases. 

Case I: z = a. 

(m)  p s h ( X - - s )  m-h .... s h ( l _ _ s . m _  h 
Eo[p* ]  = E[p*Iz = a] = h=o ~ h psh(1--s)m-h'q-(1--p)(1--s)hs m - h  ~" 1 " 

(2.12/ 

Case 2: z ~ a. 

(m)h psh(1--S)"-h+(l--p)(1--S)hS " = ~ p s ~ ( 1 - s ) " - ~  E~[p*]  = E[p*lz # a]  = ~'~ s" -~(1- - s )  h. 
h=O 

(2.13) 

For  example, with a priori probabi l i ty  p = 0.75, t = 2 taps, and m = 20 relations 
we get Eo[p*  ] = 0.9 and E , [ p * ]  = 0.3. Thus  the probabil i ty p* is expected to 

probability 
p* as function of number h 
of relations satisfied (p=0.75) 
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increase in the case where z = a and to decrease in the case where z 4: a. But from 
(2.12) and (2.13) we conclude 

E[p*]  = pEo[p* ] + (I - p)El[p*] = ~=o ~ (m)  psm-h(lh - s)h= p (2.14) 

which implies that the overall expected value of the new probability p* remains 
unchanged. 

Figure 1 shows the probability distribution for the number  h of relations satisfied 
under the conditions of the above example (p = 0.75, t = 2, m = 20) in both cases. 
These are binomial distributions with respect to s and 1 -- s (see also (3.2)). More- 
over, Fig. 1 gives the new probability p* as a function of h. This example illustrates 
that the distributions make a clear distinction between the two cases which will give 
us the main criterion in our attack to decide whether z = a or z ~ a. 

3. An Efficient Exponential-Time Attack 

3.1 Description of the Attack 

Suppose that N digits of the sequence z and the structure of the LFSR (of length k 
with t feedback taps) are known, and that the output  sequence a of the LFSR is 
correlated with probability p to the given sequence z. The problem to be solved 
consists in finding the unknown LFSR sequence a. Basically, this sequence can be 
constructed out of any k of its digits by solving linear equations for the initial state. 
(If these equations are linearly dependent we can choose some additional digits to 
obtain a linearly independent system.) Therefore, to get an estimate of the sequence 
a we essentially select k digits ofz  with the highest probabili ty p* (see Section 2), or 
equivalently k digits which satisfy the most  relations (2.2). 

The probability Q(p, m, h) that a fixed digit z satisfies at least h of rn relations is 
computed by the formula 

which is a consequence of(2.9). Moreover, the probabili ty R(p, m, h) that z = a and 
that at least h of m relations hold, is given by 

Thus the probability for z = a, given that at least h ~f m relations are satisfied, is 
the quotient T(p, m, h) = R(p, m, h)/Q(p, m, h). 

Therefore Q(p, m, h). N digits are expected to satisfy at least h relations and these 
digits have probability T(p, m, h) to be correct. For  fixed p and m the value T(p, m, h) 
is increasing with h. Thus in order to find sufficiently many  (i.e., at least k) digits 
with the highest reliability we determine the maximum h with Q(p, m, h)" N >_ k. 

As a reference guess I o for a we select the digits of z at the index positions where 
at least h relations are satisfied. Then (1 - T(p, m, h)). Q(p, m, h). N is the expected 
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number of erroneous digits in Io. If this number is small, a can be found by trying 
slight modifications of I o which are tested by correlating the corresponding phase 
of the LFSR with the given sequence z. A phase is accepted if the correlation exceeds 
a suitable threshold (see I5]). 

To complete our analysis it remains to estimate the average number m of relations 
available as a function of the length k of the LFSR and the length N of a known 
portion of the sequence z (ciphertext). The relations (2.2) obtained by i iterated 
squaring operations (i > 0) have length 2~k, and there are N -- 2~k of them. As this 
number has to be positive, i cannot be larger than the integer part of log(N/k). (Here 
log denotes logarithm to the basis 2. For simplicity we also write log for the integer 
part of log2 throughout.) As a consequence, the total number of relations can be 
estimated by 

T =  ~ ( N - 2 1 k ) = N  log + t - 21k 
i=O 

(7-) = N l o g  + N -  --1 k 

= N l o g  + N - -  2 N  + k 

= N log + k. 

