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Abstract. In this paper we discuss a source of finite abelian groups suitable for 
cryptosystems based on the presumed intractability of the discrete logarithm 
problem for these groups. They are the jacobians of hyperelliptic curves defined 
over finite fields. Special attention is given to curves defined over the field of two 
elements. Explicit formulas and examples are given, and the problem of finding 
groups of almost prime order is discussed. 
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1. Introduction 

In a finite abelian group,  if an element was obtained as a multiple of  another  known 
element (the "base"), the discrete logari thm problem consists in finding the integer 
that was multiplied by the base to get the element. Whenever  we have a finite abelian 
group for which the discrete log problem appears to be intractable, we can construct  
various public key cryptosystems in which taking large multiples of  a g roup  element 
is the t rapdoor  function. Such cryptosystems were first constructed from the multi- 
plicative g roup  of  a finite field. However ,  because certain special techniques are 
available for at tacking the discrete log problem in that case (especially when the 
field has characteristic 2, see [ t3] ) ,  it is worthwhile to s tudy other  sources of  finite 
abelian groups. 

In [8] we described how the g roup  of  points on an elliptic curve can be used to 
construct  public key cryptosystems. The purpose of  the present article is to discuss 
the more  general class of  groups obtained f rom the j acobians of  hyperelliptic curves. 
These jacobian varieties seem to be a rich source of  finite abelian groups  for which, 
so far as is known,  the discrete log problem is intractable. We pay special a t tent ion 
to the case when the ground field has characteristic 2, because ari thmetic over such 
fields is particularly amenable to efficient implementation,  and because it is in that 
case that the multiplicative group of  the field does not  provide secure cryptosystems 
unless the size of  the field is extremely large, as explained in [13]. 

After giving the basic definitions of  the g roup  elements and the g roup  addit ion 
in Section 2, we describe an algori thm for addi t ion in Section 3. In  Sections 2 and 
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3 we follow [2], with the addition of some minor modifications and clarifications. 
In particular, we treat a more general equation for the hyperelliptic curve, which 
enables us to include the case of characteristic 2. We next describe how to determine 
the number of F~,-points on the jacobian for varying n, and discuss the problem of 
finding n for which the group has "almost prime" order. If the jacobian has a certain 
irreducibility property, the latter problem is a natural analog of the Mersenne 
number problem of elementary number theory. For  groups of"almost prime" order 
we expect the discrete log problem to be intractable. 

In Section 5 we describe how such public key cryptosystems as the Diffie- 
Hetlman key exchange can be carried over to these jacobians. We briefly discuss 
the generation of the random group elements that are needed in such cryptosystems. 
Finally, we give a procedure which in many cases simplifies the computation of 
large multiples of group elements. 

2. The Groups 

Let K be an arbitrary field, and let /£ denote its algebraic closure. We define a 
hyperel l ipt ic  curve C o f  9enus 9 over K to be an equation of the form v 2 + h(u)v = 
f (u ) ,  where h(u) is a polynomial of degree at most 9 and f ( u )  is a monic polynomial 
of degree 29 + 1. Here f and h have coefficients in K,  and we require that the curve 
have no singular points (u, v), i.e., that there be no values u, v e .K which satisfy 
v 2 + h(u)v = f ( u )  and also both of the partial derivative equations 2v + h(u) = 0 

and h'(u)v - f ' ( u )  = 0 (where the derivative of a polynomial is defined over an 
arbitrary field by means of the usual formulas). Throughout  this section we assume 
that the curve C has been fixed. 

Let L be a field containing K. By an L-po in t  P ~ C we mean either the symbol oo 
or else a solution u = x e L, v = y ~ L of the equation v 2 + h(u)v = f (u) .  The latter 
is called a "finite" point and is denoted Px.y- If a is an automorphism of L over K, 
we let P~ denote P~l~.~y) and set oo ~ = oo. 

We now introduce the jacobian of the curve C, using the notion of a "divisor" on 
C. The reader interested only in the algorithms may skip to the beginning of Section 
3, at which point we regard a divisor explicitly as merely a pair of polynomials. On 
the other hand, the reader who wants a treatment of the theory of algebraic curves 
that is more thorough than the discussion below is referred to [5]. 

