ERRATA CORRIGE

On Strong Pseudomonotonicity and (Semi)strict Quasimonotonicity

N. Hadjisavvas¹ and S. $Schaible^2$

Abstract. An example in Ref. 1 is corrected to show that indeed a strongly pseudoconvex function, which is only once but not twice differentiable, does not necessarily have a strongly pseudoconvex gradient.

Key Words. Strongly pseudoconvex functions, strongly pseudomonotone maps.

The function

$$f(x) = \int_0^x \xi |\sin(1/\xi)| \ d\xi$$

is not an example of a strongly pseudoconvex function whose derivative is not strongly pseudomonotone, as stated in Example 3.1 of Ref. 1. Indeed, f' vanishes infinitely many times in any neighborhood of 0; so, f is not even pseudoconvex. We thank M. Bianchi for this remark. To provide such an example, we consider instead the function

$$g(x) = \int_0^x \xi(|\sin(1/\xi)| + |\xi|) d\xi.$$

Then,

g'(x) = 0, if and only if x = 0.

By the calculation in Ref. 1, p. 148, we know that there exists c > 0 such that

$$f(x) > cx^2/2, \quad -1/\pi \le x \le 1/\pi.$$

0022-3239/95/0600-0741\$07.50/0 © 1995 Plenum Publishing Corporation

¹Associate Professor, Department of Mathematics, University of the Aegean, Karlovassi, Samos, Greece.

²Professor, Graduate School of Management, University of California, Riverside, California.

Since

 $g(x) \ge f(x),$

we deduce that g(x) is strongly pseudoconvex. In addition,

$$g'(1/k\pi) = 1/k^2\pi^2, \quad k \in \mathbb{N}.$$

Hence, there are no $\epsilon > 0$, $\beta > 0$ such that

 $g'(x) \ge \beta x, 0 \le x < \epsilon;$

so, g' is not strongly pseudomonotone.

Reference

1. HADJISAVVAS, N., and SCHAIBLE, S., On Strong Pseudomonotonicity and (Semi)strict Quasimonotonicity, Journal of Optimization Theory and Applications, Vol. 79, pp. 139-155, 1993.