Now every relation applies to t + 1 digits of z. Therefore the average number m of 
relations per digit is 

T't+Nt = ( l ° g ( N k ) + k ) ( t +  1). 

In our application (k/N)(t + 1) << 1. Hence the above formula simplifes to 

m= m(N, k, t)~', l o g ( N ~ ( t  + 1). (3.3) 
kZKI 

3.2. Algorithm A 

Step 1. Determine m according to formula (3.3). 
Step 2. Find the maximum value of h such that Q(p, m, h). N > k. 
Step 3. Search for the digits of z satisfying at least h relations and use these digits 

as a reference guess I o of a at the corresponding index positions. 
Step 4. Find the correct guess by testing modifications of Io with Hamming 

distance 0, 1, 2, . . . .  by correlation of the corresponding LFSR sequence 
with the sequence z 

Note that m as computed in step 1 is only a mean value. In general the digits near 
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the middle of the given part of z satisfy more relations than the digits near the 
boundaries. Therefore in the middle a clearer distinction between correct and 
incorrect digits is possible. This leads to an improvement of the algorithm, replacing 
step 3 by step 3': 

Step 3'. Compute the new probability p* according to formula (2.10) for the given 
digits of z and choose k digits having the highest probability p*. 

The average number of erroneous digits in Io (step 3) is computed as ~-= 
( 1  - T(p, m, h)). k. Under favorable conditions (e.g., ifg << 1) step 4 is not necessary. 
This is illustrated by the following example. 

Example 1. Assume that z has length N = 5000 and is correlated with probability 
p = 0.75 to an LFSR of length k = 100 having t = 2 feedback taps. Then, on 
average, we obtain m = 12 relations to test the digits of z. Furthermore, com- 
putations of the functions Q and T show that h >_ 11 relations are expected to 
hold for Q(p, m, l l ) - N  = 0.02189-5000 ~ 109 digits, and (1 - T(p, m, 11)). 109 = 
0.001855. 109 = 0.2 < 1 digits among these are expected to be incorrect. Thus with 
high probability all digits selected in step 3 are correct. 

3.3. Computational Complexity of Algorithm A 

We now determine the computational complexity of the algorithm. Since the 
computation time for steps 1-3 is negligible-we only estimate the average number 
of trials needed in step 4. Suppose that exactly r among the digits as found in step 
3 are incorrect. Then the maximum number of trials in step 4 is 

For  this formula there exists a well-known estimate using the binary entropy 
function 

H(0) = H(1) = 0, 

H(x) = - x  log x - (1 - x) log(1 - x) (0 < x < 1). 

Then (see p. 20 of [6]) 

A ( k ' r ) = ~ ( k i )  (3.4, 

with 0 = r/k. In applications only the average number ~ = (1 - T(p, m, h)). k for r 
is available. For  large k, the probability that r exceeds g is limited roughly by ½. 
Therefore, replacing r by g in (3.4) we obtain an estimate of the number of trials in 
step 4. 

As a consequence the search in Algorithm A has computational complexity O(2 "k) 
where c = H('f/k) lies in the interval 0 N c < I. The case c = t corresponds to the 
exhaustive search over all phases of the shift register. However, under favorable 
conditions we have c << 1, which means that the attack is much faster than the 
exhaustive search. Therefore we investigate the dependency of c as a function of the 
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Table 1. c(p, t, N/k) for N/k = 100. 

t 

p 2 4 6 8 10 12 14 16 

0.51 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.53 0.994 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 
0.55 0.973 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 
0.57 0.927 0.985 0.986 0.986 0.986 0.986 0.986 0.986 0.986 
0.59 0.846 0.973 0.976 0.976 0.977 0.977 0.977 0.977 0.977 
0.6t 0.729 0.956 0.964 0.965 0.965 0.965 0.965 0.965 0.965 
0.63 0.584 0.930 0.949 0.95t 0.951 0.95t 0.951 0.951 0.951 
0.65 0.432 0.890 0.930 0.934 0.934 0.934 0.934 0.934 0.934 
0.67 0.293 0.832 0.905 0.914 0.915 0.915 0.915 0.915 0.915 
0.69 0.122 0.750 0.871 0.890 0.893 0.893 0.893 0.893 0.893 
0.7I 0.062 0.641 0.825 0.860 0.867 0.868 0.869 0.869 0.869 
0.73 0.028 0.462 0.761 0.822 0.837 0.840 0.841 0.841 0.841 
0.75 0.012 0.314 0.671 0.772 0.800 0.808 0.810 0.811 0.811 