A divisor is a finite formal sum of/~-points D = ~ miP i. We define the degree of 
D to be the integer ~ m~. The divisors form an additive group D, in which the divisors 
of degree 0 form a subgroup D °. Given D = ~ miPi e D, we define D + = ~,,, > o miPi 
(the "positive part" of D), we say that D __ 0 if D = D +, and we set D°= 
D - (deg D)oo. Thus, D + > 0 and D ° e D °. Given two divisors D I = ~ rn~P i and 
Dz = ~niP i in D °, we define g.c.d. (DI,D2)~ D ° to be (~min(mi, ni)Pi) °, i.e., 

min(mi, ni)P~ - (~ min(m~, n0)oo. 
Given a finite point P = Px, y e C, we define its "opposite" P to be P = 

(x, -y - h(x)), i.e., the unique other point with the same u-coordinate x. IfP = ~, 
then we define P = oo. 

Let p(u, v) be a polynomial with coefficients in/£, considered as a function on C. 
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Since V 2 = f ( u )  - -  h(u)v on C, we m a y  replace higher powers  of  v by lower powers  
to obta in  an equivalent  "reduced" po lynomia l  of  the form p-(u, v) = a(u) - b(u)v. We 
define the order of p(u, v) at a point  P e C, denoted ordp p, as follows: 

(1) Assume P = Px.y is a finite point.  Wri te  p in the form (u - x)r°(ao(u) - bo(u)v), 
where ( u - x )  does not  divide bo th  ao and  bo; let r = r o if P ~ P and 
r = 2r o if P = P. Then order. ,  p is equal  to r if ao(x) - bo(x)y # O, and if 
ao(x) - bo(x)y = 0 it is equal  to r plus the exponent  of  the highest power  of  
(u - x) which divides ao(u) 2 + h(u)ao(u)bo(u) - f (u)bo(u)  2. 

(2) If  P = oo, then ord~ p = - m a x ( 2  deg a, 29 + 1 + 2 deg b). 

Here  in (1) (assume with ro = 0) the idea is that  with v = a(u)/b(u) the value u = x 
should be an (ordpx." p)-th roo t  of  v z + h(u)v - f ( u )  = (a 2 + hab - f b 2 ) / b  2. In (2), 
if we think of u as approach ing  oo "with order  2," then v approaches  oo "with order  
29 + 1" (since v 2 = u 2g+1 + lower-order  terms), and  Jord~ Pl is the order  at  which 
a(u) - b(u)v approaches  co; thus, we say that  the order  of  vanishing o f p  at  infinity 
is the negative of this value. 

T o  any p(u, v) such that  ~ # 0 (i.e., p(u, v) is no t  divisible by v 2 + hv - f as 
polynomials  in u and v), we associate the divisor (p) = ~(ord~, p)P. Here the summa-  
tion is over  all points  P on the curve (including oo) where p has nonzero order.  This 
sum is clearly finite. We can also verify tha t  (p) s D °. As an example,  if p(u, v) = 
u - x, then (u - x) = Px.y + / ~ , y  - 200, where y is one of the two solut ions of  
y:  + h(x)y  = f (x ) .  

By a rational funct ion  on C we mean  a rat io of the form p(u, v)/q(u, v) with g ~ 0. 
To  such a ra t ional  function we associate the divisor (p/q) = (p) - (q) e D °. A divisor 
of the form (p) - (q) is called principal; such divisors fo rm a subgroup  P of D °. The  
quot ient  g roup  D ° / P  is called the jacobian  J of  the curve C. I f  D1, D2 e D °, we write 
D t ~ D 2 if D~ - -  D 2 ~ P, i.e., if Dx and D 2 a r e  equal  when considered as elements 
of J. 

Fo r  example,  for any / ( -po in t  P we have P - ~ ~ - ( P  - co), since 
P + P - 2oo = (u - x) (where x is the u-coordinate  of  P). In  particular,  in the case 
when P = P we have 2P ~ 2oo. It  then follows that  any  D ~ D O can be modif ied by 
a principal  divisor to obta in  an equivalent  D 1 ~ D of  the form ~, miP~ - ( ~  m~)~, 
where the m~ > 0 and the P~ are finite points  such tha t  when  P~ occurs in the sum, 
P~ does not  occur, unless ~ = P ,  in which case the cor responding  mi is at  mos t  1. 
We say that  a divisor D is "semireduced"  when it is b rough t  to the form D1. 

I f K  is a perfect field (e.g., a finite field), we say that  a divisor  D = ~ m~Pi is defined 
over K (or is a "K-divisor")  if D" = ~ m~P 7 is equal  to D for  all au tomorph i sms  a 
o f / (  over  K. Not ice  that  this does not  mean  tha t  each P7 is equal  to P~; tr m a y  
permute  the points. We can show tha t  a pr incipal  divisor is defined over  K if and 
only if it is the divisor of  a ra t ional  funct ion that  has coefficients in K. 

I t  follows f rom the R i e m a n n - R o c h  theorem (see [5])  tha t  every D ~ D O can be 
uniquely represented as an element of  J (i.e., modu lo  P) by  a semireduced divisor 
D~ = )-" m~P~ --  ( ~  m~)~ for which ~ m~ < 9. A divisor D~ with this p rope r ty  is called 
reduced. 

A semireduced divisor D = ~ miPx,,y, - (~', m i ) ~  can be uniquely represented as 
the g.c.d, o f  two principal  divisors of  functions of  the fo rm a(u) and b(u) - v (that 
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is, D = g.c.d. ((a(u)), (b(u) -- v))), where a(u) = I-[(u - xi) m' and b(u) is the unique 
polynomial of degree < deg a such that b(xi)  = Yt for each i and b(u) 2 + h(u)b(u) - 
f ( u )  is divisible by a(u). (If a(u) happens to have distinct roots, i.e., if all rni = 1, 
then the latter condition is redundant.) A divisor D represented in the form 
g.c.d. ((a(u)), (b(u) - v)) is abbreviated D = div(a, b). D is reduced if and only if 
deg a N g. 

For example, the divisor D = Px.y - oo is equal to div(a, b) with a(u) = u - x and 
b(u) = y. If h(u) = 0 (which is possible only if char K ¢ 2) and if y ¢ 0, then for the 
divisor D = 2Px.y - 20o we have a(u) = (u - x) 2 and b(u) = ( f +  y2) /2y ,  where f 
denotes the remainder off(u)  modulo (u - x) 2. 

3. The Algorithm 

From now on, a divisor D will be regarded simply as a pair of polynomials 
D = div(a, b) such that deg b < deg a and b 2 + hb - f i s  divisible by a (here a, b, h, 
and f are polynomials in u). Such a divisor is called "semireduced." An element of 
our group J is an equivalence class of divisors. Every divisor is equivalent to a 
uniqhe "reduced" divisor, by which we mean a semireduced D = div(a, b) for which 
deg a _ g. 

If a, b, and c are three polynomials in u, then the notation b = c (mod a) means 
that b is equal to the residue of c modulo a, i.e., it is the unique polynomial b of 
degree < deg a such that a divides c - b. 

The algorithm for adding divisors D e J consists of two stages. Given D t = 
div(a 1, bt) and D2 = div(a2, b2), we first find a semireduced divisor D = div(a, b) 
such that D ,-~ D1 + D2. Next, we "reduce" D, i.e., we find a'(u) and b'(u) such that 
deg a' <_ g, deg b' < deg a', and D ~ div(a', b'). Our description of the two stages 
of the algorithm follows [2], except that we are working without the assumption in 
[2] that h(u) = 0 and char K ~ 2. We omit the proofofcorrectness of the algorithm, 
which is virtually identical to the proof  in [2]. 

Thus, we wish to find the sum of div(a t , b 1) and div(a 2, b2) on the jacobian of the 
curve v 2 + hv = f ,  where a I, a 2, b t, b 2, h, and f are all polynomials in u. (Here h 
and f have coefficients in K, and a t, a 2, bt, and b2 may have coefficients in an 
extension field of K.) 

Stage I. Let d = d(u) be the g.c.d, of the three polynomials al(u), a2(u ), and 
bl(u) + b2(u) + h(u); and choose sl(u),  s2(u), and s3(u) to be polynomials in u such 
that 

Set 

and 

d = s t a t  + s 2 a 2 + s 3 ( b t  + b 2 + h ) .  (1) 

a = a l a 2 / d  2 

b = ( s la lb2  + s2a2bl  + s3(blb2 + f ) ) / d  (mod a). (2) 
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We easily verify that  d divides s l a l b  2 + s2a2b 1 + s3(blb 2 + f ) ,  so that  this expres- 
sion makes  sense. We further derive the following identi ty of  polynomials  in u, v: 

(bl + b2 + h) (b - o) = (b 1 - v) (b 2 - v) + s 1 a 1 ( b2 + hb2 - f ) / d  + s2 a2(b 2 + hbl - f ) / d ,  

f rom which the correctness of the definition is proved,  as in 12]. 

Special Cases. 1. If  at  and a 2 have no c o m m o n  factor, then d = t, we can take 
s 3 = 0, and  so a = a la  2, b = s ta lb2  + s2a2bl (mod a). 