Table 2. c(p, t, N/k) for N/k = 106. 

t 

p 2 4 6 8 10 12 14 16 o0 

0.51 0.999 1.000 t.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.53 0.976 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 
0.55 0.870 0.992 0.993 0.993 0.993 0.993 0.993 0.993 0.993 
0.57 0.642 0.982 0.986 0.986 0.986 0.986 0.986 0.986 0.986 
0.59 0.362 0.963 0.976 0.976 0.976 0.977 0.977 0.977 0.977 
0.61 0.132 0.926 0.963 0.965 0.965 0.965 0.965 0.965 0.965 
0.63 0.039 0.856 0.945 0.950 0.951 0.951 0.951 0.951 0.951 
0.65 0.007 0.734 0.917 0.932 0.934 0.934 0.934 0.934 0.934 
0.67 0.001 0.555 0.875 0.910 0.914 0.915 0.915 0.915 0.915 
0.69 0.000 0.327 0.805 0.880 0.891 0.893 0.893 0.893 0.893 
0.71 0.000 0.150 0.692 0.836 0.863 0.868 0.868 0.869 0.869 
0.73 0.000 0.043 0.515 0.768 0.825 0.838 0.841 0.841 0.84I 
0.75 0.000 0.009 0.311 0.660 0.771 0.800 0.808 0.811 0.811 

input  pa ramete rs  N, k, t, and p. We start  with the observa t ion  that  c is a function 

of t, p, and N / k  only. This can be seen by inspect ion of  the formulas  involved in 

steps 1 and 2 of  the algori thm. In high-securi ty appl icat ions  large values d = N/k  
have to be considered. Even rat ios d of  magn i tude  106 or  larger  may  be reasonable  

for a c ryptographer .  Hence for different but  fixed N/k  we study c as function of t 

and p (see Tables  1 and 2). 

3.4. Discussion 

F o r  a sequence z of  length N corre la ted  to the L F S R  sequence a with probabi l i ty  

p, the H a m m i n g  distance between a and z is expected to be (1 - p). N.  If  d = N / k  
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is small, there may be different phases of a with distance less than or equal to 
(1 - p)'N, i.e., there are several solutions to the correlation problem. In this case 
Algorithm A may select a wrong phase of a. 

With increasing number t of taps, e(p, t, N/k) converges to a limit which is 
given by H(p) as shown in the last column of Tables 1 and 2. The proof  of this 
fact is outlined as follows: if t tends to infinity the function s(p, t) (see (2.8)) ap- 
proaches ½. Moreover,  from formulas (3.1) and (3.2) we deduce that T(p, m, h) = 
R(p, m, h)/Q(p, m, h) = p for s = ½. This means that  0 = r/k converges to 1 - p, 
hence c(p, 0% N/k) = H(1 - p) = H(p). This limit c = H(p) has a cryptologic sig- 
nificance for the correlation attack as described in [5]: if the exhaustive search over 
all phases is modified to start with the most  probable error pattern (see step 4 of 
Algorithm A), its computational complexity is of order 0(2 Ck) instead of o(2k). The 
tables show that for p = 0.75 this results in a reduction from e = 1 to e = 0.811. 

For  t = 2 taps and probabilities p > 0.6 the tables show an enormous improve- 
ment over the exhaustive search. Using Algorithm A even correlation attacks 
against shift registers of length i000 or more become feasible. (For N/k = 106 and 
p > 0.67 the entries for c in Table 2 are below 0.0005.) 

A comparison of the two tables shows that by increasing the ratio N/k there is a 
substantial improvement of the attack for t < 10 taps. (To further illustrate this 
point for even higher ratios, take N/k = 109, p = 0.57, and t = 2, then the value of 
c turns out to be 0.408, compared with H(0 .57)=  0.986.) For  t > 10 taps and 
probabilities p < 0.75 the values for c are so close to the asymptotic values that 
Algorithm A gives no essential advan tageove r  the (modified) exhaustive search. 
This holds for all values of N/k which may occur in practical applications. 