2. When  a 2 = a 1 and b2 = bl (i.e., we are doubl ing  an element  of  J), we can take 
s 2 = 0 .  

(a) Assume char  K = 2  and h ( u ) = l .  Then  d = l ,  s l = s 2 = 0 ,  s 3 = l ,  and  
a = a  2, b = b  2 + f ( m O d a ) .  

(b) Assume char  K = 2 and h(u) = u. Also assume tha t  u does not  divide a(u), 
which in this si tuation is equivalent  to requir ing that  none  of the P~ occurr ing 
in d iv(a l ,  bl)  = ~ m , P  i - ( ~ m , ) ~  is equal  to its oppos i te  ~ .  (If P, -- P,, then 
2P~ --, 2oo, as we saw.) Then d = i, s 1 = (al (0)) -1, s2 = O, s3 = (al (u)/al (0) + 1)/u, 
and a = a 2, b = (alb ~ + (al(u) + al(0))(b 2 + f ) /u) /at(O) (mod a). F o r  ex- 
ample ,  if D = P~,y - co = div(u - x, y) (here x and  y are constants),  then 
23  = div(a, b) with a = u 2 + x 2 and b = ( f  + yu + x y  + y2)/x,  where f is 
the l inear polynomial  in u that  is ob ta ined  f rom f by replacing u 2 by x 2. 

Stage 2. Given  D = div(a, b) with deg a > 9, the following procedure  replaces D 
with an equivalent  divisor D' = div(a' ,  b') for  which deg a '  < deg a. By successively 
applying the procedure,  we eventually obta in  D" = div(a", b") for which D ~ D" and 
deg a" <. g. 

We set 
a' = ( f  -- hb - b2)/a (3) 

and then 
b ' = - h - b  ( m o d a ' ) .  (4) 

We then show that  div(a' ,  b') ~ div(a, b) and  deg a '  < deg a (see [2]). This con- 
cludes the descript ion of the algorithm. 

Remarks.  1. This a lgori thm is ana logous  to the procedure  for adding classes 
of  quadra t ic  forms. Fo r  instance, in Stage 2 with h = 0, the reduct ion formulas  
(3) and  (4) are similar to the following formulas  for finding a quadra t ic  form 
a ' X  2 + 2 b ' X Y  + c ' Y  2 equivalent to the form a X  2 + 2 b X Y  + c Y  2 of discr iminant  

4 f =  4(b 2 -  a c ) . A s s u m i n g a  > b, w e r e p l a c e  by _ 0 0 1 y to 

get a Y  2 --  2b (X  + j Y ) Y  + c ( X  + j y ) 2 ,  i.e., a '  = c = (b 2 - f ) / a ,  b' = - b  + j c  = 

- b (mod c) with j chosen so that  b' is the least nonnegat ive  residue modu lo  c = a'. 
2. In  the case # = 1 (elliptic curves), the reduced divisors D = div(u - x, y) are in 

one- to-one  correspondence  with the points  Px.y e C. The  above  a lgor i thm is then 
easily seen to reduce to the usual formulas  for the addi t ion  of  points  on an elliptic 
curve (see, e.g., [6]). 
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Examples.  Let K = F 2 be the field of  two elements. Fo r  P ~ C we let po~ denote  
P*~, where a J is the a u t o m o r p h i s m  of F2 given by x ~ x v .  In certain cases there are 
simple formulas  expressing 2kP in te rms of  pU) which give a short-cut  in compu t ing  
multiples of  D = ~m~P~- (~m3oo. T h e  formulas  below all follow by repeated 
appl icat ion of Stage 1 (special case 2(a)) and  then Stage 2 of  the a lgor i thm.  

1. C is given by v 2 + v = u 2a+~. Then: 

(a) for 9 = 1, 

(b) for 9 = 2, 

(c) for g = 3, 

(d) for e = 4, 

2P  = _ p ( 2 ) ;  

4 P  = -- p~4); 

8P = 2P  ~s) - p~6); 

8P = - - P ( 6 ) .  

2. C is given by v z + v = u 29+1 + u. Then: 

(a) for 9 = 1, 
4P  = -- P~*); 

(b) for 9 = 2, 
16P = p~s); 

(c) for e = 4, 
64P = - pCl 2). 

3. C is given by v 2 + v = u  5 + u  3 , g = 2 . T h e n  

64P = - Ptl  2). 

4. C is given by v 2 + v = u  5 + u  3 + u , g = 2 . T h e n  

8P  = p(6).  

Remark. In Section 5 we give a general m e t h o d  for reducing the calculat ion of mP 
for m large to the computa t ion  of l inear combina t ions  of  pO~ with small  coefficients. 

4. Number of Points 

Let J be the jacob ian  of the hyperell iptic curve C given by an equat ion v 2 + h(u)v = 
f(u) with coefficients in K. Assume tha t  K is a perfect field, and  let L be an algebraic  
field extension of K. We let J (L)  denote  the set of  L-points of J ,  i.e., the divisors D 
such that  D ~ = D for all a u t o m o r p h i s m s  a o f / (  over  L. Since this invar iance 
proper ty  is preserved under  addit ion,  J (L)  is a subgroup  of J = J( / ( ) .  In terms of 
the explicit representat ion of  divisors in the form div(a, b) which we used in Section 
3, an L-poin t  of  J is simply an e lement  div(a, b) for  which the polynomials  a and  b 
have coefficients in L. 
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We assume that  K = Fq is a finite field with q elements. I t  is easy to see tha t  the 
abel ian g roup  J (L)  is finite for any finite extension L = Fq.. We set 

iV. = #(a(Fq.)).  

A basic fact abou t  the iV. is that  there is a s imple me thod  for de termining the 
sequence N1, N2 . . . .  by counting the n u m b e r  of  Fq.-solutions of the equa t ion  of C 
for the first 9 values n = 1 . . . . .  9, We now describe this method.  

Let M.  = # (C(Fq.)) - q", where # (C(Fq.)) is the n u m b e r  of  solutions u, v ~ Fq. 
of  the equa t ion  v 2 + h(u)v = f(u). Associated with the curve C is a po lynomia l  Z(T)  
of degree 29 with integer coefficients having  the form 

Z(T)  = T 2° + al T 29-1 + "" + ao_x T°+X + agT° 

+ qaa_ 1 T °-1 + q2aa_ 2 T a-2  + " "  + q°-la 1 T + qa 

g 

= I-[ ( ( T  - ~ j ) ( T  - ~ ) ) ,  (5) 
j=l  

where a l  . . . . .  a o ~ Z and where ~ = q/~j (i.e., the roots  are complex numbers  of 

absolute  value v/-q). The relationship between Z(T)  and {M.} is the following power  
series identity (where Z(T)  denotes the reciprocal  po lynomia l  T2°Z(1/T)): 

log(Z,(T)) = ~. M.  T". 
.=i n 

Note  that  the first 9 values Mx . . . . .  M 0 are enough  to determine the coefficients of  
Z(T). 

Once Z(T)  has been found, N. can be de te rmined  f rom the formula  

g 
N. = I-'[ I1 -- a;[2, (6) 

j= l  

where 11 denotes  the usual complex absolute  value. In part icular ,  N~ = Z(1). Also 
observe f rom (6) that  (q./2 _ 1)2o < N. < (q./2 + 1)20, i.e., N. is asymptot ical ly  of 
magni tude  q.g. 

Here  are the explicit formulas  in the s implest  cases 9 = 1 and 9 = 2. 

9 = I .  I f ~ i s a r o o t o f T 2 + M 1 T + q ,  t h e n N , = l l - - c t " ]  2. 

9 = 2. We first find the number  of  Fq- and  Fq2-solutions of  v 2 + h(u)v = f(u), 
thereby determining M 1 and M2. The  coefficients of  Z(T)  are given by a 1 = Mx, 
a2 = (M 2 + M2)/2. Next,  let Vl and V2 be the two roots  of  the quadra t ic  equat ion 
X 2 + a l X  + (a 2 - 2q) = 0. Then  ~j f o r j  = 1, 2 is a roo t  of  the quadra t ic  equat ion 
X 2 - -  ~ j S  --~ q = 0. Finally, N, = tl - ~t~t2]l - ~t~] 2. 

Examples. 1. Let K = F 2 and let C be given by  v 2 + v = u 5 + u 3 (see Example  3 
of  Section 3). We find that  the four  roots  of  Z ( T )  are 
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For  n not divisible by 2 or  3 this leads to the formula  

N. = 22" + 2" + 1 + ( -  1)~"+l)/4J2("+1)/z(2" + 1) (7) 

(here [ ] denotes  the greatest  integer function), while if n is divisible by 2 or  3, then 
N, is a perfect square. For  example,  if n is divisible by t2, then N. = ((2i) "/z -- 1) 4. 