4. A Po lynomia l -T ime  Attack 

4.I. Description of the Attack 

The attack of this section is motivated by the fact that the conditional probability 
p* is small if a digit satisfies only a few relations (see Figure 1). This leads to the 
method of complementing a digit if it satisfies less than a certain number of relations. 
Under favorable conditions the "corrected" sequence can be expected to have less 
digits differing from the LFSR sequence a. The idea is to repeat this process until 
we end up reproducing the LFSR sequence a. 

Our  investigations show, however, that there is an alternative and better ap- 
proach which leaves the whole sequence z unchanged in the first instance and 
instead assigns the new probability p* to every digit. Then the process of assigning 
probabilities is iterated before "correcting" the sequence. For  either method we need 
to analyze the effect of complementing digits which satisfy less than a certain number 
of relations. 

The probability that at most h of m relations are satisfied is computed as 

U(p'm'h)=~(7)(PS'(1-s)"-i+(1-p)(1-s)'s"-')'~=o (4.1) 

Moreover, the probability that z = a and that at most  h of ra relations are satisfied 
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is given by 

V(p'm'h)=~'(7)psi(1-s)'~-ii=o (4.2) 

and similarly the probability that z # a and that at most h ofm relations are satisfied 
is 

W(p'm'h)=~(7)(1-pl(1-s)'sr'-i',=o (4.3) 

Therefore U(p, m, h). N is the expected number of digits of z which satisfy at most 
h relations. If these digits are complemented, W(p, m, h). N is the number of cor- 
rectly changed digits and V(p, m, h)" N is the number of erroneously changed digits. 
Thus the increase of correct digits is the difference W(p, m, h). N -- V(p, m, h)" N, 
and the relative increase is computed as 

l(p, m, h) = W(p, m, h) - V(p, m, h). (4.4) 

Hence optimum correction is obtained by choosing h = hma x such that l(p, m, h) is 
maximum for given p and m. 

For  our refined method which takes p* into account, we replace hm~ ~ by a 
corresponding probability threshold on p*, which is chosen as 

Ptnr= ½(P*(P, m, hma~) + p*(p, m, hma x + 1)) (4.5) 

in order to achieve maximum correctiorr effect. Then the expected number of digits 
with p* below Pthr is 

Nth ~ = U (p, m, hm~) " N. (4.6) 

If there are only a few digits with p* below Pthr the assignment of new probabilities 
is iterated. For  this we need a generalization of formula (2.8) for s(p, t) to the 
situation where each of the t digits may have different probabilities Pt, P2 . . . .  , P:  

s(p 1 . . . . .  p,, t) = P:(Pl  . . . .  , P,-1, t -- i) + (1 -- p,)(1 -- s(p~ . . . . .  P,-1, t -- 1)), 
(4.7) 

s(pl, 1) = Pl. 

This generalization carries over to all other formulas, in particular to formula (2.10) 
for p*. 

As numerous experiments have revealed, only a very limited number e of such 
iterations is reasonable. (In many cases e = 5 is a suitable choice.) 

We are now prepared to formulate the algorithm in detail. 

4.2. Algorithm B 

Step I. Determine m according to formula (3.3). 
Step 2. Find the value of h = h~x such that I(p, m, h) is maximum. Compute Pthr 

and Nth r according to (4.5) and (4.6). 
Step 3. Initialize the iteration counter i = 0. 
Step 4. For every digit of z compute the new probability p* (see (2.10) and (4.7)) 

with respect to the individual number  of relations satisfied. Determine the 
number Nw of digits with p* < Pthr. 
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Step 5. If Nw < Nthr or i < ~ increment i and go to step 4. 
Step 6. Complement those digits of z with p* < Pthr and reset the probability of 

each digit to the original value p. 
Step 7. If there are digits of z not satisfying (2.1) go to step 3. 
Step 8. Terminate with a = z. 

In the subsequent discussion which is based on simulations with this algorithm, the 
outer loops (steps 3-7) are called rounds, whereas the inner loops (steps 4 and 5) 
are referred to as iterations. 

In the first round it was observed that Nw ,~ Nth, as expected by theory. (Hence 
only one iteration of steps 4 and 5 may be necessary.) In higher rounds the errors 
(zn # an) are no longer independent of the relations. Thus our  statistical model does 
not strictly apply anymore. This is reflected by the observation that Nw << Nthr in 
higher rounds. For  this reason we iterate the assignment of new probabilities until 
there are enough digits with p* below Pthr- However, after a few iterations a strong 
polarization can be observed between digits having probability p* either very close 
to 0 or very close to 1. Apart from a few digits, this polarization tends to become 
stable, which means that we need not iterate any longer. This justifies the termina- 
tion of a round after a limited number a of iterations. 