Similarly, for the curve v z + v = u 5 + u 3 + 1 over  F2 the roots  of  Z ( T )  are given 
by (1 +_ i)((1 + i \ f3) /2)  and N, (n not  divisible by  2 or  3) is given by 

N, = 22" + 2" + 1 -- (-1)~("+*)m2("+l)/z(2" + 1). (8) 

2. Let  K = Fz and C be given by v a + v = u 5 + u 3 + u (see Example  4 of  Section 
3). A similar computa t ion  leads to the formula  

N, = 2 2 " -  2" + 1 (9) 

i fn  is pr ime to 6. I f n  is divisible by 2 but  not  by 3, then N. = (2" + 2 "/2 + 1)2; i fn  
is divisible by 3 but not by 2, then N, = (2" - 1)2; and if n is divisible by 6, then 
N, = (2 "/2 - I )  4. 

Remark. F r o m  the formula  in Example  3 of  Section 3 it follows that  all Fz,2-points 
on the j acob ian  of v 2 + v = u 5 + u 3 have order  dividing 65. Thus,  this g roup  is 
i somorphic  to (Z/65Z) 4. Similarly, it follows f rom the formula  in Example  4 of 
Section 3 that  the group of Fzr-points on the j acob ian  of v 2 + v = u 5 + u a + u is 
i semorphic  to (Z/7Z) 4. 

Fo r  c ryptographic  purposes  (see Section 5) it is desirable for N. = # (J(Fq.)) to 
be divisible by a large pr ime number .  The  best possibility in this direction is for N, 
itself to be prime. However ,  this rarely happens,  because J(Fqd) is a subgroup  of 
J(Fq,) for any divisor d of n, and  so Na]N,. 

Definition. We say that  N, is almost prime if N, divided by the least c o m m o n  
multiple of  N a (1 < d < n, din) is prime. In  part icular,  for n pr ime we say tha t  N, is 
a lmost  pr ime if N , / N  1 is prime. 

We now assume that  n is prime. By (6), we have 

g 
N,/Nx = I ]  j(t - a])/(a -- ai)l 2. (I0) 

j = l  

If  the ~ are not  all conjugates,  i.e., if the po lynomia l  Z ( T )  factors over  the rat ionals,  
then even for  n pr ime the value N,/N1 in (10) has a corresponding factorizat ion.  

Example .  Fo r  C given by v 2 + v = u s over  F 2, g = 2, we have Z ( T )  = T 4 + 4 = 
(T  2 + 2 T  + 2)(T 2 - 2 T  + 2) with roots  +_ 1 + i; for n odd,  N, is given by N, = 
(2" + 2 ("+1)/2 + i)(2" - 2 ("+1)/2 + 1). 

On  the other  hand, if all of  the c~j are conjugates,  then N./NI  = N((~7 - 1)/(cq - 1)), 
where N denotes the absolute  n o r m  of an algebraic number .  The  quest ion of 
primali ty of these norms  is a na tura l  general izat ion of the general Mersenne  prob-  
lem of s tudying when numbers  of  the form (a" - 1)/(a - 1) (n prime) are pr ime (see 
[1] and [14]). 
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Table 1. G e n u s  two curves over F 2 with i r reducible  Z(T).  

E q u a t i o n  of  C Z(T)  

147 

Tab le  2. A l m o s t  p r i m e  

values  o f  # (J(F2.))  fo r  p r i m e  

n < 50 for  C g iven  by  
0 2 "+" /) m U 5 - ~ U  3 q - t / .  

n 22" - 2" + 1 
v 2 + v = u 5 + u 3 T 4 + 2 T  3 + 2 T  2 + 4 T  + 4 

v 2 + v = u 5 + u 3 + 1 T ~ - -  2 T  3 + 2 T  2 - -  4 T  + 4 5 3- 331 

v 2 + v = u 5 + u 3 + u T ~ + 2 T  2 + 4 7 3" 5419 

v 2 + u v = u S + l  T ' * + T 3 + 2 T + 4  13 3 -22366891  
v 2 + uv = u 5 + u 2 + 1 T 4 - T 3 - 2 T  + 4 29 3 .  96076791871613611  

Table  3. A lmos t  p r i m e  values o f  # (J(F2.))  fo r  
p r i m e  n < 50 for  C given by  v 2 + v = u s + u 3. 

n 22n + 2" + 1 + ( - -  1)t~"+1)/412~"+1)/2(2" + 1) 