In performing Algorithm B we observe a steady correction effect which after 
several rounds terminates with a = z. To explain this experience (see also Example 
2), the statistical dependencies between the different rounds should be taken into 
account. As this would require a different approach we do not pursue this line 
further (see also the open problems in Section 5). 

Algorithm B allows some modifications, e.g., in step 6 the probabilities could be 
reset to values higher than the original p, according to the decrease of the expected 
number of errors after each round. Simulations have revealed, however, that this 
does not lead to an improvement of Algorithm B. 

4.3. Computational Complexity and Limits of the Attack 

To estimate the correction effect in Algorithm B, we have to calculate /max = 
I(p, m, hmax) (step 2) for given p, t, N, and k. First observe that m is a function of t 
and d = N/k (see (3.3)). Moreover, hm~ ~ is a function of p and m. Therefore/max is a 
function of p, t, and d, Im~ ~ = I~a~(p, t, d). The expected number of digits corrected 
in one iteration is computed as 

Nc = Imp(p, t, d). N. (4.8) 

It is convenient to express Nc as N~ = F(p, t, d). k, where 

F(p, t, d) = I ~ ( p ,  t, d)" d (4.9) 

is a correction factor independent of k. If F(p, t, d) < 0 no correction effect can be 
expected and the attack will fail. On the other hand, if the parameters of the attack 
result in F(p, t, d) >_ 0.5, Algorithm B has appeared to be very successful in most 
experiments (see Example 2). For fixed t and d we have computed the smallest 
correlation probability p such that F(p', t, d) > 0.5 for p' _> p, as shown in Table 3. 

From Table 3 we see that for t < 8 taps the correlation-probability limit necessary 
for a successful attack is in a range relevant in practice. In particular for t = 2 
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Table 3. p with F(p, t, d) = 0.5. 

t 

d 2 4 6 8 10 12 14 16 18 

10 0.761 0.880 0.980 0.980 0.980 0.980 0.980 0.980 0.980 
102 0.595 0.754 0.824 0.863 0.889 0.905 0.917 0.926 0.934 
10 a 0,553 0.708 0.787 0.832 0.861 0.882 0.897 0.908 0.918 
104 0.533 0.679 0.763 0.812 0.844 0.867 0.883 0,896 0.906 
105 0.525 0.663 0.748 0.800 0,833 0,857 0,875 0.889 0.900 
106 0.519 0.650 0.737 0.789 0.825 0.849 0.868 0,883 0.894 
107 0.515 0.641 0.727 0.781 0.817 0.843 0.862 0.877 0,890 
108 0.514 0.634 0.720 0.774 0.812 0.838 0.858 0.874 0.886 
109 0.512 0.628 0.714 0.770 0.807 0.833 0.854 0.870 0.882 
101° 0,510 0.621 0.709 0.764 0.802 0.830 0.850 0.866 0.879 

this probability comes very close to 0.5. In these cases the algorithm is success- 
ful on very long LFSRs. The following example illustrates the efficiency of the 
attack. 

Example 2. Referring to the entry 0.754 in Table 3 for t = 4 and d = 100 we 
consider the following situation: N = 10,000, k = 100, t = 4, and p = 0.75 (instead 
of 0.754). Then d = 100 and F(p, t, d) turns out to be 0.392 (instead of 0.5 of Table 
3). The parameters of Algorithm B can be computed as Pthr = 0.524, Nthr = 448. 
Thus 448 digits are expected to be changed in the first iteration resulting in a 
decrease of wrong digits by 39. Table 4 shows the intermediate results after each 
step. The entry in the third column always indicates the decrease of wrong digits if 
correction had been applied. 

This example deserves some remarks: 
In round 1 after iteration 1 the figures are very close to the numbers as predicted 

by theory. However, after the first iteration in higher rounds the figures are lower 
than expected, due to statistical dependencies as explained earlier. Nevertheless, we 
observe an increasing correction effect after some more iterations. As a consequence 
all errors are eliminated after only a few rounds (5 rounds and 12 iterations in total 
in Example 2). 