Table  4. P r i m e  values  o f  # (J(F2.))  fo r  p r i m e  
n < 50 for  C g i v e n  b y  v 2 + o = u s + u 3 + 1. 

n 22" + 2" + 1 - -  (-1)f¢"+x)/~12~"+l)/2(2" + 1) 

5 1 3 . 6 1  5 1321 

7 1 3 . 1 4 2 9  7 14449 

11 13 -312709  11 4327489  

17 13 .1326700741  19 275415303169  

23 1 3 . 5 4 1 5 6 2 4 0 2 3 7 4 9  23 70334392823809  

29 13 .22170214192500421  31 4611545283086450689  

37 1 3 - i 4 5 3 0 3 0 2 9 8 0 0 1 6 9 0 8 7 3 5 4 1  43 5951631966296685834686149  

Examples. Among all genus two curves defined over F 2, there are five cases of 
irreducible Z(T), given in Table 1. In the first three cases, the formulas for N,, given 
in (7)-(9) above, are algebraic factors of 26n + 1 or 23n + 1, and so the question of 
almost primality can be determined from the factorization tables of 2 n + I in [1]. 
Tables 2 -4  list in each of those three cases all primes n < 50 for which N, is almost 
prime. Note that for C given by v 2 + v = u 5 + u 3 + 1 we have N 1 = 1, and so in 
that case the groups J(F2. ) actually have prime order for the tabulated values of n. 

5. Cryptosystems 

Whenever we have a finite abelian group for which the discrete logarithm problem 
appears to be intractable, we can construct various public key cryptosystems in 
which taking large multiples of a group element is the trapdoor function. 

In the case of the group of Fq,-points of the jacobian J of a hyperelliptic curve C 
defined over F~, the discrete log problem takes the following form, in the notation 
of Section 2. 

Definition. The discrete logarithm problem on J(F~.) is the problem, given two 
divisors D1 and D2 defined over Fq., of  determining an integer m ~ Z such that 
D2 ~ mD~ if such m exists. 

Thus, the Diffie-Heltman key exchange [3] in the context of J(F~.) works as 
follows. The finite field Fq. and the equation of C are publicly known, as is a fixed 
element Do ~ J(F~,), Each user A chooses a large integer ma, which is kept secret, 
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and computes and makes public the divisor mAD o. When two users A and B wish 
to have a key for use in some other cryptosystem, they use the divisor mamBD o 
J(Fq.). Here divisors are reduced to the form div(a, b) with deg b < deg a < 9, and 
some standard way is agreed upon, using the coefficients of a and b, to associate to 
div(a, b) an integer which serves as the key. 

Similarly, the M a s s e y - O m u r a  and E1Gamal systems can be adapted for the 
group J(Fq,)just as they were for elliptic curves in [8]. Now, of course, we are taking 
multiples of divisors rather than simply points. 

In cryptosystems of this sort, we need to have a method of generating a "random" 
element of the group. In our case this means a divisor D ~ J(Fq.). It  suffices to show 
how to find a "random" point P on C with coordinates in F~,, after which we can 
generate D = ~ miP  i - ( ~  m i ) ~  with ml > 0 and ~ m~ < 9 by choosing points P 
with Fq~,-coordinates for small ( <  9) values of k and then setting D equal to a sum 
of divisors of the form 2aeGal(Fqkn]Fqn) P" --  k ~ .  

Without loss of generality we may assume n = t, i.e., we may regard C as defined 
over Fq. and replace q" by q. Let C have equation v 2 + h(u)v = f (u ) ,  as before. 
Choose the coordinate u = x ~ F~ at random and attempt to solve v 2 + h(x )v  = f ( x )  
for v. 

Case (i). q is odd. Then the problem reduces to taking a square root in a finite 
field. There is approximately a 50~  chance that a solution v = y exists, in which 
case it can be found, for example, by Shanks'  probabilistic method (see pp. 47-48 
of [7]). If  no solution exists, then we choose another random u = x e Fq and repeat 
the procedure. 

Case  (ii). q is even. Then h(x)  # 0, and the change of variables z = v /h(x)  leads to 
the equation z 2 + z = a, where a = f ( x ) / h ( x )  2. It is easy to see that this equation 
has a solution z ~ Fq if Trvq/v2 a = 0 and does not have a solution if this trace is 1. 
In the latter case, we must choose another  u = x ~ Fq and start again. In the 
former case we can find z as follows. If  q = 2" is an odd power of 2, simply set 

~-~ (n-l)/2 a22.J z = ~i=o For  even n, we can proceed as in [11, p. 80]: first choose 
such that TrFq/F2 Y = I. Next, set 6 i = a + a 2 + a 4 + ""  + a 2~-~ for j = 1, 2 . . . . .  n. 
Finally, take z = Z4"--I 6:: v - ' .  