The number of rounds/iterations needed is basically dependent on p, t, and d 
only, but not on the length k of the LFSR. Assume that in the above example N is 
replaced by N = 100,000 and k by k = 1000. As the corresponding correction factor 
F(p, t, d) remains unchanged the same number of iterations can be expected to be 
necessary. Moreover, for every individual digit of the sequence z the amount  of 
computation needed to calculate the new probability p* also remains unchanged. 
Since the sequence z has ten times as many digits the computational complexity of 
the algorithm increases by the same factor. As this argument holds in complete 
generality, we conclude that the computational complexity of Algorithm B grows 
linearly with the LFSR length k, i.e., is of order O(k). 

We continue with the observation that in Example 2 even a correction factor 
F(p, t, d) of tess than 0.5 has led to a successful attack. In fact there are examples 
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Table 4. Protocol of an attack based on Algorithm B. 

173 

Number of digits Number of wrong Number of wrong 
with digits with Decrease of digits after 

P* < Ptht P* < Pthr wrong digits correction 

Round 1 
Iteration 1 430 246 62 2500 
Iteration 2 615 416 217 2500 
Correction (615 > Nth~) 0 0 0 2283 

Round 2 
Iteration 1 70 44 18 2283 
Iteration 2 314 254 194 2283 
Iteration 3 921 743 565 2283 
Correction 0 0 0 1718 

Round 3 
Iteration 1 49 48 47 1718 
Iteration 2 654 643 623 1718 
Correction 0 0 0 1086 

Round 4 
Iteration 1 110 110 110 1086 
Iteration 2 712 708 704 1086 
Correction 0 0 0 382 

Round 5 
Iteration 1 86 86 86 382 
Iteration 2 342 342 342 382 
Iteration 3 382 382 382 382 
Correction 0 0 0 0 

with F(p, t, d) = 0.1 where Algorithm B still leads to a correct solution. To prevent 
the attack, even smaller values of F(p, t, d) have to be considered. A definite barrier 
arises for situations with F(p, t, d) < O. 

For  fixed t and d Table 5 shows the largest p such that F(p', t, d) < 0 for p' < p. 
Note that this p is the smallest correlation probability where the attack may be 
successful at all (for t and d fixed). If N is smaller than the unicity length Algorithm 
B may converge to a wrong phase as was pointed out in Section 3.4. 

Table 5. p with F(p,  t, d) = O. 

t 

d 2 4 6 8 10 12 14 16 18 

10 0.584 0.739 0.804 0.841 0.864 0.881 0.894 0.904 0.912 
i02 0.533 0.673 0.750 0.796 0.827 0.849 0.865 0.878 0.890 
103 0.521 0.648 0.727 0.776 0.809 0.833 0.852 0.866 0.878 
104 0.514 0.629 0.709 0.760 0.795 0.821 0.841 0.856 0.869 
105 0.511 0.620 0.699 0.752 0.787 0.815 0.834 0.850 0.863 
106 0.509 0.612 0.692 0.745 0.782 0.809 0.830 0.846 0.860 
l07 0.508 0.605 0.684 0.738 0.775 0.803 0.825 0.842 0.855 
10 s 0.507 0.601 0.680 0.733 0.771 0.800 0.821 0.838 0.852 
109 0.506 0.597 0.676 0.729 0.768 0.797 0.818 0.836 0.850 
101° 0.505 0.592 0.671 0.725 0.764 0.793 0.815 0.832 0.847 
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Table 5 shows that the attack is definitely infeasible for t > 10 taps with correla- 
tion probabilities occurring in practice, even if the ratio N / k  is as large as 10 l°. Note, 
however, that for t = 2 the limit probability comes very near to 0.5. 

5. Conclusions, Generalizations, and Open Problems 

The attacks as described in Sections 3 and 4 lead to a new design criterion for general 
stream ciphers with LFSRs as components: any correlation to an LFSR with less 
than 10 taps should be avoided. 

To face correlation attacks the use of correlation-immune functions has been 
proposed [4]. The question arises whether our attacks also apply to stream ciphers 
designed with correlation-immune functions. In principle this is possible in the 
following way. According to a lemma of Xiao and Massey [7] the output of a 
correlation-immune function of order k is correla.ted to a sum of k + 1 input 
variables. The sum of the corresponding LFSR sequences is again an LFSR se- 
quence whose feedback polynomial is the product of the individual feedback poly- 
nomials. Thus our algorithms could be applied in order to determine this sum. 
Hereafter the individual LFSR sequences could be extracted by partial fraction 
decomposition of the formal power series of the sum. However, the attack is limited 
by the fact that a product of polynomials rarely has low density even if the factors 
are trinomials. Thus an appropriate application of correlation-immune functions 
can prevent attacks based on Algorithms A and B. 

The application of our attacks extends to the situation where the feedback 
polynomial has many terms but is a factor of a low density polynomial of moderate 
degree. It appears to be difficult to decide whether a given polynomial has this 
property. However, if the degree k of the polynomial is less than 100, it is feasible 
to find such polynomial multiples using an algorithm of the following kind. 

Let f ( x )  be  an arbitrary polynomial of degree k. Consider two sets of polynomials 
of the form x" + x ~ and x c + x d, respectively, with a, b, c, d < 2 k/4. There a r e  2 k/2 

polynomials of both kinds. Using a "common birthday argument," with probability 
roughly 1/2 there are pairs with x a + x ~ =- x ~ + x a (rood f ( x ) ) .  Thus we may find a 
polynomial multiple of f ( x )  of degree 2 k/4 whose LFSR has only 3 taps. The 
computational complexity of this algorithm is of order 0(2k/2). For example, for 
k = 80 we can find polynomials of degree 22o g 106 in 0(24°) steps. This implies 
that correlation attacks against LFSRs of length shorter than 100 with arbitrary 
feedback polynomials are possible, provided that the feedback connection is 
known. 

From this observation another important design criterion results in the sense that 
there should be no correlation to a general LFSR of length shorter than 100 
(especially if the feedback connection is assumed to be known). Our algorithms 
apply to known plaintext as well as ciphertext-only attacks. In the ciphertext-only 
situation the correlation probability also depends on the redundancy of the plain- 
text. Note that in the ASCII code the two most significant bits remain constant 
when restricted to lowercase letters. A promising approach would consist in decimat- 
ing the cipher stream by the code length before applying the correlation attack to 
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the decimated LFSR sequence. If the decimation factor is a power of 2 the feedback 
polynomial remains unchanged. It follows that in the presence of correlation to 
an LFSR with few taps the use of 8 bit ASCII code is more problematic than the 
use of 7 bit ASCII code. 

Our analysis can be extended to key stream generators having correlation to 
components whose output satisfies even nonlinear relations. The important point 
is not the linearity but the fact that only a few digits are involved in these relations. 
The statistical model as developed in Section 2 can be generalized to nonlinear 
relations. The only but essential advantage oflinearity is the possibility of producing 
many relations holding for the same digit (by shifting and iterated squaring). 

Our investigations have left an open problem. Besides the first iteration in 
Algorithm B we could not explain the surprising success of this attack. In mathe- 
matical terms the assignment of new probabilities defines a map P*: [0, 1] N -~ 
[0, 1] N, given by formulas (2.10) and (4.7) for the conditional probability. Steps 4 
and 5 in Algorithm B consist of iterations of P*. Under suitable conditions as 
indicated in Section 4, our experiments have shown that for a given initial vector 
p = (p, p . . . . .  p), p > 0.5, the iterated image of p converges, apart from a few com- 
ponents, to a fixed point which is a vertex of the N-cube. It remains to explain this 
behavior. For  such an explanation step 6 has to be taken into account, where the 
digits are complemented at those positions where the corresponding component, of 
the fixed point is zero. Moreover, it is unclear why Algorithm B can lead to a solution 
after several rounds. 

The solution of the correlation problem may be viewed as the decoding of LFSR 
codes, and thus can be studied in terms of coding theory. In fact, James L. Massey 
has pointed out to us that iterative methods similar to our Algorithm B have been 
applied in decoding. In [2] Gallager has developed a decoding scheme, where the 
decoder computes all the parity checks and then changes any digit that is contained 
in more than some fixed number of unsatisfied parity-check equations. Using these 
new values the parity checks are recomputed, and the process is repeated. Our 
method contrasts to this approach in that we iterate the process of assigning 
conditional probabilities to every digit rather than changing digits according to the 
number of parity-check equations satisfied. 
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