Thus, there exist efficient probabilistic algorithms for selecting random D ~ J(F~.). 
It is not known whether there exist deterministic polynomial-time algorithms for 
this. 

Comput ing  Mul t ip l e s  o f  Divisors.  A central ingredient in cryptosystems based on 
the discrete log problem in an abelian group A is an efficient process for computing 
mD for D s A and for large integers m. Suppose that the group law in A is given 
explicitly by an algorithm taking time O( log ' (#  A)). Then the repeated-doubling 
method enables us to compute mD in O(log m l o g ' ( #  A)) bit operations. 

Assume A = J(Fq.) is the jacobian of a curve C defined over Fq. We regard q and 
C as fixed, and n as varying. It  is easy to see that the algorithm in Section 2 takes 
O(n 2) bit operations. Since m D  depends only upon m modulo # A  (here we are 
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assuming # A to be known), it follows that we may assume that m < # A = O(qg~). 
Thus, mD can be computed in time O(n3). 

In practice, rather than using the pure repeated doubling method, in some cases 
it is more efficient to combine it with a procedure which replaces mD by a linear 
combination with small integer coefficients of the divisors D "j (where a: x ~ x q is 
the Frobenius automorphism of Fq~). This sometimes reduces the total number of 
additions of divisors that must be performed in order to compute mD. We now 
describe this procedure. 

Proposition. Let J be the jacobian of a genus g curve C defined over Fq. Suppose 
that n o is large enough so that 

(1 + q-~o/2)29 < 2. (I 1) 

Then there exists a polynomial-time (in n and log m) algorithm which for any m and 
n gives an expression for roD, D ~ J(Fq.), in the form ~ S ~  ajD ~J in which the integers 
aj satisfy [ajl < q~o9 

Proof. Let G = Gal(F~/Fq) = {aJ}j~z/nz . The group ring Z[G] acts on J(Fqn) in 
the obvious way: ( ~  aF~)~m,P i = ~,.jm, ajPf ~. If Z(T) i s  the polynomial (5), then 
it is known (see, e.g., [16]) that Z(a) ~ Z[G]  annihilates every D ~ J(Fqn). Now for 
any no, the polynomial Zno(T) defined by 

g 
Zno(T) = I-I (T - a;°)(T - ~o) 

j=l 

has the property that Z~o(T n°) is divisible by Z(T), and hence Z~o(a n°) also annihi- 
lates J(Fq~). We claim that the condition (I 1) ensures that the constant term q~og of 
Z~o(T ) is greater than the sum of the absolute values of all other coefficients. To see 
this, note that, since lajl = x/~, it follows that the sum of the absolute values of all 
coefficients of Z~o(T ) is at most 

I~I (1 + ict]ol) 2 = (1 + qno/2)2g < 2qnOg, 
j=l 

by (11). This proves the claim. To prove the proposition, it now suffices to observe 
that for any D ~ J(Fq,) we have 

q~og D = --(Z~o(a ~o) -- q~og)O ' 

where the sum of the absolute values of the coefficients of the element of Z [G] on 
the right is < q~°g. This gives an inductive procedure for expressing any element of 
Z[G] modulo Z(tr) in the form ~ - ~  aiaJ with lajl < q~oa In particular, any m 
Z ~ Z[G]  can be so expressed. [ ]  

Example. For  C given by v 2 + v = u 5 + u 3 over F2, the constant term 4 = Z(0) 
is not greater than the sum of the other coefficients (see Table 1). However, for 
n o > 5 we have (11). Let n o = 6. Then Zf (T  6) = (T 12 + 64) 2. Since Z(T)  divides 
(T 12 + 64) 2 and has no multiple factors, it actually divides T 12 + 64, and so we 
have 64D = - D  ~'2. (See Example 3 at the end of Section 3.) Now assume, for 
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instance, that D ~ J(F237) (see Table 3) and m ~ 10 z3 is a large positive integer. We 
write m to the base 64: m = )-',]_-3 o mj64 j, 0 < mj < 64. Then 

13 

mD = E (--1)imJ Do~2j, 
j=O 

where we can replace 12j in the exponent of tr by its least nonnegative residue 
modulo 37. 
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